TW201415658A - Semiconductor device layer and fabricating method thereof - Google Patents
Semiconductor device layer and fabricating method thereof Download PDFInfo
- Publication number
- TW201415658A TW201415658A TW102148822A TW102148822A TW201415658A TW 201415658 A TW201415658 A TW 201415658A TW 102148822 A TW102148822 A TW 102148822A TW 102148822 A TW102148822 A TW 102148822A TW 201415658 A TW201415658 A TW 201415658A
- Authority
- TW
- Taiwan
- Prior art keywords
- semiconductor device
- sectional area
- device layer
- layer
- cross
- Prior art date
Links
Landscapes
- Led Devices (AREA)
Abstract
Description
本發明是有關於一種半導體元件層,且特別是有關於一種具有良好的光電轉換效率之半導體元件層。 The present invention relates to a semiconductor device layer, and more particularly to a semiconductor device layer having good photoelectric conversion efficiency.
隨著半導體科技的進步,現今的發光二極體已具備了高亮度的輸出,加上發光二極體具有省電、體積小、低電壓驅動以及不含汞等優點,因此發光二極體已廣泛地應用在顯示器與照明方面的領域。一般而言,發光二極體的發光效率主要取決於發光層的內部量子效率(internal quantum efficiency)以及外部量子效率(external quantum efficiency),也就是光取出效率(light extraction efficiency)。內部量子效率的提升取決於半導體層之磊晶品質以及半導體層之膜層堆疊方式,而外部量子效率的提升則取決於發光二極體晶片所發出之光線是否可以有效地被引導出。換言之,外部量子效率與發光二極體晶片外部之其他光學設計有關。 With the advancement of semiconductor technology, today's light-emitting diodes have high-intensity output, and the light-emitting diodes have the advantages of power saving, small size, low voltage driving, and no mercury, so the light-emitting diode has Widely used in the field of display and lighting. In general, the luminous efficiency of a light-emitting diode mainly depends on the internal quantum efficiency of the light-emitting layer and the external quantum efficiency, that is, the light extraction efficiency. The increase in internal quantum efficiency depends on the epitaxial quality of the semiconductor layer and the film stacking of the semiconductor layer, and the increase in external quantum efficiency depends on whether the light emitted by the LED chip can be effectively guided out. In other words, the external quantum efficiency is related to other optical designs outside the LED array.
圖1為習知的發光二極體晶片的剖面示意圖。請參照圖1,習知的發光二極體晶片100包括一基板110、一半導體元件層120、一 N型電極130a以及一P型電極130b。半導體元件層120配置於基板110上,且半導體元件層120包括一N型半導體層122、一發光層124以及一P型半導體層126,其中N型半導體層122配置於基板110上,發光層124配置於N型半導體層122的部分區域上,而P型半導體層126配置於發光層124上。此外,N型電極130a配置於N型半導體層122上,並與N型半導體層122電性連接,而P型電極130b則配置於P型半導體層126上,並與P型半導體層126電性連接。 1 is a schematic cross-sectional view of a conventional light-emitting diode wafer. Referring to FIG. 1 , a conventional LED chip 100 includes a substrate 110 , a semiconductor device layer 120 , and a semiconductor device An N-type electrode 130a and a P-type electrode 130b. The semiconductor device layer 120 is disposed on the substrate 110, and the semiconductor device layer 120 includes an N-type semiconductor layer 122, a light-emitting layer 124, and a P-type semiconductor layer 126. The N-type semiconductor layer 122 is disposed on the substrate 110, and the light-emitting layer 124 is disposed. The P-type semiconductor layer 126 is disposed on a portion of the N-type semiconductor layer 122, and the P-type semiconductor layer 126 is disposed on the light-emitting layer 124. In addition, the N-type electrode 130a is disposed on the N-type semiconductor layer 122 and electrically connected to the N-type semiconductor layer 122, and the P-type electrode 130b is disposed on the P-type semiconductor layer 126 and electrically connected to the P-type semiconductor layer 126. connection.
從圖1可知,發光二極體晶片100中的發光層124所發出的光線會朝向各個方向傳遞,然而,有一部分的光線可能會在發光二極體晶片內部產生全反射,而其所造成的光損失將大幅降低發光二極體晶片的發光效率。因此,如何藉由改善發光二極體晶片的結構,以降低發光層所發出的光線在發光二極體晶片內產生全反射的機會以及提升發光二極體晶片的發光效率,為設計者必須面臨的課題之一。 As can be seen from FIG. 1, the light emitted by the light-emitting layer 124 in the LED wafer 100 is transmitted in various directions. However, a part of the light may cause total reflection inside the LED wafer, and the resulting Light loss will greatly reduce the luminous efficiency of the light-emitting diode wafer. Therefore, how to improve the structure of the light-emitting diode wafer, to reduce the chance of the light emitted by the light-emitting layer to generate total reflection in the light-emitting diode wafer and to improve the luminous efficiency of the light-emitting diode wafer, the designer must face One of the topics.
本發明提供一種半導體元件層及其製造方法。 The present invention provides a semiconductor device layer and a method of manufacturing the same.
本發明提出一種半導體元件層的製造方法。首先,於一基板上形成一圖案化罩幕層,其中圖案化罩幕層具有一開口,以暴露部分的基板。接著,於未被圖案化罩幕層所覆蓋的基板上形成一半導體元件層,其中位於開口以外的半導體元件層在不同高度具有不同的截面積,且位於開口以外的半導體元件層的截面積隨著所在高度的增加而遞減。然後,移除圖案化罩幕層。 The present invention proposes a method of manufacturing a semiconductor element layer. First, a patterned mask layer is formed on a substrate, wherein the patterned mask layer has an opening to expose a portion of the substrate. Then, a semiconductor device layer is formed on the substrate not covered by the patterned mask layer, wherein the semiconductor device layer outside the opening has different cross-sectional areas at different heights, and the cross-sectional area of the semiconductor device layer outside the opening Decrease as the height of the place increases. Then, remove the patterned mask layer.
在本發明的一實施例中,位於開口內的半導體元件層在不同高度具有不同的截面積,且位於開口內的半導體元件層的截面積隨 著所在高度的增加而遞增。在一實施例中,位於開口以外的半導體元件層具有一第一最大截面積,而位於開口內的半導體元件層具有一第二最大截面積,且第一最大截面積實質上等於第二最大截面積。在另一實施例中,位於開口以外的半導體元件層具有一第一最大截面積,而位於開口內的半導體元件層具有一第二最大截面積,且第一最大截面積大於第二最大截面積。 In an embodiment of the invention, the semiconductor device layer located in the opening has different cross-sectional areas at different heights, and the cross-sectional area of the semiconductor device layer located in the opening The height of the place increases and increases. In one embodiment, the semiconductor device layer outside the opening has a first maximum cross-sectional area, and the semiconductor device layer located in the opening has a second largest cross-sectional area, and the first maximum cross-sectional area is substantially equal to the second largest cross-sectional area area. In another embodiment, the semiconductor device layer outside the opening has a first maximum cross-sectional area, and the semiconductor device layer located in the opening has a second largest cross-sectional area, and the first maximum cross-sectional area is greater than the second largest cross-sectional area .
在本發明的一實施例中,位於開口內的半導體元件層在不同高度具有相同的截面積,而位於開口內的半導體元件層的截面積隨著所在高度的增加而維持一定,以使位於開口內的半導體元件層的側壁實質上與基板的表面垂直。在一實施例中,位於開口以外的半導體元件層具有一第一最大截面積,而位於開口內的半導體元件層具有一第二最大截面積,且第一最大截面積實質上等於第二最大截面積。在另一實施例中,位於開口以外的半導體元件層具有一第一最大截面積,而位於開口內的半導體元件層具有一第二最大截面積,且第一最大截面積大於第二最大截面積。 In an embodiment of the invention, the semiconductor device layer located in the opening has the same cross-sectional area at different heights, and the cross-sectional area of the semiconductor device layer located in the opening is maintained constant as the height is increased, so as to be located at the opening. The sidewalls of the inner semiconductor device layer are substantially perpendicular to the surface of the substrate. In one embodiment, the semiconductor device layer outside the opening has a first maximum cross-sectional area, and the semiconductor device layer located in the opening has a second largest cross-sectional area, and the first maximum cross-sectional area is substantially equal to the second largest cross-sectional area area. In another embodiment, the semiconductor device layer outside the opening has a first maximum cross-sectional area, and the semiconductor device layer located in the opening has a second largest cross-sectional area, and the first maximum cross-sectional area is greater than the second largest cross-sectional area .
在本發明的一實施例中,上述之半導體元件層包括依序堆疊的一第一型摻雜半導體層、一發光層以及一第二型摻雜半導體層。在一實施例中,上述之發光層形成於開口內。在另一實施例中,上述之發光層形成於開口以外。 In an embodiment of the invention, the semiconductor device layer includes a first type doped semiconductor layer, a light emitting layer, and a second type doped semiconductor layer stacked in sequence. In one embodiment, the luminescent layer described above is formed within the opening. In another embodiment, the luminescent layer described above is formed outside the opening.
在本發明的一實施例中,上述之半導體元件層於基板上的磊晶速率大於其於圖案化罩幕層上的磊晶速率。 In an embodiment of the invention, the epitaxial rate of the semiconductor device layer on the substrate is greater than the epitaxial rate on the patterned mask layer.
在本發明的一實施例中,上述之圖案化罩幕層的材料包括氧化矽、氮化矽、氧化鎵、氧化鈦或氮化鎂。 In an embodiment of the invention, the material of the patterned mask layer comprises yttrium oxide, tantalum nitride, gallium oxide, titanium oxide or magnesium nitride.
在本發明的一實施例中,上述之圖案化罩幕層更包括多個 位於開口內的突起,突起位於開口所暴露出的基板上,且突起被半導體元件層所覆蓋。 In an embodiment of the invention, the patterned mask layer further comprises a plurality of A protrusion located in the opening, the protrusion being located on the substrate exposed by the opening, and the protrusion being covered by the semiconductor element layer.
本發明提出另一種半導體元件層的製造方法。首先,於一基板上形成一半導體層。接著,於半導體層上形成一圖案化罩幕層,其中圖案化罩幕層具有一開口,以暴露部分的半導體層。然後,於未被圖案化罩幕層所覆蓋的半導體層上形成一半導體元件層,其中位於開口以外的半導體元件層在不同高度具有不同的截面積,且位於開口以外的半導體元件層的截面積隨著所在高度的增加而遞減。而後,移除圖案化罩幕層。 The present invention proposes another method of manufacturing a semiconductor element layer. First, a semiconductor layer is formed on a substrate. Next, a patterned mask layer is formed on the semiconductor layer, wherein the patterned mask layer has an opening to expose a portion of the semiconductor layer. Then, a semiconductor device layer is formed on the semiconductor layer not covered by the patterned mask layer, wherein the semiconductor device layer outside the opening has different cross-sectional areas at different heights, and the cross-sectional area of the semiconductor device layer outside the opening Decreased as the height of the place increases. The patterned mask layer is then removed.
在本發明的一實施例中,位於開口內的半導體元件層在不同高度具有不同的截面積,且位於開口內的半導體元件層的截面積隨著所在高度的增加而遞增。在一實施例中,位於開口以外的半導體元件層具有一第一最大截面積,而位於開口內的半導體元件層具有一第二最大截面積,且第一最大截面積實質上等於第二最大截面積。在另一實施例中,位於開口以外的半導體元件層具有一第一最大截面積,而位於開口內的半導體元件層具有一第二最大截面積,且第一最大截面積大於第二最大截面積。 In an embodiment of the invention, the layers of semiconductor elements located within the openings have different cross-sectional areas at different heights, and the cross-sectional area of the layers of semiconductor elements located within the openings increases as the height of the layers increases. In one embodiment, the semiconductor device layer outside the opening has a first maximum cross-sectional area, and the semiconductor device layer located in the opening has a second largest cross-sectional area, and the first maximum cross-sectional area is substantially equal to the second largest cross-sectional area area. In another embodiment, the semiconductor device layer outside the opening has a first maximum cross-sectional area, and the semiconductor device layer located in the opening has a second largest cross-sectional area, and the first maximum cross-sectional area is greater than the second largest cross-sectional area .
在本發明的一實施例中,位於開口內的半導體元件層在不同高度具有相同的截面積,而位於開口內的半導體元件層的截面積隨著所在高度的增加而維持一定,以使位於開口內的半導體元件層的側壁實質上與半導體層的表面垂直。在一實施例中,位於開口以外的半導體元件層具有一第一最大截面積,而位於開口內的半導體元件層具有一第二最大截面積,且第一最大截面積實質上等於第二最大截面積。在另一實施例中,位於開口以外的半導體元件層具有一第一最大 截面積,而位於開口內的半導體元件層具有一第二最大截面積,且第一最大截面積大於第二最大截面積。 In an embodiment of the invention, the semiconductor device layer located in the opening has the same cross-sectional area at different heights, and the cross-sectional area of the semiconductor device layer located in the opening is maintained constant as the height is increased, so as to be located at the opening. The sidewall of the semiconductor element layer within is substantially perpendicular to the surface of the semiconductor layer. In one embodiment, the semiconductor device layer outside the opening has a first maximum cross-sectional area, and the semiconductor device layer located in the opening has a second largest cross-sectional area, and the first maximum cross-sectional area is substantially equal to the second largest cross-sectional area area. In another embodiment, the semiconductor device layer outside the opening has a first maximum The cross-sectional area, and the semiconductor element layer located in the opening has a second maximum cross-sectional area, and the first maximum cross-sectional area is greater than the second largest cross-sectional area.
在本發明的一實施例中,上述之半導體元件層包括依序堆疊的一第一型摻雜半導體層、一發光層以及一第二型摻雜半導體層。在一實施例中,上述之發光層形成於開口內。在另一實施例中,上述之發光層形成於開口以外。 In an embodiment of the invention, the semiconductor device layer includes a first type doped semiconductor layer, a light emitting layer, and a second type doped semiconductor layer stacked in sequence. In one embodiment, the luminescent layer described above is formed within the opening. In another embodiment, the luminescent layer described above is formed outside the opening.
在本發明的一實施例中,上述之半導體層與第一型摻雜半導體層具有相同的導電型態。 In an embodiment of the invention, the semiconductor layer has the same conductivity type as the first type doped semiconductor layer.
在本發明的實施例中,上述之半導體元件層於半導體層上的磊晶速率大於其於圖案化罩幕層上的磊晶速率。 In an embodiment of the invention, the epitaxial rate of the semiconductor device layer on the semiconductor layer is greater than the epitaxial rate on the patterned mask layer.
在本發明的一實施例中,上述之圖案化罩幕層的材料包括氧化矽、氮化矽、氧化鈦、氧化鎵或氮化鎂。 In an embodiment of the invention, the material of the patterned mask layer comprises yttrium oxide, tantalum nitride, titanium oxide, gallium oxide or magnesium nitride.
在本發明的一實施例中,上述之圖案化罩幕層更包括多個位於開口內的突起,突起位於開口所暴露出的半導體層上,且突起被半導體元件層所覆蓋。 In an embodiment of the invention, the patterned mask layer further includes a plurality of protrusions located in the openings, the protrusions being located on the semiconductor layer exposed by the openings, and the protrusions being covered by the semiconductor element layer.
本發明另提出一種半導體元件層,其包括一第一部分與一第二部分,其中第二部分位於第一部分上,第二部分在不同高度具有不同的截面積,且第二部分的截面積隨著所在高度的增加而遞減。 The invention further provides a semiconductor device layer comprising a first portion and a second portion, wherein the second portion is located on the first portion, the second portion has different cross-sectional areas at different heights, and the cross-sectional area of the second portion follows Decrease in height.
在本發明的一實施例中,上述之第一部分在不同高度具有不同的截面積,且第一部分的截面積隨著所在高度的增加而遞增。在一實施例中,上述之第二部分具有一第一最大截面積,而第一部分具有一第二最大截面積,且第一最大截面積實質上等於第二最大截面積。在另一實施例中,上述之第二部分具有一第一最大截面積,而第一部分具有一第二最大截面積,且第一最大截面積大於第二最大截面 積。此外,上述之第二部分具有一頂表面,且此頂表面例如為一曲面。 In an embodiment of the invention, the first portion has different cross-sectional areas at different heights, and the cross-sectional area of the first portion increases as the height increases. In one embodiment, the second portion has a first maximum cross-sectional area and the first portion has a second largest cross-sectional area, and the first maximum cross-sectional area is substantially equal to the second largest cross-sectional area. In another embodiment, the second portion has a first maximum cross-sectional area, and the first portion has a second largest cross-sectional area, and the first maximum cross-sectional area is greater than the second largest cross-sectional area product. Further, the second portion has a top surface, and the top surface is, for example, a curved surface.
在本發明的一實施例中,上述之第一部分在不同高度具有相同的截面積,而第一部分的截面積隨著所在高度的增加而維持一定。在一實施例中,上述之第二部分具有一第一最大截面積,而第一部分具有一第二最大截面積,且第一最大截面積實質上等於第二最大截面積。在另一實施例中,上述之第二部分具有一第一最大截面積,而第一部分具有一第二最大截面積,且第一最大截面積大於第二最大截面積。此外,上述之第二部分具有一頂表面,且此頂表面例如為一曲面。 In an embodiment of the invention, the first portion has the same cross-sectional area at different heights, and the cross-sectional area of the first portion is maintained constant as the height of the portion increases. In one embodiment, the second portion has a first maximum cross-sectional area and the first portion has a second largest cross-sectional area, and the first maximum cross-sectional area is substantially equal to the second largest cross-sectional area. In another embodiment, the second portion has a first maximum cross-sectional area and the first portion has a second largest cross-sectional area, and the first maximum cross-sectional area is greater than the second largest cross-sectional area. Further, the second portion has a top surface, and the top surface is, for example, a curved surface.
在本發明的一實施例中,上述之第一部份與第二不份包括依序堆疊的一第一型摻雜半導體層、一發光層以及一第二型摻雜半導體層。在一較佳實施例中,上述之發光層位於第一部分。在另一實施例中,上述之發光層形位於第二部分。 In an embodiment of the invention, the first portion and the second portion include a first type doped semiconductor layer, a light emitting layer, and a second type doped semiconductor layer stacked in sequence. In a preferred embodiment, the luminescent layer is located in the first portion. In another embodiment, the luminescent layer shape described above is located in the second portion.
在本發明的一實施例中,上述之半導體元件層更包括多個突起,其嵌入於第一部分。在一較佳實施例中,上述之突起的材料包括氧化矽、氮化矽、氧化鈦、氧化鎵或氮化鎂。 In an embodiment of the invention, the semiconductor device layer further includes a plurality of protrusions embedded in the first portion. In a preferred embodiment, the material of the protrusions includes yttrium oxide, tantalum nitride, titanium oxide, gallium oxide or magnesium nitride.
在本發明之半導體元件層的製造方法中,於圖案化罩幕層的開口中形成半導體元件層,使得位於開口以外的半導體元件層的截面積隨著所在高度的增加而遞減。 In the method of fabricating the semiconductor device layer of the present invention, the semiconductor element layer is formed in the opening of the patterned mask layer such that the cross-sectional area of the semiconductor element layer outside the opening decreases as the height of the layer increases.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.
100‧‧‧發光二極體晶片 100‧‧‧Light Diode Wafer
110‧‧‧基板 110‧‧‧Substrate
120‧‧‧半導體元件層 120‧‧‧Semiconductor component layer
122‧‧‧N型半導體層 122‧‧‧N type semiconductor layer
124‧‧‧發光層 124‧‧‧Lighting layer
126‧‧‧P型半導體層 126‧‧‧P type semiconductor layer
130a‧‧‧N型電極 130a‧‧‧N type electrode
130b‧‧‧P型電極 130b‧‧‧P type electrode
200、200a、200b、200c、200d‧‧‧發光二極體晶片 200, 200a, 200b, 200c, 200d‧‧‧ light emitting diode chips
210‧‧‧基板 210‧‧‧Substrate
220‧‧‧半導體層 220‧‧‧Semiconductor layer
222‧‧‧圖案化罩幕層 222‧‧‧ patterned mask layer
224‧‧‧開口 224‧‧‧ openings
226‧‧‧側壁 226‧‧‧ side wall
228‧‧‧突起 228‧‧‧ Protrusion
230‧‧‧半導體元件層 230‧‧‧Semiconductor component layer
230a‧‧‧第一部分 230a‧‧‧Part I
230b‧‧‧第二部分 230b‧‧‧Part II
232‧‧‧第一型摻雜半導體層 232‧‧‧First type doped semiconductor layer
234‧‧‧發光層 234‧‧‧Lighting layer
236‧‧‧第二型摻雜半導體層 236‧‧‧Second type doped semiconductor layer
240a‧‧‧電極 240a‧‧‧electrode
240b‧‧‧電極 240b‧‧‧electrode
260‧‧‧電流分散層 260‧‧‧current dispersion layer
300、300a、300b、300c、300d‧‧‧發光二極體晶片 300, 300a, 300b, 300c, 300d‧‧‧ light emitting diode chips
400‧‧‧高功率發光二極體晶片 400‧‧‧High power LED chip
C、C1、C2‧‧‧轉折處 C, C 1 , C 2 ‧ ‧ turning points
S‧‧‧側壁 S‧‧‧ side wall
Wmax1‧‧‧第一部分的最大截面積 Wmax 1 ‧‧‧Maximum cross-sectional area of the first part
Wmax2‧‧‧第二部分的最大截面積 Wmax 2 ‧‧‧The maximum cross-sectional area of the second part
圖1為習知的發光二極體晶片的剖面示意圖。 1 is a schematic cross-sectional view of a conventional light-emitting diode wafer.
圖2與圖2’為本發明第一實施例的發光二極體晶片的剖面示意圖。 2 and 2' are schematic cross-sectional views showing a light emitting diode wafer according to a first embodiment of the present invention.
圖3為本發明第一實施例的發光二極體晶片的製造方法的流程圖。 3 is a flow chart showing a method of manufacturing a light-emitting diode wafer according to a first embodiment of the present invention.
圖4A至圖4D為本發明第一實施例的發光二極體晶片的製造方法的流程剖面示意圖。 4A to 4D are schematic cross-sectional views showing a process of manufacturing a light-emitting diode wafer according to a first embodiment of the present invention.
圖5與圖5’為本發明第二實施例的發光二極體晶片的剖面示意圖。 5 and 5' are schematic cross-sectional views showing a light emitting diode wafer according to a second embodiment of the present invention.
圖6與圖6’為本發明第三實施例的發光二極體晶片的剖面示意圖。 6 and 6' are schematic cross-sectional views showing a light emitting diode wafer according to a third embodiment of the present invention.
圖7與圖7’為本發明第四實施例的發光二極體晶片的剖面示意圖。 7 and 7' are schematic cross-sectional views showing a light emitting diode wafer according to a fourth embodiment of the present invention.
圖8與圖8’為本發明第五實施例的發光二極體晶片的剖面示意圖。 8 and 8' are schematic cross-sectional views showing a light emitting diode wafer according to a fifth embodiment of the present invention.
圖9與圖9’為本發明第六實施例的發光二極體晶片的剖面示意圖。 9 and 9' are schematic cross-sectional views showing a light emitting diode wafer according to a sixth embodiment of the present invention.
圖10為本發明第六實施例的發光二極體晶片的製造方法的流程圖。 Fig. 10 is a flow chart showing a method of manufacturing a light-emitting diode wafer according to a sixth embodiment of the present invention.
圖11A至圖11E為本發明第六實施例的發光二極體晶片的製造方法的流程剖面示意圖。 11A to 11E are schematic cross-sectional views showing a flow of a method of manufacturing a light-emitting diode wafer according to a sixth embodiment of the present invention.
圖12與圖12’為本發明第七實施例的發光二極體晶片的剖面示意圖。 12 and 12' are schematic cross-sectional views showing a light emitting diode wafer according to a seventh embodiment of the present invention.
圖13與圖13’為本發明第八實施例的發光二極體晶片的剖面示 意圖。 13 and FIG. 13' are cross-sectional views showing a light emitting diode wafer according to an eighth embodiment of the present invention; intention.
圖14與圖14’為本發明第九實施例的發光二極體晶片的剖面示意圖。 14 and 14' are schematic cross-sectional views showing a light emitting diode wafer according to a ninth embodiment of the present invention.
圖15與圖15’為本發明第十實施例的發光二極體晶片的剖面示意圖。 15 and 15' are schematic cross-sectional views showing a light emitting diode wafer according to a tenth embodiment of the present invention.
圖16A與圖16B分別為本發明第十一實施例的高功率發光二極體晶片(high power LED chip)的上視圖與剖面示意圖。 16A and 16B are a top view and a cross-sectional view, respectively, of a high power LED chip of an eleventh embodiment of the present invention.
在本發明之發光二極體晶片中,會以半導體元件層之截面積來定義半導體元件層的形狀,其中所有截面積都是指與高度方向垂直的截面積。 In the light-emitting diode wafer of the present invention, the shape of the semiconductor element layer is defined by the cross-sectional area of the semiconductor element layer, wherein all the cross-sectional areas refer to the cross-sectional area perpendicular to the height direction.
圖2為本發明第一實施例的發光二極體晶片的剖面示意圖。請參照圖2,本實施例的發光二極體晶片200包括一基板210、一半導體層220、一半導體元件層230、一第一電極240a以及一第二電極240b。 2 is a cross-sectional view showing a light emitting diode wafer according to a first embodiment of the present invention. Referring to FIG. 2, the LED assembly 200 of the present embodiment includes a substrate 210, a semiconductor layer 220, a semiconductor device layer 230, a first electrode 240a, and a second electrode 240b.
一般而言,基板210多半選自於透光度與散熱特性良好之材質,其例如是藍寶石(Sapphire)基板、碳化矽(SiC)基板、矽(Si)基板、砷化鎵(GaAs)基板、氧化鎵、氮化鎵(GaN)、鋁酸鋰(LiAlO2)基板、鎵酸鋰(LiGaO2)基板、氮化鋁(AlN)基板或其他適合用以磊晶的基板。在本實施例中,半導體層220配置於基板210上。 In general, the substrate 210 is mostly selected from materials having good light transmittance and heat dissipation characteristics, and is, for example, a sapphire substrate, a SiC substrate, a bismuth (Si) substrate, a gallium arsenide (GaAs) substrate, or the like. Gallium oxide, gallium nitride (GaN), lithium aluminate (LiAlO 2 ) substrate, lithium gallium silicate (LiGaO 2 ) substrate, aluminum nitride (AlN) substrate or other substrate suitable for epitaxy. In the embodiment, the semiconductor layer 220 is disposed on the substrate 210.
半導體元件層230配置於半導體層220上。半導體元件層230包括一第一部分230a與一第二部分230b,其中第二部分230b位於第一部分上230a。第一部分230a在不同高度例如是具有相同的截面積。 換言之,第一部分230a的側壁S實質上垂直於半導體層220的表面。第二部分230b在不同高度具有不同的截面積,且第二部分230b的截面積隨著所在高度的增加而遞減。也就是說,在遠離基板210的方向上,半導體元件層230的截面積先是維持恆定,而後是逐漸遞減,半導體元件層230具有轉折處C,其位在第一部分230a與第二部分230b的交界處。換言之,第二部分230b的最大截面積Wmax2實質上等於第一部分230a的最大截面積Wmax1。 The semiconductor element layer 230 is disposed on the semiconductor layer 220. The semiconductor device layer 230 includes a first portion 230a and a second portion 230b, wherein the second portion 230b is located on the first portion 230a. The first portion 230a has, for example, the same cross-sectional area at different heights. In other words, the sidewall S of the first portion 230a is substantially perpendicular to the surface of the semiconductor layer 220. The second portion 230b has different cross-sectional areas at different heights, and the cross-sectional area of the second portion 230b decreases as the height of the portion increases. That is, in the direction away from the substrate 210, the cross-sectional area of the semiconductor element layer 230 is first maintained constant, and then gradually decreases, and the semiconductor element layer 230 has a turning point C which is located at the boundary between the first portion 230a and the second portion 230b. At the office. In other words, the maximum cross-sectional area Wmax 2 of the second portion 230b is substantially equal to the maximum cross-sectional area Wmax 1 of the first portion 230a.
此外,包括第一部分230a與第二部分230b的半導體元件層230包含依序堆疊的一第一型摻雜半導體層232、一發光層234以及一第二型摻雜半導體層236。在本實施例中,第一型摻雜半導體層232位於第一部分230a,發光層234以及第二型摻雜半導體層236位於第二部分230b。當然,在另一實施例中,發光層也可以位於第一部分,或者是第二型摻雜半導體層也可以位於第一部分,換言之,本發明未限制第一型摻雜半導體層、發光層以及第二型摻雜半導體層在半導體元件層中的配置方式。再者,在本實施例中,半導體層220與第一型摻雜半導體層232具有相同的導電型態,例如是同為N型半導體層,發光層234為多重量子井發光層,而第二型摻雜半導體層236為P型半導體層。當然,在其他實施例中,半導體層與第一型半導體層也可同為P型半導體層,而第二型半導體層可為N型半導體層。 In addition, the semiconductor device layer 230 including the first portion 230a and the second portion 230b includes a first type doped semiconductor layer 232, a light emitting layer 234, and a second type doped semiconductor layer 236 which are sequentially stacked. In the present embodiment, the first type doped semiconductor layer 232 is located in the first portion 230a, and the light emitting layer 234 and the second type doped semiconductor layer 236 are located in the second portion 230b. Of course, in another embodiment, the light emitting layer may also be located in the first portion, or the second type doped semiconductor layer may also be located in the first portion. In other words, the present invention does not limit the first type doped semiconductor layer, the light emitting layer, and the first The arrangement of the doped semiconductor layer in the semiconductor device layer. Furthermore, in the present embodiment, the semiconductor layer 220 and the first type doped semiconductor layer 232 have the same conductivity type, for example, the same N-type semiconductor layer, the luminescent layer 234 is a multiple quantum well luminescent layer, and the second The doped semiconductor layer 236 is a P-type semiconductor layer. Of course, in other embodiments, the semiconductor layer and the first type semiconductor layer may also be the P type semiconductor layer, and the second type semiconductor layer may be the N type semiconductor layer.
在本實施例中,為了進一步提升發光二極體晶片200的發光效率,發光二極體晶片200更包括一電流分散層260,其配置於第二型摻雜半導體層236與第二電極240b之間。電流分散層260的材料例如是銦錫氧化物、銦鋅氧化物、銦錫鋅氧化物、氧化鉿、氧化鋅、鋅鎵氧化物、鋁鋅氧化物、鎘錫氧化物、鎘鋅氧化物、或其它適當之材 料。 In this embodiment, in order to further improve the luminous efficiency of the LED wafer 200, the LED array 200 further includes a current dispersion layer 260 disposed on the second type doped semiconductor layer 236 and the second electrode 240b. between. The material of the current dispersion layer 260 is, for example, indium tin oxide, indium zinc oxide, indium tin zinc oxide, cerium oxide, zinc oxide, zinc gallium oxide, aluminum zinc oxide, cadmium tin oxide, cadmium zinc oxide, Or other suitable material material.
如圖2所示,第一電極240a配置於半導體層220上,並與半導體層220電性連接,其中半導體層220與第一型摻雜半導體層232具有相同的導電形態。第二電極240b配置於第二部分230b上,並經由電流分散層260與第二型摻雜半導體層236電性連接。 As shown in FIG. 2, the first electrode 240a is disposed on the semiconductor layer 220 and electrically connected to the semiconductor layer 220, wherein the semiconductor layer 220 has the same conductive shape as the first type doped semiconductor layer 232. The second electrode 240b is disposed on the second portion 230b and electrically connected to the second type doped semiconductor layer 236 via the current dispersion layer 260.
在本實施例中,發光層234所發出的光線能夠有效地被半導體元件層230的側壁引導出發光二極體晶片200。換言之,半導體元件層230的構型可以降低發光層234所發出的光線在發光二極體晶片200中產生全反射的機會,使得發光二極體晶片200的光取出效率(light extraction efficiency)大幅增加。因此,發光二極體晶片200具有良好的發光效率。 In the present embodiment, the light emitted by the light-emitting layer 234 can be effectively guided out of the light-emitting diode wafer 200 by the sidewall of the semiconductor device layer 230. In other words, the configuration of the semiconductor device layer 230 can reduce the chance of the total light reflection in the light-emitting diode wafer 200 caused by the light emitted from the light-emitting layer 234, so that the light extraction efficiency of the light-emitting diode wafer 200 is greatly increased. . Therefore, the light emitting diode wafer 200 has good luminous efficiency.
值得注意的是,半導體元件層230中第二部分230b的頂表面可以是一平面,如圖2所繪示。然而,在本發明其他可行之實施例中,半導體元件層230中第二部分230b的頂表面亦可以是一曲面,如圖2’所示。由圖2’可知,第二部分230b的頂表面為一下凹之曲面,且此下凹之曲面在中心位置與邊緣之高度落差例如是介於1微米至5微米之間,而較佳的高度落差為2.5微米。 It should be noted that the top surface of the second portion 230b of the semiconductor device layer 230 may be a flat surface as shown in FIG. However, in other possible embodiments of the present invention, the top surface of the second portion 230b of the semiconductor device layer 230 may also be a curved surface as shown in Fig. 2'. As can be seen from FIG. 2', the top surface of the second portion 230b is a concave curved surface, and the concave surface has a height difference between the center position and the edge, for example, between 1 micrometer and 5 micrometers, and a preferred height. The drop is 2.5 microns.
前述之下凹曲面的形成機制敘述如下。以有機金屬氣相磊晶為例,在半導體磊晶成長的過程中,磊晶膜成長速率是與氣相反應物濃度成正比,而在本實施例中的罩幕層上幾乎無法成長出磊晶膜,只有在罩幕層的開口處才可順利成長出磊晶膜。另一方面,磊晶成長過程中導入之氣相反應物的遷移(migration)速率(或擴散長度)是與成長溫度、壓力或不同氣相反應物濃度比有關,因此,會造成在靠近罩幕層/開口交界處的磊晶膜成長速率大於在開口中心處的成長速率,進而 造成上述之第二部分頂表面為一下凹之曲面。換言之,此一頂表面的中心位置與邊緣有高度落差,而此一高度差的大小,除了可以由磊晶成長條件來控制之外,亦可以由罩幕層的開口大小尺寸來控制。值得注意的是,當開口尺寸較大時,磊晶層中心與邊緣位置的高度落差較大,反之,當開口尺寸較小時,磊晶層中心與邊緣位置的高度落差則較小。 The formation mechanism of the concave curved surface described above is described as follows. Taking organometallic vapor phase epitaxy as an example, in the process of semiconductor epitaxial growth, the growth rate of the epitaxial film is proportional to the concentration of the gas phase reactant, and in the mask layer of this embodiment, it is almost impossible to grow up. In the crystal film, the epitaxial film can be smoothly grown only at the opening of the mask layer. On the other hand, the migration rate (or diffusion length) of the gas phase reactant introduced during epitaxial growth is related to the growth temperature, pressure or different gas phase reactant concentration ratio, and thus, it is caused to be close to the mask. The rate of growth of the epitaxial film at the layer/opening junction is greater than the rate of growth at the center of the opening, The top surface of the second part is made into a concave surface. In other words, the center position of the top surface has a height difference from the edge, and the height difference can be controlled by the size of the opening of the mask layer, in addition to being controlled by the epitaxial growth condition. It is worth noting that when the opening size is large, the height difference between the center and the edge position of the epitaxial layer is large. Conversely, when the opening size is small, the height difference between the center and the edge position of the epitaxial layer is small.
以上僅介紹本實施例之發光二極體晶片200的結構,接下來將配合圖3以及圖4A至圖4D對發光二極體晶片200的製造方法進行詳細的說明。 Only the structure of the light-emitting diode wafer 200 of the present embodiment will be described above. Next, a method of manufacturing the light-emitting diode wafer 200 will be described in detail with reference to FIGS. 3 and 4A to 4D.
圖3為本發明第一實施例的發光二極體晶片的製造方法的流程圖。圖4A至圖4D為本發明第一實施例的發光二極體晶片的製造方法的流程剖面示意圖。 3 is a flow chart showing a method of manufacturing a light-emitting diode wafer according to a first embodiment of the present invention. 4A to 4D are schematic cross-sectional views showing a process of manufacturing a light-emitting diode wafer according to a first embodiment of the present invention.
請同時參照圖3與圖4A,首先,進行步驟S300,於基板210上形成半導體層220。半導體層220的形成方法例如是金屬有機化學氣相沉積(metal organic chemical vapor deposition,MOCVD)法、分子束磊晶(molecular beam epitaxial,MBE)法或是其他適當的磊晶成長法。 Referring to FIG. 3 and FIG. 4A simultaneously, first, in step S300, the semiconductor layer 220 is formed on the substrate 210. The method of forming the semiconductor layer 220 is, for example, a metal organic chemical vapor deposition (MOCVD) method, a molecular beam epitaxial (MBE) method, or other suitable epitaxial growth method.
接著,進行步驟S310,於半導體層220上形成圖案化罩幕層222,其中圖案化罩幕層222具有開口224,以暴露部分的半導體層220。圖案化罩幕層222的形成方法例如是依序在半導體層220上形成罩幕材料層(未繪示)以及具有開口圖案的光阻層(未繪示),而後以光阻層為罩幕,移除部份的罩幕材料層,以形成具有開口224的圖案化罩幕層222。圖案化罩幕層222的材料例如是氧化矽、氮化矽、氧化鈦、氧化鎵或氮化鎂。 Next, in step S310, a patterned mask layer 222 is formed on the semiconductor layer 220, wherein the patterned mask layer 222 has an opening 224 to expose a portion of the semiconductor layer 220. The method for forming the patterned mask layer 222 is, for example, sequentially forming a mask material layer (not shown) on the semiconductor layer 220 and a photoresist layer (not shown) having an opening pattern, and then using the photoresist layer as a mask. A portion of the mask material layer is removed to form a patterned mask layer 222 having openings 224. The material of the patterned mask layer 222 is, for example, hafnium oxide, tantalum nitride, titanium oxide, gallium oxide or magnesium nitride.
請同時參照圖3與圖4B,然後,進行步驟S320,於未被圖 案化罩幕層222所覆蓋的半導體層220上形成半導體元件層230。詳言之,以圖案化罩幕層222為罩幕,於半導體層220上進行磊晶製程,以形成位於開口224內的第一部分230a以及位於開口224以外的第二部分230b。其中,半導體元件層230於半導體層220上的磊晶速率大於其於圖案化罩幕層222上的磊晶速率。在本實施例中,圖案化罩幕層222的側壁226實質上與半導體層220的表面垂直,因此,開口224內的半導體元件層的截面積會隨著所在高度的增加而維持一定,以形成第一部分230a。開口224以外的半導體元件層的截面積會隨著所在高度的增加而遞減,以形成第二部分230b。其中,包括第一部分230a與第二部分230b的半導體元件層230包含依序堆疊的第一型摻雜半導體層232、發光層234以及第二型摻雜半導體層236。 Please refer to FIG. 3 and FIG. 4B at the same time, and then proceed to step S320. A semiconductor device layer 230 is formed on the semiconductor layer 220 covered by the mask layer 222. In detail, the patterned mask layer 222 is used as a mask, and an epitaxial process is performed on the semiconductor layer 220 to form a first portion 230a located in the opening 224 and a second portion 230b outside the opening 224. The epitaxial rate of the semiconductor device layer 230 on the semiconductor layer 220 is greater than the epitaxial rate on the patterned mask layer 222. In this embodiment, the sidewall 226 of the patterned mask layer 222 is substantially perpendicular to the surface of the semiconductor layer 220. Therefore, the cross-sectional area of the semiconductor device layer in the opening 224 is maintained constant as the height is increased to form a portion. The first part 230a. The cross-sectional area of the semiconductor element layer outside the opening 224 may decrease as the height of the layer increases to form the second portion 230b. The semiconductor device layer 230 including the first portion 230a and the second portion 230b includes a first type doped semiconductor layer 232, a light emitting layer 234, and a second type doped semiconductor layer 236 which are sequentially stacked.
請同時參照圖3與圖4C,而後,進行步驟S330,移除圖案化罩幕層222。移除圖案化罩幕層222的方法例如是濕式蝕刻法。接著,為了提升發光二極體的發光效率,可以在形成與第二型摻雜半導體層236電性連接的第二電極以前,先於第二型摻雜半導體層236上形成電流分散層260。 Please refer to FIG. 3 and FIG. 4C at the same time, and then proceed to step S330 to remove the patterned mask layer 222. A method of removing the patterned mask layer 222 is, for example, a wet etching method. Next, in order to improve the light-emitting efficiency of the light-emitting diode, the current dispersion layer 260 may be formed on the second-type doped semiconductor layer 236 before forming the second electrode electrically connected to the second-type doped semiconductor layer 236.
請同時參照圖3與圖4D,繼之,進行步驟S340,形成多個電極240a、240b,以分別與半導體層220以及半導體元件層230其中之一者電性連接,以完成發光二極體晶片200的製作。詳言之,分別於半導體層220上以及電流分散層260上形成第一電極240a以及第二電極240b,其中第一電極240a與半導體層220電性連接,第二電極240b與第二型摻雜半導體層236電性連接。 Referring to FIG. 3 and FIG. 4D simultaneously, in step S340, a plurality of electrodes 240a, 240b are formed to be electrically connected to one of the semiconductor layer 220 and the semiconductor device layer 230, respectively, to complete the LED array. 200 production. In detail, the first electrode 240a and the second electrode 240b are formed on the semiconductor layer 220 and the current dispersion layer 260, wherein the first electrode 240a is electrically connected to the semiconductor layer 220, and the second electrode 240b is doped with the second type. The semiconductor layer 236 is electrically connected.
一般來說,在習知的發光二極體晶片的製程中,是於基板上先依序堆疊第一型摻雜半導體材料層、發光材料層以及第二型摻雜半 導體材料層,再以諸如乾蝕刻製程等方式移除部份的第一型摻雜半導體材料層、部份的發光材料層以及部份的第二型摻雜半導體材料層,以形成半導體元件層,且暴露出欲與電極電性連接的第一型摻雜半導體層。然而,在本發明中,藉由於開口所暴露的基板上進行磊晶製程,即完成半導體元件層的製作,且使得半導體元件層具有特殊構型,能夠有效地將發光層所發出之光引導出發光二極體晶片。換言之,在本實施例中,發光二極體晶片的製作方法具有簡化製程步驟的特點。 Generally, in a conventional process of a light-emitting diode wafer, a first type doped semiconductor material layer, a luminescent material layer, and a second type doped half are sequentially stacked on a substrate. a layer of conductive material, and then removing a portion of the first type doped semiconductor material layer, a portion of the luminescent material layer, and a portion of the second type doped semiconductor material layer in a manner such as a dry etching process to form a semiconductor device layer And exposing the first type doped semiconductor layer to be electrically connected to the electrode. However, in the present invention, by performing an epitaxial process on the substrate exposed by the opening, that is, completing the fabrication of the semiconductor device layer, and making the semiconductor device layer have a special configuration, the light emitted by the light-emitting layer can be effectively guided. Photodiode wafer. In other words, in the present embodiment, the method of fabricating the LED wafer has the feature of simplifying the process steps.
圖5為本發明第二實施例的發光二極體晶片的剖面示意圖。請參照圖5,在本實施例中,發光二極體晶片200a的結構與製造方法與第一實施例的發光二極體晶片200的結構與製造方法相似,以下僅針對第二實施例與第一實施例的主要差異處進行說明。 FIG. 5 is a cross-sectional view showing a light emitting diode wafer according to a second embodiment of the present invention. Referring to FIG. 5, in the present embodiment, the structure and manufacturing method of the LED array 200a are similar to those of the LED array 200 of the first embodiment, and the following is only for the second embodiment and the second embodiment. The main differences of an embodiment are explained.
在本實施例中,半導體元件層230的第二部分230b的最大截面積Wmax2大於第一部分230a的最大截面積Wmax1。也就是說,半導體元件層230具有兩個轉折處C1、C2。詳言之,在半導體元件層230的製作過程中,調整磊晶製程的參數或者是圖案化罩幕層(未繪示)的厚度,例如是使圖案化罩幕層(未繪示)的厚度小於圖4A所繪示的圖案化罩幕層220的厚度,即可控制半導體元件層230的輪廓(profile)。 In the present embodiment, the maximum cross-sectional area Wmax 2 of the second portion 230b of the semiconductor element layer 230 is greater than the maximum cross-sectional area Wmax 1 of the first portion 230a. That is, the semiconductor element layer 230 has two transition points C 1 , C 2 . In detail, during the fabrication of the semiconductor device layer 230, the parameters of the epitaxial process or the thickness of the patterned mask layer (not shown) are adjusted, for example, to make the thickness of the patterned mask layer (not shown). Less than the thickness of the patterned mask layer 220 depicted in FIG. 4A, the profile of the semiconductor device layer 230 can be controlled.
值得注意的是,半導體元件層230中第二部分230b的頂表面可以是一平面,如圖5所繪示。然而,在本發明其他可行之實施例中,半導體元件層230中第二部分230b的頂表面亦可以是一曲面,如圖5’所示。由圖5’可知,第二部分230b的頂表面為一下凹之曲面,且此下凹之曲面在中心位置與邊緣之高度落差例如是介於1微米至5微米之間,而較佳的高度落差為2.5微米。 It should be noted that the top surface of the second portion 230b of the semiconductor device layer 230 may be a flat surface as shown in FIG. However, in other possible embodiments of the present invention, the top surface of the second portion 230b of the semiconductor device layer 230 may also be a curved surface as shown in Fig. 5'. As can be seen from FIG. 5', the top surface of the second portion 230b is a concave curved surface, and the concave surface has a height difference between the center position and the edge, for example, between 1 micrometer and 5 micrometers, and a preferred height. The drop is 2.5 microns.
圖6為本發明第三實施例的發光二極體晶片的剖面示意圖。請參照圖6,在本實施例中,發光二極體晶片200b的結構與製造方法與第一實施例的發光二極體晶片200的結構與製造方法相似,以下僅針對第三實施例與第一實施例的主要差異處進行說明。 Figure 6 is a cross-sectional view showing a light emitting diode wafer according to a third embodiment of the present invention. Referring to FIG. 6 , in the embodiment, the structure and manufacturing method of the LED array 200b are similar to the structure and manufacturing method of the LED array 200 of the first embodiment, and the following is only for the third embodiment and the third embodiment. The main differences of an embodiment are explained.
在本實施例中,第一部分230a的側壁S與半導體層220的表面夾有一角度θ。且,第二部分230b的最大截面積Wmax2實質上等於第一部分230a的最大截面積Wmax1。也就是說,在遠離基板210的方向上,半導體元件層230的截面積先是遞增,而後遞減,半導體元件層230具有轉折處C。詳言之,在發光二極體晶片200b的製程中,所使用的圖案化罩幕層(未繪示)的側壁例如是與半導體層的表面夾有一角度,使得開口內的第一部分230a的截面積隨著所在高度的增加而遞增。 In the present embodiment, the side wall S of the first portion 230a is sandwiched by an angle θ with the surface of the semiconductor layer 220. Moreover, the maximum cross-sectional area Wmax 2 of the second portion 230b is substantially equal to the maximum cross-sectional area Wmax 1 of the first portion 230a. That is, in the direction away from the substrate 210, the cross-sectional area of the semiconductor element layer 230 is first increased, and then decreased, and the semiconductor element layer 230 has the turning point C. In detail, in the process of the LED package 200b, the sidewall of the patterned mask layer (not shown) used is, for example, at an angle to the surface of the semiconductor layer such that the first portion 230a in the opening is cut. The area increases as the height increases.
值得注意的是,半導體元件層230中第二部分230b的頂表面可以是一平面,如圖6所繪示。然而,在本發明其他可行之實施例中,半導體元件層230中第二部分230b的頂表面亦可以是一曲面,如圖6’所示。由圖6’可知,第二部分230b的頂表面為一下凹之曲面,且此下凹之曲面在中心位置與邊緣之高度落差例如是介於1微米至5微米之間,而較佳的高度落差為2.5微米。 It should be noted that the top surface of the second portion 230b of the semiconductor device layer 230 may be a flat surface as shown in FIG. However, in other possible embodiments of the present invention, the top surface of the second portion 230b of the semiconductor device layer 230 may also be a curved surface as shown in Fig. 6'. As can be seen from FIG. 6', the top surface of the second portion 230b is a concave curved surface, and the concave surface has a height difference between the center position and the edge, for example, between 1 micrometer and 5 micrometers, and a preferred height. The drop is 2.5 microns.
圖7為本發明第四實施例的發光二極體晶片的剖面示意圖。請參照圖7,在本實施例中,發光二極體晶片200c的結構與製造方法與第三實施例的發光二極體晶片200b的結構與製造方法相似,以下僅針對第四實施例與第三實施例的主要差異處進行說明。 Fig. 7 is a cross-sectional view showing a light emitting diode wafer according to a fourth embodiment of the present invention. Referring to FIG. 7, in the present embodiment, the structure and manufacturing method of the LED wafer 200c are similar to those of the LED sub-200b of the third embodiment, and the following is only for the fourth embodiment and the The main differences between the three embodiments are explained.
在本實施例中,第一部分230a的側壁S與半導體層220的表面夾有一角度θ,且第一部分230a的截面積隨著所在高度的增加而遞增。此外,第二部分230b的最大截面積Wmax2大於第一部分230a的最大截面積Wmax1。也就是說,半導體元件層230具有兩個轉折處C1、C2。詳言之,在發光二極體晶片200c的製程中,所使用的圖案化罩幕層(未繪示)的側壁與半導體層的表面夾有一角度,且圖案化罩幕層的厚度例如是小於用以製作第三實施例的發光二極體晶片200b之圖案化罩幕層的厚度。 In the present embodiment, the sidewall S of the first portion 230a is at an angle θ with the surface of the semiconductor layer 220, and the cross-sectional area of the first portion 230a is increased as the height of the portion is increased. Further, the maximum cross-sectional area Wmax 2 of the second portion 230b is greater than the maximum cross-sectional area Wmax 1 of the first portion 230a. That is, the semiconductor element layer 230 has two transition points C 1 , C 2 . In detail, in the process of the LED package 200c, the sidewall of the patterned mask layer (not shown) is used at an angle to the surface of the semiconductor layer, and the thickness of the patterned mask layer is, for example, less than The thickness of the patterned mask layer used to fabricate the light-emitting diode wafer 200b of the third embodiment.
值得注意的是,半導體元件層230中第二部分230b的頂表面可以是一平面,如圖7所繪示。然而,在本發明其他可行之實施例中,半導體元件層230中第二部分230b的頂表面亦可以是一曲面,如圖7’所示。由圖7’可知,第二部分230b的頂表面為一下凹之曲面,且此下凹之曲面在中心位置與邊緣之高度落差例如是介於1微米至5微米之間,而較佳的高度落差為2.5微米。 It should be noted that the top surface of the second portion 230b of the semiconductor device layer 230 may be a flat surface as shown in FIG. However, in other possible embodiments of the present invention, the top surface of the second portion 230b of the semiconductor device layer 230 may also be a curved surface as shown in Fig. 7'. As can be seen from FIG. 7', the top surface of the second portion 230b is a concave curved surface, and the concave surface has a height difference between the center position and the edge, for example, between 1 micrometer and 5 micrometers, and a preferred height. The drop is 2.5 microns.
圖8為本發明第五實施例的發光二極體晶片的剖面示意圖。請參照圖8,在本實施例中,發光二極體晶片200d的結構與製造方法與第一實施例的發光二極體晶片200的結構與製造方法相似,以下僅針對第五實施例與第一實施例的主要差異處進行說明。 Figure 8 is a cross-sectional view showing a light emitting diode wafer according to a fifth embodiment of the present invention. Referring to FIG. 8 , in the embodiment, the structure and manufacturing method of the LED wafer 200 d are similar to the structure and manufacturing method of the LED array 200 of the first embodiment, and the following is only for the fifth embodiment and the first embodiment. The main differences of an embodiment are explained.
在本實施例中,發光二極體晶片200d更包括多個突起228。突起228配置於半導體層220與第一部分230a之間,其材料例如是氧化矽、氮化矽、氧化鈦、氧化鎵或氮化鎂。突起228使得發光二極體晶片200d的發光層234所發出之光線較易散射,以進一步提升發光二極體晶片200d的發光效率。詳言之,在發光二極體晶片200d的製程 中,所使用的圖案化罩幕層(未繪示)更包括多個位於開口內的突起,且突起位於開口所暴露出的半導體層上。圖案化罩幕層的形成方法例如是依序在半導體層上形成罩幕材料層以及光阻層,其中光阻層具有開口圖案以及突起圖案,且突起圖案位於開口圖案中,而後以光阻層為罩幕,移除部份罩幕材料層,以形成具有開口以及突起的圖案化罩幕層。值得注意的是,在其他實施例中,發光二極體晶片也可以配置有突起,以進一步提升發光二極體晶片的發光效率。 In the embodiment, the LED array 200d further includes a plurality of protrusions 228. The protrusion 228 is disposed between the semiconductor layer 220 and the first portion 230a, and the material thereof is, for example, hafnium oxide, tantalum nitride, titanium oxide, gallium oxide or magnesium nitride. The protrusions 228 allow the light emitted from the light-emitting layer 234 of the light-emitting diode wafer 200d to be more easily scattered to further enhance the light-emitting efficiency of the light-emitting diode wafer 200d. In detail, the process of the LED chip 200d The patterned mask layer (not shown) used further includes a plurality of protrusions located in the openings, and the protrusions are located on the semiconductor layer exposed by the openings. The method for forming the patterned mask layer is, for example, sequentially forming a mask material layer and a photoresist layer on the semiconductor layer, wherein the photoresist layer has an opening pattern and a protrusion pattern, and the protrusion pattern is located in the opening pattern, and then the photoresist layer For the mask, a portion of the mask material layer is removed to form a patterned mask layer having openings and protrusions. It should be noted that in other embodiments, the LED chip may also be provided with protrusions to further improve the luminous efficiency of the LED wafer.
在上述的實施例中,都是以發光二極體晶片200、200a、200b、200c、200d包括基板210以及半導體層220,且第一電極240a配置於半導體層220上為例,然而,本發明不限於此。在接下來所敘述的第六實施例至第十實施例中,發光二極體晶片300、300a、300b、300c、300d不包括基板以及半導體層,且發光二極體晶片300、300a、300b、300c、300d的電極240a、240b為直立式的分布。 In the above embodiments, the light emitting diode wafers 200, 200a, 200b, 200c, and 200d include the substrate 210 and the semiconductor layer 220, and the first electrode 240a is disposed on the semiconductor layer 220. However, the present invention Not limited to this. In the sixth to tenth embodiments to be described later, the LED chips 300, 300a, 300b, 300c, and 300d do not include the substrate and the semiconductor layer, and the LED chips 300, 300a, and 300b, The electrodes 240a, 240b of 300c, 300d are in an upright distribution.
值得注意的是,半導體元件層230中第二部分230b的頂表面可以是一平面,如圖8所繪示。然而,在本發明其他可行之實施例中,半導體元件層230中第二部分230b的頂表面亦可以是一曲面,如圖8’所示。由圖8’可知,第二部分230b的頂表面為一下凹之曲面,且此下凹之曲面在中心位置與邊緣之高度落差例如是介於1微米至5微米之間,而較佳的高度落差為2.5微米。 It should be noted that the top surface of the second portion 230b of the semiconductor device layer 230 may be a flat surface as shown in FIG. However, in other possible embodiments of the present invention, the top surface of the second portion 230b of the semiconductor device layer 230 may also be a curved surface as shown in Fig. 8'. As can be seen from FIG. 8', the top surface of the second portion 230b is a concave curved surface, and the concave surface has a height difference between the center position and the edge, for example, between 1 micrometer and 5 micrometers, and a preferred height. The drop is 2.5 microns.
圖9為本發明第六實施例的發光二極體晶片的剖面示意圖。請參照圖9,在本實施例中,發光二極體晶片300包括半導體元件層230、第一電極240a以及第二電極240b。半導體元件層230的結構與圖2中的半導體元件層230的結構相似,可以參照第一實施例所述者。 簡言之,半導體元件層230包括第一部份230a以及第二部份230b,且半導體元件層230包含依序堆疊的第一型摻雜半導體層232、發光層234以及第二型摻雜半導體層236。值得注意的是,在本實施例中,第一電極240a以及第二電極240b為直立式的分布,第一電極240a配置於第一部分230a上,並與第一型摻雜半導體層232電性連接,第二電極240b配置於第二部分230b上,並與第二型摻雜半導體層234電性連接。此外,發光二極體晶片300更包括電流分散層260,其配置於第二型摻雜半導體層236與第二電極240b之間。 Figure 9 is a cross-sectional view showing a light emitting diode wafer according to a sixth embodiment of the present invention. Referring to FIG. 9, in the present embodiment, the LED array 300 includes a semiconductor element layer 230, a first electrode 240a, and a second electrode 240b. The structure of the semiconductor element layer 230 is similar to that of the semiconductor element layer 230 in FIG. 2, and can be referred to the first embodiment. In short, the semiconductor device layer 230 includes a first portion 230a and a second portion 230b, and the semiconductor device layer 230 includes a first type doped semiconductor layer 232, a light emitting layer 234, and a second type doped semiconductor stacked in sequence. Layer 236. It should be noted that, in this embodiment, the first electrode 240a and the second electrode 240b are in an upright distribution, and the first electrode 240a is disposed on the first portion 230a and electrically connected to the first type doped semiconductor layer 232. The second electrode 240b is disposed on the second portion 230b and electrically connected to the second type doped semiconductor layer 234. In addition, the LED wafer 300 further includes a current dispersion layer 260 disposed between the second type doped semiconductor layer 236 and the second electrode 240b.
值得注意的是,半導體元件層230中第二部分230b的頂表面可以是一平面,如圖9所繪示。然而,在本發明其他可行之實施例中,半導體元件層230中第二部分230b的頂表面亦可以是一曲面,如圖9’所示。由圖9’可知,第二部分230b的頂表面為一下凹之曲面,且此下凹之曲面在中心位置與邊緣之高度落差例如是介於1微米至5微米之間,而較佳的高度落差為2.5微米。 It should be noted that the top surface of the second portion 230b of the semiconductor device layer 230 may be a flat surface as shown in FIG. However, in other possible embodiments of the present invention, the top surface of the second portion 230b of the semiconductor device layer 230 may also be a curved surface as shown in Fig. 9'. As can be seen from FIG. 9', the top surface of the second portion 230b is a concave curved surface, and the concave surface has a height difference between the center position and the edge, for example, between 1 micrometer and 5 micrometers, and a preferred height. The drop is 2.5 microns.
接下來將配合圖10以及圖11A至圖11E對發光二極體晶片300的製造方法進行說明。 Next, a method of manufacturing the light-emitting diode wafer 300 will be described with reference to FIGS. 10 and 11A to 11E.
圖10為本發明第六實施例的發光二極體晶片的製造方法的流程圖。圖11A至圖11E為本發明第六實施例的發光二極體晶片的製造方法的流程剖面示意圖。 Fig. 10 is a flow chart showing a method of manufacturing a light-emitting diode wafer according to a sixth embodiment of the present invention. 11A to 11E are schematic cross-sectional views showing a flow of a method of manufacturing a light-emitting diode wafer according to a sixth embodiment of the present invention.
請同時參照圖10與圖11A,首先,進行步驟S400,於基板210上形成圖案化罩幕層222,其中圖案化罩幕層222具有開口224,以暴露部分的基板210。圖案化罩幕層222的形成方法例如是依序在基板210上形成罩幕材料層(未繪示)以及具有開口圖案的光阻層(未繪示),而後以光阻層為罩幕,移除部份的罩幕材料層,以形成具有開口 224的圖案化罩幕層222。圖案化罩幕層222的材料例如是氧化矽、氮化矽、氧化鈦、氧化鎵或氮化鎂。 Referring to FIG. 10 and FIG. 11A simultaneously, first, step S400 is performed to form a patterned mask layer 222 on the substrate 210, wherein the patterned mask layer 222 has an opening 224 to expose a portion of the substrate 210. The method for forming the patterned mask layer 222 is, for example, sequentially forming a mask material layer (not shown) on the substrate 210 and a photoresist layer (not shown) having an opening pattern, and then using the photoresist layer as a mask. Removing a portion of the mask material layer to form an opening Patterned mask layer 222 of 224. The material of the patterned mask layer 222 is, for example, hafnium oxide, tantalum nitride, titanium oxide, gallium oxide or magnesium nitride.
請同時參照圖10與圖11B,然後,進行步驟S410,於未被圖案化罩幕層222所覆蓋的基板210上形成半導體元件層230。詳言之,以圖案化罩幕層222為罩幕,於基板210上進行磊晶製程,以形成位於開口224內的第一部分230a以及位於開口224以外的第二部分230b。其中,半導體元件層230於基板210上的磊晶速率大於其於圖案化罩幕層222上的磊晶速率。在本實施例中,圖案化罩幕層222的側壁226實質上與基板210的表面垂直,因此,開口224內的半導體元件層的截面積會隨著所在高度的增加而維持一定,以形成第一部分230a。開口224以外的半導體元件層的截面積會隨著所在高度的增加而遞減,以形成第二部分230b。其中,包括第一部分230a與第二部分230b的半導體元件層230包含依序堆疊的第一型摻雜半導體層232、發光層234以及第二型摻雜半導體層236。 Referring to FIG. 10 and FIG. 11B simultaneously, then step S410 is performed to form the semiconductor device layer 230 on the substrate 210 not covered by the patterned mask layer 222. In detail, the patterned mask layer 222 is used as a mask to perform an epitaxial process on the substrate 210 to form a first portion 230a located within the opening 224 and a second portion 230b outside the opening 224. The epitaxial rate of the semiconductor device layer 230 on the substrate 210 is greater than the epitaxial rate on the patterned mask layer 222. In this embodiment, the sidewall 226 of the patterned mask layer 222 is substantially perpendicular to the surface of the substrate 210. Therefore, the cross-sectional area of the semiconductor device layer in the opening 224 is maintained constant as the height of the substrate is increased to form a Part 230a. The cross-sectional area of the semiconductor element layer outside the opening 224 may decrease as the height of the layer increases to form the second portion 230b. The semiconductor device layer 230 including the first portion 230a and the second portion 230b includes a first type doped semiconductor layer 232, a light emitting layer 234, and a second type doped semiconductor layer 236 which are sequentially stacked.
請同時參照圖10與圖11C,而後,進行步驟S420,移除圖案化罩幕層222。移除圖案化罩幕層222的方法例如是濕式蝕刻法。 Please refer to FIG. 10 and FIG. 11C at the same time, and then proceed to step S420 to remove the patterned mask layer 222. A method of removing the patterned mask layer 222 is, for example, a wet etching method.
請同時參照圖10與圖11D,接著,進行步驟S430,移除基板210,以暴露出半導體元件層230,也就是暴露出第一型摻雜半導體層232。移除基板210的方法例如是進行雷射剝離製程(laser lift-off process)。此外,為了提升發光二極體的發光效率,可以在形成與第二型摻雜半導體層236電性連接的第二電極以前,先於第二型摻雜半導體層236上形成電流分散層260。 Referring to FIG. 10 and FIG. 11D simultaneously, step S430 is performed to remove the substrate 210 to expose the semiconductor device layer 230, that is, expose the first type doped semiconductor layer 232. The method of removing the substrate 210 is, for example, a laser lift-off process. In addition, in order to improve the light-emitting efficiency of the light-emitting diode, the current dispersion layer 260 may be formed on the second-type doped semiconductor layer 236 before forming the second electrode electrically connected to the second-type doped semiconductor layer 236.
請同時參照圖10與圖11E,繼之,進行步驟S440,形成多個與半導體元件層230電性連接的電極240a、240b,以完成發光二極 體晶片300的製作。詳言之,分別於第一型摻雜半導體層232上以及電流分散層260上形成第一電極240a以及第二電極240b。其中,第一電極240a與第一型摻雜半導體層232電性連接,第二電極240b與第二型摻雜半導體層236電性連接。 Referring to FIG. 10 and FIG. 11E simultaneously, step S440 is performed to form a plurality of electrodes 240a and 240b electrically connected to the semiconductor device layer 230 to complete the light emitting diode. Fabrication of bulk wafer 300. In detail, the first electrode 240a and the second electrode 240b are formed on the first type doped semiconductor layer 232 and the current dispersion layer 260, respectively. The first electrode 240a is electrically connected to the first type doped semiconductor layer 232, and the second electrode 240b is electrically connected to the second type doped semiconductor layer 236.
在本實施例中,發光層234所發出的光線能夠有效地被半導體元件層230的側壁引導出發光二極體晶片300。換言之,半導體元件層230的構型可以降低發光層234所發出的光線在發光二極體晶片300中產生全反射的機會,使得發光二極體晶片300的光取出效率(light extraction efficiency)大幅增加。因此,發光二極體晶片300具有良好的發光效率。 In the present embodiment, the light emitted by the light-emitting layer 234 can be effectively guided out of the light-emitting diode wafer 300 by the sidewall of the semiconductor device layer 230. In other words, the configuration of the semiconductor device layer 230 can reduce the chance of the total light reflection in the light-emitting diode wafer 300 caused by the light emitted from the light-emitting layer 234, so that the light extraction efficiency of the light-emitting diode wafer 300 is greatly increased. . Therefore, the light emitting diode wafer 300 has good luminous efficiency.
圖12為本發明第七實施例的發光二極體晶片的剖面示意圖。請參照圖12,在本實施例中,發光二極體晶片300a的結構與製造方法與第六實施例的發光二極體晶片300的結構與製造方法相似,以下僅針對第七實施例與第六實施例的主要差異處進行說明。 Figure 12 is a cross-sectional view showing a light emitting diode wafer in accordance with a seventh embodiment of the present invention. Referring to FIG. 12, in the present embodiment, the structure and manufacturing method of the LED array 300a are similar to those of the LED array 300 of the sixth embodiment, and the following is only for the seventh embodiment and the The main differences between the six embodiments are explained.
在本實施例中,在半導體元件層230的製作過程中,調整磊晶製程的參數或者是圖案化罩幕層(未繪示)的厚度,例如是使圖案化罩幕層(未繪示)的厚度小於圖11A所繪示的圖案化罩幕層220的厚度,以形成如圖12所繪示的半導體元件層230。半導體元件層230的結構與第二實施例中所述的發光二極體晶片200a的半導體元件層230的結構相似,可參照第二實施例所述者,於此不贅述。 In this embodiment, during the fabrication of the semiconductor device layer 230, the parameters of the epitaxial process or the thickness of the patterned mask layer (not shown) are adjusted, for example, to make a patterned mask layer (not shown). The thickness of the patterned mask layer 220 is less than that of the patterned mask layer 220 shown in FIG. 11A to form the semiconductor device layer 230 as shown in FIG. The structure of the semiconductor device layer 230 is similar to that of the semiconductor device layer 230 of the light-emitting diode wafer 200a described in the second embodiment, and can be referred to the second embodiment, and will not be described herein.
值得注意的是,半導體元件層230中第二部分230b的頂表面可以是一平面,如圖12所繪示。然而,在本發明其他可行之實施例中,半導體元件層230中第二部分230b的頂表面亦可以是一曲面,如 圖12’所示。由圖12’可知,第二部分230b的頂表面為一下凹之曲面,且此下凹之曲面在中心位置與邊緣之高度落差例如是介於1微米至5微米之間,而較佳的高度落差為2.5微米。 It should be noted that the top surface of the second portion 230b of the semiconductor device layer 230 may be a flat surface as shown in FIG. However, in other possible embodiments of the present invention, the top surface of the second portion 230b of the semiconductor device layer 230 may also be a curved surface, such as Figure 12' is shown. As can be seen from FIG. 12', the top surface of the second portion 230b is a concave curved surface, and the concave surface has a height difference between the center position and the edge, for example, between 1 micrometer and 5 micrometers, and a preferred height. The drop is 2.5 microns.
圖13為本發明第八實施例的發光二極體晶片的剖面示意圖。請參照圖13,在本實施例中,發光二極體晶片300b的結構與製造方法與第六實施例的發光二極體晶片300的結構與製造方法相似,以下僅針對第八實施例與第六實施例的主要差異處進行說明。 Figure 13 is a cross-sectional view showing a light emitting diode wafer according to an eighth embodiment of the present invention. Referring to FIG. 13, in the present embodiment, the structure and manufacturing method of the LED wafer 300b are similar to those of the LED array 300 of the sixth embodiment, and only the eighth embodiment and the The main differences between the six embodiments are explained.
在發光二極體晶片300b的製程中,所使用的圖案化罩幕層(未繪示)的側壁例如是與基板(未繪示)的表面夾有一角度,使得開口內的第一部分230a的截面積隨著所在高度的增加而遞增,以形成如圖13所繪示的半導體元件層230。半導體元件層230的結構與第三實施例中所述的發光二極體晶片200b的半導體元件層230的結構相似,可參照第三實施例所述者,於此不贅述。 In the process of the LED array 300b, the sidewall of the patterned mask layer (not shown) is, for example, at an angle to the surface of the substrate (not shown) such that the first portion 230a within the opening is cut. The area is increased as the height is increased to form the semiconductor element layer 230 as shown in FIG. The structure of the semiconductor device layer 230 is similar to that of the semiconductor device layer 230 of the LED package 200b described in the third embodiment, and can be referred to the third embodiment, and will not be described herein.
值得注意的是,半導體元件層230中第二部分230b的頂表面可以是一平面,如圖13所繪示。然而,在本發明其他可行之實施例中,半導體元件層230中第二部分230b的頂表面亦可以是一曲面,如圖13’所示。由圖13’可知,第二部分230b的頂表面為一下凹之曲面,且此下凹之曲面在中心位置與邊緣之高度落差例如是介於1微米至5微米之間,而較佳的高度落差為2.5微米。 It should be noted that the top surface of the second portion 230b of the semiconductor device layer 230 may be a flat surface as shown in FIG. However, in other possible embodiments of the present invention, the top surface of the second portion 230b of the semiconductor device layer 230 may also be a curved surface as shown in Fig. 13'. As can be seen from FIG. 13', the top surface of the second portion 230b is a concave curved surface, and the concave surface has a height difference between the center position and the edge, for example, between 1 micrometer and 5 micrometers, and a preferred height. The drop is 2.5 microns.
圖14為本發明第九實施例的發光二極體晶片的剖面示意圖。請參照圖14,在本實施例中,發光二極體晶片300c的結構與製造方法與第六實施例的發光二極體晶片300的結構與製造方法相似,以 下僅針對第九實施例與第六實施例的主要差異處進行說明。 Figure 14 is a cross-sectional view showing a light emitting diode wafer according to a ninth embodiment of the present invention. Referring to FIG. 14, in the embodiment, the structure and manufacturing method of the LED wafer 300c are similar to the structure and manufacturing method of the LED array 300 of the sixth embodiment, Only the main differences between the ninth embodiment and the sixth embodiment will be described below.
在發光二極體晶片300c的製程中,所使用的圖案化罩幕層(未繪示)的側壁與基板(未繪示)的表面夾有一角度,且圖案化罩幕層的厚度例如是小於用以製作第六實施例的發光二極體晶片300之圖案化罩幕層220的厚度,以形成如圖14所繪示的半導體元件層230。半導體元件層230的結構與第四實施例中所述的發光二極體晶片200c的半導體元件層230的結構相似,可參照第四實施例所述者,於此不贅述。 In the process of the LED array 300c, the sidewall of the patterned mask layer (not shown) is at an angle to the surface of the substrate (not shown), and the thickness of the patterned mask layer is, for example, less than The thickness of the patterned mask layer 220 of the light-emitting diode wafer 300 of the sixth embodiment is used to form the semiconductor device layer 230 as shown in FIG. The structure of the semiconductor device layer 230 is similar to that of the semiconductor device layer 230 of the light-emitting diode wafer 200c described in the fourth embodiment, and can be referred to the fourth embodiment, and will not be described herein.
值得注意的是,半導體元件層230中第二部分230b的頂表面可以是一平面,如圖14所繪示。然而,在本發明其他可行之實施例中,半導體元件層230中第二部分230b的頂表面亦可以是一曲面,如圖14’所示。由圖14’可知,第二部分230b的頂表面為一下凹之曲面,且此下凹之曲面在中心位置與邊緣之高度落差例如是介於1微米至5微米之間,而較佳的高度落差為2.5微米。 It should be noted that the top surface of the second portion 230b of the semiconductor device layer 230 may be a flat surface as shown in FIG. However, in other possible embodiments of the present invention, the top surface of the second portion 230b of the semiconductor device layer 230 may also be a curved surface as shown in Fig. 14'. As can be seen from FIG. 14', the top surface of the second portion 230b is a concave curved surface, and the concave surface has a height difference between the center position and the edge, for example, between 1 micrometer and 5 micrometers, and a preferred height. The drop is 2.5 microns.
圖15為本發明第十實施例的發光二極體晶片的剖面示意圖。請參照圖15,在本實施例中,發光二極體晶片300d的結構與製造方法與第六實施例的發光二極體晶片300的結構與製造方法相似,以下僅針對第十實施例與第六實施例的主要差異處進行說明。 Figure 15 is a cross-sectional view showing a light emitting diode wafer according to a tenth embodiment of the present invention. Referring to FIG. 15, in the present embodiment, the structure and manufacturing method of the LED wafer 300d are similar to the structure and manufacturing method of the LED array 300 of the sixth embodiment, and the following is only for the tenth embodiment and the The main differences between the six embodiments are explained.
在本實施例中,發光二極體晶片300d更包括多個突起228。突起228配置於第一電極240a與第一部分230a之間。也就是說,在發光二極體晶片300d的製程中,所使用的圖案化罩幕層(未繪示)更包括多個位於開口內的突起,且突起位於開口所暴露出的基板(未繪示)上。突起228使得發光二極體晶片300d的發光層234所發出之光線較易散射,以進一步提升發光二極體晶片300d的發光效率。值得注意的 是,在其他實施例中,發光二極體晶片也可以配置有突起,以進一步提升發光二極體晶片的發光效率。 In the embodiment, the LED chip 300d further includes a plurality of protrusions 228. The protrusion 228 is disposed between the first electrode 240a and the first portion 230a. That is, in the process of the LED array 300d, the patterned mask layer (not shown) further includes a plurality of protrusions located in the opening, and the protrusions are located on the substrate exposed by the openings (not drawn) Show). The protrusions 228 allow the light emitted from the light-emitting layer 234 of the light-emitting diode wafer 300d to be more easily scattered to further enhance the light-emitting efficiency of the light-emitting diode wafer 300d. worth taking note of In other embodiments, the LED chip may also be provided with protrusions to further enhance the luminous efficiency of the LED wafer.
值得注意的是,半導體元件層230中第二部分230b的頂表面可以是一平面,如圖15所繪示。然而,在本發明其他可行之實施例中,半導體元件層230中第二部分230b的頂表面亦可以是一曲面,如圖15’所示。由圖15’可知,第二部分230b的頂表面為一下凹之曲面,且此下凹之曲面在中心位置與邊緣之高度落差例如是介於1微米至5微米之間,而較佳的高度落差為2.5微米。 It should be noted that the top surface of the second portion 230b of the semiconductor device layer 230 may be a flat surface as shown in FIG. However, in other possible embodiments of the present invention, the top surface of the second portion 230b of the semiconductor device layer 230 may also be a curved surface as shown in Fig. 15'. As can be seen from FIG. 15', the top surface of the second portion 230b is a concave curved surface, and the concave surface has a height difference between the center position and the edge, for example, between 1 micrometer and 5 micrometers, and a preferred height. The drop is 2.5 microns.
圖16A與圖16B分別為本發明第十一實施例的高功率發光二極體晶片(high power LED chip)的上視圖與剖面示意圖。請參照圖16A與圖16B,在本實施例中,高功率發光二極體晶片400中的半導體元件層230具有指狀圖案(finger-shaped pattern),而配置於半導體元件層230上之電極240b亦具有指狀圖案,且配置於半導體層220上的電極240a同樣具有指狀圖案。此外,半導體元件層230之剖面輪廓可以與圖2、圖2’、圖5、圖5’、圖6、圖6’、圖7、圖7’、圖8、圖8’、圖9、圖9’、圖12、圖12’、圖13、圖13’、圖14、圖14’、圖15或圖15’相同。 16A and 16B are a top view and a cross-sectional view, respectively, of a high power LED chip of an eleventh embodiment of the present invention. Referring to FIG. 16A and FIG. 16B, in the embodiment, the semiconductor device layer 230 in the high power LED chip 400 has a finger-shaped pattern, and the electrode 240b disposed on the semiconductor device layer 230. There is also a finger pattern, and the electrode 240a disposed on the semiconductor layer 220 also has a finger pattern. In addition, the cross-sectional profile of the semiconductor device layer 230 can be as shown in FIG. 2, FIG. 2', FIG. 5, FIG. 5', FIG. 6, FIG. 6', FIG. 7, FIG. 7', FIG. 8, FIG. 8', FIG. 9', Fig. 12, Fig. 12', Fig. 13, Fig. 13', Fig. 14, Fig. 14', Fig. 15 or Fig. 15' are the same.
同樣地,如前述之第一至第十實施例,本實施例之半導體元件層230中第二部分230b的頂表面可以是一平面或是一曲面。 Similarly, as in the first to tenth embodiments described above, the top surface of the second portion 230b of the semiconductor device layer 230 of the present embodiment may be a flat surface or a curved surface.
綜上所述,在本發明之發光二極體晶片的製造方法中,於圖案化罩幕層的開口中形成半導體元件層,使得位於開口以外的半導體元件層的截面積隨著所在高度的增加而遞減。如此一來,半導體元件層具有特殊的構型,能有效地將發光層所發出的光線引出發光二極體 晶片,以降低發光層所發出的光線在發光二極體晶片中產生全反射的機會。因此,能大幅提升發光二極體晶片的光取出效率(light extraction efficiency),使得發光二極體晶片具有良好的發光效率。此外,在發光二極體晶片的製造方法中,於開口中所形成的半導體元件層無須再進行圖案化步驟並以諸如乾蝕刻製程等方式移除部份的摻雜半導體材料層、部份的發光材料層,以暴露出欲與電極電性連接的摻雜半導體層,故具有製程步驟簡單的優點。 In summary, in the method of fabricating a light-emitting diode wafer of the present invention, a semiconductor element layer is formed in the opening of the patterned mask layer such that the cross-sectional area of the semiconductor element layer outside the opening increases with height And decrement. In this way, the semiconductor device layer has a special configuration, and can effectively extract the light emitted by the light-emitting layer out of the light-emitting diode. The wafer is used to reduce the chance that light emitted by the luminescent layer will cause total reflection in the luminescent diode wafer. Therefore, the light extraction efficiency of the light-emitting diode wafer can be greatly improved, so that the light-emitting diode wafer has good light-emitting efficiency. In addition, in the method of fabricating a light-emitting diode wafer, the semiconductor element layer formed in the opening does not need to be subjected to a patterning step and removes part of the doped semiconductor material layer or part in a manner such as a dry etching process. The luminescent material layer has the advantage of simplifying the process steps by exposing the doped semiconductor layer to be electrically connected to the electrodes.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.
200‧‧‧發光二極體晶片 200‧‧‧Light Diode Wafer
210‧‧‧基板 210‧‧‧Substrate
220‧‧‧半導體層 220‧‧‧Semiconductor layer
230‧‧‧半導體元件層 230‧‧‧Semiconductor component layer
230a‧‧‧第一部分 230a‧‧‧Part I
230b‧‧‧第二部分 230b‧‧‧Part II
232‧‧‧第一型摻雜半導體層 232‧‧‧First type doped semiconductor layer
234‧‧‧發光層 234‧‧‧Lighting layer
236‧‧‧第二型摻雜半導體層 236‧‧‧Second type doped semiconductor layer
240a‧‧‧電極 240a‧‧‧electrode
240b‧‧‧電極 240b‧‧‧electrode
260‧‧‧電流分散層 260‧‧‧current dispersion layer
C‧‧‧轉折處 C‧‧‧ turning point
S‧‧‧側壁 S‧‧‧ side wall
Wmax1‧‧‧第一部分的最大截面積 Wmax 1 ‧‧‧Maximum cross-sectional area of the first part
Wmax2‧‧‧第二部分的最大截面積 Wmax 2 ‧‧‧The maximum cross-sectional area of the second part
Claims (41)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102148822A TWI550900B (en) | 2009-09-16 | 2009-09-16 | Semiconductor device layer and fabricating method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102148822A TWI550900B (en) | 2009-09-16 | 2009-09-16 | Semiconductor device layer and fabricating method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201415658A true TW201415658A (en) | 2014-04-16 |
TWI550900B TWI550900B (en) | 2016-09-21 |
Family
ID=55182106
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102148822A TWI550900B (en) | 2009-09-16 | 2009-09-16 | Semiconductor device layer and fabricating method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI550900B (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3104789B2 (en) * | 1997-05-02 | 2000-10-30 | 日本電気株式会社 | Semiconductor optical device and method of manufacturing the same |
JP3763753B2 (en) * | 2001-06-05 | 2006-04-05 | 豊田合成株式会社 | Group III nitride compound semiconductor device and method for manufacturing the same |
TWI226138B (en) * | 2003-01-03 | 2005-01-01 | Super Nova Optoelectronics Cor | GaN-based LED vertical device structure and the manufacturing method thereof |
EP1664393B1 (en) * | 2003-07-14 | 2013-11-06 | Allegis Technologies, Inc. | METHOD OF PROducING GALLIUM NITRIDE LEDs |
-
2009
- 2009-09-16 TW TW102148822A patent/TWI550900B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI550900B (en) | 2016-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8895329B2 (en) | Patterned substrate for light emitting diode and light emitting diode employing the same | |
US8546819B2 (en) | Light emitting device and fabrication method thereof | |
JP5270088B2 (en) | Vertical light emitting device and manufacturing method thereof | |
WO2014026529A1 (en) | Ultraviolet semiconductor light emitting device and manufacturing method thereof | |
US11437427B2 (en) | Light-emitting device and manufacturing method thereof | |
JP4957130B2 (en) | Light emitting diode | |
KR100780175B1 (en) | Method for Manufacturing Light Emitting Diode | |
TWI774759B (en) | Light-emitting device and manufacturing method thereof | |
WO2012048506A1 (en) | Light emitting diode and manufacturing method thereof | |
US9306122B2 (en) | Light emitting diode and a manufacturing method thereof, a light emitting device | |
US20130214246A1 (en) | Light emitting diode and fabrication method thereof | |
CN113990991A (en) | Light-emitting diode and manufacturing method thereof | |
US9306120B2 (en) | High efficiency light emitting diode | |
WO2011143919A1 (en) | Light emitting diode and manufacturing method thereof | |
TWI437731B (en) | Semiconductor optoelectronic device with enhanced light extraction efficiency and fabricating method thereof | |
WO2012062017A1 (en) | Led and manufacturing method thereof and luminescent device | |
TWI425656B (en) | Light emitting diode chip and fabricating method thereof | |
TWI422061B (en) | Light emitting diode and fabricating method thereof | |
JP2007242669A (en) | Semiconductor light emitting device, and its fabrication process | |
TWI550900B (en) | Semiconductor device layer and fabricating method thereof | |
KR20080028292A (en) | Iii-nitride based light-emitting diode structure with monolithically integrated sidewall deflectors and method of thereof | |
WO2022109991A1 (en) | Substrate structure, preparation method therefor, light-emitting device and preparation method therefor | |
TWI786276B (en) | Manufacturing method of light-emitting device | |
CN114628552A (en) | Flip LED chip and manufacturing method thereof | |
TWI446526B (en) | Method of forming laterally distributed leds |