TW201419648A - Hybrid electrochemical energy storage devices - Google Patents
Hybrid electrochemical energy storage devices Download PDFInfo
- Publication number
- TW201419648A TW201419648A TW102127977A TW102127977A TW201419648A TW 201419648 A TW201419648 A TW 201419648A TW 102127977 A TW102127977 A TW 102127977A TW 102127977 A TW102127977 A TW 102127977A TW 201419648 A TW201419648 A TW 201419648A
- Authority
- TW
- Taiwan
- Prior art keywords
- redox active
- electrolyte
- cathode
- anode
- electrode
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Secondary Cells (AREA)
Abstract
Description
有關聯邦贊助研究之聲明本發明獲得高等研究計畫署E授予之合約編號DEAR0000070的政府支持。政府對本發明具有某些權利。STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH This invention was made with government support under Contract No. DEAR0000070 awarded by the Higher Research Projects Agency. The government has certain rights in the invention.
相關申請案本發明主張於2013年8月7日申請的美國暫時專利申請案第61/680,689號之優先權,其內容整體在此併入做為參考。RELATED APPLICATIONS The present application claims priority to U.S. Provisional Patent Application No. 61/680,689, filed on Aug.
儲存及供應電能或電流的電化學能量儲存裝置,例如,電池,電容,混合或非對稱電池等,的特徵在於離子傳遞。在一電池中,離子被儲存在電極顆粒整體中。在一電化學雙層電容(EDLC)中,離子累積在電極顆粒的表面,但保持在電解質中。擬電容是在EDLC的電極顆粒中進行離子儲存的例子。然而,相對於電池,離子保持在電極顆粒的表面附近且不會擴散進入顆粒的整體。Electrochemical energy storage devices that store and supply electrical energy or current, such as batteries, capacitors, hybrid or asymmetric cells, are characterized by ion transport. In a battery, ions are stored in the entirety of the electrode particles. In an electrochemical double layer capacitor (EDLC), ions accumulate on the surface of the electrode particles but remain in the electrolyte. A pseudo capacitor is an example of ion storage in electrode particles of an EDLC. However, with respect to the battery, the ions remain near the surface of the electrode particles and do not diffuse into the entirety of the particles.
在離子傳遞的另一個變化中,離子被儲存在電解質整體中。在此變化中,離子物種在電極材料的表面位置處經歷可逆的法拉第電荷傳遞反應(faradaic charge transfer reaction),但替代進入電極顆粒的是,已氧化/已還原離子物種會擴散回電解質。此種型式的離子傳遞是液流電池中陰極及陽極的基礎。而由於離子電荷是儲存在電極顆粒的整體體積中,因此電池具有高容量。In another variation of ion transport, ions are stored in the electrolyte as a whole. In this variation, the ionic species undergo a reversible faradaic charge transfer reaction at the surface location of the electrode material, but instead of entering the electrode particles, the oxidized/reduced ionic species will diffuse back to the electrolyte. This type of ion transport is the basis for the cathode and anode in a flow battery. Since the ionic charge is stored in the entire volume of the electrode particles, the battery has a high capacity.
然而,由於發生在循環時的連續應變改變,因此,電池會經歷長時間容量衰退。EDLC有較低的能量密度,但由於沒有應變改變,因此具有非常好的長時間穩定性。However, due to continuous strain changes that occur during cycling, the battery experiences a long period of capacity degradation. EDLC has a lower energy density, but has very good long-term stability because there is no strain change.
液流電池使用電解質物種中的氧化還原反應來儲存電荷,且僅需要電解質物種與一傳導電極表面間的接觸來交換電子。比起電池,液流電池具有較佳的長時間穩定性。然而,習知的液流電池化學在電解質中的每個氧化還原物種僅能與一個電子傳遞一起操作。舉例而言,在釩液流電池中的典型氧化還原反應為V2+<─>V3++e-,其中,釩離子僅交換一個電子。液流電池的能量密度正比於電解質之每單位體積的已交換電子數量。Flow batteries use redox reactions in electrolyte species to store charge, and only require contact between the electrolyte species and a conductive electrode surface to exchange electrons. The flow battery has better long-term stability than the battery. However, conventional flow battery chemistry can only operate with one electron transfer per redox species in the electrolyte. For example, a typical redox reaction in a vanadium flow battery is V 2+ <->V 3+ +e - , where vanadium ions exchange only one electron. The energy density of a flow battery is proportional to the amount of exchanged electrons per unit volume of the electrolyte.
電化學能量裝置,例如,電池,EDLC,及液流電池,已發現有廣泛的應用。然而,存在著對於改善之電化學能量裝置的需求(包括該些裝置中所使用之改善電解質)。Electrochemical energy devices, such as batteries, EDLC, and flow batteries, have found a wide range of applications. However, there is a need for improved electrochemical energy devices, including improved electrolytes used in such devices.
所揭示為使用氧化還原活性電解質的電化學能量裝置,例如,電池,液流電池,及EDLC。亦揭示用於這些裝置中的氧化還原活性電解質。使用所揭示之電解質的電化學能量裝置(例如,電池,液流電池,及EDLC)在每個氧化還原物種可交換多於一個電子,且可達成更高的能量密度。Electrochemical energy devices using redox active electrolytes, such as batteries, flow batteries, and EDLC, are disclosed. Redox active electrolytes for use in these devices are also disclosed. Electrochemical energy devices (eg, batteries, flow batteries, and EDLC) using the disclosed electrolytes can exchange more than one electron per redox species and achieve higher energy densities.
典型地,該電化學能量儲存裝置會使用被一離子交換膜分開之一陰極及一陽極,可選擇地有一多孔分離器膜。該裝置使用包括一或多個氧化還原活性鹽類及可選擇額外鹽類的一氧化還原活性電解質溶液。氧化還原活性鹽類提供一或多個氧化還原活性陰離子,且可經歷可逆電子交換反應。典型地,氧化還原活性陰離子的至少其中一為多原子離子。液流電池可使用一或多個(例如,2個)氧化還原活性電解質。Typically, the electrochemical energy storage device uses a cathode and an anode separated by an ion exchange membrane, optionally with a porous separator membrane. The apparatus uses a redox active electrolyte solution comprising one or more redox active salts and optionally additional salts. Redox active salts provide one or more redox active anions and can undergo a reversible electron exchange reaction. Typically, at least one of the redox active anions is a polyatomic ion. The flow battery can use one or more (eg, two) redox active electrolytes.
混合電化學能量儲存裝置(其中一個電極使用氧化還原活性電解質,且另一個電極為電池型態(法拉第)電極或EDLC型態雙層電極)亦可使用氧化還原活性電解質。A redox active electrolyte may also be used in a hybrid electrochemical energy storage device in which one electrode uses a redox active electrolyte and the other electrode is a battery type (Faraday) electrode or an EDLC type double layer electrode.
所揭示電化學能量儲存裝置包括一陰極,一陽極,以及一陽離子滲透分離器膜位在該陰極及該陽極之間。該裝置包括一氧化還原活性電解質,其中,該電解質包括一或多個氧化還原活性鹽類,例如,Mo6Cl12,HMo6Cl13,LiMo6Cl13,Li2MoO4,Li2Mo2O7,Na2MoO4,Na2Mo2O7,NaMo6Cl13,NaMo6Cl13,Li2WO4,Li2W2O7,及其結合,以用於在該氧化還原活性電解質中產生氧化還原活性陰離子。該等氧化還原活性陰離子可以是聚合陰離子,聚合側氧金屬化物,以及金屬團簇離子的其中任一。該等聚合陰離子是分子式[Mnr]y-或[Mnr]y-之任一,其中,M為V,Nb,Ta,Cr,Mo及W陽離子的其中任一,n為2至6,r為O,F,Cl的其中任一,其中,y在[Mnr]y-中為陰離子的電荷,分子式(MnXv)z-中,M為Mo,W,Nb,Tc,Ru,Rh,Ta,Re,Os,或Ir,X為一配位基,v為7至24,以及n為2至7。該等聚合側氧金屬化物可以是分子式MX6八面體或分子式[ZO4(MO3)n]y−或分子式AM6O24 n-或AM12O40 n-或A2M18O62 n-之任一,其中,M為Si,Ge,Ga,B,P,V,Nb,Ta,Cr,Mo或W的其中任一,以及X為氧,硫,氟的其中任一,分子式[ZO4(MO3)n]y−中,Z為Si,P,S,Ge,As,Se的其中任一,M為Mo,W,Nb,V,Tc的其中任一,n為6至22,以及y為陰離子的電荷,分子式AM6O24 n-或AM12O40 n-或A2M18O62 n-中,A為B,Al,Ga,Si,Ge,Sn,P,As,Sb,Se,Te的其中任一,以及M為V,Nb,Ta,Mo或W的其中任一,以及m為陰離子上的電荷。The disclosed electrochemical energy storage device includes a cathode, an anode, and a cation permeation separator membrane positioned between the cathode and the anode. The apparatus comprises a redox active electrolyte, wherein the electrolyte comprises one or more redox active salts, for example, Mo 6 Cl 12 , HMo 6 Cl 13 , LiMo 6 Cl 13 , Li 2 MoO 4 , Li 2 Mo 2 O 7 , Na 2 MoO 4 , Na 2 Mo 2 O 7 , NaMo 6 Cl 13 , NaMo 6 Cl 13 , Li 2 WO 4 , Li 2 W 2 O 7 , and combinations thereof for use in the redox active electrolyte A redox active anion is produced. The redox active anions may be any of a polymeric anion, a polymeric side oxymetallate, and a metal cluster ion. The polymeric anion is any one of the formula [M n r] y- or [M n r] y- , wherein M is any of V, Nb, Ta, Cr, Mo and W cations, n is 2 to 6, r is any of O, F, Cl, wherein y is an anion charge in [M n r] y- , in the formula (M n Xv) z- , M is Mo, W, Nb, Tc , Ru, Rh, Ta, Re, Os, or Ir, X is a ligand, v is from 7 to 24, and n is from 2 to 7. The polymeric side oxymetallates may be of the formula MX 6 octahedron or of the formula [ZO 4 (MO 3 ) n ] y− or the formula AM 6 O 24 n- or AM 12 O 40 n- or A 2 M 18 O 62 Any one of n- , wherein M is any one of Si, Ge, Ga, B, P, V, Nb, Ta, Cr, Mo or W, and X is any one of oxygen, sulfur, fluorine, and molecular formula [ZO 4 (MO 3 ) n ] y− , Z is any of Si, P, S, Ge, As, Se, and M is any of Mo, W, Nb, V, Tc, n is 6 To 22, and y is an anion charge, in the formula AM 6 O 24 n- or AM 12 O 40 n- or A 2 M 18 O 62 n- , A is B, Al, Ga, Si, Ge, Sn, P Any of As, Sb, Se, Te, and M is any of V, Nb, Ta, Mo or W, and m is an anion charge.
該等金屬團簇離子為分子式M6X8 n+,或Mo6X12,其中,M為Nb,Ru,Rh,Pd,Ag,Cd,La,Hf,Ta,Re,Os,Ir,Pt,Au,Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W,Mn,Tc,Re的其中任一,以及X為S,Se,Te,F,Cl,Br,I,At的其中任一,以及n為離子上的電荷,分子式Mo6X12中,X為F,Cl,Br,I,At,鹼性Mo的鹵化物(包括NMo6X12)的其中任一,其中,X為F,Cl,Br,I,At的其中任一,以及N為Na,K,Rb,Cs的其中任一。The metal cluster ions are of the formula M 6 X 8 n+ , or Mo 6 X 12 , wherein M is Nb, Ru, Rh, Pd, Ag, Cd, La, Hf, Ta, Re, Os, Ir, Pt, Any of Au, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, and X is S, Se, Te, F, Cl, Br, I, At Any one, and n is a charge on the ion, wherein X is a F, Cl, Br, I, At, a halide of a basic Mo (including NMo 6 X 12 ) in the formula Mo 6 X 12 , wherein X is any of F, Cl, Br, I, At, and N is any of Na, K, Rb, Cs.
在該電化學能量儲存裝置中,陽極可為鋰金屬、鈉、石墨碳、鎳金屬氫化物、金屬鋅、鎂、及鉛的其中任一。該陽離子膜可為四氟乙烯-全氟-3,6-二氧雜-4-甲基-7-辛烷磺酸共聚物及聚乙烯氧化物的其中任一。當該電化學能量儲存裝置為一電容器時,負電極為EDLC型態電極,以及陰極包括氧化還原活性電解質,該電容器可為一電化學雙層電容器,其包括具有氧化還原活性電解質的電極。In the electrochemical energy storage device, the anode may be any of lithium metal, sodium, graphitic carbon, nickel metal hydride, metallic zinc, magnesium, and lead. The cation film may be any of a tetrafluoroethylene-perfluoro-3,6-dioxa-4-methyl-7-octane sulfonic acid copolymer and a polyethylene oxide. When the electrochemical energy storage device is a capacitor, the negative electrode is an EDLC type electrode, and the cathode includes a redox active electrolyte, and the capacitor may be an electrochemical double layer capacitor including an electrode having a redox active electrolyte.
該等氧化還原活性鹽類具有一或多個氧化還原活性陰離子,其中,該等氧化還原活性離子為異質聚合陰離子,其包括一過渡金屬核心,以及至少一配位基。該金屬核心包括W,Y,Zr,Nb,Tc,Ru,Rh,Ta,Re,Os離子的其中任一,以及該等配位基可為O2-,S2-,F-,Cl-,Br-,I-,CH3,C2H5,C3H7及C4H9,胺類,碳酸鹽,酚類,醚類,及其結合的其中任一。該等異質聚合陰離子可包括一過渡金屬核心,以及6至8個配位基。The redox active salts have one or more redox active anions, wherein the redox active ions are heteropolymeric anions comprising a transition metal core and at least one ligand. The metal core includes any one of W, Y, Zr, Nb, Tc, Ru, Rh, Ta, Re, Os ions, and the ligands may be O 2- , S 2 , F - , Cl - , Br - , I - , CH 3 , C 2 H 5 , C 3 H 7 and C 4 H 9 , amines, carbonates, phenols, ethers, and combinations thereof. The heterogeneous polymeric anions can include a transition metal core and from 6 to 8 ligands.
該陽離子滲透膜可由陽離子滲透,例如,NH4+,四甲基銨,NMe4+,四乙基銨,NEt4+,四丁基銨,NBu4+,及其結合。The cation permeable membrane can be infiltrated by a cation such as NH 4+ , tetramethylammonium, NMe 4+ , tetraethylammonium, NEt 4+ , tetrabutylammonium, NBu 4+ , and combinations thereof.
該等異質聚合陰離可包括具有選自第4-7族之六個過渡金屬離子的一過渡金屬核心,其中,該等過渡金屬離子是被自F,Cl,Br,I,S,O,Se及Te的群組中選出之8或更多個配位基所環繞的八面體形式。The heterogeneous polymeric anions may comprise a transition metal core having six transition metal ions selected from Groups 4-7, wherein the transition metal ions are from F, Cl, Br, I, S, O, An octahedral form surrounded by 8 or more ligands selected from the group of Se and Te.
該電化學能量儲存裝置可為一液流電池。液流電池包括一陽極部分,一陰極部分,以及用於將該陽極部分與該陰極部分分開之一離子選擇膜,該陽極部分包括傳導材料,以用於與接觸該傳導材料的陽極電解質溶液進行電子交換。該陰極部分包括傳導材料,以用於與接觸該傳導材料的陰極電解質溶液進行電子交換。該陽極電解質及陰極電解質的至少其中之一包括氧化還原活性電解質。該陽極電解質及陰極電解質可為相同或不同。The electrochemical energy storage device can be a flow battery. The flow battery includes an anode portion, a cathode portion, and an ion selective membrane for separating the anode portion from the cathode portion, the anode portion including a conductive material for use with an anolyte solution contacting the conductive material Electronic exchange. The cathode portion includes a conductive material for electronic exchange with a catholyte solution contacting the conductive material. At least one of the anolyte and the catholyte comprises a redox active electrolyte. The anolyte and catholyte may be the same or different.
該電化學能量儲存裝置亦可為一混合電池,其包括一負電極,一陽離子滲透分離器膜,以及一氧化還原活性電解質陰極,其中,該負電極適合與存在於該氧化還原活性電解質中的一陽離子進行氧化還原反應。該負電極可為鋰金屬、鈉、石墨碳、鈦酸鋰、LiVO2、鎳金屬氫化物、金屬鋅、鎂、及鉛的其中任一。該負電極亦可為鋰金屬,以及該陰極可為經氧化還原活性 LiMo6Cl13電解質溶液處理的碳。The electrochemical energy storage device can also be a hybrid battery comprising a negative electrode, a cation permeation separator membrane, and a redox active electrolyte cathode, wherein the negative electrode is suitable for being present in the redox active electrolyte A cation undergoes a redox reaction. The negative electrode may be any of lithium metal, sodium, graphitic carbon, lithium titanate, LiVO 2 , nickel metal hydride, metal zinc, magnesium, and lead. The negative electrode may also be lithium metal, and the cathode may be carbon treated with a redox active LiMo 6 Cl 13 electrolyte solution.
材料使用於氧化還原活性電解質中的氧化還原活性鹽類可被使用於電化學能量儲存裝置中的氧化還原活性電解質可包括一或多個溶解於電解質溶劑中的氧化還原活性鹽類。可使用的鹽類具有一或多個陽離子,以及一或多個氧化還原活性陰離子(“RAA”)。該RAA典型地可在一電極處能夠交換多於一個的電子。Materials The redox active salts used in the redox active electrolyte can be used in electrochemical energy storage devices. The redox active electrolyte can include one or more redox active salts dissolved in an electrolyte solvent. Salts which can be used have one or more cations and one or more redox active anions ("RAA"). The RAA typically can exchange more than one electron at one electrode.
可使用之氧化還原活性鹽類的例子包括,但不限於,過渡鹼金屬鹽類,例如,但不限於,鹼金屬鉬酸鹽以及鹼金屬鎢酸鹽。其他可使用的氧化還原活性鹽類包括Keggin型陰離子鹽,Dawson型陰離子鹽,以及金屬團簇型態鹽類(metallic cluster type salts)。也可以使用這些鹽類的混合物。Examples of redox active salts which may be used include, but are not limited to, transitional alkali metal salts such as, but not limited to, alkali metal molybdates and alkali metal tungstates. Other redox active salts which may be used include Keggin-type anionic salts, Dawson-type anionic salts, and metallic cluster type salts. Mixtures of these salts can also be used.
鹼金屬鉬酸鹽的例子包括,但不限於,可得自Sigma-Aldrich 的Li2MoO4,Li2Mo2O7,Na2MoO4,Na2Mo2O7及其混合物。鹼金屬鎢酸鹽的例子包括,但不限於,可得自Sigma-Aldrich 的Li2WO4,Li2W2O7及其混合物。Keggin型陰離子鹽的例子包括,但不限於,鉬酸鹽(例如,但不限於Li3SiW12O40),鹼金屬鎢酸鹽(例如但不限於Li3SiW12O40),以及矽鉬鹽,例如,但不限於,(Zn2H)SiMo12O40及其混合物,這些鹽類可如下述進行合成。Dawson型陰離子鹽的例子包括,但不限於,銅鉬鹽,包括,但不限於,Li4S2Mo18O62及Na4S2Mo18O62,以及鎢酸鹽,其包括,但不限於,Li6P2W18O62,Na4P2W18O62及其混合物。金屬團簇化合物的例子包括,但不限於,HMo6Cl13,LiMo6Cl13,NaMo6Cl13及其混合物,以及上述可得自American Elements Co.的任何結合。Examples of alkali metal molybdates include, but are not limited to, Li 2 MoO 4 , Li 2 Mo 2 O 7 , Na 2 MoO 4 , Na 2 Mo 2 O 7 and mixtures thereof available from Sigma-Aldrich. Examples of alkali metal tungstates include, but are not limited to, Li 2 WO 4 , Li 2 W 2 O 7 and mixtures thereof available from Sigma-Aldrich. Examples of Keggin-type anionic salts include, but are not limited to, molybdates (such as, but not limited to, Li 3 SiW 12 O 40 ), alkali metal tungstates (such as, but not limited to, Li 3 SiW 12 O 40 ), and bismuth molybdenum Salts such as, but not limited to, (Zn 2 H)SiMo 12 O 40 and mixtures thereof, can be synthesized as described below. Examples of Dawson-type anionic salts include, but are not limited to, copper molybdenum salts including, but not limited to, Li 4 S 2 Mo 18 O 62 and Na 4 S 2 Mo 18 O 62 , and tungstates, including, but not Limited to Li 6 P 2 W 18 O 62 , Na 4 P 2 W 18 O 62 and mixtures thereof. Examples of metal cluster compounds include, but are not limited to, HMo 6 Cl 13 , LiMo 6 Cl 13 , NaMo 6 Cl 13 , and mixtures thereof, as well as any of the combinations described above available from American Elements Co.
氧化還原活性鹽類(例如,上述用於氧化還原活性電解質的該些)在使用該電解質之電化學能量裝置的電極操作電壓範圍內,具有良好的溶解度,高傳導性,化學惰性,及穩定性。氧化還原活性鹽類能夠經歷可逆電子傳遞反應。高傳導性可得自於溶液中解離為正負離子而可透過溶劑立即擴散的鹽類。典型的高傳導性約為0.1S/cm,而中等的傳導性則約為0.1mS/cm。Redox active salts (for example, those described above for redox active electrolytes) have good solubility, high conductivity, chemical inertness, and stability in the electrode operating voltage range of an electrochemical energy device using the electrolyte. . Redox active salts are capable of undergoing a reversible electron transfer reaction. High conductivity can be derived from salts that dissociate into positive and negative ions in solution and diffuse immediately through the solvent. Typical high conductivity is about 0.1 S/cm, while moderate conductivity is about 0.1 mS/cm.
氧化還原活性鹽類的溶解度可取決於各種因素,例如,溶劑及溫度,而有大範圍的變化。典型地,鹽類具有約10-3M至約5M的良好溶解度,例如,約0.1M至約5M,或約1M至約5M。The solubility of the redox active salts can vary widely depending on various factors such as solvent and temperature. Typically, the salts have a good solubility of from about 10" 3 M to about 5 M, for example from about 0.1 M to about 5 M, or from about 1 M to about 5 M.
用於氧化還原活性電解質的鹽類添加物鹽類添加物可與氧化還原活性鹽類一起使用,以進一步增加氧化還原活性電解質的電解質傳導性以及離子強度。鹽類添加物是被選擇來與氧化還原活性鹽類以及使用氧化還原活性鹽類的電解質溶劑型態相容者。A salt additive salt additive for a redox active electrolyte can be used together with a redox active salt to further increase the electrolyte conductivity and ionic strength of the redox active electrolyte. Salt additives are selected to be compatible with redox active salts and electrolyte solvent forms using redox active salts.
用於有機電解質之額外鹽類的例子包括,但不限於,烷基磷酸銨,例如,六氟磷酸四乙銨(TEA-PF6);氟鋰鹽,例如,但不限於,LiPF6,LiBF4,LiAsF6及其混合物;氧化鹵鋰鹽,例如,但不限於,LiClO4;有機硫型鹽類,例如,雙三氟甲烷磺醯亞胺鋰(TFSI);以及有機硼酸型鹽類,例如,雙乙二酸硼酸鋰(LiBOB)。Examples of the additional organic electrolyte salts include, but are not limited to, alkyl ammonium, e.g., hexafluorophosphate, tetraethylammonium (TEA-PF 6); lithium fluoride salts, such as, but not limited to, LiPF 6, LiBF 4 , LiAsF 6 and mixtures thereof; lithium oxyhalide salts such as, but not limited to, LiClO 4 ; organic sulfur type salts, for example, lithium bistrifluoromethanesulfonimide (TFSI); and organoboronic acid salts, For example, lithium bis(oxalate) borate (LiBOB).
用於水性電解質之額外鹽類的例子包括,但不限於,HCl,鹼金屬鹵化物,例如,但不限於,NaCl,KCl,KBr,KI,NaBr,NaI,LiCl,LiBr,LiI,RbCl,RbBr,RbI及其結合;鹼土金屬鹵化物,例如,但不限於,MgCl-,MgBr2,MgI2,CaCl2,CaBr2,CaI2,鹼金屬氫氧化物(例如,但不限於,NaOH,KOH, RbOH, CsOH;以及硫酸鹽,其例如,但不限於,H2SO4及其混合物)。Examples of additional salts for aqueous electrolytes include, but are not limited to, HCl, alkali metal halides such as, but not limited to, NaCl, KCl, KBr, KI, NaBr, NaI, LiCl, LiBr, LiI, RbCl, RbBr , RbI and combinations thereof; alkaline earth metal halides such as, but not limited to, MgCl - , MgBr 2 , MgI 2 , CaCl 2 , CaBr 2 , CaI 2 , alkali metal hydroxides (such as, but not limited to, NaOH, KOH , RbOH, CsOH; and sulfates such as, but not limited to, H 2 SO 4 and mixtures thereof).
用於氧化還原活性電解質的溶劑有機溶劑及水溶劑可用於氧化還原活性電解質中。有機溶劑的例子包括,但不限於,亞烷基碳酸酯,芳基碳酸酯,烷基碳酸酯,例如,但不限於,碳酸二甲酯,碳酸丙烯酯,碳酸二乙酯,乙腈,以及其結合。水溶劑的例子包括,但不限於,水,鹽酸水溶液,硫酸水溶液,含水的鹼金屬鹵化物,例如,KCl溶液,NaCl溶液,以及其結合。A solvent organic solvent and a water solvent for the redox active electrolyte can be used in the redox active electrolyte. Examples of organic solvents include, but are not limited to, alkylene carbonates, aryl carbonates, alkyl carbonates such as, but not limited to, dimethyl carbonate, propylene carbonate, diethyl carbonate, acetonitrile, and the like Combine. Examples of the aqueous solvent include, but are not limited to, water, aqueous hydrochloric acid, aqueous sulfuric acid, aqueous alkali metal halides, for example, KCl solution, NaCl solution, and combinations thereof.
氧化還原活性陰離子在氧化還原活性電解質中所使用之氧化還原活性鹽類所提供的氧化還原活性陰離子(RAA)為異性聚合陰離子(HPA),其包括配位有一或多個配位基的一或多個金屬離子的核心。一HPA的核心包括一或多個過渡金屬離子,其中,一過渡金屬離子可具有二或多個可存取價態。The redox active anion (RAA) provided by the redox active salt used in the redox active electrolyte is an anisotropic polymeric anion (HPA) comprising one or more ligands coordinated to one or more The core of multiple metal ions. The core of an HPA includes one or more transition metal ions, wherein a transition metal ion can have two or more accessible valence states.
HPA使用具有多價態的過渡金屬離子,例如,週期表第5列及第6列中任意的一或多個過渡金屬,例如,Mo,W,Y,Zr,V,Nb,Tc,Ru,Rh,Ta,Re,Os,及其結合。合適的HPA包括下列的種類:(1)聚合陰離子,例如,[Mnr]y-,其中,M為V,Nb,Ta,Cr,Mo及W陽離子的其中任一,n為2至6,r為一陰離子,例如,O,F,Cl;以及y為負價的大小,自1至4。(2)聚合側氧金屬化物及其衍生物,其採用包括MX6八面體的聚合離子構造,其中,M代表V,Nb,Ta,Cr,Mo,或W,以及其中,M被八面體地以配位基X配位,例如,氧,硫,氟,及其结合;(3)金属團簇離子,其中,基本單位為M6八面體,其中,M代表處於0至1之低氧化狀態的V,Nb,Ta,Cr,Mo,及W的其中任一或多,以及其中,該基本單位被配位有陰離子或其他配位基,其中,陰離子典型地為鹵化物,例如,但不限於,F,Cl,Br,I,O,S,Te,或有機配位基,例如,但不限於,DMF。HPA uses a transition metal ion having a multivalent state, for example, one or more transition metals in any of columns 5 and 6 of the periodic table, for example, Mo, W, Y, Zr, V, Nb, Tc, Ru, Rh, Ta, Re, Os, and combinations thereof. Suitable HPAs include the following species: (1) polymeric anions, for example, [M n r] y- , wherein M is any of V, Nb, Ta, Cr, Mo and W cations, n is 2 to 6 r is an anion such as O, F, Cl; and y is a negative valence, from 1 to 4. (2) a polymeric side oxymetallate and a derivative thereof, which employs a polymeric ion structure comprising an MX 6 octahedron, wherein M represents V, Nb, Ta, Cr, Mo, or W, and wherein M is octagonal Body coordination with a ligand X, for example, oxygen, sulfur, fluorine, and combinations thereof; (3) metal cluster ions, wherein the basic unit is M 6 octahedron, wherein M represents 0 to 1 Any one or more of V, Nb, Ta, Cr, Mo, and W in a low oxidation state, and wherein the basic unit is coordinated with an anion or other ligand, wherein the anion is typically a halide, such as And not limited to, F, Cl, Br, I, O, S, Te, or an organic ligand such as, but not limited to, DMF.
配位基可為環繞過渡金屬團簇核心而進行配位的非金屬,非金屬配位基的例子包括,但不限於,O2-,S2-,F-,Cl-,Br-,I-及其結合。配位基可包括有機物種,例如,環烷基,例如,但不限於,環化丁烷及環化戊烷;以及線性及分支烷基,例如,但不限於,-CH3,-C2H5,-C3H7及-C4H9。此外,配位基可為非金屬與烷基的結合,例如,-CH2F,–CH2Cl,–CH2Br及–CHF2。配位基亦可為烷基胺,例如,但不限於,甲胺,乙胺,丙胺及其結合;碳酸亞烷,例如,碳酸乙烯酯,碳酸丙烯酯,及其結合;碳酸烷基酯,例如,但不限於,碳酸二甲酯,碳酸甲乙酯,及其混合物;酚,例如,但不限於,酚酸;以及烷基醚,例如,但不限於,乙醚;以及其結合。The ligand may be a non-metal that coordinates around the core of the transition metal cluster. Examples of non-metal ligands include, but are not limited to, O 2 , S 2 , F - , Cl - , Br - , I - and its combination. The ligand may include an organic species such as a cycloalkyl group such as, but not limited to, a cyclized butane and a cyclized pentane; and a linear and branched alkyl group such as, but not limited to, -CH 3 , -C 2 H 5 , -C 3 H 7 and -C 4 H 9 . Further, the ligand may be a combination of a non-metal and an alkyl group, for example, -CH 2 F, -CH 2 Cl, -CH 2 Br and -CHF 2 . The ligand may also be an alkylamine such as, but not limited to, methylamine, ethylamine, propylamine, and combinations thereof; alkylene oxides, for example, ethylene carbonate, propylene carbonate, and combinations thereof; alkyl carbonates, For example, but not limited to, dimethyl carbonate, ethyl methyl carbonate, and mixtures thereof; phenols such as, but not limited to, phenolic acids; and alkyl ethers such as, but not limited to, diethyl ether; and combinations thereof.
HPA’s使用的形式可以有好幾種。在第一方面的構想中,HPA’s可以是聚合陰離子,例如,由過渡金屬(例如,Mo,W,Nb,Tc,Ru,Rh,Ta,Re,Os,Ir,及其結合)於水溶液環境中所形成者。這些聚合陰離子型態的HPA’s具有分子式(MnXv)z-,其中,M為被y個配位基(X)配位的一或多個過渡金屬,n為2至7,v為7至24、或更多,例如,7至24,以及z代表陰離子的電荷。配位基(X)可包括任何上述所討論者。聚合陰離子型態HPAs的非限制例子包括,但不限於,Mo7O24 6-,W6O19 2,及其結合。HPA's can be used in several forms. In the concept of the first aspect, the HPA's may be polymeric anions, for example, in a aqueous environment by transition metals (eg, Mo, W, Nb, Tc, Ru, Rh, Ta, Re, Os, Ir, and combinations thereof) Formed by. These polymeric anionic HPA's have the formula (M n Xv) z- , wherein M is one or more transition metals coordinated by y ligands (X), n is 2 to 7, and v is 7 to 24 or more, for example, 7 to 24, and z represents the charge of the anion. The ligand (X) can include any of the above discussed. Non-limiting examples of polymeric anionic HPAs include, but are not limited to, Mo 7 O 24 6- , W 6 O 19 2 , and combinations thereof.
在第二方面的構想中,該HPA可以是聚合側氧金屬化物陰離子,其中,過渡金屬離子典型地被6個配位基所環繞而形成八面體,其集合而形成具有2或更多個八面體的複合結構。這些聚合側氧金屬化物陰離子型態的HPA具有過渡金屬離子核心,其可包括半金屬離子,例如,Si,Ge,Ga,B,P,及其結合。過渡金屬離子核心可包括第4列的過渡金屬離子,例如,但不限於,Fe,Cr,Co及Mn之其中任一或多的離子。聚合側氧金屬化物陰離子型態HPA的非限制例子包括,但不限於,分子式[ZO4(MO3)n]y的Keggin結構型態聚合側氧金屬化物,其中,Z為Si,P,S,Ge,As,Se及其結合的其中任一或多,M為Mo,W,Nb,V,Tc及其結合的其中任一或多,以及y為陰離子的電荷。Keggin結構型態聚合側氧金屬化物陰離子的非限制例子包括,但不限於,SiMo12O40 3-,PMo12O40 3-,H2CoW12O40 6-及其結合。In the concept of the second aspect, the HPA may be a polymeric side oxymetallate anion, wherein the transition metal ion is typically surrounded by 6 ligands to form an octahedron, which is assembled to form 2 or more Octahedral composite structure. These polymeric side oxymetallate anionic HPAs have a transition metal ion core which may include semimetal ions such as Si, Ge, Ga, B, P, and combinations thereof. The transition metal ion core may include transition metal ions of column 4, such as, but not limited to, ions of any one or more of Fe, Cr, Co, and Mn. Non-limiting examples of polymeric side oxymetallate anionic HPA include, but are not limited to, a Keggin structure type polymeric side oxymetallate of the formula [ZO 4 (MO 3 ) n ] y wherein Z is Si, P, S Any one or more of Ge, As, Se and combinations thereof, M is any one or more of Mo, W, Nb, V, Tc and combinations thereof, and y is an anion charge. Non-limiting examples of Keggin structure type polymeric side oxymetallate anions include, but are not limited to, SiMo 12 O 40 3- , PMo 12 O 40 3- , H 2 CoW 12 O 40 6-, and combinations thereof.
在第三方面構想中,HPA可以是可經歷多次可逆電子傳遞的金屬團簇陰離子,金屬團簇陰離子是由八個最近鄰接配位基所配位之過渡金屬的八面體所形成的聚合陰離子,以提供分子式M6X8 n+的正電荷團簇核心,其中,M為第4-7族的過渡金屬,例如,但不限於,Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W,Mn,Tc,Re,及其結合,以及X為銅鹵化物,例如,但不限於,S,Se,Te,F,Cl,Br,I,At,及其結合,以及n為離子的電荷。金屬團簇陰離子包括過渡金屬核心,例如,但不限於,Mo,W,Y,Zr,Nb,Tc,Ru,Rh,Pd,Ag,Cd,La,Hf,Ta,Re,Os,Ir,Pt,Au,及其結合,其中,核心以各式的配位基及其結合而被配位,其提供陰離子一整體負電荷。配位基可包括,但不限於,鹵化物,極性(親水性)非質子性溶劑,線性及分支烷基,及其結合。可使用的鹵化物包括,但不限於,Cl-,Br-,I-,及其結合;可使用的極性(親水性)非質子性溶劑包括,但不限於,三級醯胺,例如,N,N-二甲基甲醯胺(DMF),N-甲基-2 -吡咯酮(NMP);乙腈(CAN),二甲亞砜(DMSO),及其混合物。可使用的線性及分支烷基包括,但不限於,-C2H5,-C3H7,-C4H9,-C5H11,及其結合。In a third aspect, the HPA can be a metal cluster anion that can undergo multiple reversible electron transports, and the metal cluster anion is an aggregate formed by octahedrons of transition metals coordinated by eight nearest neighboring ligands. An anion to provide a positively charged cluster core of the formula M 6 X 8 n+ , wherein M is a transition metal of Groups 4-7, such as, but not limited to, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, and combinations thereof, and X is a copper halide such as, but not limited to, S, Se, Te, F, Cl, Br, I, At, and combinations thereof, and n is The charge of the ion. Metal cluster anions include transition metal cores such as, but not limited to, Mo, W, Y, Zr, Nb, Tc, Ru, Rh, Pd, Ag, Cd, La, Hf, Ta, Re, Os, Ir, Pt , Au, and combinations thereof, wherein the core is coordinated with a variety of ligands and combinations thereof, which provide an anion-total negative charge. Ligands can include, but are not limited to, halides, polar (hydrophilic) aprotic solvents, linear and branched alkyl groups, and combinations thereof. Halides which may be used include, but are not limited to, Cl - , Br - , I - , and combinations thereof; polar (hydrophilic) aprotic solvents which may be used include, but are not limited to, tertiary guanamines, for example, N N-dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP); acetonitrile (CAN), dimethyl sulfoxide (DMSO), and mixtures thereof. Linear and branched alkyl groups which may be used include, but are not limited to, -C 2 H 5 , -C 3 H 7 , -C 4 H 9 , -C 5 H 11 , and combinations thereof.
金屬團簇陰離子典型地會在團簇核心中展現鍵結力,以及相較於異質聚合陰離子而言較低的氧化狀態。金屬團簇陰離子化合物包括,但不限於,分子式Mo6X12的Mo鹵化物,其中,X為鹵化物,例如,F,Cl,Br,I,At,及其結合;分子式NMo6X12的鹼性Mo鹵化物,其中,X為鹵化物,例如,F,Cl,Br,I,At,及其結合,以及N為鹼金屬,例如,Na,K,Rb,Cs,及其結合。各式的有機配位基可取代外部的鹵化物,以形成分子式Mo6X12-xRx的有機金屬團簇化合物,其中,0≤ x ≤ 4,以及R為極性(親水性)非質子性溶劑,例如,但不限於,三級醯胺,例如,N,N-二甲基甲醯胺(DMF);N-甲基-2 -吡咯酮(NMP),乙腈(CAN),二甲亞碸(DMSO),及其混合物。有機金屬團簇化合物的非限制例子包括,但不限於,Mo6Cl12(DMF)2,其中,DMF為二甲基甲醯胺。可使用之金屬團簇化合物的其他例子包括,但不限於,MoCl2,其中,基本單位是被Cl-離子包圍的Mo6八面體。可使用之金屬團簇化合物的額外例子包括,但不限於,Mo鹵化物,例如,但不限於,Mo6Cl12,Mo6I8 4+,Mo6Cl8 4+,Mo6Br8 4+,W鹵化物(例如,但不限於,W6Br8 4+,W6I8 4+,W6Cl8 4+),以及鹼性Mo型態鹽(例如,但不限於,LiMo6Cl13),以及其結合。Metal cluster anions typically exhibit bonding forces in the cluster core and a lower oxidation state compared to heterogeneous polymeric anions. The metal cluster anion compound includes, but is not limited to, a Mo halide of the formula Mo 6 X 12 wherein X is a halide, for example, F, Cl, Br, I, At, and combinations thereof; and a molecular formula of NMo 6 X 12 Alkaline Mo halides wherein X is a halide, for example, F, Cl, Br, I, At, and combinations thereof, and N is an alkali metal, for example, Na, K, Rb, Cs, and combinations thereof. Various organic ligands may be substituted for the external halide to form an organometallic cluster compound of the formula Mo 6 X 12-x R x wherein 0≤ x ≤ 4, and R is a polar (hydrophilic) aprotic Solvents such as, but not limited to, tertiary decylamine, for example, N,N-dimethylformamide (DMF); N-methyl-2-pyrrolidone (NMP), acetonitrile (CAN), dimethyl Aachen (DMSO), and mixtures thereof. Non-limiting examples of organometallic cluster compounds include, but are not limited to, Mo 6 Cl 12 (DMF) 2 , wherein DMF is dimethylformamide. Other examples of metal cluster compounds that can be used include, but are not limited to, MoCl 2 , wherein the basic unit is a Mo 6 octahedron surrounded by Cl − ions. Additional examples of metal cluster compounds that may be used include, but are not limited to, Mo halides such as, but not limited to, Mo 6 Cl 12 , Mo 6 I 8 4+ , Mo 6 Cl 8 4+ , Mo 6 Br 8 4 + , W halides (such as, but not limited to, W 6 Br 8 4+ , W 6 I 8 4+ , W 6 Cl 8 4+ ), and basic Mo-type salts (such as, but not limited to, LiMo 6 Cl 13 ), and combinations thereof.
用作HPA化物及其衍生物聚合側氧金屬的適合用於HPA的聚合側氧金屬化物陰離子包括建構被六個配位基環繞之任何V,Nb,Ta,Mo及W的團聯的八面體,其中配位基主要是氧,但亦可包括硫、碲或硒。可使用的聚合側氧金屬化物陰離子包括,但不限於,同質聚合陰離子團簇,例如,M6O19 2-,M7O24 6-,M8O26 4-,M12O38 4-,以及異質聚合陰離子,例如,AM6O24 n-(Anderson離子),AM12O40 n-(Keggin離子),以及A2M18O62 n-(Dawson離子),其中,A為異質離子,例如,但不限於,B,Al,Ga,Si,Ge,Sn,P,As,Sb,Se,Te,及其結合,以及M為V,Nb,Ta,Mo或W,及其結合。Polymeric side oxymetallate anions suitable for use in HPA for the polymerization of pendant oxymetals of HPA compounds and their derivatives include the construction of a octahedral of any V, Nb, Ta, Mo and W surrounded by six ligands. The ligand, wherein the ligand is mainly oxygen, but may also include sulfur, antimony or selenium. Polymeric side oxymetallate anions that may be used include, but are not limited to, homopolymeric anionic clusters, for example, M 6 O 19 2- , M 7 O 24 6- , M 8 O 26 4- , M 12 O 38 4- And heteropolymeric anions, for example, AM 6 O 24 n- (Anderson ion), AM 12 O 40 n- (Keggin ion), and A 2 M 18 O 62 n- (Dawson ion), wherein A is a heterogeneous ion For example, but not limited to, B, Al, Ga, Si, Ge, Sn, P, As, Sb, Se, Te, and combinations thereof, and M is V, Nb, Ta, Mo or W, and combinations thereof.
聚合側氧金屬化物陰離子可藉由以第一列過渡金屬(例如,Sc,Ti,Cr,Mn,Fe,Co,Ni,Cu,Zn及其結合);第二列過渡金屬(例如,Y,Zr,Tc,Ru,Pd,Ag,Cd,In,Sn,Sb,Te及其結合),以及第三列過渡金屬(例如,La,Hf,Re,Os,Ir,Pt,Au,Hg,Tl,Pb,Bi及其結合)取代V,Nb,Ta,Mo及W的其中任一或更多而進行修飾。聚合側氧金屬化物陰離子亦可藉由將額外的異質離子併入聚合離子的架構中而進行修飾。可被併入聚合離子之配位框架中的額外異質離子包括,但不限於,B,Al,Ga,Si,Ge,Sn,P,As,Sb,Se,Te及其結合,典型地,併入可藉由將取代基離子的氧化物添加入合成這些材料時所使用的初始前驅物中而完成。The polymeric side oxymetallate anion can be formed by a first column of transition metals (eg, Sc, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, and combinations thereof); a second column of transition metals (eg, Y, Zr, Tc, Ru, Pd, Ag, Cd, In, Sn, Sb, Te and combinations thereof, and a third column of transition metals (eg, La, Hf, Re, Os, Ir, Pt, Au, Hg, Tl) , Pb, Bi and combinations thereof are modified in place of any one or more of V, Nb, Ta, Mo and W. The polymeric side oxymetallate anion can also be modified by incorporating additional heterogeneous ions into the structure of the polymeric ion. Additional heterogeneous ions that can be incorporated into the coordination framework of the polymeric ion include, but are not limited to, B, Al, Ga, Si, Ge, Sn, P, As, Sb, Se, Te, and combinations thereof, typically, and The addition can be accomplished by adding an oxide of a substituent ion to the initial precursor used in the synthesis of these materials.
酸鹽聚合陰離子,氧化還原活性有機電解質鉬製備具有過渡金屬陰離子(例如,MoO4 2-或Mo2O7 2-)的氧化還原活性鉬酸鹽聚合陰離子的氧化還原活性有機電解質,可藉由將一氧化物(例如,一過渡金屬氧化物,例如,MoO3)溶解於一有機、鹼性溶劑中而製成,所得溶液濃縮至飽和並冷卻,以沈澱出一鉬酸鹽聚合陰離子、氧化還原活性鹽。作為舉例,100克鉬酸在大約45 °C至大約55 °C下,被溶解於商業可得的氫氧化四乙銨(TEAH)中。所得溶液濃縮至飽和,並接著冷卻,以讓四乙銨二鉬酸鹽能沈澱。鹽類於真空中乾燥24小時。Acid-polymerized anion, redox active organic electrolyte molybdenum, a redox active organic electrolyte having a redox active molybdate polymeric anion having a transition metal anion (for example, MoO 4 2- or Mo 2 O 7 2- ) can be prepared by The mono oxide (for example, a transition metal oxide, for example, MoO 3 ) is dissolved in an organic, basic solvent, and the resulting solution is concentrated to saturation and cooled to precipitate a molybdate polymeric anion, oxidized. Reducing the active salt. By way of example, 100 grams of molybdic acid is dissolved in commercially available tetraethylammonium hydroxide (TEAH) at a temperature of from about 45 ° C to about 55 ° C. The resulting solution was concentrated to saturation and then cooled to allow tetraethylammonium dimolybdate to precipitate. The salts were dried in vacuum for 24 hours.
該四乙銨二鉬酸鹽的氧化還原活性有機電解質可藉由將該鹽類於一有機鹽類中(例如乙腈),在大約20°C至大約 60°C下溶解至濃度大約0.1M至大約1.0M而製備。The redox active organic electrolyte of the tetraethylammonium dimolybdate can be dissolved to a concentration of about 0.1 M at about 20 ° C to about 60 ° C by using the salt in an organic salt such as acetonitrile. Prepared at approximately 1.0 M.
化物聚合側氧金屬製備異質異質聚合酸(例如,鉬矽酸,磷鎢酸,及鎢矽酸)的側氧金屬化物鹽類的製備可直接藉由與酸類進行離子交換,或是來自前驅物。異質聚合酸,例如,鉬矽酸,磷鎢酸,及鎢矽酸可商業得自Sigma-Aldrich以及Strem Chemicals。來自前驅物的製備需要陽離子前驅物與一過渡金屬陰離子前驅物間的反應。陰離子前驅物包括,但不限於,鉬矽酸,磷鎢酸,及鎢矽酸。陽離子前驅物包括,但不限於,碳酸過渡金屬,例如,但不限於,碳酸鎳,碳酸鋅,及其結合。可用來取代碳酸過渡金屬的其他鹽類包括,但不限於,NH3OH,NEt3OH,NBu3OH,LiOH,或KOH,及其結合。Preparation of a side oxymetallate salt of a heterogeneous polymeric acid (for example, molybdenum decanoic acid, phosphotungstic acid, and tungstic acid) by chemically polymerizing a side oxymetalate directly by ion exchange with an acid or from a precursor . Heteropolymeric acids, for example, molybdenum decanoic acid, phosphotungstic acid, and tungstic acid are commercially available from Sigma-Aldrich and Strem Chemicals. The preparation from the precursor requires a reaction between the cationic precursor and a transition metal anion precursor. Anionic precursors include, but are not limited to, molybdenum decanoic acid, phosphotungstic acid, and tungstic acid. Cationic precursors include, but are not limited to, transition metal carbonates such as, but not limited to, nickel carbonate, zinc carbonate, and combinations thereof. Carbonate can be used to replace other transition metal salts include, but are not limited to, NH 3 OH, NEt 3 OH , NBu 3 OH, LiOH, or KOH, and combinations thereof.
實例1金屬化物鉬酸側氧:由前驅物製備鎳磷將得自Sigma-Aldrich的224克(0.1莫耳)磷鉬酸,H3[PMo12O40]·23H2O,溶解於400毫升水中,並加入19.52克的碳酸鎳。混合物加熱至65°C,並攪拌0.5小時,所得綠色溶液冷卻並過濾,然後進行蒸發,而能結晶成水合鎳磷鉬酸鹽,Ni3[PMo12O40]2·34H2O。Example 1 Metallization Molybdate Side Oxygen: Preparation of Nickel Phosphorus from Precursor 224 g (0.1 mol) of phosphomolybdic acid from Sigma-Aldrich, H 3 [PMo 12 O 40 ]·23H 2 O, dissolved in 400 ml In water, add 19.52 grams of nickel carbonate. The mixture was heated to 65 ° C and stirred for 0.5 hours, and the resulting green solution was cooled and filtered, then evaporated to crystallize to hydrated nickel phosphomolybdate, Ni 3 [PMo 12 O 40 ] 2 · 34H 2 O.
實例2金屬化物鉬酸側氧:由前驅物製備鋅磷採用用來產生鎳磷鉬酸的程序,除了碳酸鎳被20.62克的碳酸鋅取代。Example 2 Metallization Molybdate Side Oxygen: Preparation of Zinc Phosphorus from Precursor The procedure used to produce nickel phosphomolybdic acid was used except that nickel carbonate was replaced by 20.62 grams of zinc carbonate.
實例3金屬化物鉬酸側氧:由前驅物製備鈉磷將28.42克(0.10莫耳)矽酸鈉水合物Na2SiO3·9H2O,24.2克(0.10莫耳)Na2MoO4·2H2O,以及158.4克(1.1莫耳)MoO3於室溫下加入400毫升去離子水中。固體回流溶解2小時。所得黃色溶液被過濾,並進行蒸發,以生成鈉鉬酸鹽的水合結晶。Example 3 Metallized molybdate side oxygen: Preparation of sodium phosphorus from the precursor 28.42 g (0.10 mol) sodium citrate hydrate Na 2 SiO 3 ·9H 2 O, 24.2 g (0.10 mol) Na 2 MoO 4 · 2H 2 O, and 158.4 g (1.1 mol) of MoO 3 were added to 400 ml of deionized water at room temperature. The solid was dissolved under reflux for 2 hours. The resulting yellow solution was filtered and evaporated to give a hydrated crystal of sodium molybdate.
實例4金屬化物鉬酸側氧:利用離子交換製備鋰磷224克(0.1莫耳)磷鉬酸於室溫下溶解於400毫升水中,且溶液通過鋰離子交換管柱,以讓Li離子取代溶液中的質子。經處理的溶液被過濾,並進行蒸發,以生成鋰磷鉬酸結晶。該結晶要用於一有機電解質前,先於90°C真空中乾燥3天。Example 4 Metallized molybdenum acid side oxygen: Preparation of lithium phosphorus by ion exchange 224 g (0.1 mol) phosphomolybdic acid was dissolved in 400 ml of water at room temperature, and the solution was passed through a lithium ion exchange column to allow Li ion to replace the solution. Proton in the middle. The treated solution is filtered and evaporated to form a lithium phosphomolybdic acid crystal. The crystals were dried in a vacuum at 90 ° C for 3 days before being applied to an organic electrolyte.
製備異質聚合陰離子氧化還原活性有機電解質氧化還原活性異質聚合陰離子鹽類可溶解於有機溶劑電解質中,以形成氧化還原活性有機電解質。電解質的pH值可利用酸或鹼,例如,HCl(更酸),KOH(更鹼),進行調整。異質聚合陰離子鹽類可溶解於有機溶劑中,例如,乙腈,二甲基甲醯胺,碳酸二甲酯,碳酸甲乙酯,碳酸乙烯酯,碳酸丙烯酯,四氫呋喃,二甲碸,甲基乙基碸,二甲亞碸,或其結合,以形成氧化還原活性有機電解質,而其相較於相對應的水性電解質,可具有較高的電壓穩定性。異質聚合陰離子鹽類亦可溶解於有機電解質與水性電解質的混合物中。Preparation of Heteropolymerized Anionic Redox Active Organic Electrolyte Redox Active Heteropolymer Anionic Salts are soluble in an organic solvent electrolyte to form a redox active organic electrolyte. The pH of the electrolyte can be adjusted using an acid or a base such as HCl (more acid), KOH (more base). The heteropolymeric anionic salt can be dissolved in an organic solvent, for example, acetonitrile, dimethylformamide, dimethyl carbonate, ethyl methyl carbonate, ethylene carbonate, propylene carbonate, tetrahydrofuran, dimethylhydrazine, methyl ethyl The base, dimethyl hydrazine, or a combination thereof, forms a redox active organic electrolyte, which may have higher voltage stability than the corresponding aqueous electrolyte. The heteropolymeric anionic salts can also be dissolved in a mixture of an organic electrolyte and an aqueous electrolyte.
製備異質聚合陰離子氧化還原活性水性電解質氧化還原活性異質聚合陰離子水性電解質的製備可藉由將一或多個氧化還原活性異質聚合陰離子鹽類溶解於水中,並利用酸或鹼調整pH值(例如,HCl(更酸),KOH(更鹼))而達成。其他可用來調整pH值的鹼包括,但不限於,氫氧化銨,氫氧化鉀,氫氧化鋰,氫氧化鈉,氫氧化四甲銨(TMAH),氫氧化四乙銨(TEAH),及其混合物。Preparation of heterogeneous polymeric anion redox active aqueous electrolyte redox active heteropolymeric anionic aqueous electrolyte can be prepared by dissolving one or more redox active heteropolymeric anionic salts in water and adjusting the pH with an acid or a base (eg, HCl (more acid), KOH (more base) is achieved. Other bases which can be used to adjust the pH include, but are not limited to, ammonium hydroxide, potassium hydroxide, lithium hydroxide, sodium hydroxide, tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide (TEAH), and mixture.
實例5:製備水性電解質將200克磷鉬酸於室溫下溶解於100毫升蒸餾水中。Example 5: Preparation of an aqueous electrolyte 200 g of phosphomolybdic acid was dissolved in 100 ml of distilled water at room temperature.
製備異質聚合陰離子氧化還原活性有機電解質通常,濃度大約0.01M至大約1M的氧化還原活性有機電解質溶液可藉由將氧化還原活性異質聚合陰離子鹽類溶解於有機溶劑中而形成。Preparation of Heterogeneous Polymeric Anion Redox Active Organic Electrolyte Generally, a redox active organic electrolyte solution having a concentration of about 0.01 M to about 1 M can be formed by dissolving a redox active heteropolymeric anionic salt in an organic solvent.
實例6:製備氧化還原活性有機電解質將10克的鋰磷鉬酸於室溫下溶解於100毫升二甲亞碸中,以生成0.06M的有機氧化還原活性電解質。Example 6: Preparation of redox active organic electrolyte 10 g of lithium phosphomolybdic acid was dissolved in 100 ml of dimethyl hydrazine at room temperature to form a 0.06 M organic redox active electrolyte.
製備團簇離子化合物團簇離子化合物可藉由在高溫下透過相應過渡金屬M而還原過渡金屬的五鹵化物MX5而製備,作為舉例,Mo6Cl12可藉由形成MoCl5及Mo的化學計量混合物而製備,該混合物於真空下密封於Vycor玻璃管中,並加熱至大約800°C到大約850°C,維持大約1天至大約5天,以生成Mo6Cl12。The preparation of the cluster ionic compound cluster ionic compound can be prepared by reducing the transition metal pentahalide MX 5 by passing the corresponding transition metal M at a high temperature. By way of example, Mo 6 Cl 12 can be formed by the chemical formation of MoCl 5 and Mo. Prepare by metering the mixture, which is sealed under vacuum in a Vycor glass tube and heated to about 800 ° C to about 850 ° C for about 1 day to about 5 days to form Mo 6 Cl 12 .
化合物鉬團簇氯化鹼製備作為HPA的鹼氯化鉬團簇化合物可藉由使鹼鹵化物、過渡金屬鹵化物、及過渡金屬於高溫下真空反應而製備。Compound Molybdenum Cluster Chlorination Base Preparation The alkali molybdenum chloride cluster compound as HPA can be prepared by subjecting an alkali halide, a transition metal halide, and a transition metal to a vacuum reaction at a high temperature.
實例7:製備13Cl6LiMo氯化物團簇化合物混合化學計量之量的LiCl,MoCl5及Mo(皆商業可得),並於真空下密封於Vycor玻璃管中。混合物加熱至800°C維持20天,然後以1°C/min冷卻至室溫,以形成LiMo6Cl13。Example 7: Preparation of 13 Cl 6 LiMo chloride cluster compound A stoichiometric amount of LiCl, MoCl 5 and Mo (all commercially available) was prepared and sealed in a Vycor glass tube under vacuum. The mixture was heated to 800 ° C for 20 days and then cooled to room temperature at 1 ° C/min to form LiMo 6 Cl 13 .
的氧化還原活性有機電解質鉬氯化鋰製備鹼過渡金屬鹵化物金屬團簇化合物(例如,但不限於,鹼氯化鉬團簇化合物,其例如,但不限於,LiMo6Cl13)的有機電解質可藉由將大約10克至大約100克的LiMo6Cl13於室溫下溶解於大約100毫升至大約1000毫升的乙腈中來製備,以形成鋰氯化鉬溶液的有機電解質。作為乙腈的替代,像是碳酸二甲酯-碳酸乙烯酯(1:1 wt)之溶劑混合物可用來取代乙腈。The redox active organic electrolyte molybdenum lithium chloride is used to prepare an alkali electrolyte of a base transition metal halide metal cluster compound such as, but not limited to, an alkali chloride molybdenum cluster compound such as, but not limited to, LiMo 6 Cl 13 It can be prepared by dissolving from about 10 grams to about 100 grams of LiMo 6 Cl 13 in about 100 milliliters to about 1000 milliliters of acetonitrile at room temperature to form an organic electrolyte of a lithium molybdenum chloride solution. As an alternative to acetonitrile, a solvent mixture such as dimethyl carbonate-ethylene carbonate (1:1 wt) can be used to replace acetonitrile.
之有機電解質以及支援電解質鉬氯化鋰製備鋰氯化鉬之有機電解質以及支援電解質可藉由將大約10克至大約20克的鋰鹽(例如,LiPF6, LiBF4或其混合物)溶解於鋰氯化鉬有機溶液中(到濃度大約0.1M至大約2M,較佳為大約1M)來製備,以形成支援電解質。接著,大約1克至大約10克的LiMo6Cl12添加至大約100毫升的支援電解質中,以形成鋰氯化鉬的有機電解質。The organic electrolyte and the organic electrolyte supporting the electrolyte molybdenum chloride to prepare lithium molybdenum chloride and the supporting electrolyte can be dissolved in lithium by using about 10 to about 20 g of a lithium salt (for example, LiPF 6 , LiBF 4 or a mixture thereof). It is prepared in an organic solution of molybdenum chloride (to a concentration of about 0.1 M to about 2 M, preferably about 1 M) to form a supporting electrolyte. Next, about 1 gram to about 10 grams of LiMo 6 Cl 12 is added to about 100 milliliters of the supporting electrolyte to form an organic electrolyte of lithium molybdenum chloride.
RAA的鹽類及含鹽類之電解質的製備小聚合陰離子可被使用作為RAA之6或更少的陽離子數量之小聚合陰離子包括,但不限於,鉬酸鹽陰離子(例如,MoO4 2-或Mo2O7 2-),鎢酸鹽陰離子(例如,WO4 2-及W2O7 2-),釩酸鹽陰離子(例如,V2O7 4-及V4O12 4-),以及鈮酸鹽離子(例如,Nb6O19 8-)。Preparation of Salts and Salt-Containing Electrolytes of RAA Small polymeric anions can be used as small polymeric anions of the number of cations of 6 or less of RAA including, but not limited to, molybdate anions (eg, MoO 4 2- or Mo 2 O 7 2- ), a tungstate anion (for example, WO 4 2- and W 2 O 7 2- ), a vanadate anion (for example, V 2 O 7 4- and V 4 O 12 4- ), And citrate ions (for example, Nb 6 O 19 8- ).
在pH >7的鹼性水溶液(例如,以水溶液方式呈現的鉬酸-氫氧化銨電解質)中,主要的陰離子典型為MoO4 2-及NH4+。可使用作為MoO4 2-陰離子(例如,在鹼性溶液中者)來源的商業可得鹽類包括,但不限於,Li2MoO4,K2MoO4,(NH4)2Mo2O7,ZnMoO4,及其結合。鎢酸鹽離子的來源包括,但不限於,Li2WO4,(NH4)10H2(W2O7)6鹽類。這些鹽類可得自如Sigma-Aldrich,Alfa Aesar等的來源。In an alkaline aqueous solution having a pH of >7 (for example, an aqueous solution of molybdic acid-ammonium hydroxide), the main anions are typically MoO 4 2- and NH 4+ . Commercially available salts that can be used as a source of MoO 4 2- anions (eg, in alkaline solutions) include, but are not limited to, Li 2 MoO 4 , K 2 MoO 4 , (NH 4 ) 2 Mo 2 O 7 , ZnMoO 4 , and combinations thereof. Sources of tungstate ions include, but are not limited to, Li 2 WO 4 , (NH 4 ) 10 H 2 (W 2 O 7 ) 6 salts. These salts are available from sources such as Sigma-Aldrich, Alfa Aesar et al.
酸鹽小聚合陰離子、水性電解質鉬製備鉬酸鹽小聚合陰離子,具有小陰離子的水性電解質(例如,MoO4 2-或Mo2O7 2-),可藉由將一氧化物(例如,MoO3或鉬酸)溶解於一鹼溶液(例如,水溶液氫氧化銨,TMAH,TEAH,或其結合)中而形成一溶液來製備。接著,該溶液濃縮至飽和,例如,藉由添加更多量的鉬酸鹽。飽和溶液冷卻至結晶出現鹽類。a small polymeric anion of an acid salt, an aqueous electrolyte of molybdenum to prepare a small polymeric anion of molybdate, an aqueous electrolyte having a small anion (for example, MoO 4 2- or Mo 2 O 7 2-) , which can be obtained by a monooxide (for example, MoO) 3 or molybdate is prepared by dissolving in a base solution (for example, aqueous ammonium hydroxide, TMAH, TEAH, or a combination thereof) to form a solution. The solution is then concentrated to saturation, for example, by adding a greater amount of molybdate. The saturated solution is cooled to crystallize to form salts.
酸銨鹽鉬製備二將MoO3於pH值大約7至大約14、溫度大約30°C至大約80°C下溶解於氫氧化銨水溶液中(到濃度大約0.1M至大約1.0M)。接著,該溶液濃縮至飽和,並冷卻。剩餘的MoO3藉由添加小量的氫氧化銨而再次溶解,然後溶液冷卻至0°C,以獲得二鉬酸銨的結晶。Ammonium Salt of Molybdate Ammonium 2 MoO 3 is dissolved in an aqueous ammonium hydroxide solution (to a concentration of about 0.1 M to about 1.0 M) at a pH of from about 7 to about 14, at a temperature of from about 30 ° C to about 80 ° C. The solution is then concentrated to saturation and cooled. The remaining MoO 3 was redissolved by adding a small amount of ammonium hydroxide, and then the solution was cooled to 0 ° C to obtain crystals of ammonium dimolybdate.
實例8電解質鉬酸銨的水性:製備二二鉬酸銨於大約20°C下溶解於蒸餾水中(到濃度大約0.1M至1.0M)。Example 8 Aqueous Ammonium Molybdate: Preparation of ammonium dimolybdate was dissolved in distilled water at a temperature of about 20 ° C (to a concentration of about 0.1 M to 1.0 M).
陰離子的水性電解質鉬團簇製備氯化氯化鉬團簇陰離子的水性電解質(例如,Mo6Cl8 4-陰離子)的製備可藉由將大約1.67克至大約16.7克的Mo6Cl12在室溫下溶解於大約100毫升至大約500毫升之大約0.1M至大約3M的HCl水溶液中,以生成包括Mo6Cl8 4-陰離子的酸性電解質。Anionic aqueous electrolyte molybdenum clusters The preparation of aqueous electrolytes of chlorinated molybdenum chloride cluster anions (eg, Mo 6 Cl 8 4- anions) can be prepared by placing from about 1.67 grams to about 16.7 grams of Mo 6 Cl 12 in the chamber. The solution is dissolved in about 100 ml to about 500 ml of an aqueous solution of about 0.1 M to about 3 M of HCl to form an acidic electrolyte comprising Mo 6 Cl 8 4- anion.
存在於氧化還原活性電解質中之鹽類裡的金屬反陽離子(CounterCation)可存在於任何氧化還原活性鹽類中的金屬反陽離子以及氧化還原活性電解質中所利用的額外鹽類是為了在電解質溶劑中的溶解度,以及作用為支援電解質以及與該裝置之另一電極間相互作用的能力而被選擇。The metal counter cation (CounterCation) present in the salt in the redox active electrolyte may be present in the metal counter cation of any redox active salt and the additional salt utilized in the redox active electrolyte for use in the electrolyte solvent The solubility, as well as the ability to act to support the electrolyte and interact with the other electrode of the device, was chosen.
存在於鹽類中的金屬反陽離子在水溶劑及有機溶劑中能充分的溶解(例如,藉由產生過渡金屬離子團簇化合物的酸),因而形成支援電解質,而藉此,過渡金屬離子團簇核心及配位基可有效地變成陰離子,並且,金屬反陽離子為(H+)。The metal counter cation present in the salt can be sufficiently dissolved in an aqueous solvent and an organic solvent (for example, by generating an acid of a transition metal ion cluster compound), thereby forming a supporting electrolyte, whereby the transition metal ion cluster The core and the ligand can be effectively turned into an anion, and the metal counter cation is (H + ).
金屬反陽離子於有機溶劑中的溶解度可藉由使用陽離子(例如,Li+,Na+,及其結合)而達成。改善的溶解度可藉由使用有機外部配位基(例如,DMF)而達成。在有機溶劑中,金屬反陽離子的例子包括,但不限於,Li+,鋰嵌入材料,例如,石墨碳,以及元素態鋰。The solubility of the metal counter cation in an organic solvent can be achieved by using a cation (for example, Li + , Na + , and combinations thereof). Improved solubility can be achieved by the use of an organic external ligand (eg, DMF). Examples of metal counter cations in organic solvents include, but are not limited to, Li + , lithium intercalation materials such as graphitic carbon, and elemental lithium.
金屬反陽離子的選擇可基於與一電極間的相互作用。在水溶劑中,陽極(例如,但不限於,鎳金屬氫化物合金,例如,LaNi5,Pb金屬,及其結合)可以是質子宿主。在水溶劑中,陰極包括,但不限於,Ni(OH)2,MnO2,及其結合。當陽極為一電化學雙層電容(EDLC)電極,例如,一活性碳壓縮體時,可使用的金屬反陽離子包括,但不限於,NH4+,烷基取代銨,例如,四甲基銨(NMe4+),四乙基銨(NEt4+),四丁基銨(NBu4+),及其結合,其中,Me為甲基,Et為乙基,以及Bu為丁基。The choice of metal counter cations can be based on interaction with an electrode. In an aqueous solvent, an anode (e.g., but not limited to, a nickel metal hydride alloys, e.g., LaNi 5, Pb metal, and combinations thereof) may be a protic host. In aqueous solvents, the cathode includes, but is not limited to, Ni(OH) 2 , MnO 2 , and combinations thereof. When the anode is an electrochemical double layer capacitor (EDLC) electrode, for example, a activated carbon compression body, metal countercations that can be used include, but are not limited to, NH 4+ , alkyl substituted ammonium, for example, tetramethylammonium. (NMe 4+ ), tetraethylammonium (NEt 4+ ), tetrabutylammonium (NBu 4+ ), and combinations thereof, wherein Me is methyl, Et is ethyl, and Bu is butyl.
電化學裝置的液流電池使用二個氧化還原活性電解質電極包括一反應容器、陽極、陰極、及陽離子滲透膜的液流電池顯示於第2圖中。該等陽極及陰極的每一個皆包含密集壓縮的傳導顆粒,以用於與一電解質(例如,一氧化還原活性電解質)中的離子進行電子交換。傳導顆粒可包括,但不限於,碳氈(carbon felt),活性碳,乙炔碳黑,石墨,鎳泡沫,及其混合物的其中任一。陽極及陰極被陽離子滲透膜分開,例如,但不限於,PVDF-PEO聚合物混合物的Li+陽離子滲透膜(例如,四氟乙烯-全氟-3,6-二氧雜-4-甲基-7-辛烷磺酸共聚物)。A flow battery of an electrochemical device using two redox active electrolyte electrodes including a reaction vessel, an anode, a cathode, and a cation permeable membrane is shown in Fig. 2. Each of the anodes and cathodes contains densely packed conductive particles for electronic exchange with ions in an electrolyte (e.g., a redox active electrolyte). Conductive particles can include, but are not limited to, carbon felt, activated carbon, acetylene black, graphite, nickel foam, and mixtures thereof. The anode and cathode are separated by a cation permeable membrane such as, but not limited to, a Li + cation permeable membrane of a PVDF-PEO polymer mixture (eg, tetrafluoroethylene-perfluoro-3,6-dioxa-4-methyl-) 7-octane sulfonic acid copolymer).
在操作一液流電池期間,具有氧化還原活性陽離子的陰極電解質溶液會通過陰極室,藉此,陽離子被氧化至較高的氧化態。具有氧化還原活性陰離子的陰極電解質溶液會通過陽極室,藉此,陰離子被還原至較低的氧化態,為了維持電中性,來自陰極室的陽離子遷移通過分離器膜而進入陽極室。此會繼續,直到所有的離子完全被轉換它們的電荷狀態。陰極電解質及陽極電解質可在溫度大約5°C至大約55°C下被供給至電池。放電時,(完全充電)的陰極電解質及陽極電解質反向流動通過陰極及陽極室,且反應允許反向進行,以產生跨越電流收集器的輸出電壓。During operation of a flow battery, a catholyte solution having a redox active cation will pass through the cathode chamber whereby the cation is oxidized to a higher oxidation state. A catholyte solution having a redox active anion will pass through the anode compartment whereby the anion is reduced to a lower oxidation state, and in order to maintain electrical neutrality, cations from the cathode compartment migrate through the separator membrane into the anode compartment. This will continue until all ions are completely converted to their charge state. The cathode electrolyte and the anolyte can be supplied to the battery at a temperature of about 5 ° C to about 55 ° C. Upon discharge, the (fully charged) catholyte and anode electrolyte flow in opposite directions through the cathode and anode compartments, and the reaction is allowed to proceed in reverse to produce an output voltage across the current collector.
可使用的陰極電解質溶液包括,但不限於,LiMo6Cl13,鋰磷鉬酸,及其混合物。可使用的陽極電解質溶液包括,但不限於,LiMo6Cl13,鋰磷鉬酸,及其混合物。陰極電解質與陽極電解質可以為相同或不同。Cathodic electrolyte solutions that can be used include, but are not limited to, LiMo 6 Cl 13 , lithium phosphomolybdic acid, and mixtures thereof. Anode electrolyte solutions that can be used include, but are not limited to, LiMo 6 Cl 13 , lithium phosphomolybdic acid, and mixtures thereof. The cathode electrolyte and the anode electrolyte may be the same or different.
陰極電解質溶液及陽極電解質溶液以足以產生所需電力輸出的速率而被供給至液流電池。供給陰極電解質及陽極電解質的速率可以相同或不同。溶液的供給溫度範圍可以為大約5°C至大約55°C。陰極電解質及陽極電解質的供給溫度可為相同或不同。The catholyte solution and the anolyte solution are supplied to the flow battery at a rate sufficient to produce the desired electrical output. The rates of supply of the cathode electrolyte and the anolyte may be the same or different. The supply temperature of the solution may range from about 5 °C to about 55 °C. The supply temperatures of the cathode electrolyte and the anode electrolyte may be the same or different.
液流電池1-有機氧化還原活性電解質第2圖顯示包括反應容器5的一溢流電池1,其中,陽極室20及陰極室15的每一個皆包含封裝傳導材料20(例如,傳導碳材料,例如,碳氈),其被Li+陽離子滲透膜25(例如,第2圖之PVDF-PEO)分開。在操作期間,於一有機溶劑(例如,乙腈)中之一金屬團簇化合物(例如,LiMo6Cl13)的一有機氧化還原活性電解質會流過陰極室及陽極室的每一個,而到達一外部陽極電解質槽(未顯示)以及一外部陰極電解質槽(未顯示)。在電解質中的Mo6Cl8 4-離子會於陽極被還原,以及在陰極被氧化,以在陽極及陰極間產生化學勢差。為了維持電中性,Li+離子通過陽離子膜而從一個電極室跨越至另一個。在放電期間,反應方向反向,且一輸出電壓被產生而跨越位在可取得電流之液流電池側邊的電流收集器30。Flow Battery 1 - Organic Redox Active Electrolyte FIG. 2 shows an overflow cell 1 including a reaction vessel 5, wherein each of the anode chamber 20 and the cathode chamber 15 contains a packaged conductive material 20 (eg, a conductive carbon material, For example, carbon felt), which is separated by a Li + cation permeable membrane 25 (eg, PVDF-PEO of Figure 2). During operation, an organic redox active electrolyte of one of the metal cluster compounds (eg, LiMo 6 Cl 13 ) in an organic solvent (eg, acetonitrile) flows through each of the cathode chamber and the anode chamber to reach a An external anolyte tank (not shown) and an external cathode electrolyte tank (not shown). The Mo 6 Cl 8 4- ion in the electrolyte is reduced at the anode and oxidized at the cathode to create a chemical potential difference between the anode and the cathode. In order to maintain electrical neutrality, Li + ions cross from one electrode chamber to the other through the cation membrane. During discharge, the reaction direction is reversed and an output voltage is generated across the current collector 30 located on the side of the flow cell where current can be drawn.
液流電池2-水性氧化還原活性電解質液流電池2與液流電池1相同,除了在陽極側所使用的陰極電解質溶液包含於2M HCl酸中的1M CrCl3,以及在陰極側的陰極電解質溶液為於2M HCl中的0.1M Mo6Cl12。膜為對H+具滲透性的Nafion。The flow battery 2 - aqueous redox active electrolyte flow battery 2 is the same as the flow battery 1, except that the cathode electrolyte solution used on the anode side contains 1 M CrCl 3 in 2 M HCl acid, and the cathode electrolyte solution on the cathode side For 0.1 M Mo 6 Cl 12 in 2M HCl. The membrane is Nafion which is permeable to H + .
混合EDLC(一個氧化還原活性電解質電極與一個EDLC電極)第3圖顯示使用一個為EDLC型態電極形式的陽極及一個氧化還原活性陰極的一混合EDLC-氧化還原活性電容器40。該混合電容器包括一雙層負電極45(例如,YP 50活性碳),一分離器膜55(例如,Nafion),以及一氧化還原活性正電極60,例如,YP 50活性碳電極,其包含一氧化還原活性液態電解質溶液(例如,封於一容器(例如,一不銹鋼硬幣型電池)中的1.0M Mo6Cl12水溶液)。一電流收集器50,例如,不銹鋼,被依附至雙層負電極的表面以及氧化還原活性電極。在操作時,反應離子累積於雙層負電極。Mixed EDLC (a redox active electrolyte electrode and an EDLC electrode) Figure 3 shows a hybrid EDLC-redox active capacitor 40 using an anode in the form of an EDLC type electrode and a redox active cathode. The hybrid capacitor includes a double layer negative electrode 45 (eg, YP 50 activated carbon), a separator film 55 (eg, Nafion), and a redox active positive electrode 60, such as a YP 50 activated carbon electrode, which includes a A redox active liquid electrolyte solution (for example, 1.0 M Mo 6 Cl 12 aqueous solution enclosed in a container (for example, a stainless steel coin type battery)). A current collector 50, such as stainless steel, is attached to the surface of the double layer negative electrode and the redox active electrode. In operation, reactive ions accumulate in the double layer negative electrode.
團簇化合物由於其達成高氧化態的能力,例如,+12 Mo6核心可達成+13及+14氧化,因此,較佳作為在氧化還原活性正電極中的RAA。The cluster compound is preferred as the RAA in the redox active positive electrode because of its ability to achieve a high oxidation state, for example, the +12 Mo 6 core can achieve +13 and +14 oxidation.
混合EDLC陽極,有機溶劑氧化還原活性電解質陰極電容器一混合EDLC陽極可製備自85%wt活性碳、5% wt乙炔碳黑、及10%wt聚四氟乙烯(Teflon)的混合物。該混合物於3000PSI下壓縮,以生成100μm厚度的薄膜碳陽極。薄膜碳陽極的圓盤被置於一硬幣型電池中。一20微米厚、多孔聚乙烯分離器膜(例如,來自Asahi Kasei的Hipore)被置於薄膜陽極上,以及作為氧化還原活性電解質陰極的電極結構(例如,該薄膜碳陽極材料)被置於該分離器膜的上部,以生成一三層集合。該集合被浸入在乙腈:乙烯碳酸酯電解質溶液中的1M的四丁基銨氯化鉬(TBA2-Mo6Cl14)中一個小時,以讓電解質注入集合中。THEO Mixed EDLC anode, organic solvent redox active electrolyte cathode capacitor - A mixed EDLC anode can be prepared from a mixture of 85% wt activated carbon, 5% wt acetylene black, and 10% wt polytetrafluoroethylene (Teflon). The mixture was compressed at 3000 PSI to produce a film carbon anode having a thickness of 100 μm. The disc of the film carbon anode is placed in a coin type battery. A 20 micron thick, porous polyethylene separator membrane (e.g., Hipore from Asahi Kasei) is placed on the film anode, and an electrode structure (e.g., the thin film carbon anode material) as the redox active electrolyte cathode is placed The upper portion of the separator membrane to create a three-layer assembly. The collection was immersed in 1 M tetrabutylammonium molybdenum chloride (TBA 2 -Mo 6 Cl 14 ) in an acetonitrile:ethylene carbonate electrolyte solution for one hour to allow the electrolyte to be injected into the collection. THEO
混合電池(氧化還原活性電解質電極及電池電極)第4圖顯示使用一負電極、陽離子滲透分離器膜、及一氧化還原活性電解質陰極的一混合電池-氧化還原活性電解質陰極。電池型態負電極70與電解質之陽離子成分間經歷氧化還原反應。在混合電池中可使用的電池型態負電極包括,但不限於,為鋰離子是可逆電極的鋰金屬,為Na離子是可逆電極的鈉,石墨碳,鈦酸鋰,LiVO2,其所有皆能夠插入鋰離子、鎳金屬氫化物、金屬鋅、鎂、及鉛,其中每一個皆可被使用作為水溶液系統中的負電極。電池型態石墨碳電極可得自MTI,且同時所有其他的金屬為商業可得(Sigma, Alfa)。鎳金屬氫化物可得自如Molport的供應商。電流收集器,例如,不銹鋼,被依附至負電極的表面及氧化還原活性電解質陰極。一陽離子滲透分離器膜75為在氧化還原活性電解質陰極80以及負電極70之間。可使用的陽離子分離器膜包括,但不限於,Nafion,其中,陽離子為H+。就Li+陽離子而言,以聚乙烯氧化物(PEO)為基礎的聚合物電解質可被使用作為一陽離子分離器膜。一多孔分離器膜(例如,來自Celgard及AsahiKaseim之以聚丙烯或聚乙烯為基礎的分離器)可替代地,或與一陽離子分離器膜相結合而被使用來在限制RAA之擴散的同時允許陽離子的高度擴散,以及亦為電解質溶液提供額外的體積。Hybrid battery (redox active electrolyte electrode and battery electrode) Fig. 4 shows a hybrid battery-redox active electrolyte cathode using a negative electrode, a cation permeation separator membrane, and a redox active electrolyte cathode. The battery type negative electrode 70 undergoes a redox reaction with the cationic component of the electrolyte. Battery-type negative electrodes that can be used in hybrid batteries include, but are not limited to, lithium metal, which is a reversible electrode for lithium ions, sodium, which is a reversible electrode for Na ions, graphite carbon, lithium titanate, LiVO 2 , all of which are It is capable of inserting lithium ions, nickel metal hydride, metal zinc, magnesium, and lead, each of which can be used as a negative electrode in an aqueous solution system. The battery type graphite carbon electrode is available from MTI, while all other metals are commercially available (Sigma, Alfa). Nickel metal hydrides are available from suppliers such as Molport. A current collector, such as stainless steel, is attached to the surface of the negative electrode and the redox active electrolyte cathode. A cation permeation separator membrane 75 is between the redox active electrolyte cathode 80 and the negative electrode 70. Cationic separator membranes that may be used include, but are not limited to, Nafion, wherein the cation is H+. As far as the Li+ cation is concerned, a polyethylene oxide (PEO)-based polymer electrolyte can be used as a cation separator membrane. A porous separator membrane (e.g., a polypropylene or polyethylene based separator from Celgard and Asahi Kaseim) may alternatively or in combination with a cation separator membrane be used to limit the diffusion of RAA while Allows for a high degree of diffusion of the cations and also provides an additional volume for the electrolyte solution.
接下來敘述混合電池的一非限制例子。該混合電池使用鋰金屬作為負電極,以及使用浸於氧化還原活性 LiMo6Cl13電解質溶液(1M LiMo6Cl13,在比例為70:30(莫耳)之碳酸二甲酯與碳酸伸乙酯混合物溶劑中)中的高表面積碳電極作為氧化還原活性電解質陰極,0.04 mm厚的Nafion滲透膜將負電極與陰極分開。不銹鋼電流收集器90依附至陽極及陰極。Next, a non-limiting example of a hybrid battery will be described. The hybrid battery uses lithium metal as a negative electrode, and uses a redox-active LiMo 6 Cl 13 electrolyte solution (1M LiMo 6 Cl 13 in a ratio of 70:30 (mole) of dimethyl carbonate and ethyl carbonate). A high surface area carbon electrode in the mixture solvent) acts as a redox active electrolyte cathode, and a 0.04 mm thick Nafion permeable membrane separates the negative electrode from the cathode. A stainless steel current collector 90 is attached to the anode and cathode.
混合電池陽極,氧化還原活性有機溶劑電解質電池陽極的製備可藉由將鋰金屬壓縮至一銅箔上而生成厚度至多大約100 μm的一Li層。一Li滲透膜被置於該鋰層的上部。該Li滲透膜可以是聚乙烯氧化物(PEO),含已溶解Li鹽(例如,LiClO4,LiPF6,或其混合物的其中任一)的PEO聚合物,以及塑化劑(例如,碳酸丙烯酯)的其中任一。一典型PEO膜可藉由將大約5克的PEO溶解於大約25毫升的乙腈中,再將該溶液澆於不黏表面,並使其乾燥而製造。A hybrid battery anode, a redox active organic solvent electrolyte battery anode can be prepared by compressing lithium metal onto a copper foil to form a Li layer having a thickness of up to about 100 μm. A Li permeable membrane is placed on top of the lithium layer. The Li permeable membrane may be a polyethylene oxide (PEO), a PEO polymer containing a dissolved Li salt (for example, LiClO 4 , LiPF 6 , or a mixture thereof), and a plasticizer (for example, propylene carbonate). Ester). A typical PEO film can be made by dissolving about 5 grams of PEO in about 25 milliliters of acetonitrile, pouring the solution onto a non-stick surface, and allowing it to dry.
當PEO被用於Li滲透膜中時,該膜可具有多至大約50μm的厚度。一多孔聚合物分離器(例如聚乙烯膜,像是來自Asahi Kaseim的Hipore)被置於該Li滲透膜上。分離器膜可具有大約10 μm至大約50 μm的厚度。由85%活性碳、5%乙炔碳黑、及來自Sigma-Aldrich之10%聚四氟乙烯黏合劑組成的碳陰極被置於該多孔聚合物分離器上,以生成一混合電池陽極。碳陰極圓盤可具有大約20 μm至大約200 μm的厚度,例如,大約100μm。碳陰極典型地具有大約20 %至大約50%(例如,大約25 %至大約40%)的孔隙率。多孔聚合物分離器及陰極兩者皆被浸入通常會包括Li陽離子的氧化還原活性有機電解質中。氧化還原活性有機電解質的非限制例子包括在碳酸乙烯酯:碳酸二甲酯中溶解至1M的六氟磷酸鋰及脫水鋰磷鉬酸。When PEO is used in a Li permeable film, the film may have a thickness of up to about 50 μm. A porous polymer separator (e.g., a polyethylene film such as Hipore from Asahi Kaseim) is placed on the Li permeable membrane. The separator membrane can have a thickness of from about 10 μm to about 50 μm. A carbon cathode consisting of 85% activated carbon, 5% acetylene black, and 10% polytetrafluoroethylene binder from Sigma-Aldrich was placed on the porous polymer separator to form a hybrid battery anode. The carbon cathode disk may have a thickness of from about 20 μm to about 200 μm, for example, about 100 μm. Carbon cathodes typically have a porosity of from about 20% to about 50% (e.g., from about 25% to about 40%). Both the porous polymer separator and the cathode are immersed in a redox active organic electrolyte which will typically include Li cations. Non-limiting examples of the redox active organic electrolyte include lithium hexafluorophosphate and dehydrated lithium phosphomolybdic acid dissolved in 1 M ethylene carbonate: dimethyl carbonate.
混合電池陽極,氧化還原活性水性電解質陰極一陽極可製備自厚度大約100 μm至大約500 μm的Pb金屬薄膜。該Pb薄膜的圓盤被置於被浸入硫酸中的一多孔膜上,並置入一硬幣型電池殼中,以生成一陽極。該膜可以是微孔三層膜(PP/PE/PP),例如,來自Celgard的C480。典型地,該等膜具有大約40%至大約60%之孔隙率。一陽離子滲透膜,例如,NafionTM被置於該陽極的上部。一碳陰極(例如,來自SigmaAldrich)被置於該陽離子滲透膜之上,以形成混合電極,氧化還原活性電解質電極裝置。典型地,該碳陰極有85%活性碳、5%乙炔碳黑、及來自Sigma-Aldrich之10%聚四氟乙烯黏合劑組成大約100μm厚度,且在使用前被浸入包含溶解至1M之鉬矽酸H4[SiMo12O40]的1M HCl電解質中。A hybrid battery anode, a redox active aqueous electrolyte cathode-anode can be prepared from a Pb metal film having a thickness of from about 100 μm to about 500 μm. The disc of the Pb film was placed on a porous membrane immersed in sulfuric acid and placed in a coin-type battery can to form an anode. The membrane may be a microporous three layer membrane (PP/PE/PP), for example, C480 from Celgard. Typically, the films have a porosity of from about 40% to about 60%. A cation permeable membrane, e.g., Nafion TM is placed on top of the anode. A carbon cathode (e.g., from Sigma Aldrich) is placed over the cation permeable membrane to form a mixed electrode, redox active electrolyte electrode assembly. Typically, the carbon cathode has 85% activated carbon, 5% acetylene black, and 10% polytetrafluoroethylene adhesive from Sigma-Aldrich, which is composed of a thickness of about 100 μm and is immersed in a molybdenum containing dissolved to 1 M before use. Acid H 4 [SiMo 12 O 40 ] in 1 M HCl electrolyte.
混合、氧化還原活性電解質電極的放電/充電就在對混合、氧化還原活性電解質電極進行放電前,RAA(例如,聚合側氧金屬化物形式者)處於其最高氧化態。在放電期間,RAA會被吸引至電極顆粒,如第1圖所示。而在到達電極顆粒後,RAA藉由獲得一或多個電子而被還原。已還原的RAA從電極顆粒處擴散離開,以被新的RAA取代。此會繼續,直到電極達到完全放電狀態,此時可得的RAA處於較低的氧化態。為了在氧化還原活性電解質中維持電中性,陽離子(或陰離子)在陰極電極及陽極電極間被傳遞,例如,通過分離器膜,或一特定的離子滲透膜。Discharge/Charge of the Mixed, Redox Active Electrolyte Electrode The RAA (eg, in the form of a polymeric side oxymetallate) is in its highest oxidation state prior to discharging the mixed, redox active electrolyte electrode. During discharge, the RAA is attracted to the electrode particles as shown in Figure 1. Upon reaching the electrode particles, the RAA is reduced by obtaining one or more electrons. The reduced RAA diffuses away from the electrode particles to be replaced by a new RAA. This will continue until the electrode reaches a fully discharged state, at which point the available RAA is in a lower oxidation state. In order to maintain electrical neutrality in the redox active electrolyte, a cation (or anion) is transferred between the cathode electrode and the anode electrode, for example, through a separator membrane, or a specific ion permeable membrane.
氧化還原活性電極可在放電狀態下被集合,而在集合後,混合氧化還原活性電解質電極可藉由電流而被放電,藉此,電子可取自正電極,並被供給至負電極,在此方面構想中,具有高氧化態的團簇化合物可在氧化還原活性正電極中經歷氧化反應,以及在負電極中失去電子給碳顆粒。The redox active electrode can be assembled in a discharged state, and after the collection, the mixed redox active electrolyte electrode can be discharged by an electric current, whereby electrons can be taken from the positive electrode and supplied to the negative electrode, where In the concept, a cluster compound having a high oxidation state can undergo an oxidation reaction in a redox active positive electrode and an electron donating carbon particle in a negative electrode.
液流電池操作在一液流電池的放電期間,電壓被施加跨越反應容器的電流收集器,以在陰極上產生正電位。陰極電解質是透過電池的陰極電極室而進行供給,藉此,在氧化還原活性電解質中的RAA被氧化至較高的氧化態。在陰極電解質的流動期間,陽極電解質是透過陽極電極室而進行供給,藉此,陽離子被還原至較低的氧化態。為了維持陰極電解質及陽極電解質溶液中之電荷中性,來自陰極電極室的陽離子通過分離器膜到陽極電極室。此可繼續,直到離子被轉換至其已充電狀態為止。在液流電池的放電期間,已充電的陽極及陰極電解質溶液被供給回反應容器,且反應被允許反向進行,以產生輸出電壓。該輸出電壓被產生為跨越電流收集器,以使得能量可自電池被取出。Flow Battery Operation During discharge of a flow battery, a voltage is applied across the current collector of the reaction vessel to produce a positive potential on the cathode. The cathode electrolyte is supplied through the cathode electrode chamber of the battery, whereby the RAA in the redox active electrolyte is oxidized to a higher oxidation state. During the flow of the catholyte, the anolyte is supplied through the anode electrode chamber whereby the cations are reduced to a lower oxidation state. In order to maintain charge neutrality in the catholyte and anolyte solutions, cations from the cathode electrode compartment pass through the separator membrane to the anode electrode compartment. This can continue until the ions are switched to their charged state. During discharge of the flow battery, the charged anode and cathode electrolyte solutions are fed back to the reaction vessel and the reaction is allowed to reverse to produce an output voltage. The output voltage is generated across the current collector such that energy can be removed from the battery.
混合EDLC操作在混合EDLC裝置中,於正氧化還原活性EDLC電極處的電荷傳遞是藉由在負EDLC電極處等量的電荷傳遞而獲得補償。來自於氧化還原活性電解質中所溶解鹽類的陽離子物種會遷移朝向該負EDLC電極,並累積在該負電極的顆粒上,如在第3圖中所舉例。此種在EDLC電極中儲存電荷的方式可達成非常快速的動力學,而能夠有高能量容量及高電力。Mixed EDLC Operation In a mixed EDLC device, charge transfer at the positive redox active EDLC electrode is compensated by equal amount of charge transfer at the negative EDLC electrode. A cationic species from the dissolved salts in the redox active electrolyte migrates toward the negative EDLC electrode and accumulates on the particles of the negative electrode, as exemplified in FIG. This way of storing charge in the EDLC electrode achieves very fast kinetics and can have high energy capacity and high power.
混合電池操作當負電極為電池電極時,陽離子被還原,並儲存在該電池的負電極內(或上),如第4圖中所舉例。此種在使用氧化還原活性電解質之混合電池中儲存電荷的方式可在每單位體積提供高容量。Hybrid Battery Operation When the negative electrode is a battery electrode, the cation is reduced and stored in (or on) the negative electrode of the cell, as exemplified in FIG. Such a manner of storing electric charge in a hybrid battery using a redox active electrolyte can provide a high capacity per unit volume.
1...溢流電池1. . . Overflow battery
5...反應容器5. . . Reaction vessel
15...陰極室15. . . Cathode chamber
20...陽極室、封裝傳導材料20. . . Anode chamber, package conductive material
25...Li+陽離子滲透膜25. . . Li + cation permeable membrane
30...電流收集器30. . . Current collector
40...混合EDLC-氧化還原活性電容器40. . . Mixed EDLC-redox active capacitor
45...雙層負電極45. . . Double layer negative electrode
50...電流收集器50. . . Current collector
55...分離器膜55. . . Separator membrane
60...氧化還原活性正電極60. . . Redox active positive electrode
70...電池型態負電極70. . . Battery type negative electrode
75...陽離子滲透分離器膜75. . . Cationic permeation separator membrane
80...氧化還原活性電解質陰極80. . . Redox active electrolyte cathode
90...不銹鋼電流收集器90. . . Stainless steel current collector
第1圖為氧化還原活性陰離子(RAA)及位在一電極處之電極顆粒間的電子傳遞的示意圖;第2圖顯示一液流電池的示意圖;第3圖顯示一混合電化學能量裝置的示意圖,其中,負電極為一電化學雙層電容(EDLC)電極;以及第4圖顯示一混合電化學能量儲存裝置的示意圖,其中,負電極為電池型態(法拉第)電極。Figure 1 is a schematic diagram of redox active anions (RAA) and electron transport between electrode particles at an electrode; Figure 2 shows a schematic of a flow battery; Figure 3 shows a schematic of a hybrid electrochemical energy device Wherein, the negative electrode is an electrochemical double layer capacitor (EDLC) electrode; and FIG. 4 shows a schematic diagram of a hybrid electrochemical energy storage device, wherein the negative electrode is a battery type (Faraday) electrode.
1...溢流電池1. . . Overflow battery
5...反應容器5. . . Reaction vessel
15...陰極室15. . . Cathode chamber
20...陽極室、封裝傳導材料20. . . Anode chamber, package conductive material
25...Li+陽離子滲透膜25. . . Li + cation permeable membrane
30...電流收集器30. . . Current collector
Claims (19)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261680689P | 2012-08-07 | 2012-08-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201419648A true TW201419648A (en) | 2014-05-16 |
Family
ID=51294498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102127977A TW201419648A (en) | 2012-08-07 | 2013-08-05 | Hybrid electrochemical energy storage devices |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW201419648A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108693230A (en) * | 2018-05-25 | 2018-10-23 | 西安交通大学 | The device and method of sulphion concentration in a kind of quick detection strong alkali solution |
CN111801374A (en) * | 2017-10-30 | 2020-10-20 | 雷恩第一大学 | Nanocomposites made from polymer matrices comprising PEO-containing polymers and cold-emitting polyanionic metal cluster salts |
CN112242258A (en) * | 2020-10-20 | 2021-01-19 | 上海海事大学 | Electric double-layer super capacitor with asymmetric porous electrode structure under variable pore |
CN114335567A (en) * | 2021-12-15 | 2022-04-12 | 天津大学 | Modification method of carbon electrode for anthraquinone/potassium ferrocyanide flow battery |
-
2013
- 2013-08-05 TW TW102127977A patent/TW201419648A/en unknown
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111801374A (en) * | 2017-10-30 | 2020-10-20 | 雷恩第一大学 | Nanocomposites made from polymer matrices comprising PEO-containing polymers and cold-emitting polyanionic metal cluster salts |
CN111801374B (en) * | 2017-10-30 | 2022-05-17 | 雷恩第一大学 | Nanocomposites made from polymer matrices comprising PEO-containing polymers and cold-emitting polyanionic metal cluster salts |
CN108693230A (en) * | 2018-05-25 | 2018-10-23 | 西安交通大学 | The device and method of sulphion concentration in a kind of quick detection strong alkali solution |
CN112242258A (en) * | 2020-10-20 | 2021-01-19 | 上海海事大学 | Electric double-layer super capacitor with asymmetric porous electrode structure under variable pore |
CN114335567A (en) * | 2021-12-15 | 2022-04-12 | 天津大学 | Modification method of carbon electrode for anthraquinone/potassium ferrocyanide flow battery |
CN114335567B (en) * | 2021-12-15 | 2022-10-18 | 天津大学 | Modification method of carbon electrode for anthraquinone/potassium ferrocyanide flow battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140050947A1 (en) | Hybrid Electrochemical Energy Storage Devices | |
JP6699876B2 (en) | Lithium-sulfur battery electrolyte and lithium-sulfur battery containing the same | |
JP5449522B2 (en) | Air battery | |
US10873101B2 (en) | Flow battery | |
JP5729481B2 (en) | Electrolyte for lithium air battery | |
CN103703602B (en) | Electrochemical energy storage device and active material and its manufacture method for the device | |
JP5273256B2 (en) | Non-aqueous electrolyte and metal-air battery | |
US10547077B2 (en) | Flow battery | |
US10797337B2 (en) | Flow battery | |
EP3416223B1 (en) | Flow battery | |
TW201419648A (en) | Hybrid electrochemical energy storage devices | |
US10826127B2 (en) | Composite separator for lithium metal batteries | |
JP5763161B2 (en) | Air battery | |
US11211618B2 (en) | Flow battery that includes liquid containing mediator | |
US9209489B2 (en) | Battery and mixed molten liquid | |
US11094957B2 (en) | Flow battery | |
US10658693B2 (en) | Flow battery | |
JP2015022845A (en) | Method for producing electrode active material, electrode active material, and nonaqueous secondary battery using the same | |
US11264632B2 (en) | Flow battery | |
WO2021240874A1 (en) | Redox flow battery | |
US10727506B2 (en) | Flow battery that includes redox mediator | |
US10541435B2 (en) | Flow battery that includes redox mediator | |
JP2020155278A (en) | Aqueous electrolyte solution for power storage device, and power storage device including the same |