TW201412980A - An isolated yeast strain having high xylose consumption rate and process for production of ethanol using the strain - Google Patents

An isolated yeast strain having high xylose consumption rate and process for production of ethanol using the strain Download PDF

Info

Publication number
TW201412980A
TW201412980A TW101135655A TW101135655A TW201412980A TW 201412980 A TW201412980 A TW 201412980A TW 101135655 A TW101135655 A TW 101135655A TW 101135655 A TW101135655 A TW 101135655A TW 201412980 A TW201412980 A TW 201412980A
Authority
TW
Taiwan
Prior art keywords
ethanol
xylose
strain
acid
gene
Prior art date
Application number
TW101135655A
Other languages
Chinese (zh)
Other versions
TWI450963B (en
Inventor
Yu-Chuan Chuang
Shiou-Hung Tsai
Original Assignee
Far Eastern New Century Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Far Eastern New Century Corp filed Critical Far Eastern New Century Corp
Priority to TW101135655A priority Critical patent/TWI450963B/en
Priority to CN201310074168.2A priority patent/CN103695329B/en
Publication of TW201412980A publication Critical patent/TW201412980A/en
Application granted granted Critical
Publication of TWI450963B publication Critical patent/TWI450963B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention utilizes cloning and transformation techniques in combination with mutation and strain taming techniques to obtain yeasts having high xylose consumption rate and ethanol yield. The cloning and transformation used in the invention are to transform xylose metabolism genes to yeasts to solve the problem that some yeast strains cannot utilize xylose to produce ethanol. The mutation and strain taming used in the invention are to increase xylose consumption rate and ethanol yield to solve the problem of low rate and yield. By combining the above-mentioned technical means, the invention unexpectedly obtain a mutant having high xylose consumption rate and ethanol yield.

Description

具高木醣消耗率之分離酵母菌株及使用該菌株製造酒精之方法 Isolated yeast strain with high xylose consumption rate and method for producing alcohol using the same

本發明係關於具有高木糖消耗率之分離酵母菌株及產生乙醇之發酵方法。具體而言,本發明提供具有高木糖消耗率之酵母屬(Saccharomyces)菌株。 The present invention relates to an isolated yeast strain having a high xylose consumption rate and a fermentation process for producing ethanol. In particular, the present invention provides a strain of Saccharomyces having a high xylose consumption rate.

過去數十年間對傳統石化燃料(以石油為主之燃料)之大規模消費已付出了很高代價並造成大量污染。而且,人們已認識到世界石油儲量並非無窮無盡,且隨著環境意識逐漸成長,已刺激人們開始研究替代性燃料之可行性,例如纖維乙醇,其可降低CO2產生。 The large-scale consumption of traditional fossil fuels (oil-based fuels) has paid a high price and caused a lot of pollution in the past few decades. Moreover, it has been recognized that the world's oil reserves are not endless, and as environmental awareness grows, it has stimulated the feasibility of alternative fuels, such as fiber ethanol, which can reduce CO 2 production.

目前用於產生乙醇之方法包括以下操作階段:(a)使適當原材料發酵以獲得發酵產物及(b)蒸餾藉由發酵獲得之產物,藉此產生乙醇。目前主要使用屬於酵母屬(Saccharomyces)之酵母釀酒酵母(Saccharomyces cerevisiae)作為乙醇發酵之種菌。釀酒酵母細胞為圓形到卵形,直徑為5-10微米且可有效利用己糖,包括葡萄糖、甘露糖、半乳糖等。上文所提及之發酵方法包括在含有氮源、碳源及微量元素等之培養基中接種釀酒酵母且在適當條件下進行發酵,且其涉及化學反應:C6H12O6 → 2 CH3CH2OH+2 CO2Current methods for producing ethanol include the following stages of operation: (a) fermenting the appropriate starting materials to obtain the fermentation product and (b) distilling the product obtained by fermentation, thereby producing ethanol. At present, yeast Saccharomyces cerevisiae belonging to the genus Saccharomyces is mainly used as an inoculum for ethanol fermentation. Saccharomyces cerevisiae cells are round to oval, 5-10 microns in diameter and can effectively utilize hexoses, including glucose, mannose, galactose and the like. The fermentation method mentioned above includes inoculating Saccharomyces cerevisiae in a medium containing a nitrogen source, a carbon source, and a trace element, and performing fermentation under appropriate conditions, and it involves a chemical reaction: C 6 H 12 O 6 → 2 CH 3 CH 2 OH+2 CO 2 .

可使用各種生質原料進行酒精生產。用於經由發酵製造乙醇之多種多樣之原材料可方便地分類為三種類型之農業原材料:糖、澱粉及木質纖維素材料。儘管生質乙醇可藉由多種不同來源獲得之糖或澱粉發酵來產生,但迄今為 止,用於工業規模生產燃料酒精之受質係蔗糖及玉米澱粉。使用糖或澱粉來生產乙醇之技術已發展成熟;然而,該等受質成本高,其可能與食品供應競爭且自該等來源生產乙醇不足以滿足未來對燃料工業之需求。因此,業內對自木質纖維素生產乙醇之興趣逐漸增加。由於木質纖維素可再生,資源豐富,不會與食品供應競爭且可以相對較低之成本獲得,所以木質纖維素係諸如玉米粒等其他乙醇原料之合意替代品。擴大燃料乙醇生產要求使用較低成本之原料。目前,僅木質纖維素原料可自植物生物質獲得足夠數量來代替用於生產乙醇之作物。木質纖維素材料中之主要可發酵糖係葡萄糖及木糖,其分別佔木質纖維素之約40%及25%。 Alcohol production can be carried out using a variety of raw materials. A wide variety of raw materials for the production of ethanol via fermentation can be conveniently classified into three types of agricultural raw materials: sugar, starch and lignocellulosic materials. Although raw ethanol can be produced by fermentation of sugar or starch obtained from many different sources, For the industrial scale production of fuel alcohol, the sugar system and corn starch. The use of sugar or starch to produce ethanol has matured; however, such substrates are costly and may compete with food supplies and produce ethanol from such sources to meet future demand for the fuel industry. Therefore, the industry is increasingly interested in the production of ethanol from lignocellulose. Since lignocellulose is renewable, resource-rich, does not compete with food supplies and can be obtained at relatively low cost, lignocellulose is a desirable alternative to other ethanol feedstocks such as corn kernels. Expanding fuel ethanol production requires the use of lower cost raw materials. Currently, only lignocellulosic feedstocks can be obtained from plant biomass in sufficient quantities to replace crops used to produce ethanol. The main fermentable sugars in lignocellulosic materials are glucose and xylose, which account for about 40% and 25% of lignocellulose, respectively.

然而,大多數能進行酒精發酵之酵母(如釀酒酵母)不能使用木糖作為碳源。工業為了能自木質纖維素水解產物生產乙醇,需要具有該等特性之生物體。科學家利用遺傳技術或菌株馴化來改良用於產生乙醇之酵母或細菌之木糖發酵。US 5789210提供能有效使單獨之木糖發酵或同時使木糖與葡萄糖發酵之酵母菌株,其可使用重組DNA及基因選殖技術來產生,且該等技術已用於產生含有選殖木糖還原酶(XR)、木糖醇脫氫酶(XD)及木酮糖激酶(XK)基因之重組酵母,該等基因與不受葡萄糖之存在抑制之啟動子融合。US 6582944係關於經木糖還原酶及/或木糖醇脫氫酶基因轉化之新穎重組酵母菌株,其能將木糖還原為木糖醇並因此能在活體內產生木糖醇。Bjorn等人提供酵母菌株TMB 3001,其藉由用木糖還原酶及/或木糖醇脫氫酶基因轉化來解決不能代謝木糖以產生乙醇的問題(Biorn JBarbel HH.The non-oxidative pentose phosphate pathway controls the fermentation rate of xylose but not of xylose in TMB 3001,2002,FEMS Yeast Research 2:227-282)。然而,其仍具有木糖消耗率低(0.13克(g)木糖/克生物質/小時)及乙醇產率低(0.15克產物/克所消耗木糖)等問題。為解決該等問題,Johansson等人另外將轉醛醇酶基因轉化至釀酒酵母中以獲得新菌株TMB 3026,其可將木糖消耗率自0.12提高至0.23。(Biorn J、Barbel HH.The non-oxidative pentose phosphate pathway controls the fermentation rate of xylose but not of xylose in TMB 3001,2002,FEMS Yeast Research 2:227-282);然而,仍未滿足對工業生產之要求。Kaisa等人另外產生經轉化酵母TMB 3057,其改良木糖還原酶和/或木糖醇脫氫酶以及缺失之醛糖還原酶基因(GR3)之基因表現,從而提高乙醇產率並降低木糖醇副產物之形成(Kaisa K、Romain F、Barbel HH、Marie GG.High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae,2007,Appl.Microbiol.Biotechnol.73:1039-1046)。然而,此菌株仍具有木糖消耗率低(0.25克木糖/克生物質/小時)及乙醇產率低(0.27克產物/克所消耗木糖)之問題。此外,Elizebath等人使用基因經修飾之酵母424A(LNH-ST),其經粗糙鏈孢黴(N.crassa)及近平滑假絲酵母(C. parapsilosis)之木糖還原酶基因以及樹幹畢赤酵母(P.stipitis)之木糖醇脫氫酶基因轉化且具有三個胺基酸之優化密碼子(Eliabeth C、Miroslav S.、Nancy W YH、Nathan SM,Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae,2010,FEMS Yeast Res.10:385-393)。此菌株亦利用GAPDH啟動子來控制TKL1、TAL1、RKL1及RPE1之磷酸戊糖途徑。然而,其仍具有以下問題:木糖消耗率低(在pH5下0.27克木糖/克生物質/小時)及乙醇產率低(0.785克產物/克所消耗木糖)及對乙酸之耐受性低(在培養基含有1克/升(g/L)乙酸時,木糖消耗率自0.354降低至0.15)。 However, most yeasts that can be subjected to alcoholic fermentation (such as Saccharomyces cerevisiae) cannot use xylose as a carbon source. In order to be able to produce ethanol from lignocellulosic hydrolysates, the industry requires organisms having such properties. Scientists use genetic techniques or strain domestication to improve the xylose fermentation of yeast or bacteria used to produce ethanol. US 5,789,210 provides yeast strains which are effective in fermenting xylose alone or simultaneously fermenting xylose and glucose, which can be produced using recombinant DNA and gene selection techniques, and which have been used to produce a reduction containing xylose Recombinant yeasts of the enzyme (XR), xylitol dehydrogenase (XD) and xylulose kinase (XK) genes, which are fused to a promoter that is not inhibited by the presence of glucose. US 6,582,944 is a novel recombinant yeast strain transformed with a xylose reductase and/or xylitol dehydrogenase gene which is capable of reducing xylose to xylitol and thus producing xylitol in vivo. Bjorn et al. provide the yeast strain TMB 3001, which solves the problem of not being able to metabolize xylose to produce ethanol by transforming with xylose reductase and/or xylitol dehydrogenase genes ( Biorn J , Barbel HH. The non-oxidative Pentose phosphate pathway controls the fermentation rate of xylose but not of xylose in TMB 3001, 2002, FEMS Yeast Research 2: 227-282 ). However, it still has problems such as low xylose consumption rate (0.13 g (g) xylose/gram biomass/hour) and low ethanol yield (0.15 g product/gram of xylose consumed). To address these issues, Johansson et al. additionally transformed the transaldolase gene into S. cerevisiae to obtain a new strain, TMB 3026, which increased the xylose consumption rate from 0.12 to 0.23. ( Biorn J, Barbel HH. The non-oxidative pentose phosphate pathway controls the fermentation rate of xylose but not of xylose in TMB 3001, 2002, FEMS Yeast Research 2: 227-282 ); however, the requirements for industrial production are still not met. . Kaisa et al. additionally produced transformed yeast TMB 3057, which modified the gene expression of xylose reductase and/or xylitol dehydrogenase and the deleted aldose reductase gene (GR3), thereby increasing ethanol yield and reducing xylose Formation of alcohol by-products ( Kaisa K, Romain F, Barbel HH, Marie GG. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae, 2007, Appl . Microbiol . Biotechnol. 73: 1039-1046 ). However, this strain still had problems with low xylose consumption rate (0.25 g xylose/gram biomass/hour) and low ethanol yield (0.27 g product/gram xylose consumed). In addition, Elizebath et al. used the genetically modified yeast 424A (LNH-ST), which has the xylose reductase gene of N. crassa and C. parapsilosis and the trunk of the tree. The xylitol dehydrogenase gene of yeast ( P. stipitis ) is transformed and has optimized codons for three amino acids ( Eliabeth C, Miroslav S., Nancy W YH, Nathan SM, Effect of acetic acid and pH on the cofermentation). Of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae, 2010, FEMS Yeast Res . 10 :385-393 ). This strain also utilizes the GAPDH promoter to control the pentose phosphate pathways of TKL 1, TAL 1, RKL 1 and RPE 1. However, it still has the following problems: low xylose consumption rate (0.27 g xylose/gram biomass/hour at pH 5) and low ethanol yield (0.785 g product/g xylose consumed) and tolerance to acetic acid Low (the xylose consumption rate decreased from 0.354 to 0.15 when the medium contained 1 g/L (g/L) acetic acid).

因此,業內非常需要生物質(例如木糖)至乙醇之轉化率改良之菌株及較高產率產生乙醇之方法。 Therefore, there is a great need in the industry for strains with improved conversion of biomass (e.g., xylose) to ethanol and methods for producing ethanol in higher yields.

本發明提供分離酵母菌株,其木糖消耗率高於1.1克木糖/克生物質/小時且包含一或多種得自DSMZ寄存編號25508之釀酒酵母菌株FENC-000(2011年11月8日寄存於食品工業發展研究所,寄存編號為BCRC 920077)之木糖代謝基因。 The present invention provides an isolated yeast strain having a xylose consumption rate higher than 1.1 grams of xylose per gram of biomass per hour and comprising one or more Saccharomyces cerevisiae strains FENC-000 from DSMZ accession number 25508 (registered on November 8, 2011) In the Food Industry Development Institute, the xylose metabolism gene numbered BCRC 920077) was deposited.

本發明另外提供產生乙醇之方法,其包含以下步驟:(a)在適宜發酵條件下用本發明之分離酵母菌株使含有木糖或葡萄糖來源之培養基發酵;及(b)自該培養基回收乙醇。 The invention further provides a method of producing ethanol comprising the steps of: (a) fermenting a medium containing xylose or glucose source using the isolated yeast strain of the invention under suitable fermentation conditions; and (b) recovering ethanol from the medium.

本發明利用選殖及轉化技術以及突變及菌株馴化技術來獲得具有高木糖消耗率及乙醇產率之酵母。用於本發明中之選殖及轉化可將木糖代謝基因轉化至酵母中以解決一些酵母菌株無法利用木糖產生乙醇之問題。用於本發明中之突變及菌株馴化可提高木糖消耗率及乙醇產率以解決消耗率及產率低之問題。藉由組合上文所提及之技術手段,本發明令人意外地獲得具有高木糖消耗率及乙醇產率之突變株。 The present invention utilizes selection and transformation techniques as well as mutation and strain acclimation techniques to obtain yeasts having high xylose consumption rates and ethanol yields. The selection and transformation used in the present invention can convert the xylose metabolism gene into yeast to solve the problem that some yeast strains cannot utilize xylose to produce ethanol. The mutations and strain acclimation used in the present invention can increase the xylose consumption rate and the ethanol yield to solve the problem of low consumption rate and low yield. By combining the technical means mentioned above, the present invention surprisingly obtains mutants having high xylose consumption rates and ethanol yields.

提供以下術語及方法之解釋以更好地闡述本發明並引導熟習此項技術者實踐本發明。除非上下文明確指示其他含義,否則本文所用「包含」意指「包括」且單數形式「一(a或an)」或「該」包括複數含義。除非上下文明確指示其他含義,否則術語「或」係指所述二選一要素或兩個或更多個要素之組合中之單一要素。 The following terms and methods are explained to better illustrate the invention and to guide those skilled in the art to practice the invention. The word "comprising" as used herein means "including" and the singular forms "a" or "the" are meant to include the plural. Unless the context clearly indicates otherwise, the term "or" refers to the single element or a combination of two or more elements.

除非另有解釋,否則本文所用所有技術及科學術語皆具有與熟習本發明所屬領域技術者通常所瞭解相同之意義。儘管在本發明之實踐或測試中可使用與本文所述方法及材料類似或等效之方法及材料,但下文仍闡述適宜之方法及材料。材料、方法及實例僅具有說明性而不意欲進行限制。根據以下詳細說明及申請專利範圍可瞭解本發明之其他特徵。 Unless otherwise explained, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are set forth below. The materials, methods, and examples are illustrative only and are not intended to be limiting. Other features of the invention will be apparent from the description and appended claims.

本文所用術語「產率」係指相較於起始材料之量,所產生產物的量。 The term "yield" as used herein refers to the amount of product produced relative to the amount of starting material.

本文所用術語「菌株」係指具有一般特徵之特定物種之 微生物。除非指示相反含義,否則術語「菌株」與「細胞」在本文中可互換使用。如熟習此項技術者可瞭解,微生物菌株係由個別酵母細胞組成。另外,個別微生物細胞具有特定特徵,該特徵可將該等細胞鑑別為其特定菌株之成員。 The term "strain" as used herein refers to a particular species having general characteristics. microorganism. The terms "strain" and "cell" are used interchangeably herein unless indicated to the contrary. As will be appreciated by those skilled in the art, microbial strains are composed of individual yeast cells. In addition, individual microbial cells have specific characteristics that can identify such cells as members of their particular strain.

本文所用術語「母株」係指經受誘變以產生本發明微生物之微生物菌株。因此,片語「母株」之使用並不一定等同於片語「野生型」或提供關於所提及菌株之歷史之資訊。 The term "parent strain" as used herein refers to a microbial strain that is subjected to mutagenesis to produce a microorganism of the present invention. Therefore, the use of the phrase "parent" is not necessarily equivalent to the phrase "wild type" or provides information about the history of the strains mentioned.

本文所用術語「突變」係指核酸分子中之插入、缺失或取代。 The term "mutation" as used herein refers to an insertion, deletion or substitution in a nucleic acid molecule.

本文所用術語「誘變」係指藉助其可在生物體之遺傳材料(例如DNA)中產生一個或一個以上突變之方法。使用「隨機」誘變時,無法預測確切突變位點,其出現於微生物染色體中之任何位置。 The term "mutagenization" as used herein refers to a method by which one or more mutations can be produced in a genetic material (eg, DNA) of an organism. When using "random" mutagenesis, it is impossible to predict the exact site of the mutation, which occurs anywhere in the microbial chromosome.

本文所用片語「誘變循環」一般係指用誘變劑或誘變劑之組合處理細胞,之後培養該等細胞以使存活細胞可繁殖。在多種情形下,將在每一誘變循環後篩選經誘變細胞,以鑑別彼等具有特定特徵之細胞。另外,作為誘變循環之一部分,可在誘變後即刻或在仍暴露於誘變劑中時使經誘變劑處理之細胞暴露於選擇劑或選擇培養基中。 As used herein, the phrase "mutagering cycle" generally refers to the treatment of cells with a combination of mutagens or mutagens, followed by culturing the cells to allow viable cells to reproduce. In each case, the mutagenized cells will be screened after each mutagenesis cycle to identify cells with specific characteristics. Additionally, as part of the mutagenesis cycle, the mutagen-treated cells can be exposed to a selection agent or selection medium either immediately after mutagenesis or while still being exposed to the mutagen.

本文所用術語「適宜發酵條件」一般係指可以調節pH、溫度、通氣量等之發酵培養基及條件,較佳地,最適條件使得微生物可產生所需之含碳產物。為確定培養條件是否 允許產生產物,可將微生物在接種後培養約24小時至一週,且可獲得並分析樣品。在有細胞生長之樣品或培養基中測試所需產物之存在。 As used herein, the term "suitable fermentation conditions" generally refers to fermentation media and conditions that can be adjusted for pH, temperature, aeration, etc., preferably, the optimum conditions are such that the microorganisms produce the desired carbonaceous product. To determine if the culture conditions are The product is allowed to be produced, and the microorganism can be cultured for about 24 hours to one week after inoculation, and the sample can be obtained and analyzed. The presence of the desired product is tested in a sample or medium with cell growth.

根據上述說明,本發明提供分離酵母菌株,其木糖消耗率高於1.1克木糖/克生物質/小時,且包含一或多種得自DSMZ寄存編號25508之釀酒酵母菌株FENC-000之木糖代謝基因。在一較佳實施例中,分離酵母菌株係DSMZ寄存編號25508之釀酒酵母FENC-000之分離菌株。 In accordance with the above description, the present invention provides an isolated yeast strain having a xylose consumption rate of greater than 1.1 grams of xylose per gram of biomass per hour and comprising one or more xylose derived from the Saccharomyces cerevisiae strain FENC-000 of DSMZ Registry No. 25508 Metabolic genes. In a preferred embodiment, the isolated strain of Saccharomyces cerevisiae FENC-000 of the yeast strain DSMZ accession number 25508 is isolated.

在一實施例中,本發明酵母菌株展現高木糖消耗率;較佳地高於1.1克木糖/克生物質/小時。更佳地,木糖消耗率高於1.5克木糖/克生物質/小時。 In one embodiment, the yeast strain of the invention exhibits a high xylose consumption rate; preferably greater than 1.1 grams xylose per gram of biomass per hour. More preferably, the xylose consumption rate is higher than 1.5 grams of xylose per gram of biomass per hour.

根據本發明,本發明酵母菌株包括(但不限於)酵母屬菌株、克魯維酵母屬(Kluyveromyces)菌株、畢赤酵母屬(Pichia)菌株及假絲酵母屬(Candida)菌株。更佳地,本發明酵母菌株包括(但不限於)釀酒酵母菌株、卡爾斯伯酵母(Saccharomyces carlsbergensis)菌株、博伊丁酵母(Saccharomyces bulderi)菌株、巴尼特酵母(Saccharomyces barnetti)菌株、少孢酵母(Saccharomyces exiguus)菌株、葡萄汁酵母(Saccharomyces uvarum)菌株、糖化酵母(Saccharomyces diastaticus)菌株、卡爾斯伯酵母菌株、乳酸克魯維酵母(Kluyveromyces lactis)菌株、馬克斯克魯維酵母(Kluyveromyces marxianus)菌株、真菌克魯維酵母(Kluyveromyces fungus)菌株、樹幹畢赤酵母(Pichia stipitis)菌株、星形假絲酵母(Candida stellata)菌株及休哈 塔假絲酵母(Candida shehatae)菌株。最佳地,本發明提供具有DSMZ寄存編號25508之釀酒酵母FENC-000之分離菌株。 According to the present invention, the yeast strain of the present invention includes, but is not limited to, a strain of Saccharomyces, a strain of Kluyveromyces , a strain of Pichia and a strain of Candida. More preferably, the yeast strains of the invention include, but are not limited to, Saccharomyces cerevisiae strains, Saccharomyces carlsbergensis strains, Saccharomyces bulderi strains, Saccharomyces barnetti strains, snails Yeast ( Saccharomyces exiguus ) strain, Saccharomyces uvarum strain, Saccharomyces diastaticus strain, Carlsberg strain, Kluyveromyces lactis strain, Kluyveromyces marxianus The strain, the fungus Kluyveromyces fungus strain, the Pichia stipitis strain, the Candida stellata strain, and the Candida shehatae strain. Most preferably, the present invention provides an isolated strain of S. cerevisiae FENC-000 having DSMZ accession number 25508 .

木糖係可由多種生物體分解代謝或代謝為可用產物之五碳醛糖(戊糖,單糖)。根據本發明,木糖代謝基因包括一或多種選自由以下組成之群之基因:木糖還原酶基因、木糖醇脫氫酶基因、木酮糖激酶基因及木糖異構酶。 Xylose is a five-carbon aldose (pentose, monosaccharide) that can be catabolized or metabolized by a variety of organisms into useful products. According to the present invention, the xylose metabolism gene includes one or more genes selected from the group consisting of a xylose reductase gene, a xylitol dehydrogenase gene, a xylulokinase gene, and a xylose isomerase.

根據本發明,本發明酵母菌株係基於遺傳選殖、轉化、誘變、誘變循環及菌株馴化來產生。在一實施例中,本發明酵母菌株係藉由選殖木糖代謝基因及將該等基因轉化至母株中以獲得經轉化菌株來產生。可構築載有抗生素抗性標記基因(例如kan,其編碼卡那黴素(kanomycin)抗性)之質粒並使用其作為載體來將合意木糖代謝基因遞送至染色體中。木糖代謝基因可藉由用適宜限制性酶消化來分離並將其純化,且隨後藉由轉化或電穿孔將其引入宿主細胞中。在本發明一實施例中,釀酒酵母BCRC 22743係用於轉化之宿主。 According to the invention, the yeast strains of the invention are produced based on genetic selection, transformation, mutagenesis, mutagenesis cycles and strain domestication. In one embodiment, the yeast strain of the invention is produced by selecting a xylose metabolic gene and transforming the gene into a parent strain to obtain a transformed strain. A plasmid carrying an antibiotic resistance marker gene (e.g., kan, which encodes kanomycin resistance) can be constructed and used as a vector to deliver a desired xylose metabolism gene into a chromosome. The xylose metabolism gene can be isolated and purified by digestion with a suitable restriction enzyme, and then introduced into a host cell by transformation or electroporation. In one embodiment of the invention, Saccharomyces cerevisiae BCRC 22743 is used in a host for transformation.

之後,用誘變劑使經轉化菌株突變。本發明並不限於展現高木糖消耗率及乙醇產率之細胞。換言之,本發明包括特徵為在培養生長指定時間段後能高速消耗木糖之細胞。在具體實施例中,本發明菌株係藉由以下方式來產生:使染色體上含有相關木糖代謝基因之酵母細胞在非天然啟動子控制下經受1個、2個、3個、4個、5個或更多個誘變後篩選之循環,以鑑別顯示高木糖消耗率之細胞。 Thereafter, the transformed strain is mutated with a mutagen. The invention is not limited to cells exhibiting high xylose consumption rates and ethanol yields. In other words, the invention includes cells characterized by high speed xylose consumption after a specified period of culture growth. In a specific embodiment, the strain of the invention is produced by subjecting yeast cells having a related xylose metabolism gene on the chromosome to one, two, three, four, five under the control of a non-native promoter. One or more cycles of post-mutation screening to identify cells that exhibit high xylose consumption rates.

業內已知眾多進行誘變之方法且其可用於產生本發明細菌菌株。一般而言,該等方法涉及使用化學試劑或輻射來誘導突變。用於誘變程序中之化學化合物類別之實例包括(但不限於)甲磺酸乙酯(EMS)、N-甲基-N-亞硝基脲N-亞硝基-N,N-二乙胺(NDEA)及N-乙基-N'-硝基-N-亞硝基胍(ENNG)、羥胺、亞硫酸氫鹽及硝基呋喃(例如7-甲氧基-2-硝基萘并[2,1-p]呋喃),業內已知其可誘導核酸分子突變。熟習此項技術者可瞭解如何調節誘變劑之濃度及/或特定條件以達成合意突變率。 Numerous methods for mutagenesis are known in the art and can be used to produce bacterial strains of the invention. In general, such methods involve the use of chemical agents or radiation to induce mutations. Examples of chemical compound classes used in mutagenesis procedures include, but are not limited to, ethyl methanesulfonate (EMS), N-methyl-N-nitrosourea N-nitroso-N, N-diethyl Amine (NDEA) and N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG), hydroxylamine, bisulfite and nitrofuran (eg 7-methoxy-2-nitronaphthalene) [2,1-p]furan), which is known in the art to induce mutations in nucleic acid molecules. Those skilled in the art will understand how to adjust the concentration of the mutagen and/or specific conditions to achieve a desired mutation rate.

在細胞經過誘變後,可對其進行篩選以確定其是否具有如本發明所述之特定特徵。該特徵之實例包括高木糖消耗率及乙醇產率。本發明菌株可藉由使用多個誘變及篩選之循環來產生。在每次誘變處理後,可針對提高之木糖消耗率篩選經誘變細胞。 After the cells have been subjected to mutagenesis, they can be screened to determine if they have particular characteristics as described herein. Examples of such characteristics include high xylose consumption rate and ethanol yield. Strains of the invention can be produced by using multiple cycles of mutagenesis and screening. After each mutagenesis treatment, the mutagenized cells can be screened for increased xylose consumption rate.

根據上述說明,本發明提供產生乙醇之方法,其包含以下步驟:(a)在適宜發酵條件下用本發明之分離酵母菌株使含有木糖或葡萄糖來源之培養基發酵;及(b)自該培養基回收乙醇。 In accordance with the above description, the present invention provides a method of producing ethanol comprising the steps of: (a) fermenting a medium containing xylose or glucose source using the isolated yeast strain of the invention under suitable fermentation conditions; and (b) from the medium Recover ethanol.

根據本發明,使用本發明之分離酵母菌株來使包含木糖或葡萄糖來源之碳源發酵。木糖或葡萄糖來源可為木糖或葡萄糖本身或可為包含木糖或葡萄糖單元之任何碳水化合物寡聚物或聚合物,例如木質纖維素、木聚糖、纖維素、澱粉及諸如此類。對於自該等碳水化合物釋放木糖或葡萄糖單元,可將適當碳水化合物酶(例如木聚糖酶、葡聚糖 酶、澱粉酶及諸如此類)添加至發酵培養基中,或可藉由經轉化宿主細胞來產生該等酶。在後一情形下,經轉化宿主細胞可經遺傳改造以產生並分泌該等碳水化合物酶。在一較佳方法中,經轉化宿主細胞使木糖及葡萄糖二者發酵。除了作為碳源之木糖(及葡萄糖)來源外,發酵培養基可另外包含經轉化宿主細胞生長所需之適當成份;例如業內非常熟悉用於諸如酵母等微生物生長之發酵培養基之組合物。 According to the present invention, the isolated yeast strain of the present invention is used to ferment a carbon source comprising xylose or glucose sources. The xylose or glucose source can be xylose or glucose itself or can be any carbohydrate oligomer or polymer comprising xylose or glucose units, such as lignocellulose, xylan, cellulose, starch, and the like. For the release of xylose or glucose units from such carbohydrates, appropriate carbohydrate enzymes (eg xylanase, dextran) may be employed Enzymes, amylases, and the like) are added to the fermentation medium, or the enzymes can be produced by transformed host cells. In the latter case, the transformed host cells can be genetically engineered to produce and secrete the carbohydrate enzymes. In a preferred method, both the xylose and the glucose are fermented by the transformed host cell. In addition to the source of xylose (and glucose) as a carbon source, the fermentation medium may additionally comprise the appropriate ingredients for growth of the transformed host cell; for example, compositions well known in the art for use in fermentation media for the growth of microorganisms such as yeast.

發酵方法係用於產生諸如以下等發酵產物之方法:乙醇、乳酸、乙酸、琥珀酸、丙烯酸、檸檬酸、3-羥基-丙酸、胺基酸、1,3-丙烷-二醇、乙烯、甘油、β-內醯胺抗生素(例如青黴素G(Penicillin G)或青黴素V及其發酵衍生物)及頭孢菌素。發酵方法可為好氧或厭氧發酵方法。厭氧發酵方法在本文中定義為不存在氧之情況下運行或實質上不耗氧(例如小於5 mmol/L/h)之發酵方法,且其中有機分子用作電子供體及電子受體二者。於不存在氧之情況下,無法藉由氧化磷酸化來氧化在糖酵解及生物質形成中產生之NADH。為解決此問題,許多微生物使用丙酮酸鹽或其衍生物中之一種作為電子及氫受體,由此使NAD+再生。因此,在較佳厭氧發酵方法中,使用丙酮酸鹽作為電子(及氫受體)且將其還原為諸如以下等發酵產物:乙醇、乳酸、1,3-丙二醇、乙烯、乙酸或琥珀酸。 The fermentation method is a method for producing a fermentation product such as ethanol, lactic acid, acetic acid, succinic acid, acrylic acid, citric acid, 3-hydroxy-propionic acid, amino acid, 1,3-propane-diol, ethylene, Glycerin, β-inactamine antibiotics (such as penicillin G or penicillin V and its fermentation derivatives) and cephalosporins. The fermentation process can be an aerobic or anaerobic fermentation process. An anaerobic fermentation process is defined herein as a fermentation process that operates in the absence of oxygen or that does not substantially consume oxygen (eg, less than 5 mmol/L/h), and wherein the organic molecules are used as electron donors and electron acceptors By. In the absence of oxygen, NADH produced in glycolysis and biomass formation cannot be oxidized by oxidative phosphorylation. To solve this problem, many microorganisms use one of pyruvate or a derivative thereof as an electron and a hydrogen acceptor, thereby regenerating NAD+. Therefore, in a preferred anaerobic fermentation process, pyruvate is used as an electron (and hydrogen acceptor) and reduced to a fermentation product such as ethanol, lactic acid, 1,3-propanediol, ethylene, acetic acid or succinic acid. .

發酵方法較佳地在最適於轉化宿主細胞生長之溫度下進行。因此,對於大多數酵母,在低於38℃之溫度下實施發 酵方法。對於酵母或絲狀真菌宿主細胞,較佳地在低於37、36、35、34、33、32、31、30、29或28℃之溫度下,且在高於20、21、22、23、24或25℃之溫度下實施發酵方法。 The fermentation process is preferably carried out at a temperature most suitable for the growth of the transformed host cell. Therefore, for most yeasts, the hair is applied at temperatures below 38 °C. Fermentation method. For yeast or filamentous fungal host cells, preferably at temperatures below 37, 36, 35, 34, 33, 32, 31, 30, 29 or 28 ° C, and above 20, 21, 22, 23 The fermentation process is carried out at a temperature of 24 or 25 °C.

根據本發明,在該方法中,乙醇容積生產率較佳地為至少0.6克乙醇/升/小時;較佳地至少0.7克乙醇/升/小時、0.8克乙醇/升/小時、0.9克乙醇/升/小時、1.0克乙醇/升/小時、1.1克乙醇/升/小時、1.5克乙醇/升/小時、2.0克乙醇/升/小時、2.5克乙醇/升/小時、3.0克乙醇/升/小時、3.5克乙醇/升/小時、4.0克乙醇/升/小時、4.5克乙醇/升/小時或5.0克乙醇/升/小時;更佳地約0.6克乙醇/升/小時至約2.5克乙醇/升/小時,或約1.0克乙醇/升/小時至約3.0克乙醇/升/小時。在方法中基於木糖及/或葡萄糖之乙醇產率較佳地為至少50%、60%、70%、80%、90%、95或98%。 According to the present invention, the ethanol volumetric productivity in the process is preferably at least 0.6 grams of ethanol per liter per hour; preferably at least 0.7 grams of ethanol per liter per hour, 0.8 grams of ethanol per liter per hour, and 0.9 grams of ethanol per liter. /hour, 1.0 g ethanol / l / h, 1.1 g ethanol / l / h, 1.5 g ethanol / l / h, 2.0 g ethanol / l / h, 2.5 g ethanol / l / h, 3.0 g ethanol / l / h , 3.5 g ethanol/liter/hour, 4.0 g ethanol/liter/hour, 4.5 g ethanol/liter/hour or 5.0 g ethanol/liter/hour; more preferably about 0.6 g ethanol/liter/hour to about 2.5 g ethanol/ Liters/hour, or about 1.0 gram ethanol/liter/hour to about 3.0 gram ethanol/liter/hour. The ethanol yield based on xylose and/or glucose in the process is preferably at least 50%, 60%, 70%, 80%, 90%, 95 or 98%.

分離酵母菌株具有意外之木糖消耗率及高乙醇產率,因此該酵母菌株有利於藉由發酵方法產生乙醇。 The isolated yeast strain has an unexpected xylose consumption rate and a high ethanol yield, so the yeast strain is advantageous for producing ethanol by a fermentation process.

實例Instance 實例1 木糖代謝基因之選殖及重組質粒之構築Example 1 Selection of xylose metabolism gene and construction of recombinant plasmid

培養30個得自食品工業發展研究所(Food Industry Research and Development Institute,FIRDI)之野生型釀酒酵母菌株並使用含有10%乙醇之SX培養基進行選擇,且選擇一個對高含量乙醇具有高耐受性之菌株,即釀酒酵母BCRC 22743。在以下條件下使用聚合酶鏈式反應(PCR)來 選殖以下基因: Thirty wild-type S. cerevisiae strains from the Food Industry Research and Development Institute (FIRDI) were cultured and selected using SX medium containing 10% ethanol, and one was selected to be highly resistant to high-content ethanol. The strain, Saccharomyces cerevisiae BCRC 22743. Polymerase chain reaction (PCR) is used under the following conditions The following genes were selected:

1. pGK啟動子pGK promoter

長度:643 bp Length: 643 bp

類型:DNA Type: DNA

原始菌株:釀酒酵母 Original strain: Saccharomyces

基因注釋:pGK啟動子 Gene annotation: pGK promoter

正向引子:GACTACGCATGCGGCGCGAATCCTTTATTTTGGCTTC(SEQ ID NO:1) Forward primer: GACTACGCATGCGGCGCGAATCCTTTATTTTGGCTTC (SEQ ID NO: 1)

反向引子:TGAATTACTGAACACAACATTGTTTTATATTTGTTGTAAAAAGTAG(SEQ ID NO:2) Reverse primer: TGAATTACTGAACACAACATTGTTTTATATTTGTTGTAAAAAGTAG (SEQ ID NO: 2)

2.木糖還原酶Xylose reductase

長度:957 bp Length: 957 bp

類型:DNA Type: DNA

原始菌株:樹幹畢赤酵母 Original strain: Pichia stipitis

基因注釋:木糖還原酶 Gene annotation: xylose reductase

正向引子:AAAACAATGCCTTCTATTAAGTTGAACTCT(SEQ ID NO:3) Forward introduction: AAAACAATGCCTTCTATTAAGTTGAACTCT (SEQ ID NO: 3)

反向引子:CAATTCAATTCAATTTAGACGAAGATAGGAATCTTGTC(SEQ ID NO:4) Reverse primer: CAATTCAATTCAATTTAGACGAAGATAGGAATCTTGTC (SEQ ID NO: 4)

3.木糖醇脫氫酶Xylitol dehydrogenase

長度:1,092 bp Length: 1,092 bp

類型:DNA Type: DNA

原始菌株:樹幹畢赤酵母 Original strain: Pichia stipitis

基因注釋:木糖醇脫氫酶 Gene annotation: xylitol dehydrogenase

正向引子:GACTACGCGGCCGCGGCGCGAATCCTTTATTTTGGCTTC(SEQ ID NO:5) Forward primer: GACTACGCGGCCGCGGCGCGAATCCTTTATTTTGGCTTC (SEQ ID NO: 5)

反向引子:AAGGAAGGGTTAGCAGTCATTGTTTTATATTTGTTGTAAAAAGTAG(SEQ ID NO:6) Reverse primer: AAGGAAGGGTTAGCAGTCATTGTTTTATATTTGTTGTAAAAAGTAG (SEQ ID NO: 6)

4.木酮糖激酶Xylulose kinase

長度:1,803 bp Length: 1,803 bp

類型:DNA Type: DNA

原始菌株:釀酒酵母 Original strain: Saccharomyces

基因注釋:木酮糖激酶 Gene annotation: xylulokinase

正向引子:AAAACAATGTTGTGTTCAGTAATTCAGAG(SEQ ID NO:7) Forward primer: AAAACAATGTTGTGTTCAGTAATTCAGAG (SEQ ID NO: 7)

反向引子:CAATTCAATTCAATTTAGATGAGAGTCTTTTCCAGTTCG(SEQ ID NO:8) Reverse primer: CAATTCAATTCAATTTAGATGAGAGTCTTTTCCAGTTCG (SEQ ID NO: 8)

5. pGK終止子5. pGK terminator

長度:433 bp Length: 433 bp

類型:DNA Type: DNA

原始菌株:釀酒酵母 Original strain: Saccharomyces

基因注釋:pGK終止子 Gene annotation: pGK terminator

正向引子:GACTCTCATCTAAATTGAATTGAATTGAAATCGATAG(SEQ ID NO:9) Forward introduction: GACTCTCATCTAAATTGAATTGAATTGAAATCGATAG (SEQ ID NO: 9)

反向引子:TAGAGTCCCGGGAGTCTGCTCGAGGAGATGCGGCCGCGACTTTTTTTGTTGCAAGTGGGAT(SEQ ID NO:10) Reverse primer: TAGAGTCCCGGGAGTCTGCTCGAGGAGATGCGGCCGCGACTTTTTTTGTTGCAAGTGGGAT (SEQ ID NO: 10)

使用業內已知之遺傳改造技術將經選殖基因引入pAUR101質粒中以構築重組載體(Li L、Shuqiu C、Anja J VB、Eric BK.Rad51p and Rad54p,but not Rap52p,elevate gene repair in Saccharomyces cerevisiae directed by modified single-stranded oligonucleotide vectors,2002,Nucleic Acids Research 30:2742-2750)。處理釀酒酵母BCRC 22743以形成勝任細胞且用重組載體轉化,從而使得可將木糖還原酶、木糖醇脫氫酶及木酮糖激酶基因引入釀酒酵母BCRC 22743之基因組DNA中。選擇所得轉化株以獲得能使用木糖並產生乙醇之經轉化菌株。 The recombination gene was introduced into the pAUR101 plasmid using genetic modification techniques known in the art to construct a recombinant vector ( Li L, Shuqiu C, Anja J VB, Eric BK. Rad51p and Rad54p, but not Rap52p, elevate gene repair in Saccharomyces cerevisiae directed by Modified single-stranded oligonucleotide vectors, 2002, Nucleic Acids Research 30: 2742-2750 ). Saccharomyces cerevisiae BCRC 22743 was treated to form competent cells and transformed with a recombinant vector such that the xylose reductase, xylitol dehydrogenase and xylulose kinase genes could be introduced into the genomic DNA of S. cerevisiae BCRC 22743. The resulting transformants were selected to obtain transformed strains capable of using xylose and producing ethanol.

實例2 所選轉化株之木糖代謝及乙醇產生Example 2 Xylose Metabolism and Ethanol Production of Selected Transformants

根據實例1中所述之程序,自超過1,000個釀酒酵母轉化株中選擇5個能使用木糖並產生乙醇之經轉化菌株,並將其命名為釀酒酵母RG 352、釀酒酵母RG 758、釀酒酵母RG 316、釀酒酵母RG 527及釀酒酵母RG 589。在所選菌株中,釀酒酵母RG 589能在5% SX培養基中產生最高乙醇濃度(16 g/L)且達成0.21 g木糖/g生物質/小時之木糖消耗率。然而,上文所提及之結果優於菌株TMB 3001,但與 菌株TMB 3026、TMB 3057及424A(LNH-ST)無顯著差異。木糖消耗率之比較示於圖1中。 According to the procedure described in Example 1, five transformed strains capable of using xylose and producing ethanol were selected from more than 1,000 S. cerevisiae transformants, and named as Saccharomyces cerevisiae RG 352, Saccharomyces cerevisiae RG 758, Saccharomyces cerevisiae RG 316, Saccharomyces cerevisiae RG 527 and S. cerevisiae RG 589. Among the selected strains, S. cerevisiae RG 589 was able to produce the highest ethanol concentration (16 g/L) in 5% SX medium and achieve a xylose consumption rate of 0.21 g xylose/g biomass/hour. However, the results mentioned above are superior to the strain TMB 3001, but with Strains TMB 3026, TMB 3057 and 424A (LNH-ST) were not significantly different. A comparison of xylose consumption rates is shown in Figure 1.

實例3 釀酒酵母RG 589突變株之製備Example 3 Preparation of Saccharomyces Cerevisiae RG 589 Mutant

用甲磺酸乙酯(EMS)溶液將釀酒酵母RG 589細胞處理20分鐘以獲得突變株。將所得溶液離心並移除上清液。將殘留細胞沈澱塊用0.1 M磷酸鹽緩衝液(pH 6)洗滌兩次。經過適當稀釋後,將細胞接種於5% SX培養基(4.7 g/L酵母氮源基礎及50 g/L木糖)中並在30℃及200 rpm振盪下培養。若在50 g/L木糖濃度下培養之突變株可利用木糖來維持、生長、代謝並產生乙醇,則其使用木糖之能力更佳。在50 g/L木糖濃度下將突變株培養三天後,取出突變株且隨後依上文所提及之突變及培養方法進行二十次。將所得突變株平鋪於SX培養基板上以供突變株選擇。在兩天後,選擇快速生長之突變株並命名為釀酒酵母FENC-000,其寄存在德國微生物菌種寄存中心(Deutsche Sammlung von Mikroorganismen und Zellkulturen,DSMZ),寄存編號為25508。在將所選突變株用SX 5%培養基在30℃及200 rpm振盪下培養24小時後,木糖消耗率達至1.54 g木糖/g生物質/小時,其為RG 589及424A(LNH-ST)之5倍至7.14倍。結果展示於圖2中。 S. cerevisiae RG 589 cells were treated with ethyl methanesulfonate (EMS) solution for 20 minutes to obtain mutant strains. The resulting solution was centrifuged and the supernatant removed. The residual cell pellet was washed twice with 0.1 M phosphate buffer (pH 6). After appropriate dilution, the cells were seeded in 5% SX medium (4.7 g/L yeast nitrogen source base and 50 g/L xylose) and cultured at 30 ° C and shaking at 200 rpm. If the mutant strain cultured at a concentration of 50 g/L xylose can utilize xylose to maintain, grow, metabolize and produce ethanol, its ability to use xylose is better. After the mutant strain was cultured for three days at a concentration of 50 g/L xylose, the mutant strain was taken out and then subjected to the mutation and culture method mentioned above twenty times. The resulting mutants were plated on SX medium plates for selection of mutants. After two days, the rapidly growing mutant was selected and designated as Saccharomyces cerevisiae FENC-000, which was deposited at the Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ) under the accession number 25508 . After culturing the selected mutants in SX 5% medium at 30 ° C and shaking at 200 rpm for 24 hours, the xylose consumption rate reached 1.54 g xylose / g biomass / hour, which was RG 589 and 424 A (LNH- ST) is 5 times to 7.14 times. The results are shown in Figure 2.

實例4 使用釀酒酵母FENC-000之乙醇產生及比較產率Example 4 Ethanol Production and Comparative Yield Using Saccharomyces Cerevisiae FENC-000

在30℃及200 rpm振盪下用與一種或兩種碳源混合之SX培養基培養實例3中提及之釀酒酵母FENC-000(即DSMZ 25508)及實例2中提及之釀酒酵母RG 589。乙醇產率展示 於下表中。 The Saccharomyces cerevisiae FENC-000 (i.e., DSMZ 25508) mentioned in Example 3 and the S. cerevisiae RG 589 mentioned in Example 2 were cultured in SX medium mixed with one or two carbon sources at 30 ° C and shaking at 200 rpm. Ethanol yield display In the table below.

釀酒酵母FENC-000在使用50 g/L木糖時,其乙醇產率為釀酒酵母RG 589的1.3倍。對於使用兩種糖作為碳源,釀酒酵母FENC-000的乙醇產率分別為RG 589及TMB 3001的約1.394倍及2倍。 Saccharomyces cerevisiae FENC-000 had an ethanol yield of 1.3 times that of S. cerevisiae RG 589 when using 50 g/L xylose. For the use of two sugars as the carbon source, the ethanol yield of S. cerevisiae FENC-000 was about 1.394 times and 2 times that of RG 589 and TMB 3001, respectively.

圖1顯示實例2中所提及不同菌株之木糖消耗率。 Figure 1 shows the xylose consumption rates of the different strains mentioned in Example 2.

圖2顯示實例3中所提及釀酒酵母突變株之木糖消耗率。 Figure 2 shows the xylose consumption rate of the S. cerevisiae mutant strain mentioned in Example 3.

<110> 遠東新世紀股份有限公司 <110> Far East New Century Co., Ltd.

<120> 具有高木糖消耗率之分離酵母菌株及使用該菌株產生乙醇之方法 <120> Isolated yeast strain having high xylose consumption rate and method for producing ethanol using the same

<130> F00734/US2207 <130> F00734/US2207

<140> 101135655 <140> 101135655

<141> 2012/09/27 <141> 2012/09/27

<160> 10 <160> 10

<170> PatentIn version 3.5 <170> PatentIn version 3.5

<210> 1 <210> 1

<211> 37 <211> 37

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 引物 <223> Primers

<400> 1 <400> 1

<210> 2 <210> 2

<211> 46 <211> 46

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 引物 <223> Primers

<400> 2 <400> 2

<210> 3 <210> 3

<211> 30 <211> 30

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 引物 <223> Primers

<400> 3 <400> 3

<210> 4 <210> 4

<211> 38 <211> 38

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 引物 <223> Primers

<400> 4 <400> 4

<210> 5 <210> 5

<211> 39 <211> 39

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 引物 <223> Primers

<400> 5 <400> 5

<210> 6 <210> 6

<211> 46 <211> 46

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 引物 <223> Primers

<400> 6 <400> 6

<210> 7 <210> 7

<211> 29 <211> 29

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 引物 <223> Primers

<400> 7 <400> 7

<210> 8 <210> 8

<211> 39 <211> 39

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 引物 <223> Primers

<400> 8 <400> 8

<210> 9 <210> 9

<211> 37 <211> 37

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 引物 <223> Primers

<400> 9 <400> 9

<210> 10 <210> 10

<211> 61 <211> 61

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 引物 <223> Primers

<400> 10 <400> 10

Claims (12)

一種具有DSMZ寄存編號25508之釀酒酵母(Saccharomyces cerevisiae)FENC-000之分離菌株(2011年11月8日寄存於食品工業發展研究所,寄存編號為BCRC 920077)。 An isolated strain of Saccharomyces cerevisiae FENC-000 with DSMZ accession number 25508 (registered at the Food Industry Development Institute on November 8, 2011, accession number BCRC 920077). 如請求項1之分離菌株,其具有選自由以下組成之群之木糖代謝基因:木糖還原酶基因、木糖醇脫氫酶基因、木酮糖激酶基因及木糖異構酶。 The isolated strain of claim 1, which has a xylose metabolism gene selected from the group consisting of a xylose reductase gene, a xylitol dehydrogenase gene, a xylulokinase gene, and a xylose isomerase. 如請求項1之分離菌株,其係藉由以下方式獲得:選殖一或多種木糖代謝基因,將該基因轉化至宿主酵母菌株中,用誘變劑使所得菌株突變且選擇木糖消耗率高於1.1克木糖/克生物質/小時之酵母菌株。 The isolated strain of claim 1, which is obtained by selecting one or more xylose metabolism genes, transforming the gene into a host yeast strain, mutating the obtained strain with a mutagenizing agent, and selecting a xylose consumption rate. A yeast strain above 1.1 grams of xylose per gram of biomass per hour. 如請求項1之分離菌株,其可產生乙醇及以下物質中之至少一者:乳酸、乙酸、琥珀酸、丙烯酸、檸檬酸、3-羥基-丙酸、胺基酸、1,3-丙烷-二醇、乙烯、甘油、β-內醯胺抗生素及頭孢菌素。 The isolated strain of claim 1, which produces ethanol and at least one of: lactic acid, acetic acid, succinic acid, acrylic acid, citric acid, 3-hydroxy-propionic acid, amino acid, 1,3-propane- Glycol, ethylene, glycerol, beta-inactine antibiotics and cephalosporins. 一種產生乙醇之方法,其包含以下步驟:(a)在適宜發酵條件下,使用如請求項1之分離菌株使含有木糖或葡萄糖來源之培養基發酵;及(b)自該培養基回收該乙醇。 A method of producing ethanol comprising the steps of: (a) fermenting a medium containing xylose or glucose source using an isolated strain according to claim 1 under suitable fermentation conditions; and (b) recovering the ethanol from the medium. 如請求項5之方法,其中該來源係包含木糖或葡萄糖單元之碳水化合物寡聚物或聚合物。 The method of claim 5, wherein the source is a carbohydrate oligomer or polymer comprising xylose or glucose units. 如請求項5之方法,其中該碳水化合物寡聚物或聚合物係木質纖維素、木聚糖、纖維素或澱粉。 The method of claim 5, wherein the carbohydrate oligomer or polymer is lignocellulose, xylan, cellulose or starch. 如請求項5之方法,其另外產生以下物質中之至少一者:乳酸、乙酸、琥珀酸、丙烯酸、檸檬酸、3-羥基-丙 酸、胺基酸、1,3-丙烷-二醇、乙烯、甘油、β-內醯胺抗生素及頭孢菌素。 The method of claim 5, which additionally produces at least one of the following: lactic acid, acetic acid, succinic acid, acrylic acid, citric acid, 3-hydroxy-propyl Acid, amino acid, 1,3-propane-diol, ethylene, glycerol, β-indoleamine antibiotics and cephalosporins. 如請求項5之方法,其中該乙醇之生產率為至少1.0克乙醇/升/小時。 The method of claim 5, wherein the ethanol has a productivity of at least 1.0 gram of ethanol per liter per hour. 如請求項5之方法,其中該乙醇之生產率為至少1.5克乙醇/升/小時。 The method of claim 5, wherein the ethanol has a productivity of at least 1.5 grams of ethanol per liter per hour. 如請求項5之方法,其中該乙醇之生產率在約0.6克乙醇/升/小時至約2.5克乙醇/升/小時範圍內。 The method of claim 5, wherein the ethanol has a productivity in the range of from about 0.6 grams of ethanol per liter per hour to about 2.5 grams of ethanol per liter per hour. 如請求項5之方法,其中該乙醇產率為至少70%。 The method of claim 5, wherein the ethanol yield is at least 70%.
TW101135655A 2012-09-27 2012-09-27 An isolated yeast strain having high xylose consumption rate and process for production of ethanol using the strain TWI450963B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW101135655A TWI450963B (en) 2012-09-27 2012-09-27 An isolated yeast strain having high xylose consumption rate and process for production of ethanol using the strain
CN201310074168.2A CN103695329B (en) 2012-09-27 2013-03-08 Isolated yeast strains having high xylose consumption rates and methods of producing ethanol using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101135655A TWI450963B (en) 2012-09-27 2012-09-27 An isolated yeast strain having high xylose consumption rate and process for production of ethanol using the strain

Publications (2)

Publication Number Publication Date
TW201412980A true TW201412980A (en) 2014-04-01
TWI450963B TWI450963B (en) 2014-09-01

Family

ID=50356993

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101135655A TWI450963B (en) 2012-09-27 2012-09-27 An isolated yeast strain having high xylose consumption rate and process for production of ethanol using the strain

Country Status (2)

Country Link
CN (1) CN103695329B (en)
TW (1) TWI450963B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105838630A (en) * 2015-01-15 2016-08-10 远东新世纪股份有限公司 Seed medium for culturing yeast cells and use thereof
CN105802990B (en) * 2015-01-19 2020-04-07 远东新世纪股份有限公司 Recombinant saccharomycete cell and its prepn and use
CN104830705A (en) * 2015-05-08 2015-08-12 黑龙江省科学院微生物研究所 Glucose/xylose co-metabolism saccharomyces cerevisiae strain and application thereof
CN106010992B (en) * 2016-04-05 2019-06-04 西藏天虹科技股份有限责任公司 The method that saccharomyces cerevisiae and saccharomyces cerevisiae prepare succinic acid
CN106399135B (en) * 2016-08-29 2019-08-20 中国农业科学院兰州畜牧与兽药研究所 One plant height is laid eggs white yeast strain C20140911 and its breeding, cultural method and application

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI901771A (en) * 1990-04-06 1991-10-07 Valtion Teknillinen ANVAENDNING AV XYLOS HOS HYBRIDJAEST.
US5789210A (en) * 1993-11-08 1998-08-04 Purdue Research Foundation Recombinant yeasts for effective fermentation of glucose and xylose

Also Published As

Publication number Publication date
CN103695329A (en) 2014-04-02
TWI450963B (en) 2014-09-01
CN103695329B (en) 2016-04-13

Similar Documents

Publication Publication Date Title
KR101686900B1 (en) Novel Pichia kudriavzevii NG7 and use thereof
DE102008031350B4 (en) Prokaryotic xylose isomerase for the construction of xylose-fermenting yeasts
US9469858B2 (en) Sporulation-deficient thermophilic microorganisms for the production of ethanol
Behera et al. Comparative study of bio-ethanol production from mahula (Madhuca latifolia L.) flowers by Saccharomyces cerevisiae and Zymomonas mobilis
FR2968313A1 (en) PROCESS FOR PREPARING INDUSTRIAL YEAST, INDUSTRIAL YEAST AND APPLICATION TO THE PRODUCTION OF ETHANOL FROM AT LEAST ONE PENTOSE
TWI450963B (en) An isolated yeast strain having high xylose consumption rate and process for production of ethanol using the strain
CN108603186B (en) Yeast strain co-expressing exogenous saccharifying enzyme, method for obtaining yeast strain and application of yeast strain in production of bioethanol
JP5496356B2 (en) Xylitol producing strain introduced with arabinose metabolic pathway and xylitol producing method using the same
CN108064269A (en) Improve the mutation in iron-sulphur cluster protein of xylose utilization
CN111712576B (en) Microorganism strain and use thereof
JP6653659B2 (en) Pentose fermentation strains with optimized fertility
JP5813977B2 (en) Mutant yeast belonging to the genus Kluyveromyces and method for producing ethanol using the same
WO2014133668A1 (en) A butyrate producing clostridium species, clostridium pharus
US20180245034A1 (en) Biomass with bioengineered microorganism such as yeast, associated organic compounds, and related methods
Dai et al. Bioconversion of inulin to 2, 3-butanediol by a newly isolated Klebsiella pneumoniae producing inulinase
KR101230638B1 (en) Kluyveromyces marxianus having superior heat resistance and ethanol productivity
US9127323B2 (en) Isolated yeast strain having high xylose consumption rate and process for production of ethanol using the strain
US7820414B2 (en) Xylitol dehydrogenase-inactivated and arabinose reductase-inhibited mutant of Candida tropicalis, method of producing high-yield of xylitol using the same, and xylitol produced thereby
CN106795508A (en) Chimeric polyeptides with xylose isomerase activity
CA2920617A1 (en) Clostridium acetobutylicum capable of fermenting lignocellulosic hydrolysate to produce butanol
JP5649208B2 (en) Yeast fermenting ethanol from xylose
TW201249992A (en) A method for preparing a xylose-utilizing strain of Saccharomyces cerevisiae and the Saccharomyces cerevisiae
CN107400673B (en) Synechocystis PCC6803 mutant strain and application thereof
US11421201B2 (en) Biomass with bioengineered yeast, associated organic compounds, and related methods
JP5733697B2 (en) New ethanol-producing yeast