TW201408402A - Multi-component powder compaction molds and related methods - Google Patents

Multi-component powder compaction molds and related methods Download PDF

Info

Publication number
TW201408402A
TW201408402A TW102112238A TW102112238A TW201408402A TW 201408402 A TW201408402 A TW 201408402A TW 102112238 A TW102112238 A TW 102112238A TW 102112238 A TW102112238 A TW 102112238A TW 201408402 A TW201408402 A TW 201408402A
Authority
TW
Taiwan
Prior art keywords
section
cavity
orthogonal
mold
component powder
Prior art date
Application number
TW102112238A
Other languages
Chinese (zh)
Inventor
Michael R Cripps
Original Assignee
Tdy Ind Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdy Ind Llc filed Critical Tdy Ind Llc
Publication of TW201408402A publication Critical patent/TW201408402A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/03Press-moulding apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/1208Containers or coating used therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/02Dies; Inserts therefor; Mounting thereof; Moulds
    • B30B15/022Moulds for compacting material in powder, granular of pasta form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49764Method of mechanical manufacture with testing or indicating
    • Y10T29/49778Method of mechanical manufacture with testing or indicating with aligning, guiding, or instruction

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

A multi-component powder compaction mold configured for the production of cutting inserts is disclosed. A top section having a cavity wall forming a top cavity and a bottom section having a cavity wall forming a bottom cavity are stacked and aligned so that the top cavity and the bottom cavity collectively form a mold cavity. The mold cavity has a top cavity wall and a bottom cavity wall.

Description

多元件粉末壓實模及其相關方法 Multi-component powder compacting die and related method

本揭示內容係關於用於壓製冶金粉末以形成粉末壓塊用於製造切削工具刀片之模。 The present disclosure is directed to a mold for pressing a metallurgical powder to form a powder compact for use in making a cutting tool insert.

模組化切削工具係一種使用可移除地附接至工具支架之可轉位切削刀片之類型的金屬及合金切削工具。金屬及合金切削刀片通常具有單體式結構及位於不同邊角或圍繞刀片之周邊刃口之一或多個切削刃口。可轉位切削刀片機械固定至工具支架,但刀片可相對於工具支架調整及移除。可轉位切削刀片可容易地再定位(例如,轉位)以提供新切削刃口至工件或可在舉例而言切削刃口鈍化或破裂時在工具支架中更換。以此方式,可轉位刀片切削工具係包含至少一切削刀片及一工具支架之模組化切削工具總成。 The modular cutting tool is a metal and alloy cutting tool of the type that uses an indexable cutting insert that is removably attached to a tool holder. Metal and alloy cutting inserts typically have a one-piece construction and one or more cutting edges at different corners or around the perimeter of the insert. The indexable cutting insert is mechanically fixed to the tool holder, but the blade can be adjusted and removed relative to the tool holder. The indexable cutting insert can be easily repositioned (eg, indexed) to provide a new cutting edge to the workpiece or can be replaced in the tool holder when, for example, the cutting edge is passivated or broken. In this manner, the indexable insert cutting tool is a modular cutting tool assembly that includes at least one cutting insert and a tool holder.

切削刀片包含舉例而言銑刀、轉刀、鉆刀及類似刀片。切削刀片可由硬質材料諸如燒結碳化物及陶瓷製成。此等材料可使用粉末冶金技術諸如摻合、壓製及燒結處理以製作切削刀片。 Cutting inserts include, for example, milling cutters, rotary cutters, drills, and the like. The cutting insert can be made of a hard material such as cemented carbide and ceramic. Such materials may be processed using powder metallurgy techniques such as blending, pressing, and sintering to make cutting inserts.

在非限制性實施例中,揭示一種組態用於製作切削刀片之多元件粉末壓實模。多元件粉末壓實模包括頂部區段及底部區段。頂部區段包括在頂部區段中形成頂部腔之腔壁。底部區段包括在底部區段中形 成底部腔之腔壁。頂部區段及底部區段堆疊並對準使得頂部腔及底部腔共同形成包括頂部腔壁及底部腔壁之模腔。 In a non-limiting embodiment, a multi-component powder compacting die configured to make a cutting insert is disclosed. The multi-component powder compacting die includes a top section and a bottom section. The top section includes a cavity wall that forms a top cavity in the top section. The bottom section includes a shape in the bottom section The wall of the cavity into the bottom cavity. The top section and the bottom section are stacked and aligned such that the top and bottom cavities collectively form a mold cavity including a top chamber wall and a bottom chamber wall.

在另一非限制性實施例中,揭示一種組態用於製作切削刀片之多元件粉末壓實模。多元件粉末壓實模包括正交頂部區段、至少一成角度中間區段及一正交底部區段。正交頂部區段包括在正交頂部區段中形成頂部腔之正交腔壁。至少一成角度中間區段包括在成角度中間區段中形成至少一中間腔之成角度腔壁。正交底部區段包括在正交底部區段中形成底部腔之正交腔壁。正交頂部區段、至少一成角度中間區段及正交底部區段堆疊並對準使得頂部腔、至少一中間腔及底部腔共同形成包括正交頂部腔壁、至少一成角度中間腔壁及正交底部腔壁(其等在模腔中形成水平邊角交叉面)之模腔。 In another non-limiting embodiment, a multi-component powder compacting die configured to make a cutting insert is disclosed. The multi-component powder compacting die includes an orthogonal top section, at least one angled intermediate section, and an orthogonal bottom section. The orthogonal top section includes orthogonal cavity walls that form a top cavity in the orthogonal top section. The at least one angled intermediate section includes an angled cavity wall forming at least one intermediate cavity in the angled intermediate section. The orthogonal bottom section includes orthogonal cavity walls that form a bottom cavity in the orthogonal bottom section. The orthogonal top section, the at least one angled intermediate section, and the orthogonal bottom section are stacked and aligned such that the top cavity, the at least one intermediate cavity, and the bottom cavity together form an orthogonal top cavity wall, at least one angled intermediate cavity wall And a cavity of the orthogonal bottom cavity wall (which forms a horizontal corner intersection in the cavity).

在另一非限制性實施例中,揭示一種用於製作多元件粉末壓實模之過程。工件使用線性材料切削技術切削以形成正交頂部區段,該正交頂部區段包括在頂部區段中形成正交頂部腔之正交腔壁。工件使用線性材料切削技術切削以形成成角度中間區段,該成角度中間區段包括在成角度中間區段中形成至少一成角度中間腔之成角度腔壁。工件使用線性材料切削技術切削以形成正交底部區段,該正交底部區段包括在底部區段中形成正交底部腔之正交腔壁。正交頂部區段、成角度中間區段及正交底部區段堆疊並對準,使得頂部腔、至少一中間腔及底部腔共同形成包括正交頂部腔壁、成角度中間腔壁及正交底部腔壁(其等在模腔中形成水平邊角交叉面)之模腔。正交頂部區段、成角度中間區段及正交底部區段接合以形成多元件粉末壓實模。 In another non-limiting embodiment, a process for making a multi-component powder compaction mold is disclosed. The workpiece is cut using a linear material cutting technique to form an orthogonal top section that includes orthogonal cavity walls that form orthogonal top cavities in the top section. The workpiece is cut using a linear material cutting technique to form an angled intermediate section that includes angled cavity walls that form at least one angled intermediate cavity in the angled intermediate section. The workpiece is cut using a linear material cutting technique to form an orthogonal bottom section that includes orthogonal cavity walls that form orthogonal bottom cavities in the bottom section. The orthogonal top section, the angled intermediate section, and the orthogonal bottom section are stacked and aligned such that the top cavity, the at least one intermediate cavity, and the bottom cavity together form an orthogonal top cavity wall, an angled intermediate cavity wall, and an orthogonal A cavity of the bottom chamber wall (which forms a horizontal corner intersection in the cavity). The orthogonal top section, the angled intermediate section, and the orthogonal bottom section are joined to form a multi-element powder compaction mold.

應瞭解本說明書所揭示及描述之本發明不限於本發明內容中總結之實施例。 It is to be understood that the invention disclosed and described herein is not limited to the embodiments of the invention.

10‧‧‧雕模EDM電極 10‧‧‧EDM electrode

12‧‧‧水平邊角交叉面 12‧‧‧ horizontal corner intersection

14‧‧‧邊角交叉面/圓形水平邊角 14‧‧‧Face intersection / round horizontal corner

16‧‧‧邊角交叉面 16‧‧‧ corner intersection

20‧‧‧工件 20‧‧‧Workpiece

20'‧‧‧單塊粉末壓實模 20'‧‧‧Single powder compaction mould

21‧‧‧模腔 21‧‧‧ cavity

22‧‧‧圓形水平邊角交叉面 22‧‧‧Circular horizontal corner intersection

23‧‧‧上腔壁 23‧‧‧Upper wall

23'‧‧‧上腔壁 23'‧‧‧ upper wall

24‧‧‧圓形水平邊角交叉面 24‧‧‧Circular horizontal corner intersection

24'‧‧‧尖銳水平邊角 24'‧‧‧ sharp horizontal corners

25‧‧‧中間腔壁 25‧‧‧Intermediate cavity wall

25'‧‧‧中間腔壁 25'‧‧‧Intermediate cavity wall

26‧‧‧圓形水平邊角交叉面 26‧‧‧Circular horizontal corner intersection

26'‧‧‧尖銳水平邊角 26'‧‧‧ sharp horizontal corners

27‧‧‧下腔壁 27‧‧‧ lower wall

27'‧‧‧下腔壁 27'‧‧‧ lower wall

30‧‧‧雕模EDM電極 30‧‧‧EDM electrode

36‧‧‧水平邊角交叉面 36‧‧‧ horizontal corner intersection

40‧‧‧工件 40‧‧‧Workpiece

40'‧‧‧單塊粉末壓實模 40'‧‧‧Single powder compaction mould

41‧‧‧預形成腔 41‧‧‧Preformed cavity

41'‧‧‧模腔 41'‧‧‧ cavity

43‧‧‧上腔壁 43‧‧‧ upper wall

45‧‧‧中間腔壁 45‧‧‧Intermediate cavity wall

46‧‧‧圓形水平邊角 46‧‧‧Circular horizontal corners

47‧‧‧腔壁 47‧‧‧ cavity wall

50‧‧‧中間區段 50‧‧‧middle section

51‧‧‧頂部表面 51‧‧‧ top surface

52‧‧‧對準孔 52‧‧‧ Alignment holes

53‧‧‧底部表面 53‧‧‧ bottom surface

55‧‧‧成角度腔壁 55‧‧‧An angled cavity wall

58‧‧‧部分 58‧‧‧Parts

59‧‧‧大致正方形腔 59‧‧‧Basic square cavity

60‧‧‧線狀電極 60‧‧‧Linear electrode

61‧‧‧滑輪 61‧‧‧ pulley

70‧‧‧頂部或底部區段 70‧‧‧Top or bottom section

71‧‧‧頂部表面 71‧‧‧ top surface

72‧‧‧對準孔 72‧‧‧ Alignment holes

73‧‧‧底部表面 73‧‧‧ bottom surface

75‧‧‧正交腔壁 75‧‧‧Orthogonal cavity wall

78‧‧‧部分 78‧‧‧Parts

80‧‧‧線狀電極 80‧‧‧Linear electrode

81‧‧‧滑輪 81‧‧‧ pulley

100‧‧‧多元件粉末壓實模 100‧‧‧Multi-component powder compaction mould

105‧‧‧對準孔 105‧‧‧ Alignment holes

105a‧‧‧對準孔 105a‧‧‧ Alignment hole

105b‧‧‧對準孔 105b‧‧‧ Alignment holes

105c‧‧‧對準孔 105c‧‧‧ Alignment hole

110‧‧‧模腔 110‧‧‧ cavity

110a‧‧‧腔/頂部腔 110a‧‧‧ cavity/top cavity

110b‧‧‧腔/中間腔 110b‧‧‧ cavity/intermediate cavity

110c‧‧‧腔/底部腔 110c‧‧‧ cavity/bottom cavity

130‧‧‧頂部區段 130‧‧‧Top section

131‧‧‧頂部表面 131‧‧‧ top surface

133‧‧‧底部表面 133‧‧‧ bottom surface

135‧‧‧腔壁 135‧‧‧ cavity wall

150‧‧‧中間區段 150‧‧‧middle section

151‧‧‧頂部表面 151‧‧‧ top surface

153‧‧‧底部表面 153‧‧‧ bottom surface

155‧‧‧腔壁 155‧‧‧ cavity wall

170‧‧‧底部區段 170‧‧‧ bottom section

171‧‧‧頂部表面 171‧‧‧ top surface

173‧‧‧底部表面 173‧‧‧ bottom surface

175‧‧‧腔壁 175‧‧‧ cavity wall

200‧‧‧多元件粉末壓實模 200‧‧‧Multi-component powder compaction mould

210‧‧‧圓形模腔 210‧‧‧Circular cavity

230‧‧‧正交頂部區段 230‧‧‧Orthogonal top section

235‧‧‧正交腔壁 235‧‧‧Orthogonal cavity wall

250‧‧‧成角度中間區段 250‧‧‧Angle intermediate section

255‧‧‧成角度腔壁 255‧‧‧An angled cavity wall

270‧‧‧正交底部區段 270‧‧‧Orthogonal bottom section

275‧‧‧正交腔壁 275‧‧‧Orthogonal cavity wall

300‧‧‧多元件粉末壓實模 300‧‧‧Multi-component powder compaction mould

305‧‧‧對準孔 305‧‧‧ Aligned holes

310‧‧‧模腔 310‧‧‧ cavity

330‧‧‧正交頂部區段 330‧‧‧Orthogonal top section

350‧‧‧成角度中間區段 350‧‧‧Angle intermediate section

370‧‧‧正交底部區段 370‧‧‧Orthogonal bottom section

390‧‧‧互相輪廓化底部及頂部表面 390‧‧‧Contouring the bottom and top surfaces

400‧‧‧多元件粉末壓實模 400‧‧‧Multi-component powder compaction mould

410‧‧‧模腔 410‧‧‧ cavity

430‧‧‧正交頂部區段 430‧‧‧Orthogonal top section

435‧‧‧正交模腔 435‧‧‧Orthogonal cavity

450a‧‧‧上成角度中間區段 450a‧‧‧Upper angle intermediate section

450b‧‧‧下成角度中間區段 450b‧‧‧ Lower angle intermediate section

455a‧‧‧上成角度腔壁 455a‧‧‧Upper angled wall

455b‧‧‧下成角度腔壁 455b‧‧‧An angled cavity wall

470‧‧‧正交底部區段 470‧‧‧Orthogonal bottom section

475‧‧‧正交腔壁 475‧‧‧Orthogonal cavity wall

500‧‧‧多元件粉末壓實模 500‧‧‧Multi-component powder compaction mould

510‧‧‧模腔 510‧‧‧ cavity

530‧‧‧成角度頂部區段 530‧‧‧ Angled top section

535‧‧‧成角度腔壁 535‧‧‧An angled cavity wall

570‧‧‧正交底部區段 570‧‧‧Orthogonal bottom section

575‧‧‧正交腔壁 575‧‧‧Orthogonal cavity wall

600‧‧‧多元件粉末壓實模 600‧‧‧Multi-component powder compaction mould

610‧‧‧模腔 610‧‧‧ cavity

630‧‧‧正交頂部區段 630‧‧‧Orthogonal top section

650‧‧‧成角度中間區段 650‧‧‧Angle intermediate section

670‧‧‧正交底部區段 670‧‧‧Orthogonal bottom section

700‧‧‧多元件粉末壓實模 700‧‧‧Multi-component powder compaction mould

710‧‧‧上壓製沖頭 710‧‧‧Suppressed punch

711‧‧‧箭頭 711‧‧‧ arrow

715‧‧‧模芯總成 715‧‧‧ core assembly

720‧‧‧下壓製沖頭 720‧‧‧ Pressing punch

721‧‧‧箭頭 721‧‧‧ arrow

750‧‧‧冶金粉末 750‧‧‧metallurgical powder

800‧‧‧切削刀片粉末壓塊 800‧‧‧Cutting blade powder compact

800'‧‧‧切削刀片粉末壓塊 800'‧‧‧Cutting blade powder compact

810‧‧‧通孔 810‧‧‧through hole

810'‧‧‧通孔 810'‧‧‧through hole

900‧‧‧多元件粉末壓實模 900‧‧‧Multi-component powder compaction mould

910‧‧‧上壓製沖頭 910‧‧‧Upper punch

915‧‧‧模芯總成 915‧‧‧ core assembly

920‧‧‧下壓製沖頭 920‧‧‧ Pressing punch

1000‧‧‧切削刀片粉末壓塊 1000‧‧‧Cutting blade powder compact

1000'‧‧‧切削刀片粉末壓塊 1000'‧‧‧Cutting blade powder compact

本說明中所揭示及描述之非限制及非徹底詳盡實施例之不同特 徵及特性可參考附圖更好地理解,其中:圖1A至圖1F係繪示使用雕模放電加工之單塊粉末壓實模之製作之示意圖;圖2A及圖2B係圖1F所示之單塊粉末壓實模之圓形邊角交叉面之放大圖;圖3A至圖3E係繪示使用雕模放電加工之單塊粉末壓實模之製作之示意圖;圖4A至圖4D係繪示使用線切割放電加工之多元件粉末壓實模之成角度中間區段之製作之示意圖;圖5A及圖5B係繪示使用線切割放電加工之多元件粉末壓實模之正交頂部區段之製作之示意圖;圖6A係包括正交頂部區段、成角度中間區段及正交底部區段之多元件粉末壓實模之透視圖,其中模腔包括大致正方形周邊形狀;圖6B係圖6A所示之多元件粉末壓實模之截面透視圖;圖6C係圖6A及圖6B所示之多元件粉末壓實模之側截面圖;圖6D係繪示圖6A至圖6C所示之多元件粉末壓實模相對於模之壓製軸及壓製平面之定向之示意圖;圖7係圖6A、圖6B及圖6C所示之多元件粉末壓實模之展開透視圖;圖8係圖6A、圖6B及圖6C及圖7所示之多元件粉末壓實模之展開側視截面圖;圖9A係包括正交頂部區段、成角度中間區段及正交底部區段之多元件粉末壓實模之透視圖,其中模腔包括大致圓形周邊形狀;圖9B係圖9A所示之多元件粉末壓實模之截面透視圖;圖10A係包括正交頂部區段、成角度中間區段及正交底部截面之多元件粉末壓實模之透視圖,其中模腔包括大致正方形周邊形狀,及其中中間區段之頂部表面及頂部區段之底部表面互相輪廓化;圖10B係圖10A所示之多元件粉末壓實模之截面透視圖; 圖11A係包括正交頂部區段、兩個成角度中間區段及正交底部區段之多元件粉末壓實模之透視圖,其中模腔包括大致正方形周邊形狀;圖11B係圖11A所示之多元件粉末壓實模之截面透視圖;圖11C係圖11A及圖11B所示之多元件粉末壓實模之側截面圖;圖12A係包括成角度頂部區段及正交底部區段之多元件粉末壓實模之透視圖,其中模腔包括大致正方形周邊形狀;圖12B係圖12A所示之多元件粉末壓實模之截面透視圖;圖12C係圖12A及圖12B所示之多元件粉末壓實模之側截面圖;圖13係包括正交頂部區段、成角度中間區段及正交底部區段之多元件粉末壓實模之透視圖,其中模包括複數個模腔且其中模腔包括大致正方形周邊形狀;圖14A至圖14C係繪示使用包括正交頂部區段、成角度中間區段及正交底部區段之多元件粉末壓實模製作切削刀片粉末壓塊之示意圖;圖15A係根據圖14A至圖14C所示之製程製作之大致正方形切削刀片粉末壓塊之透視圖;圖15B係根據圖14A至圖14C所示之製程製作之大致圓形切削刀片粉末壓塊之透視圖;圖16係繪示使用包括正交頂部區段、兩個成角度中間區段及正交底部區段之多元件粉末壓實模製作切削刀片粉末壓塊之示意圖;圖17A係根據圖16所示之製程製作之大致正方形切削刀片粉末壓塊之透視圖;及圖17B係根據圖16所示之製程製作之大致圓形切削刀片粉末壓塊之透視圖;讀者在考慮根據本說明書之不同非限制及非徹底詳盡實施例之下列詳細描述後將瞭解上述細節以及其他內容。 The non-limiting and non-exhaustive detailed embodiments disclosed and described in this specification are different. The characteristics of the engraving can be better understood with reference to the accompanying drawings, wherein: FIG. 1A to FIG. 1F are schematic diagrams showing the fabrication of a monolithic powder compacting mold using a die-discharge machining; FIG. 2A and FIG. FIG. 3A to FIG. 3E are schematic diagrams showing the fabrication of a monolithic powder compacting die using a die-cutting electrical discharge; FIG. 4A to FIG. Schematic diagram of the fabrication of an angled intermediate section of a multi-component powder compaction die using wire-cut electrical discharge machining; FIGS. 5A and 5B illustrate the orthogonal top section of a multi-component powder compaction die using wire-cut electrical discharge machining Figure 6A is a perspective view of a multi-component powder compaction mold comprising orthogonal top sections, angled intermediate sections and orthogonal bottom sections, wherein the mold cavity comprises a substantially square perimeter shape; Figure 6B is a Figure 6A FIG. 6C is a side cross-sectional view of the multi-component powder compacting mold shown in FIGS. 6A and 6B; FIG. 6D is a cross-sectional view showing the multi-component powder compacting mold shown in FIG. 6A to FIG. Schematic diagram of the orientation of the compaction die of the powder relative to the pressing axis and the pressing plane of the die Figure 7 is a perspective view of the multi-component powder compacting mold shown in Figures 6A, 6B and 6C; Figure 8 is a multi-component powder compacting mold shown in Figures 6A, 6B and 6C and Figure 7. FIG. 9A is a perspective view of a multi-component powder compacting mold including an orthogonal top section, an angled intermediate section, and an orthogonal bottom section, wherein the mold cavity includes a substantially circular peripheral shape; 9B is a cross-sectional perspective view of the multi-component powder compacting mold shown in FIG. 9A; FIG. 10A is a perspective view of a multi-component powder compacting mold including an orthogonal top section, an angled intermediate section, and an orthogonal bottom section, wherein The mold cavity includes a substantially square peripheral shape, and a top surface of the middle section and a bottom surface of the top section are contoured to each other; FIG. 10B is a cross-sectional perspective view of the multi-component powder compacting mold shown in FIG. 10A; Figure 11A is a perspective view of a multi-element powder compaction mold comprising orthogonal top sections, two angled intermediate sections and orthogonal bottom sections, wherein the mold cavity comprises a generally square perimeter shape; Figure 11B is shown in Figure 11A. FIG. 11C is a side cross-sectional view of the multi-component powder compacting mold shown in FIGS. 11A and 11B; FIG. 12A includes an angled top section and an orthogonal bottom section. A perspective view of a multi-component powder compacting mold in which a cavity includes a substantially square peripheral shape; FIG. 12B is a cross-sectional perspective view of the multi-component powder compacting mold shown in FIG. 12A; and FIG. 12C is a multi-component shown in FIGS. 12A and 12B. A side cross-sectional view of a powder compacting die; FIG. 13 is a perspective view of a multi-component powder compacting die including an orthogonal top section, an angled intermediate section, and an orthogonal bottom section, wherein the mold includes a plurality of mold cavities Wherein the cavity comprises a substantially square perimeter shape; and FIGS. 14A-14C illustrate the use of a multi-component powder compaction die comprising an orthogonal top section, an angled intermediate section and an orthogonal bottom section to produce a cutting insert powder compact. Schematic; Figure 15A is based on Figure 14 A perspective view of a substantially square cutting insert powder compact produced by the process shown in FIG. 14C; FIG. 15B is a perspective view of a substantially circular cutting insert powder compact produced according to the process illustrated in FIGS. 14A to 14C; FIG. A schematic diagram of making a cutting insert powder compact using a multi-component powder compacting mold comprising an orthogonal top section, two angled intermediate sections and an orthogonal bottom section; FIG. 17A is a process according to FIG. A perspective view of a substantially square cutting insert powder compact produced; and FIG. 17B is a perspective view of a substantially circular cutting insert powder compact produced in accordance with the process illustrated in FIG. 16; the reader is considering different non-limiting and non-limiting aspects in accordance with the present specification. The above details and others will be apparent from the following detailed description of the embodiments.

在本說明書中描述並繪示不同實施例以提供所揭示之多元件粉末壓實模之結構、功能、操作、製造及使用之總體理解。應瞭解本說 明書所述及所示之不同實施例係非限制且非徹底詳盡的。因此,本發明不一定受限於本說明書中所揭示之不同非限制及非徹底詳盡實施例之描述。結合不同實施例所示及/或所述之特徵及特性可結合其他實施例之特徵及特性。此等修改及變型旨在包含在本說明書之範疇內。因而,申請專利範圍可修改以引述本說明書中明確或內在描述或另外由本說明書明確或內在支援之任意特徵或特性。此外,申請者保留修改申請專利範圍以肯定放棄先前技術中可能存在之特徵或特性之權利。因此,任意此等修改符合35 U.S.C.§112,第一段及35 U.S.C.§132(a)之規定。本說明書所示及所述之不同實施例可包括如本文不同地描述之特徵及特性、由其組成或實質由其組成。 Various embodiments are described and illustrated in this specification to provide a general understanding of the structure, function, operation, manufacture and use of the disclosed multi-component powder compaction mold. Should understand this statement The various embodiments described and illustrated in the specification are non-limiting and not exhaustive. Therefore, the present invention is not necessarily limited to the description of the various non-limiting and non-exhaustive embodiments disclosed herein. Features and characteristics shown and/or described in connection with the various embodiments may be combined with features and characteristics of other embodiments. Such modifications and variations are intended to be included within the scope of the present specification. Accordingly, the scope of the patent application may be modified to cite any feature or characteristic that is explicitly or in the nature of the description or otherwise. In addition, the Applicant reserves the right to modify the scope of the patent application to abandon the rights or features that may exist in the prior art. Therefore, any such modifications are in accordance with 35 U.S.C. § 112, paragraph 1 and 35 U.S.C. § 132(a). The various embodiments shown and described herein may comprise, consist of, or consist essentially of the features and characteristics as described herein.

本文指定之任意專利、公開案或其他揭示材料之全文除非另有指定均以引用的方式併入本說明書中,但僅是在併入材料不與本說明書明確陳述之現有描述、定義、說明或其他揭示材料衝突的前提下。因而且在所需範圍內,如本說明書中陳述之明確揭示內容取代以引用的方式併入本文中之任意衝突材料。所謂以引用的方式併入本說明書中但與本文陳述之現有定義、說明或其他揭示材料衝突之任意材料或其部分僅在併入材料與現有揭示材料之間不出現衝突之情況下併入。申請者保留修改本說明書以明確引述以引用的方式併入本文中之任意標的或其部分之權利。 The entire disclosure of any patents, publications, or other disclosures herein is hereby incorporated by reference in its entirety in the specification, unless Other disclosures reveal material conflicts. Thus, and to the extent required, the explicit disclosure as set forth in this specification is inferr Any material or portion thereof that is incorporated herein by reference to the present disclosure, which is inconsistent with the existing definitions, descriptions, or other disclosures disclosed herein, is only incorporated in the context of the incorporation of the material and the present disclosure. Applicants reserve the right to modify this specification to explicitly recite any subject matter or portions thereof incorporated herein by reference.

除非另有指示,如本說明書中所使用之語法冠詞「一個」、「一(a)」、「一(an)」及「該」旨在包含「至少一」或「一或多個」。因此,冠詞在本說明書中用於指一個或超過一個(即,「至少一」)冠詞之語法對象。舉例而言,「組件」指的是一或多個組件及因此可能超過一個組件予以考量且可利用於或用於所述實施例之實施方案。此外,單數名詞之使用包含複數個且複數名詞之使用包含單數,除非使用背景另有要求。 The syllabuses "a", "a", "an" and "the" are used to include "at least one" or "one or more". Therefore, articles are used in this specification to refer to one or more than one (ie, "at least one") grammatical object. For example, a "component" refers to one or more components and thus may be considered in excess of one component and may be utilized or used in embodiments of the embodiments. In addition, the use of singular nouns includes the plural and the use of plural nouns includes the singular unless the context requires otherwise.

切削刀片可使用粉末冶金技術製造,諸如粉末化金屬之摻合、壓製及燒結。舉例而言,燒結碳化物切削刀片(例如,其包括碳化鎢硬粒子及鈷基黏合劑)可藉由以下製造:摻合金屬碳化物粉末及金屬黏合劑粉末、在模中壓製經摻合之冶金粉末以形成切削刀片形狀之粉末壓塊,及燒結粉末壓塊以使複合材料密實為燒結碳化物切削刀片。在此等製程中,將冶金粉末壓製為粉末壓塊可為近凈成形操作,其中模腔及壓製沖頭之幾何形狀必須密切配合所製作之切削刀片之最終幾何形狀。因此,重要的是用於製作切削刀片之粉末壓實模具有準確及精確的幾何形狀及結構特徵,此係因為任意結構或幾何偏差或不一致可從模腔轉移至經壓製的粉末壓塊及經燒結的切削刀片。 The cutting insert can be manufactured using powder metallurgy techniques such as blending, pressing and sintering of powdered metal. For example, a cemented carbide cutting insert (eg, which includes tungsten carbide hard particles and a cobalt-based binder) can be made by blending a metal carbide powder and a metal binder powder, and pressing the blend in a mold. The metallurgical powder forms a powder compact of the shape of the cutting insert, and the powder compact is sintered to compact the composite into a cemented carbide cutting insert. In such processes, pressing the metallurgical powder into a powder compact can be a near net forming operation in which the geometry of the cavity and the press punch must closely match the final geometry of the fabricated cutting insert. Therefore, it is important that the powder compacting die used to make the cutting insert has accurate and precise geometric and structural features that can be transferred from the mold cavity to the pressed powder compact and by any structural or geometrical deviations or inconsistencies. Sintered cutting inserts.

用於製作切削刀片之粉末壓實模之製造因此在給定模腔之幾何形狀及結構準確度及精確度之重要性的情況下很重要。一種製作粉末壓實模之方法包括使用雕模放電加工(EDM),其亦被稱作刻模EDM、柱塞EDM或沖柱EDM。 The manufacture of powder compacting dies for making cutting inserts is therefore important given the importance of the geometry and structural accuracy and precision of the mold cavity. One method of making a powder compaction die involves the use of EDM, also referred to as a die EDM, a plunger EDM, or a punch EDM.

放電加工以電火花腐蝕原理運作,其中工件材料被電極與工件之間之放電腐蝕掉。在EDM運作中,電源提供電流使得大電壓施加在固持為相反極性之電極與工件之間。電極及工件被帶至緊鄰,但分開達小間隙,該間隙填充介電流體。介電流體充當絕緣材料,其分別允許電極及工件之表面上之相反極性之電荷之累積。當在電極與工件之間出現足夠電壓時,介電流體分解並離子化,藉此形成穿過電極與工件之間之間隙之電漿通道。累積之電荷快速放電穿過離子化電漿通道,形成電極與工件之間之電火花及產生大量熱,其熔化並汽化構成工件之材料。以此方式,電火花腐蝕用於在維持電極與工件之間之間隙(其為防止短路所需)的同時加工工件。Elman C.Jameson,Electrical Discharge Machining,Society of Manufacturing Engineers(SME),2001更詳細地描述放電加工,該案以引用的方式併入本說明書中。 The electrical discharge machining operates on the principle of spark erosion, in which the workpiece material is corroded by the discharge between the electrode and the workpiece. In EDM operation, the power supply provides current such that a large voltage is applied between the electrode and the workpiece held in opposite polarity. The electrodes and the workpiece are brought in close proximity, but separated by a small gap that fills the dielectric fluid. The dielectric fluid acts as an insulating material that allows for the accumulation of opposite polarity charges on the electrodes and the surface of the workpiece, respectively. When a sufficient voltage appears between the electrode and the workpiece, the dielectric fluid decomposes and ionizes, thereby forming a plasma passage through the gap between the electrode and the workpiece. The accumulated charge rapidly discharges through the ionized plasma channel, creating an electrical spark between the electrode and the workpiece and generating a large amount of heat that melts and vaporizes the material that makes up the workpiece. In this way, spark erosion is used to machine the workpiece while maintaining a gap between the electrode and the workpiece that is needed to prevent shorting. Electrical discharge machining is described in more detail by Elman C. Jameson, Electrical Discharge Machining , Society of Manufacturing Engineers (SME), 2001, which is incorporated herein by reference.

EDM技術包含雕模EDM、線切割EDM(亦被稱作線切EDM及線切削)及小孔EDM打孔。雕模EDM涉及使用預成形電極以在工件中形成盲腔或穿孔腔。雕模EDM電極預成形為具有對應於將加工至工件中之腔之形狀之幾何形狀及尺寸。運作時,電腦數控(CNC)系統推進雕模電極進入工件,維持所需間隙並根據工作週期循環電功率。循環電功率在工作週期開啟時間期間沿著形成電極之表面產生電火花,其相應地腐蝕工件之表面,藉此將電極之幾何形狀轉移至工件中。流通介電流體在工作週期之關閉時間期間將經腐蝕材料從電極與工件之間之間隙中沖洗掉。 EDM technology includes die-cut EDM, wire-cut EDM (also known as wire-cut EDM and wire cutting) and small hole EDM punching. Engraving EDM involves the use of preformed electrodes to form a blind or perforated cavity in a workpiece. The EDM electrode is preformed to have a geometry and size corresponding to the shape of the cavity to be machined into the workpiece. In operation, a computer numerical control (CNC) system advances the die electrode into the workpiece, maintaining the required clearance and circulating the electrical power according to the duty cycle. The circulating electrical power creates an electrical spark along the surface forming the electrode during the duty cycle on time, which corrodes the surface of the workpiece accordingly, thereby transferring the geometry of the electrode into the workpiece. The flowing dielectric fluid purges the corroded material from the gap between the electrode and the workpiece during the off time of the duty cycle.

EDM中之電極及工件兩者必須導電以創建導致介電擊穿、離子化、發火花及腐蝕之所需電壓。包括任意導電金屬、合金、燒結碳化物或其他材料之工件可使用EDM加工。雕模EDM電極大致由石墨、鎢、銅鎢或碳化鎢製成。不管構建材料,所有EDM電極在EDM操作期間展現大量腐蝕。最大量的電極腐蝕發生在電極表面之邊角交叉面上,此係因為火花密度歸因於邊角交叉面附近之較大工件面積而較大。雕模EDM電極之腐蝕改變電極之幾何形狀,其接著導致轉移至工件中所加工之腔中之幾何形狀之偏差及不一致。 Both the electrode and the workpiece in the EDM must be electrically conductive to create the voltage required to cause dielectric breakdown, ionization, sparking, and corrosion. Workpieces including any conductive metal, alloy, cemented carbide or other material can be processed using EDM. The EDM electrode is roughly made of graphite, tungsten, copper tungsten or tungsten carbide. Regardless of the build material, all EDM electrodes exhibited substantial corrosion during EDM operation. The maximum amount of electrode corrosion occurs at the corner intersections of the electrode surfaces because the spark density is large due to the large workpiece area near the corner intersection. Corrosion of the EDM electrode of the stencil changes the geometry of the electrode, which in turn causes deviations and inconsistencies in the geometry transferred into the cavity machined in the workpiece.

雕模EDM電極之腐蝕可能在用於製作切削刀片之粉末壓實模之製造中特別有問題,此係因為從經腐蝕電極轉移至模腔之結構或幾何形狀偏差及不一致接著從經壓製粉末壓塊轉移至經燒結切削刀片。模腔之結構或幾何形狀偏差亦可能抑制壓製沖頭之動作有效進入模腔並壓實冶金粉末。此可能特別有問題,因為將冶金粉末壓製為粉末壓塊可為近凈成形操作,其中模腔及模沖頭之幾何形狀必須密切配合所製作之切削刀片之最終幾何形狀。 Corrosion of the EDM electrode of the stencil may be particularly problematic in the manufacture of powder compacting dies for making cutting inserts due to structural or geometrical deviations and inconsistencies transferred from the etched electrode to the mold cavity followed by pressing of the pressed powder The block is transferred to a sintered cutting insert. The structural or geometrical deviation of the cavity may also inhibit the action of the pressing punch from effectively entering the cavity and compacting the metallurgical powder. This can be particularly problematic because pressing the metallurgical powder into a powder compact can be a near net forming operation in which the geometry of the cavity and die punch must closely match the final geometry of the fabricated cutting insert.

舉例而言,圖1A至圖1F繪示使用雕模EDM之單塊粉末壓實模之製作。如本文中所使用,術語「單塊」指的是與由多個分立組件裝配相 比由單片材料製成或形成。雕模EDM電極10包括將形成在工件20中以製作用於製作切削刀片之單塊粉末壓實模之模腔之幾何形狀。當雕模EDM電極10行進至工件20中時,電極10之表面與工件20之表面之間之電火花腐蝕加工工件並將電極10之幾何形狀轉移至工件20中。雕模EDM電極10亦在電火花腐蝕期間,尤其在電極10之水平邊角交叉面12上腐蝕,其中邊角係圓的,藉此在工件20中製作圓形水平邊角交叉面22。 For example, FIGS. 1A-1F illustrate the fabrication of a monolithic powder compacting die using a stencil EDM. As used herein, the term "monolithic" refers to assembly with multiple discrete components. Made or formed from a single piece of material. The stenciled EDM electrode 10 includes a geometry that will be formed in the workpiece 20 to create a mold cavity for the monolithic compaction mold used to make the cutting insert. As the EDM electrode 10 travels into the workpiece 20, spark erosion between the surface of the electrode 10 and the surface of the workpiece 20 etches the workpiece and transfers the geometry of the electrode 10 into the workpiece 20. The stenciled EDM electrode 10 is also etched during spark erosion, particularly at the horizontal corner intersection 12 of the electrode 10, wherein the corners are rounded, thereby forming a circular horizontal corner intersection 22 in the workpiece 20.

參考圖1C及圖1D,當雕模EDM電極10進一步行進至工件20中以製作相應成形之模腔時,電極10繼續在水平邊角交叉面12上腐蝕(製作圓形水平邊角交叉面22)且亦在水平邊角交叉面14上腐蝕(製作圓形水平邊角14),其透過電火花腐蝕過程轉移至工件,藉此形成圓形水平邊角交叉面24。參考圖1E,當電極10完全行進至工件20中時,電極10之邊角交叉面14及16上之腐蝕已在工件20中製作圓形水平邊角交叉面24及26。 Referring to FIGS. 1C and 1D, when the EDM electrode 10 is further advanced into the workpiece 20 to form a correspondingly formed cavity, the electrode 10 continues to erode on the horizontal corner intersection 12 (making a circular horizontal corner intersection 22 And also etched on the horizontal corner intersection 14 (making a circular horizontal corner 14) which is transferred to the workpiece by a spark erosion process, thereby forming a circular horizontal corner intersection 24. Referring to FIG. 1E, as the electrode 10 is fully advanced into the workpiece 20, corrosion on the corner intersections 14 and 16 of the electrode 10 has created circular horizontal corner intersections 24 and 26 in the workpiece 20.

圖1F繪示使用如圖1A至圖1E所示之雕模EDM製作之單塊粉末壓實模20'。單塊粉末壓實模20'包括模腔21,其包括上腔壁23、中間腔壁25及下腔壁27。腔壁23及27將允許壓製沖頭進入模20'且腔壁25將形成由模20'中壓製之粉末壓塊燒結之切削刀片之周邊表面。上腔壁23藉由圓形水平邊角26與中間腔壁25分開,如圖2A所示,其繪示由圖1F中之圓圈A所示之圓形水平邊角之放大圖。下腔壁27藉由圓形水平邊角26與中間腔壁25分開,如圖2B所示,其繪示由圖1F中之圓圈B所示之圓形水平邊角之放大圖。 FIG. 1F illustrates a monolithic powder compacting die 20' fabricated using a die EDM as shown in FIGS. 1A-1E. The monolithic compaction mold 20' includes a mold cavity 21 that includes an upper chamber wall 23, an intermediate chamber wall 25, and a lower chamber wall 27. The cavity walls 23 and 27 will allow the pressing punch to enter the die 20' and the cavity wall 25 will form the peripheral surface of the cutting insert sintered by the compacted compact of the die 20'. The upper chamber wall 23 is separated from the intermediate chamber wall 25 by a circular horizontal corner 26, as shown in Fig. 2A, which is an enlarged view of the circular horizontal corner shown by circle A in Fig. 1F. The lower chamber wall 27 is separated from the intermediate chamber wall 25 by a circular horizontal corner 26, as shown in Fig. 2B, which is an enlarged view of the circular horizontal corner shown by circle B in Fig. 1F.

用於形成模腔21之雕模EDM電極10之邊角腐蝕製作圓形水平邊角24及26。參考圖2A,在沒有電極的邊角腐蝕的情況下,模腔21將包括形成在上腔壁23'與中間腔壁25'之交叉面上之尖銳水平邊角26'。參考圖2B,在沒有電極的邊角腐蝕的情況下,模腔21將包括形成在下腔 壁27'與中間腔壁25'之交叉面上之尖銳水平邊角24'。 The corners of the EDM electrode 10 for forming the cavity 21 are corroded to form circular horizontal corners 24 and 26. Referring to Figure 2A, in the absence of corner erosion of the electrodes, the mold cavity 21 will include sharp horizontal corners 26' formed on the intersection of the upper chamber wall 23' and the intermediate chamber wall 25'. Referring to FIG. 2B, in the absence of edge etching of the electrode, the cavity 21 will be formed in the lower cavity. A sharp horizontal corner 24' of the intersection of the wall 27' and the intermediate cavity wall 25'.

圖3A至圖3D繪示使用修改之雕模EDM過程之單塊粉末壓實模之製作。雕模EDM電極30部分包括將形成在工件40中以製作用於製作切削刀片之單塊粉末壓實模之模腔之幾何形狀。工件40包括橫跨工件之厚度之預形成腔41。預形成腔41包括將形成在工件40中之模腔之周邊形狀且可使用線性材料切削技術(舉例而言,諸如線切割EDM、雷射切削或水射流切削)預切為工件。 3A-3D illustrate the fabrication of a monolithic compaction mold using a modified EDM process. The diced EDM electrode 30 portion includes a geometry that will be formed in the workpiece 40 to create a mold cavity for a monolithic compaction mold for making a cutting insert. The workpiece 40 includes a preformed cavity 41 that spans the thickness of the workpiece. The preformed cavity 41 includes a peripheral shape of a cavity that will be formed in the workpiece 40 and can be pre-cut into a workpiece using linear material cutting techniques such as, for example, wire cut EDM, laser cutting, or water jet cutting.

雕模EDM電極30以預形成腔41為中心。當雕模EDM電極30行進至工件40中時,電極30之表面與工件40之表面之間之電火花腐蝕加工工件並將電極30之幾何形狀轉移至工件40中。雕模EDM電極30亦在電火花腐蝕期間,尤其在電極30之水平邊角交叉面36上腐蝕,其中邊角係圓的,藉此在工件40中製作圓形水平邊角交叉面46。參考圖3D,當電極30完全行進至工件40中時,電極30之邊角交叉面36上之腐蝕已在工件40中製作圓形水平邊角交叉面46。 The stenciled EDM electrode 30 is centered on the pre-formed cavity 41. As the EDM electrode 30 travels into the workpiece 40, spark erosion between the surface of the electrode 30 and the surface of the workpiece 40 etches the workpiece and transfers the geometry of the electrode 30 into the workpiece 40. The stenciled EDM electrode 30 is also etched during spark erosion, particularly at the horizontal corner intersection 36 of the electrode 30, wherein the corners are rounded thereby creating a circular horizontal corner intersection 46 in the workpiece 40. Referring to FIG. 3D, when the electrode 30 is fully advanced into the workpiece 40, corrosion on the corner intersection 36 of the electrode 30 has created a circular horizontal corner intersection 46 in the workpiece 40.

圖3E繪示使用如圖3A至圖3D所示之雕模EDM製作之單塊粉末壓實模40'。單塊粉末壓實模40'包括模腔41',其包括上腔壁43、中間腔壁45及下腔壁47。腔壁43及47將允許壓製沖頭進入模40'且腔壁45將形成由模40'中壓製之粉末壓塊燒結之切削刀片之周邊表面。上腔壁43藉由圓形水平邊角46與中間腔壁45分開。圓形水平邊角46類似於圖2A中詳細所示之圓形水平邊角26。用於形成模腔41'之雕模EDM電極30之邊角腐蝕製作圓形水平邊角46。 FIG. 3E illustrates a monolithic powder compacting die 40' fabricated using a die EDM as shown in FIGS. 3A-3D. The monolithic compaction mold 40' includes a mold cavity 41' that includes an upper chamber wall 43, an intermediate chamber wall 45, and a lower chamber wall 47. The chamber walls 43 and 47 will allow the pressing punch to enter the die 40' and the cavity wall 45 will form the peripheral surface of the cutting insert that is sintered by the compacted powder compacted in the die 40'. The upper chamber wall 43 is separated from the intermediate chamber wall 45 by a circular horizontal corner 46. The circular horizontal corner 46 is similar to the circular horizontal corner 26 shown in detail in Figure 2A. The corners of the EDM electrode 30 for forming the cavity 41' are corroded to form a circular horizontal corner 46.

使用雕模EDM製作之單塊粉末壓實模之模腔中之圓形水平邊角可限制模在經壓製及燒結切削刀片製作中之使用,此係因為圓形邊角可防止使壓製沖頭模有效進入至所需位置以達成冶金粉末之高效壓實。此外,因為模之製作係兩步驟程序,其包括:(1)使雕模EDM電極成形;及(2)用電極使EDM導電;故電極製作中之任意錯誤(例 如,電極之結構、幾何形狀或尺寸之偏差或不一致)將轉移至模腔中,其可能歸因於電極本身之固有腐蝕而混入任意錯誤。 The circular horizontal corners in the cavity of the monolithic compaction die made using the EDM can limit the use of the die in the production of pressed and sintered cutting inserts because the rounded corners prevent the pressing of the punch The mold is effectively brought into the desired position to achieve efficient compaction of the metallurgical powder. In addition, since the mold is a two-step process, it includes: (1) shaping the EDM electrode of the mold; and (2) conducting the EDM with the electrode; therefore, any error in the electrode fabrication (example) For example, deviations or inconsistencies in the structure, geometry or dimensions of the electrodes will be transferred to the mold cavity, which may be due to any inherent errors in the inherent corrosion of the electrodes themselves.

為了解決此等問題,本發明者測試用作雕模EDM電極之不同材料構造及用作粉末壓實模之不同材料構造。此外,不同EDM參數,諸如,舉例而言,施加電壓及工作週期在使用雕模EDM製作粉末壓實模期間評估。亦研究將多個雕模EDM電極用於粗加工、半精加工及精加工模腔至最終尺寸及幾何形狀。但是,使用不同構造材料、多個電極及最佳化EDM參數不足以減小或免除使用雕模EDM製作之單塊粉末壓實模中之腔之形狀之偏差。 In order to solve such problems, the inventors tested different material configurations used as the EDM electrodes of the stencil and different material configurations for use as powder compacting dies. In addition, different EDM parameters, such as, for example, applied voltage and duty cycle are evaluated during the fabrication of the powder compacting mold using the EDM. A number of diced EDM electrodes have also been investigated for roughing, semi-finishing and finishing of the cavity to final dimensions and geometries. However, the use of different materials of construction, multiple electrodes, and optimized EDM parameters are not sufficient to reduce or eliminate variations in the shape of the cavity in a monolithic compaction die made using a stencil EDM.

本說明書中所述之不同非限制實施例藉由提供多元件粉末壓實模解決與使用雕模EDM製作之單塊粉末壓實模相關之問題,該多元件粉末壓實模包括多個區段,該多個區段在裝配在一起時形成具有尖銳水平邊角交叉面且無使用雕模EDM製作之單塊粉末壓實模固有之邊角圓化、不一致及形狀偏差之模腔。在不同非限制性實施例中,多元件粉末壓實模之各區段可使用線性材料切削技術(舉例而言,諸如線切割EDM、雷射切削或水噴流切削)個別製作。 The different non-limiting embodiments described in this specification address the problems associated with the use of a single-piece powder compaction die comprising a plurality of sections, the multi-component powder compaction die comprising a plurality of sections, by providing a multi-component powder compaction die When assembled, the plurality of segments form a cavity having a sharp horizontal corner intersection and having no rounding, inconsistency and shape deviation inherent to the single-piece powder compacting die produced by using the EDM. In various non-limiting embodiments, various sections of the multi-component powder compaction die can be fabricated individually using linear material cutting techniques, such as, for example, wire-cut EDM, laser cutting, or water jet cutting.

與雕模EDM相同,線切割EDM操作使用電極與工件之間之電火花腐蝕加工導電材料,諸如舉例而言金屬、合金及燒結碳化物。但是,取代行進至工件中之預成形雕模EDM電極,線切割EDM使用連續及線性饋送穿過工件厚度且側向移動穿過工件寬度及長度尺寸以切削構成工件之材料之線狀電極。運作時,電腦數控(CNC)系統連續饋送線狀電極穿過工件厚度及側向平移線狀電極穿過工件寬度及長度尺寸,維持所需電極-工件間隙並根據工作週期循環電功率。循環電功率在工作週期開啟時間期間在線狀電極與圍繞線狀電極之工件材料之間產生電火花,其相應地腐蝕工件材料,藉此根據線狀電極之受控側向移動在側向寬度及長度尺寸上切削工件。介電流體在工作週期之關閉時間 期間將經腐蝕材料從線狀電極與工件之間之間隙中沖洗掉。 As with the EDM, the wire-cut EDM operation uses a spark erosion process between the electrode and the workpiece to process a conductive material such as, for example, a metal, an alloy, and a cemented carbide. However, instead of pre-forming the EDM electrodes that travel into the workpiece, the wire-cut EDM uses a continuous and linear feed through the thickness of the workpiece and laterally through the width and length dimensions of the workpiece to cut the wire-shaped electrodes that make up the material of the workpiece. In operation, a computer numerical control (CNC) system continuously feeds the wire electrodes through the thickness of the workpiece and the laterally translated linear electrodes through the width and length dimensions of the workpiece, maintaining the desired electrode-to-work gap and cycling the electrical power according to the duty cycle. The circulating electrical power generates an electrical spark between the wire electrode and the workpiece material surrounding the wire electrode during the duty cycle on time, which corrodes the workpiece material accordingly, thereby depending on the controlled lateral movement of the wire electrode in lateral width and length Cutting the workpiece in size. Dielectric current at the turn-off time of the duty cycle The corroded material is rinsed away from the gap between the wire electrode and the workpiece during the process.

線切割EDM可在線產生穿過工件之厚度之線性切削的意義上被視作線性材料切削技術。但是,應瞭解線切割EDM不限於穿過工件之側向尺寸(即,寬度及長度)之線性切口,且線切割EDM可用於在側向尺寸上製作弓形切口、線性切口及其等之組合。同樣地,雷射切削及水噴流切削被視作線性材料切削技術,此係因為用於切削工件之雷射光束及水噴流製作穿過工件之厚度尺寸之線性切口但可在側向尺寸上製作弓形切口、線性切口或其等之組合。 Wire-cut EDM can be considered as a linear material cutting technique in the sense of linear cutting through the thickness of the workpiece. However, it should be understood that wire cut EDM is not limited to linear cuts that pass through the lateral dimensions (i.e., width and length) of the workpiece, and wire cut EDM can be used to make bow cuts, linear cuts, and combinations thereof, in lateral dimensions. Similarly, laser cutting and water jet cutting are considered as linear material cutting techniques because the laser beam and water jet used to cut the workpiece are made through a linear slit of the thickness dimension of the workpiece but can be fabricated in lateral dimensions. An arcuate incision, a linear incision, or a combination thereof.

線切割EDM操作中之線性電極亦歸因於電火花腐蝕過程而腐蝕。但是,與雕模EDM操作不同,在線切割EDM操作中,新線狀電極被連續饋送穿過工件且因此線狀電極中歸因於電火花腐蝕過程之任意缺陷或不一致不轉移至工件。因此,使用線切割EDM操作製作之多元件粉末壓實模不展現使用雕模EDM製作之單塊粉末壓實模中固有之水平邊角圓化、不一致及形狀偏差。 The linear electrodes in the wire-cut EDM operation are also corroded due to the spark erosion process. However, unlike the EDM operation, in the in-line EDM operation, the new wire electrode is continuously fed through the workpiece and thus any defects or inconsistencies in the wire electrode due to the spark erosion process are not transferred to the workpiece. Therefore, the multi-component powder compacting die produced by the wire-cut EDM operation does not exhibit the horizontal corner rounding, inconsistency, and shape deviation inherent in the monolithic compaction die produced using the die-cut EDM.

圖4A至圖4D繪示使用線切割EDM之多元件粉末壓實模之中間區段50之製作。中間區段50包括頂部表面51及底部表面53。線狀電極60被連續及線性饋送穿過工件之厚度並在線性及弓形側向路徑之組合中平移穿過工件之側向尺寸(即,沿著頂部表面51及底部表面53),以切出部分58及形成成角度腔壁55。線狀電極60藉由滑輪61饋送穿過工件50。以此方式,線切割EDM操作切削大致正方形腔59穿過工件之厚度,藉此製作多元件粉末壓實模之中間區段50。多元件粉末壓實模之中間區段50包括對準孔52,其等可使用線切割EDM或任意其他適當加工操作切出且可起作用以確保中間區段50與頂部區段及底部區段(未繪示)之對準。 4A-4D illustrate the fabrication of the intermediate section 50 of a multi-component powder compaction die using wire cut EDM. The intermediate section 50 includes a top surface 51 and a bottom surface 53. The linear electrode 60 is continuously and linearly fed through the thickness of the workpiece and translated through the lateral dimension of the workpiece (ie, along the top surface 51 and the bottom surface 53) in a combination of linear and arcuate lateral paths to cut out Portion 58 and forming an angled cavity wall 55. The wire electrode 60 is fed through the workpiece 50 by a pulley 61. In this manner, the wire-cut EDM operation cuts the substantially square cavity 59 through the thickness of the workpiece, thereby making the intermediate section 50 of the multi-component powder compaction die. The intermediate section 50 of the multi-component powder compaction die includes alignment holes 52 that can be cut out using wire-cut EDM or any other suitable machining operation and can function to ensure intermediate section 50 and top section and bottom section Alignment (not shown).

圖5A及圖5B繪示使用線切割EDM之多元件粉末壓實模之頂部或底部區段70之製作。頂部或底部區段70包括頂部表面71及底部表面73。 線狀電極80被連續及線性饋送穿過工件之厚度並在線性及弓形側向路徑之組合中平移穿過工件之側向尺寸(即,沿著頂部表面71及底部表面73),以切出部分78及形成正交腔壁75。線狀電極80藉由滑輪81饋送穿過工件70。以此方式,線切割EDM操縱切出大致正方形腔(位於切出部分78所佔據之空間中)穿過工件之厚度,藉此製作多元件粉末壓實模之頂部或底部區段70。多元件粉末壓實模之頂部或底部區段70包括對準孔72,其等可使用線切割EDM或任意其他適當加工操作切出並可起作用以確保頂部或底部區段70與中間區段之對準。 5A and 5B illustrate the fabrication of a top or bottom section 70 of a multi-component powder compacting die using wire cut EDM. The top or bottom section 70 includes a top surface 71 and a bottom surface 73. The linear electrode 80 is continuously and linearly fed through the thickness of the workpiece and translated through the lateral dimension of the workpiece (ie, along the top surface 71 and bottom surface 73) in a combination of linear and arcuate lateral paths to cut out Portion 78 and form an orthogonal cavity wall 75. The linear electrode 80 is fed through the workpiece 70 by a pulley 81. In this manner, the wire-cut EDM manipulates the thickness of the workpiece through a substantially square cavity (in the space occupied by the cut-out portion 78), thereby creating a top or bottom section 70 of the multi-component powder compaction die. The top or bottom section 70 of the multi-component powder compaction mold includes alignment holes 72 that can be cut and acted using wire-cut EDM or any other suitable machining operation to ensure top or bottom section 70 and intermediate section Alignment.

圖6A至圖6C繪示包括頂部區段130、中間區段150及底部區段170之多元件粉末壓實模100。模100包括由頂部區段130、中間區段150及底部區段170之各自腔110a、110b及110c形成之模腔110(見圖7及圖8)。當裝配在一起時,頂部區段130之腔110a、中間區段150之腔110b及底部區段170之腔110c形成模100之模腔110。模腔110具有(頂部區段130之)正交腔壁135與(中間區段150之)成角度腔壁155之間之尖銳水平邊角交叉面。模腔110亦具有(中間區段150之)成角度腔壁155與(底部區段170之)正交腔壁175之間之尖銳水平邊角交叉面。模100無舉例而言使用雕模EDM製作之單塊粉末壓實模中固有之水平邊角圓化、不一致及形狀偏差。 6A-6C illustrate a multi-component powder compacting die 100 including a top section 130, a middle section 150, and a bottom section 170. The mold 100 includes a mold cavity 110 formed by respective cavities 110a, 110b, and 110c of the top section 130, the intermediate section 150, and the bottom section 170 (see FIGS. 7 and 8). When assembled together, the cavity 110a of the top section 130, the cavity 110b of the intermediate section 150, and the cavity 110c of the bottom section 170 form the cavity 110 of the mold 100. The cavity 110 has a sharp horizontal corner intersection between the orthogonal cavity wall 135 (of the top section 130) and the angled cavity wall 155 (of the intermediate section 150). The mold cavity 110 also has a sharp horizontal corner intersection between the angled cavity wall 155 (of the intermediate section 150) and the orthogonal cavity wall 175 (of the bottom section 170). The mold 100 has no rounding, inconsistency, and shape deviation inherent in the single-piece powder compacting die produced by using the EDM.

相對於區段之腔壁之術語「正交」及「成角度」之使用指的是腔壁相對於模之壓製平面之定向。接著,「壓製平面」係垂直於模之壓製軸之平面。舉例而言,參考圖6D,頂部區段130及底部區段170分別包括腔壁135及175,其等大致垂直於(即,正交於)模100之壓製平面(P)。中間區段150包括腔壁155,其相對於模100之壓製平面(P)形成大致非垂直角度(θ)。壓製平面(P)垂直於壓製軸(X),其界定為壓製沖頭(未繪示)在進入多元件粉末壓實模100並將冶金粉末壓縮為粉末壓塊(未繪示)時行進之方向。以此方式,頂部區段130及底部區段170 可被稱作正交區段且中間區段150可被稱作成角度區段。同樣地,頂部腔110a及底部腔110c可被稱作正交腔且中間腔110b可被稱作成角度腔。 The use of the terms "orthogonal" and "angled" with respect to the wall of the segment refers to the orientation of the wall of the cavity relative to the plane of compression of the die. Next, the "pressing plane" is perpendicular to the plane of the pressing axis of the mold. For example, referring to FIG. 6D, top section 130 and bottom section 170 respectively include cavity walls 135 and 175 that are substantially perpendicular (ie, orthogonal) to the pressing plane (P) of mold 100. The intermediate section 150 includes a cavity wall 155 that forms a substantially non-perpendicular angle ([theta]) with respect to the pressing plane (P) of the die 100. The pressing plane (P) is perpendicular to the pressing axis (X), which is defined as a pressing punch (not shown) that travels as it enters the multi-component powder compacting die 100 and compresses the metallurgical powder into a powder compact (not shown). direction. In this way, the top section 130 and the bottom section 170 It can be referred to as an orthogonal segment and the intermediate segment 150 can be referred to as an angled segment. Likewise, the top chamber 110a and the bottom chamber 110c may be referred to as orthogonal chambers and the intermediate chamber 110b may be referred to as an angled chamber.

壓製平面係垂直於壓製軸且穿過所指定之多元件粉末壓實模之區段之平面。(正交腔/正交區段之)正交腔壁將垂直於壓製平面及平行於壓製軸。(成角度腔/成角度區段之)成角度腔壁將相對於壓製平面形成大致非垂直角度且將相對於壓製軸形成互補角度(即,角度總和90°)。 The pressing plane is perpendicular to the pressing axis and passes through the plane of the section of the specified multi-component powder compacting die. The orthogonal cavity walls (of the orthogonal cavity/orthogonal segments) will be perpendicular to the pressing plane and parallel to the pressing axis. The angled cavity walls (of angled cavities/angled segments) will form a substantially non-perpendicular angle with respect to the pressing plane and will form a complementary angle with respect to the pressing axis (ie, the sum of the angles is 90°).

在不同非限制性實施例中,多元件粉末壓實模可包括具有大致平行於模之壓製平面(且大致垂直於模之壓製軸)之頂部及/或底部表面之區段。舉例而言,參考圖7及圖8,頂部區段130及底部區段170分別包括腔壁135及175,其等大致垂直於頂部區段130及底部區段170之頂部表面(131及171)及底部表面(133及173)。中間區段150包括腔壁155,其相對中間區段150之頂部表面151及底部表面153形成大致非垂直角度。 In various non-limiting embodiments, the multi-component powder compacting die can include sections having a top and/or bottom surface that is generally parallel to the pressing plane of the die (and generally perpendicular to the die axis of the die). For example, referring to FIGS. 7 and 8, the top section 130 and the bottom section 170 respectively include chamber walls 135 and 175 that are substantially perpendicular to the top surfaces (131 and 171) of the top section 130 and the bottom section 170. And the bottom surface (133 and 173). The intermediate section 150 includes a cavity wall 155 that forms a substantially non-perpendicular angle with respect to the top surface 151 and the bottom surface 153 of the intermediate section 150.

在不同非限制性實施例中,多元件粉末壓實模可包括具有非平行於模之壓製平面(且非垂直於模之壓製軸)之頂部及/或底部表面之區段。舉例而言,多元件粉末壓實模可包括具有輪廓化頂部及/或輪廓化底部表面之區段(見圖10A及圖10B);且在其他非限制性實施例中,多元件粉末壓實模可包括具有平坦頂部及/或底部表面之區段,其中平坦表面相對於模之壓製平面及/或壓製軸形成恆定或變化角度。在此等實施例中,不同區段仍可取決於區段之腔壁是否大致垂直(即,正交)於模100之壓製平面或相對於模之壓製平面形成大致非垂直角度而被稱作「正交」區段或「成角度」區段。 In various non-limiting embodiments, the multi-component powder compacting die can include sections having a top and/or bottom surface that is non-parallel to the pressing plane of the mold (and non-perpendicular to the pressing axis of the mold). For example, a multi-component powder compaction die can include sections having a contoured top and/or a contoured bottom surface (see Figures 10A and 10B); and in other non-limiting embodiments, multi-component powder compaction The mold may comprise a section having a flat top and/or bottom surface, wherein the flat surface forms a constant or varying angle with respect to the pressing plane and/or the pressing axis of the mold. In such embodiments, the different segments may still be referred to as depending on whether the walls of the segments are substantially perpendicular (i.e., orthogonal) to the pressing plane of the die 100 or form a substantially non-perpendicular angle relative to the pressing plane of the die. Orthogonal section or Angled section.

參考圖6A至圖8,頂部區段130、中間區段150及底部區段170可使用線性材料切削技術(舉例而言,諸如線切割EDM、雷射切削或水噴 流切削)以分別切出腔110a、110b及110c而製作。同樣地,線性材料切削技術(諸如線切割EDM、雷射切削或水噴流切削)或任意其他適當加工技術可用於分別在頂部區段130、中間區段150及底部區段170中切出對準孔105a、105b及105c。參考圖7及圖8,各自對準孔105a、105b及105c經組態以對準各自區段,使得各自腔壁135、155及175相交以形成不展現有問題的邊角圓化或其他有問題的不一致之尖銳水平邊角(見圖6C)。頂部區段130之底部表面133經組態以在處於裝配(即,堆疊及對準)配置時與中間區段150之頂部表面151匹配(如圖6A至圖6C所示)。同樣地,中間區段150之底部表面153經組態以在處於裝配組態時與底部區段170之頂部表面171匹配。 Referring to Figures 6A-8, the top section 130, the intermediate section 150, and the bottom section 170 can use linear material cutting techniques (for example, such as wire cut EDM, laser cutting, or water jetting) Flow cutting) is produced by cutting out the cavities 110a, 110b, and 110c, respectively. Likewise, linear material cutting techniques (such as wire cut EDM, laser cutting or water jet cutting) or any other suitable processing technique can be used to cut out alignments in top section 130, intermediate section 150, and bottom section 170, respectively. Holes 105a, 105b and 105c. Referring to Figures 7 and 8, the respective alignment apertures 105a, 105b, and 105c are configured to align the respective segments such that the respective cavity walls 135, 155, and 175 intersect to form a corner that is not problematic or otherwise Sharp horizontal corners of inconsistencies in the problem (see Figure 6C). The bottom surface 133 of the top section 130 is configured to match the top surface 151 of the intermediate section 150 when in an assembled (ie, stacked and aligned) configuration (as shown in Figures 6A-6C). Likewise, the bottom surface 153 of the intermediate section 150 is configured to match the top surface 171 of the bottom section 170 when in the assembled configuration.

當處於裝配組態(即,如圖6A至圖6C所示堆疊並對準)時,對準孔105(包括如圖7及圖8所示沿著線A及B對準之各自對準孔105a、105b及105c)從頂部區段130之頂部表面131行進穿過模(包含所有堆疊區段)至底部區段170之底部表面173。 When in the assembled configuration (ie, stacked and aligned as shown in Figures 6A-6C), the alignment holes 105 (including the respective alignment holes aligned along lines A and B as shown in Figures 7 and 8) 105a, 105b, and 105c) travel from the top surface 131 of the top section 130 through the die (including all stacked sections) to the bottom surface 173 of the bottom section 170.

根據不同非限制性實施例之多元件粉末壓實模可包括模腔,該等模腔具有由包括模之複數個模區段之腔壁形成之任意周邊形狀。舉例而言,圖6A至圖6C、圖7及圖7繪示包括大致正方形模腔之非限制性實施例,其製作大致正方形冶金粉末壓塊,其可燒結以製作大致正方形切削刀片。相對於模腔之周邊形狀之術語「大致」之使用指示形狀可藉由包括在相交表面而非垂直頂點交叉面之間過渡之垂直填角(如圖6A、圖6B及圖7所示)而偏離指定幾何形狀。 The multi-component powder compacting die according to various non-limiting embodiments can include a mold cavity having any peripheral shape formed by a cavity wall including a plurality of die segments of the die. For example, Figures 6A-6C, 7 and 7 illustrate a non-limiting embodiment comprising a generally square mold cavity that produces a substantially square metallurgical powder compact that can be sintered to make a substantially square cutting insert. The term "substantially" used relative to the shape of the periphery of the cavity indicates that the shape can be formed by a vertical fillet (as shown in Figures 6A, 6B, and 7) that includes transitions between intersecting surfaces rather than intersecting vertices. Deviate from the specified geometry.

根據不同非限制性實施例之多元件粉末壓實模可包括模腔,該等模腔包括周邊形狀,諸如,舉例而言,圓形、三角形、三角體、正方形、矩形、平行四邊形、五邊形、六邊形、八邊形及類似形狀。舉例而言,圖9A及圖9B繪示包括圓形模腔210之多元件粉末壓實模200。模200包括正交頂部區段230、成角度中間區段250及正交底部區段270。 正交頂部區段230包括由正交腔壁235形成之圓形腔,成角度中間區段250包括由成角度腔壁255形成之圓形腔且正交底部區段270包括由正交腔壁275形成之圓形腔。 The multi-component powder compacting die according to various non-limiting embodiments may include a mold cavity including peripheral shapes such as, for example, a circle, a triangle, a triangle, a square, a rectangle, a parallelogram, and a five sides. Shapes, hexagons, octagons, and the like. For example, FIGS. 9A and 9B illustrate a multi-component powder compacting die 200 including a circular mold cavity 210. The die 200 includes an orthogonal top section 230, an angled intermediate section 250, and an orthogonal bottom section 270. The orthogonal top section 230 includes a circular cavity formed by orthogonal cavity walls 235, the angled intermediate section 250 includes a circular cavity formed by the angled cavity walls 255 and the orthogonal bottom section 270 includes the orthogonal cavity walls A circular cavity formed by 275.

在不同非限制性實施例中,包括多元件粉末壓實模之複數個區段之互相匹配表面可包括互相輪廓化表面及/或其他互相匹配對準特徵來取代或補充對準孔。圖10A及圖10B繪示多元件粉末壓實模300,其包括正交頂部區段330、成角度中間區段350及正交底部區段370。正交頂部區段330及成角度中間區段350分別包括390所示之互相輪廓化底部及頂部表面。正交頂部區段330及成角度中間區段350之互相輪廓化底部及頂部表面分別協助組件區段之堆疊對準以形成模腔310。雖然圖10A及圖10B繪示除對準孔305之外之390所示之互相輪廓化表面,但是應瞭解在不同非限制性實施例中互相輪廓化表面及/或其他互相匹配對準特徵可取代對準孔使用。此外,雖然圖10A及圖10B繪示正交頂部區段330及成角度中間區段350之底部表面及頂部表面為互相輪廓化表面,但是應瞭解中間區段之頂部表面及底部區段之頂部表面亦可互相輪廓化及/或包括互相匹配之對準特徵。 In various non-limiting embodiments, the mating surfaces of the plurality of segments including the multi-component powder compaction mold can include mutually contoured surfaces and/or other mutually matching alignment features to replace or supplement the alignment holes. 10A and 10B illustrate a multi-component powder compacting die 300 that includes an orthogonal top section 330, an angled intermediate section 350, and an orthogonal bottom section 370. The orthogonal top section 330 and the angled intermediate section 350 respectively include the mutually contoured bottom and top surfaces shown at 390. The mutually contoured bottom and top surfaces of the orthogonal top section 330 and the angled intermediate section 350 assist in stacking the stack of component sections to form the mold cavity 310, respectively. Although FIGS. 10A and 10B illustrate the mutually contoured surfaces shown at 390 other than the alignment holes 305, it should be understood that in various non-limiting embodiments, the mutually contoured surfaces and/or other mutually matching alignment features may be Use instead of aligning holes. In addition, although FIGS. 10A and 10B illustrate that the bottom surface and the top surface of the orthogonal top section 330 and the angled intermediate section 350 are mutually contoured surfaces, the top surface of the middle section and the top of the bottom section should be understood. The surfaces may also be contoured to one another and/or include alignment features that match each other.

在不同非限制性實施例中,多元件元件粉末壓實模可包括複數個區段,諸如,舉例而言,兩個、三個、四個或更多區段,其等經組態以一起裝配為對準及堆疊組態且共同形成包括尖銳水平邊角交叉面且無使用舉例而言雕模EDM製作之單塊粉末壓實模中固有之邊角圓化、不一致及形狀偏差之模腔。圖11A至圖11C繪示包括四個對準及堆疊區段之多元件粉末壓實模,且圖12A至圖12C繪示包括兩個對準及堆疊區段之多元件粉末壓實模。 In various non-limiting embodiments, the multi-element component powder compaction die can include a plurality of segments, such as, for example, two, three, four or more segments, which are configured to be together Assembled into alignment and stacking configurations and together form a cavity with sharp horizontal corner intersections and without the use of examples of the rounded corners, inconsistencies and shape deviations inherent in the monolithic powder compacting die made by the EDM. . 11A-11C illustrate a multi-component powder compaction mold including four aligned and stacked sections, and FIGS. 12A-12C illustrate a multi-component powder compaction mold including two aligned and stacked sections.

參考圖11A至圖11C,多元件粉末壓實模400包括正交頂部區段430、上成角度中間區段450a、下成角度中間區段450b及正交底部區段470。正交頂部區段430包括由正交模腔435形成之大致正方形腔,上成 角度中間區段450a包括由上成角度腔壁455a形成之大致正方形腔,下成角度中間區段450b包括由下成角度腔壁455b形成之大致正方形腔且正交底部區段470包括由正交腔壁475形成之大致正方形腔。多元件粉末壓實模400包括由堆疊及對準區段430、450a、450b及470之各自腔形成之模腔410。上成角度腔壁455a及下成角度腔壁455b之各自角度為不同角度。 Referring to FIGS. 11A-11C, the multi-component powder compacting die 400 includes an orthogonal top section 430, an upper angled intermediate section 450a, a lower angled intermediate section 450b, and an orthogonal bottom section 470. The orthogonal top section 430 includes a generally square cavity formed by orthogonal cavities 435. The angular intermediate section 450a includes a generally square cavity formed by the upper angled cavity wall 455a, the lower angled intermediate section 450b includes a generally square cavity formed by the lower angled cavity wall 455b and the orthogonal bottom section 470 includes orthogonal The cavity wall 475 forms a generally square cavity. The multi-component powder compacting die 400 includes a mold cavity 410 formed by respective cavities of the stacking and alignment sections 430, 450a, 450b, and 470. The respective angles of the upper angled cavity wall 455a and the lower angled cavity wall 455b are different angles.

參考圖12A至圖12C,多元件粉末壓實模500包括成角度頂部區段530及正交底部區段570。成角度頂部區段530包括由成角度腔壁535形成之大致正方形腔且正交底部區段570包括由正交腔壁575形成之大致正方形腔。多元件粉末壓實模500包括由堆疊及對準區段530及570之各自腔形成之模腔510。雖然未繪示,但是應瞭解包括兩個組件區段之多元件粉末壓實模可包括正交頂部區段及成角度底部區段。 Referring to Figures 12A-12C, the multi-component powder compacting die 500 includes an angled top section 530 and an orthogonal bottom section 570. The angled top section 530 includes a generally square cavity formed by angled cavity walls 535 and the orthogonal bottom section 570 includes a generally square cavity formed by orthogonal cavity walls 575. The multi-component powder compacting die 500 includes a mold cavity 510 formed by respective cavities of the stacking and alignment sections 530 and 570. Although not shown, it should be understood that a multi-component powder compaction die comprising two component sections can include an orthogonal top section and an angled bottom section.

在不同非限制性實施例中,多元件粉末壓實模可包括複數個模腔,諸如,舉例而言,兩個、三個、四個或更多個腔,其等包括尖銳水平邊角交叉面且無使用舉例而言雕模EDM製作之單塊粉末壓實模中固有之邊角圓化、不一致及形狀偏差。參考圖13,多元件粉末壓實模600包括正交頂部區段630、成角度中間區段650及正交底部區段670。正交頂部區段630、成角度中間區段650及正交底部區段670之各者包括形成四個大致正方形腔之複數個腔壁。在圖13所示之堆疊及對準組態中,各自區段之腔形成四個模腔610。雖然圖12中繪示四個模腔,但是應瞭解多元件粉末壓實模可包括任意數量之單獨模腔。 In various non-limiting embodiments, the multi-element powder compaction mold can include a plurality of mold cavities such as, for example, two, three, four or more cavities, etc. including sharp horizontal corner intersections In the case of the monolithic powder compacting die produced by the EDM, the rounding, inconsistency and shape deviation inherent in the monolithic powder compacting die are used. Referring to FIG. 13, the multi-element powder compacting die 600 includes an orthogonal top section 630, an angled intermediate section 650, and an orthogonal bottom section 670. Each of the orthogonal top section 630, the angled intermediate section 650, and the orthogonal bottom section 670 includes a plurality of chamber walls that form four generally square cavities. In the stacking and alignment configuration shown in Figure 13, the cavities of the respective sections form four mold cavities 610. Although four mold cavities are illustrated in Figure 12, it should be understood that the multi-element powder compaction mold can include any number of separate mold cavities.

在不同非限制性實施例中,用於製作切削刀片之多元件粉末壓實模包括堆疊並對準以形成模腔之複數個模區段。模腔可包括由兩個平坦腔壁之交叉面形成之尖銳水平邊角,其中各平坦腔壁對應於複數個模區段之一者。平坦腔壁可具有相對於各自模區段之頂部表面及/或底部表面及/或相對於經裝配模之頂部表面及/或底部表面之正交定向或 成角度定向。平坦腔壁可在各自模區段中形成腔,其等在各自模區段堆疊並對準為裝配組態時共同形成模腔。 In various non-limiting embodiments, a multi-component powder compacting die for making a cutting insert includes a plurality of die segments stacked and aligned to form a mold cavity. The mold cavity can include a sharp horizontal corner formed by the intersection of two flat cavity walls, wherein each flat cavity wall corresponds to one of a plurality of die segments. The flat cavity walls can have orthogonal orientations with respect to the top and/or bottom surfaces of the respective mold segments and/or relative to the top and/or bottom surfaces of the assembled mold or Angled orientation. The flat chamber walls may form cavities in the respective mold sections that together form a mold cavity when the respective mold sections are stacked and aligned for assembly configuration.

各自模區段可藉由使用線性材料切削技術舉例而言,諸如線切割EDM、雷射切削或水噴流切削在工件中切削腔而製作。各自模區段可包括用作粉末壓實模之任意適當材料,包含但不限於合金,諸如工具鋼及複合物,諸如燒結碳化物。舉例而言,在不同非限制性實施例中,各自模區段可包括鈷燒結碳化鎢。 The respective mold segments can be fabricated by using linear material cutting techniques such as wire-cut EDM, laser cutting or water jet cutting in a cutting chamber in a workpiece. The respective mold segments can include any suitable material for use as a powder compaction mold, including but not limited to alloys such as tool steels and composites, such as cemented carbides. For example, in various non-limiting embodiments, the respective mold segments can include cobalt cemented tungsten carbide.

各自模區段可使用機械緊固件、冶金接合及/或黏合接合一起接合為依序堆疊、對準及裝配組態。舉例而言,任意兩個或更多個模區段可焊接在一起、釺焊在一起、黏合接合在一起、夾箝在一起或另外機械緊固在一起。各自區段之準確及精確定位可使用定位為穿過穿過各自區段之互相對準孔之可鎖定區段為互相對準之對準銷、榫釘、桿或類似物而完成。或者,機械緊固件,諸如螺栓、螺母及類似物可定位為穿過穿過各自區段之互相對準孔。應瞭解兩個永久接合,諸如焊縫、釺焊接頭及黏合接頭(例如,熱固化環氧樹脂)及臨時接合裝置,諸如夾具及機械緊固件可用於將各自模區段一起接合為裝配組態。 The respective mold sections can be joined together in a sequential stacking, alignment, and assembly configuration using mechanical fasteners, metallurgical joints, and/or adhesive joints. For example, any two or more of the mold segments can be welded together, brazed together, bonded together, clamped together, or otherwise mechanically fastened together. Accurate and precise positioning of the respective sections can be accomplished using alignment pins, dowels, rods or the like that are positioned to align with each other through the lockable sections of the mutually aligned apertures of the respective sections. Alternatively, mechanical fasteners, such as bolts, nuts, and the like, can be positioned to pass through mutually aligned apertures through the respective sections. It should be understood that two permanent joints, such as welds, welded joints and bonded joints (eg, heat-cured epoxy), and temporary joints, such as clamps and mechanical fasteners, can be used to join the respective mold sections together into an assembly configuration. .

在不同非限制性實施例中,製作切削刀片之過程包括在多元件粉末壓實模中壓製冶金粉末以形成粉末壓塊。多元件粉末壓實模可由堆疊並對準以形成模腔之複數個各自模區段裝配。冶金粉末可引入模腔中。上壓製沖頭及下壓製沖頭可在模腔中壓製並壓實冶金粉末以形成粉末壓塊。粉末壓塊可燒結以使壓塊密實及形成切削刀片。視需要,在燒結之前,粉末壓塊可進一步成形以在切削刀片粉末壓塊之前刃面、後刃面/間隙面及/或切削刃口上製作所要幾何特徵,諸如斷屑器、槽、刻面及類似物。 In various non-limiting embodiments, the process of making a cutting insert includes pressing a metallurgical powder in a multi-component powder compacting die to form a powder compact. The multi-component powder compaction mold can be assembled from a plurality of respective mold segments stacked and aligned to form a mold cavity. Metallurgical powder can be introduced into the mold cavity. The upper press punch and the lower press punch can press and compact the metallurgical powder in the mold cavity to form a powder compact. The powder compact can be sintered to compact the compact and form a cutting insert. If desired, prior to sintering, the powder compact can be further shaped to produce desired geometric features such as chip breakers, grooves, facets on the blade face, the trailing edge face/gap face and/or the cutting edge prior to the cutting insert powder compact. And similar.

圖14A至圖14C繪示使用包括正交頂部區段、成角度中間區段及正交底部區段之多元件粉末壓實模700(類似圖6A至圖6C所示之多元件 粉末壓實模100及圖9A及圖9B所示之多元件粉末壓實模200)製作切削刀片粉末壓塊800/800'。 14A-14C illustrate the use of a multi-component powder compacting die 700 comprising orthogonal top segments, angled intermediate segments, and orthogonal bottom segments (similar to the multiple components shown in Figures 6A-6C) The powder compacting die 100 and the multi-component powder compacting die 200 shown in FIGS. 9A and 9B are used to produce a cutting insert powder compact 800/800'.

冶金粉末750被引入多元件粉末壓實模700之模腔中。模芯總成715定位在模腔中以在切削刀片粉末壓塊800/800'中提供通孔810/810'。上壓製沖頭710及下壓製沖頭720分別如箭頭711及721所示垂直移動(圖14A)。上壓製沖頭710及下壓製沖頭720進入多元件粉末壓實模700並在模腔中壓縮冶金粉末以形成粉末壓塊800/800'(圖14B)。上壓製沖頭710及下壓製沖頭720進入多元件粉末壓實模700藉由模700之正交頂部區段及正交底部區段之正交腔壁促進。 Metallurgical powder 750 is introduced into the mold cavity of multi-component powder compacting die 700. The core assembly 715 is positioned in the mold cavity to provide through holes 810/810' in the cutting insert powder compact 800/800'. The upper pressing punch 710 and the lower pressing punch 720 are vertically moved as indicated by arrows 711 and 721, respectively (Fig. 14A). The upper pressing punch 710 and the lower pressing punch 720 enter the multi-component powder compacting die 700 and compress the metallurgical powder in the cavity to form a powder compact 800/800' (Fig. 14B). The upper pressing punch 710 and the lower pressing punch 720 enter the multi-component powder compacting die 700 promoted by the orthogonal cavity walls of the orthogonal 700 section and the orthogonal bottom section of the die 700.

圖14C繪示在壓製沖頭710及720從模腔退出後模腔中之切削刀片粉末壓塊800/800'。切削刀片粉末壓塊800及800'分別在圖15A及圖15B中繪示為從模700中移除。切削刀片粉末壓塊800及800'具有模腔之形狀及幾何形狀且包含用於將所得切削刀片附接至切削工具支架之通孔810及810'。經壓製壓塊800及800'可經燒結以使材料密實並製作切削刀片。 Figure 14C illustrates the cutting insert powder compact 800/800' in the cavity after the punches 710 and 720 are withdrawn from the mold cavity. The cutting insert powder compacts 800 and 800' are illustrated as being removed from the mold 700 in Figures 15A and 15B, respectively. The cutting insert powder compacts 800 and 800' have the shape and geometry of the mold cavity and include through holes 810 and 810' for attaching the resulting cutting insert to the cutting tool holder. The pressed compacts 800 and 800' can be sintered to densify the material and make a cutting insert.

圖14A至圖14C所示之切削刀片粉末壓塊壓製過程可修改以利用根據本說明書所述之不同非限制性實施例之任意多元件粉末壓實模。舉例而言,圖16繪示包括正交頂部區段、兩個成角度中間區段及正交底部區段之多元件粉末壓實模900(類似於圖11A至圖11C所示之多元件粉末壓實模400)製作切削刀片粉末壓塊1000/1000'。 The cutting insert powder compacting process illustrated in Figures 14A-14C can be modified to utilize any multi-component powder compacting die according to various non-limiting embodiments described herein. For example, Figure 16 illustrates a multi-element powder compacting die 900 comprising orthogonal top sections, two angled intermediate sections, and orthogonal bottom sections (similar to the multi-component powders shown in Figures 11A-11C) The compacting die 400) produces a cutting insert powder compact 1000/1000'.

冶金粉末被引入多元件粉末壓實模900之模腔中。模芯總成915定位在模腔中以在切削刀片粉末壓塊1000/1000'中提供通孔1100/1100'。上壓製沖頭910及下壓製沖頭920進入多元件粉末壓實模900並在模腔中壓縮冶金粉末以形成粉末壓塊。上壓製沖頭910及下壓製沖頭920進入多元件粉末壓實模900藉由模900之正交頂部區段及正交底部區段之正交腔壁促進。 The metallurgical powder is introduced into the cavity of the multi-component powder compacting die 900. The core assembly 915 is positioned in the mold cavity to provide a through hole 1100/1100' in the cutting insert powder compact 1000/1000'. The upper pressing punch 910 and the lower pressing punch 920 enter the multi-component powder compacting die 900 and compress the metallurgical powder in the cavity to form a powder compact. The upper pressing punch 910 and the lower pressing punch 920 enter the multi-component powder compacting die 900 promoted by the orthogonal cavity walls of the orthogonal top section and the orthogonal bottom section of the mold 900.

切削刀片粉末壓塊1000及1000'分別在圖17A及圖17B中繪示為從模900中移除。切削刀片粉末壓塊1000及1000'具有模腔之形狀及幾何形狀且包含用於將所得切削刀片附接至切削工具支架之通孔1100/1100'。經壓製壓塊1000及1000'可經燒結以使材料密實並製作切削刀片。雖然圖14A至圖17B未繪示,但是多元件粉末壓實模中製作之切削刀片粉末壓塊之頂部表面及底部表面之幾何形狀分別由上沖頭及下沖頭之壓製表面之幾何形狀提供。 The cutting insert powder compacts 1000 and 1000' are illustrated as being removed from the mold 900 in Figures 17A and 17B, respectively. The cutting insert powder compacts 1000 and 1000' have the shape and geometry of the mold cavity and include through holes 1100/1100' for attaching the resulting cutting insert to the cutting tool holder. The pressed compacts 1000 and 1000' can be sintered to densify the material and make a cutting insert. Although not shown in FIGS. 14A to 17B, the geometry of the top surface and the bottom surface of the cutting insert powder compact produced in the multi-component powder compacting mold is respectively provided by the geometry of the pressed surface of the upper punch and the lower punch. .

已參考不同非限制性及非徹底詳盡實施例書寫本說明書。但是,本領域一般技術者應瞭解在本發明之範疇內可進行任意所揭示實施例(或其部分)之不同替代、修改或組合。因此,考量並瞭解本說明書支援本文中未明確陳述之額外實施例。此等實施例可舉例而言藉由組合、修改或再組織本說明書中所述之不同非限制性及非徹底詳盡實施例之任意所揭示步驟、組件、元件、特徵、態樣、特性、限制及類似物而獲得。以此方式,申請者保留在審查期間修改申請專利範圍以增加如本說明書中不同所述之特徵且此等修改案符合35 U.S.C.§112,第一段,及35 U.S.C.§132(a)之規定。 This specification has been written with reference to various non-limiting and non-exhaustive embodiments. However, it will be apparent to those skilled in the art that various alternatives, modifications, or combinations of any of the disclosed embodiments (or portions thereof) can be made within the scope of the invention. Accordingly, it is contemplated and understood that this specification supports additional embodiments not explicitly stated herein. The various disclosed steps, components, components, features, aspects, characteristics, limitations, and combinations of the various non-limiting and non-exhaustive embodiments described in the specification are described herein. And analogs are obtained. In this manner, Applicants reserve the right to modify the scope of the patent application during the review to add features as described in this specification and such amendments are in accordance with 35 USC § 112, paragraph 1, and 35 USC § 132(a) .

100‧‧‧多元件粉末壓實模 100‧‧‧Multi-component powder compaction mould

105‧‧‧對準孔 105‧‧‧ Alignment holes

110‧‧‧模腔 110‧‧‧ cavity

130‧‧‧頂部區段 130‧‧‧Top section

131‧‧‧頂部表面 131‧‧‧ top surface

150‧‧‧中間區段 150‧‧‧middle section

170‧‧‧底部區段 170‧‧‧ bottom section

173‧‧‧底部表面 173‧‧‧ bottom surface

Claims (33)

一種用於製作切削刀片之多元件粉末壓實模,其包括:一正交頂部區段,其包括在該正交頂部區段中形成一頂部腔之一正交腔壁;至少一成角度中間區段,其包括在該成角度中間區段中形成至少一中間腔之一成角度腔壁;及一正交底部區段,其包括在該正交底部區段中形成一底部腔之一正交腔壁;其中該正交頂部區段、該至少一成角度中間區段及該正交底部區段堆疊並對準,使得該頂部腔、該至少一中間腔及該底部腔共同形成包括一正交頂部腔壁、至少一成角度中間腔壁及一正交底部腔壁之一模腔,該等相交腔壁在該模腔中形成水平邊角交叉面。 A multi-component powder compacting die for making a cutting insert, comprising: an orthogonal top section comprising an orthogonal cavity wall forming a top cavity in the orthogonal top section; at least one angled intermediate a section including an angled cavity wall forming at least one intermediate cavity in the angled intermediate section; and an orthogonal bottom section including forming a bottom cavity in the orthogonal bottom section a chamber wall; wherein the orthogonal top section, the at least one angled intermediate section, and the orthogonal bottom section are stacked and aligned such that the top cavity, the at least one intermediate cavity, and the bottom cavity together comprise one An orthogonal top chamber wall, at least one angled intermediate chamber wall, and a cavity of an orthogonal bottom chamber wall, the intersecting chamber walls forming a horizontal corner intersection in the mold cavity. 如請求項1之多元件粉末壓實模,其中該模包括一成角度中間區段且該模腔包括與該正交頂部腔壁及該正交底部腔壁形成水平邊角相交面之一成角度中間腔壁。 The multi-component powder compacting mold of claim 1, wherein the mold comprises an angled intermediate section and the cavity comprises one of a horizontal corner intersecting the orthogonal top chamber wall and the orthogonal bottom chamber wall. Angle intermediate cavity wall. 如請求項1之多元件粉末壓實模,其中該模包括一上成角度中間區段及一下成角度中間區段,且該模腔包括一上成角度中間腔壁及一下成角度中間腔壁。 The multi-component powder compacting mold of claim 1, wherein the mold comprises an upper angled intermediate section and a lower angled intermediate section, and the cavity comprises an upper angled intermediate cavity wall and a lower angled intermediate cavity wall . 如請求項3之多元件粉末壓實模,其中該上成角度中間腔壁與該正交頂部腔壁形成一水平邊角交叉面,且其中該下成角度中間腔壁與該正交底部腔壁形成一水平邊角交叉面。 The multi-component powder compacting mold of claim 3, wherein the upper angled intermediate cavity wall forms a horizontal corner intersection with the orthogonal top cavity wall, and wherein the lower angled intermediate cavity wall and the orthogonal bottom cavity The wall forms a horizontal corner intersection. 如請求項1之多元件粉末壓實模,其中該模腔包括選自包括圓形、三角形、三角體、正方形、矩形、平行四邊形、五邊形、六邊形及八邊形之群組之一周邊形狀。 The multi-component powder compacting mold of claim 1, wherein the cavity comprises a group selected from the group consisting of a circle, a triangle, a triangle, a square, a rectangle, a parallelogram, a pentagon, a hexagon, and an octagon. A peripheral shape. 如請求項1之多元件粉末壓實模,其中該模腔包括一大致正方形周邊形狀。 A multi-component powder compacting mold according to claim 1, wherein the mold cavity comprises a substantially square peripheral shape. 如請求項1之多元件粉末壓實模,其中該模腔包括一大致圓形周邊形狀。 The multi-component powder compacting mold of claim 1, wherein the mold cavity comprises a substantially circular peripheral shape. 如請求項1之多元件粉末壓實模,其中該正交頂部區段、該至少一成角度中間區段及該正交底部區段之至少兩者包括互相輪廓化表面。 A multi-component powder compaction mold of claim 1, wherein at least two of the orthogonal top section, the at least one angled intermediate section, and the orthogonal bottom section comprise mutually contoured surfaces. 如請求項1之多元件粉末壓實模,其中該正交頂部區段、該至少一成角度中間區段及該正交底部區段包括經組態以接收一對準銷以鎖定該等區段為互相對準之對準孔。 The multi-component powder compaction mold of claim 1, wherein the orthogonal top section, the at least one angled intermediate section, and the orthogonal bottom section comprise configured to receive an alignment pin to lock the zone The segments are aligned holes that are aligned with each other. 如請求項1之多元件粉末壓實模,其中該正交頂部區段、該至少一成角度中間區段及該正交底部區段堆疊、對準且永久接合在一起。 The multi-component powder compaction mold of claim 1, wherein the orthogonal top section, the at least one angled intermediate section, and the orthogonal bottom section are stacked, aligned, and permanently joined together. 如請求項10之多元件粉末壓實模,其中該正交頂部區段、該至少一成角度中間區段及該正交底部區段黏合接合在一起。 The multi-component powder compacting mold of claim 10, wherein the orthogonal top section, the at least one angled intermediate section, and the orthogonal bottom section are adhesively joined together. 如請求項10之多元件粉末壓實模,其中該正交頂部區段、該至少一成角度中間區段及該正交底部區段冶金接合在一起。 The multi-component powder compacting mold of claim 10, wherein the orthogonal top section, the at least one angled intermediate section, and the orthogonal bottom section are metallurgically joined together. 如請求項1之多元件粉末壓實模,其中該正交頂部區段、該至少一成角度中間區段及該正交底部區段機械緊固在一起。 The multi-component powder compacting mold of claim 1, wherein the orthogonal top section, the at least one angled intermediate section, and the orthogonal bottom section are mechanically fastened together. 如請求項1之多元件粉末壓實模,其中該正交頂部區段、該至少一成角度中間區段及該正交底部區段由包括合金之材料形成。 The multi-component powder compaction mold of claim 1, wherein the orthogonal top section, the at least one angled intermediate section, and the orthogonal bottom section are formed from a material comprising an alloy. 如請求項1之多元件粉末壓實模,其中該正交頂部區段、該至少一成角度中間區段及該正交底部區段由包括燒結碳化物之材料形成。 The multi-component powder compaction mold of claim 1, wherein the orthogonal top section, the at least one angled intermediate section, and the orthogonal bottom section are formed from a material comprising cemented carbide. 一種用於製作切削刀片之多元件粉末壓實模,其包括:一頂部區段,其包括在該頂部區段中形成一頂部腔之一腔壁; 及一底部區段,其包括在該底部區段中形成一底部腔之一腔壁;其中該頂部區段及該底部區段堆疊並對準使得該頂部腔及該底部腔共同形成包括一頂部腔壁及一底部腔壁之一模腔。 A multi-component powder compacting die for making a cutting insert, comprising: a top section comprising a cavity wall forming a top cavity in the top section; And a bottom section comprising a cavity wall forming a bottom cavity in the bottom section; wherein the top section and the bottom section are stacked and aligned such that the top cavity and the bottom cavity together form a top portion a cavity of the cavity wall and a bottom cavity wall. 如請求項16之多元件粉末壓實模,其進一步包括一成角度中間區段,其中該模腔包括與該頂部腔壁及該底部腔壁形成水平邊角相交面之一成角度中間腔壁。 The multi-component powder compacting mold of claim 16, further comprising an angled intermediate section, wherein the mold cavity includes an intermediate chamber wall at an angle to one of a horizontal corner of the top chamber wall and the bottom chamber wall . 如請求項16之多元件粉末壓實模,其進一步包括一上成角度中間區段及一下成角度中間區段,其中該模腔包括一上成角度中間腔壁及一下成角度中間腔壁,其中該上成角度中間腔壁與該頂部腔壁形成一水平邊角交叉面,且其中該下成角度中間腔壁與該底部腔壁形成一水平邊角交叉面。 The multi-component powder compacting mold of claim 16, further comprising an upper angled intermediate section and a lower angled intermediate section, wherein the cavity comprises an upper angled intermediate cavity wall and a lower angled intermediate cavity wall, Wherein the upper angled intermediate chamber wall forms a horizontal corner intersection with the top chamber wall, and wherein the lower angled intermediate chamber wall forms a horizontal corner intersection with the bottom chamber wall. 如請求項16之多元件粉末壓實模,其中該頂部腔壁及該底部腔壁係正交腔壁。 The multi-component powder compacting mold of claim 16, wherein the top chamber wall and the bottom chamber wall are orthogonal to the chamber wall. 如請求項16之多元件粉末壓實模,其中該模腔包括選自包括圓形、三角形、三角體、正方形、矩形、平行四邊形、五邊形、六邊形及八邊形之群組之一周邊形狀。 The multi-component powder compacting mold of claim 16, wherein the mold cavity comprises a group selected from the group consisting of a circle, a triangle, a triangle, a square, a rectangle, a parallelogram, a pentagon, a hexagon, and an octagon. A peripheral shape. 如請求項16之多元件粉末壓實模,其中該頂部區段及該底部區段包括經組態以接收一對準銷以鎖定該等區段為互相對準之對準孔。 The multi-component powder compaction mold of claim 16, wherein the top section and the bottom section comprise alignment holes configured to receive an alignment pin to lock the sections to be aligned with one another. 如請求項16之多元件粉末壓實模,其中該頂部區段及該底部區段堆疊、對準且黏合接合在一起。 The multi-component powder compacting mold of claim 16, wherein the top section and the bottom section are stacked, aligned and bonded together. 如請求項16之多元件粉末壓實模,其中該頂部區段及該底部區段堆疊、對準且冶金接合在一起。 The multi-component powder compacting mold of claim 16, wherein the top section and the bottom section are stacked, aligned and metallurgically bonded together. 如請求項16之多元件粉末壓實模,其中該頂部區段及該底部區段堆疊、對準且機械緊固在一起。 The multi-component powder compacting mold of claim 16, wherein the top section and the bottom section are stacked, aligned and mechanically fastened together. 如請求項16之多元件粉末壓實模,其中該頂部區段及該底部區段由包括合金之材料形成。 The multi-component powder compacting mold of claim 16, wherein the top section and the bottom section are formed from a material comprising an alloy. 如請求項16之多元件粉末壓實模,其中該頂部區段及該底部區段由包括燒結碳化物之材料形成。 The multi-component powder compaction mold of claim 16, wherein the top section and the bottom section are formed from a material comprising cemented carbide. 一種製作一切削刀片之過程,該過程包括:將一冶金粉末引入如請求項1之多元件粉末壓實模之該模腔中;在該模腔中用進入該模腔之壓製沖頭壓製該冶金粉末以壓縮該冶金粉末並形成一粉末壓塊;將該粉末壓塊從該模腔中移除;及燒結該粉末壓塊。 A process for making a cutting insert, the process comprising: introducing a metallurgical powder into the cavity of the multi-component powder compacting mold of claim 1; pressing the punch in the cavity with a pressing punch entering the cavity a metallurgical powder to compress the metallurgical powder and form a powder compact; remove the powder compact from the mold cavity; and sinter the powder compact. 一種用於製作一多元件粉末壓實模之過程,該過程包括:使用一線性材料切削技術切削一工件以形成一正交頂部區段,該正交頂部區段包括在該正交頂部區段中形成一頂部腔之一正交腔壁;使用一線性材料切削技術切削一工件以形成一成角度中間區段,該成角度中間區段包括在一成角度中間區段中形成至少一中間腔之一成角度腔壁;使用一線性材料切削技術切削一工件以形成一正交底部區段,該正交底部區段包括在一正交底部區段中形成一底部腔之一正交腔壁;堆疊該正交頂部區段、該成角度中間區段及該正交底部區段;對準該正交頂部區段、該成角度中間區段及該正交底部區段,使得該頂部腔、該至少一中間腔及該底部腔共同形成包括一正交頂部腔壁、一成角度中間腔壁及一正交底部腔壁之一模腔,該等腔壁在該模腔中形成水平邊角交叉面;及 接合該正交頂部區段、該成角度中間區段及該正交底部區段。 A process for making a multi-component powder compacting die, the process comprising: cutting a workpiece using a linear material cutting technique to form an orthogonal top section, the orthogonal top section being included in the orthogonal top section Forming an orthogonal cavity wall in one of the top chambers; cutting a workpiece using a linear material cutting technique to form an angled intermediate section comprising at least one intermediate portion formed in an angled intermediate section One of the cavities is angled to the cavity wall; a workpiece is cut using a linear material cutting technique to form an orthogonal bottom section comprising an orthogonal cavity forming a bottom cavity in an orthogonal bottom section a wall; stacking the orthogonal top section, the angled intermediate section, and the orthogonal bottom section; aligning the orthogonal top section, the angled intermediate section, and the orthogonal bottom section such that the top The cavity, the at least one intermediate cavity and the bottom cavity together form a cavity including an orthogonal top cavity wall, an angled intermediate cavity wall and an orthogonal bottom cavity wall, the cavity walls forming a level in the cavity Corner intersection; and The orthogonal top section, the angled intermediate section, and the orthogonal bottom section are joined. 如請求項28之過程,其中該線性材料切削技術包括線切割放電加工。 The process of claim 28, wherein the linear material cutting technique comprises wire cut electrical discharge machining. 如請求項28之過程,其進一步包括在該等工件中切削對準孔,且其中對準該正交頂部區段、該成角度中間區段及該正交底部區段包括將一對準銷定位在該等對準孔中,藉此將該區段鎖定為互相對準。 The process of claim 28, further comprising cutting the alignment holes in the workpieces, and wherein aligning the orthogonal top segments, the angled intermediate segments, and the orthogonal bottom segments comprises placing an alignment pin Positioned in the alignment holes, thereby locking the segments into mutual alignment. 如請求項28之過程,其中接合該正交頂部區段、該成角度中間區段及該正交底部區段包括將該等區段黏合接合在一起。 The process of claim 28, wherein joining the orthogonal top section, the angled intermediate section, and the orthogonal bottom section comprises bonding the sections together. 如請求項28之過程,其中接合該正交頂部區段、該成角度中間區段及該正交底部區段包括將該等區段冶金接合在一起。 The process of claim 28, wherein joining the orthogonal top section, the angled intermediate section, and the orthogonal bottom section comprises metallurgically joining the sections together. 如請求項28之過程,其中接合該正交頂部區段、該成角度中間區段及該正交底部區段包括將該等區段機械緊固在一起。 The process of claim 28, wherein joining the orthogonal top section, the angled intermediate section, and the orthogonal bottom section comprises mechanically fastening the sections together.
TW102112238A 2012-04-09 2013-04-03 Multi-component powder compaction molds and related methods TW201408402A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/442,135 US9132480B2 (en) 2012-04-09 2012-04-09 Multi-component powder compaction molds and related methods

Publications (1)

Publication Number Publication Date
TW201408402A true TW201408402A (en) 2014-03-01

Family

ID=48048247

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102112238A TW201408402A (en) 2012-04-09 2013-04-03 Multi-component powder compaction molds and related methods

Country Status (3)

Country Link
US (1) US9132480B2 (en)
TW (1) TW201408402A (en)
WO (1) WO2013154788A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10882115B2 (en) 2013-06-27 2021-01-05 No Screw Ltd. Cutting insert with internal cooling, mold and method for manufacture thereof
WO2014207747A2 (en) * 2013-06-27 2014-12-31 No Screw Ltd. Cutting insert with internal cooling
US20150090004A1 (en) * 2013-10-01 2015-04-02 Onesubsea Ip Uk Limited Electrical Conductor and Method of Making Same
DE102014003726A1 (en) * 2014-03-18 2015-09-24 Gkn Sinter Metals Engineering Gmbh Press for producing dimensionally stable green compacts and method for manufacturing
JP5804397B2 (en) * 2014-03-25 2015-11-04 住友電工焼結合金株式会社 Stepped die
AT517989B1 (en) * 2015-12-14 2019-01-15 Miba Sinter Austria Gmbh Method for surface compacting and calibrating a sintered component
DE102016105076A1 (en) * 2016-03-18 2017-09-21 Horn Hartstoffe Gmbh Method and device for producing a hard metal compact and carbide compact
US10807339B2 (en) * 2017-03-03 2020-10-20 University Of South Carolina Multi-chamber pellet die system
DE102019128350A1 (en) * 2019-10-21 2021-04-22 Gkn Sinter Metals Engineering Gmbh Process for the production of a calibrated assembly of parts

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2689539A (en) 1949-02-05 1954-09-21 Lyon George Albert Apparatus for making wheel covers
US3687067A (en) 1969-11-20 1972-08-29 Bettcher Industries Food press
US4797085A (en) * 1986-12-04 1989-01-10 Aerojet-General Corporation Forming apparatus employing a shape memory alloy die
DE3713334A1 (en) 1987-04-21 1988-11-03 Krupp Gmbh PRESSING TOOL AND CUTTING INSERT SEMINATED FROM A GRUENLING THEREFORE
US5001922A (en) 1989-11-01 1991-03-26 Dana Corporation Quick change tooling for press machine
GB2275054A (en) 1993-02-10 1994-08-17 Rank Brimar Ltd Tungsten articles and method for making them
JP2000042838A (en) 1998-07-31 2000-02-15 Mitsubishi Electric Corp Press working die and surface treatment method of press working die
SE515822C2 (en) * 1999-12-30 2001-10-15 Skf Nova Ab Method and apparatus for compacting powdered metal bodies
US6627835B1 (en) * 2000-02-02 2003-09-30 Purdue Research Foundation Three dimensional object fabrication techniques
US6986866B2 (en) 2002-11-04 2006-01-17 Kennametal Inc. Method and apparatus for cross-hole pressing to produce cutting inserts
JP2005030505A (en) 2003-07-07 2005-02-03 Nisshinbo Ind Inc Friction member manufacturing device
PT1548136E (en) * 2003-12-15 2008-06-12 Sandvik Intellectual Property Cemented carbide insert and method of making the same
IL166530A (en) * 2005-01-27 2009-06-15 Iscar Ltd Method for manufacturing cutting inserts
US7703559B2 (en) * 2006-05-30 2010-04-27 Smith International, Inc. Rolling cutter
US8062014B2 (en) 2007-11-27 2011-11-22 Kennametal Inc. Method and apparatus using a split case die to press a part and the part produced therefrom
US8033805B2 (en) * 2007-11-27 2011-10-11 Kennametal Inc. Method and apparatus for cross-passageway pressing to produce cutting inserts
US7976250B2 (en) 2009-02-12 2011-07-12 Tdy Industries, Inc. Double-sided cutting inserts for high feed milling

Also Published As

Publication number Publication date
WO2013154788A1 (en) 2013-10-17
US9132480B2 (en) 2015-09-15
US20130266681A1 (en) 2013-10-10

Similar Documents

Publication Publication Date Title
TW201408402A (en) Multi-component powder compaction molds and related methods
US11440113B2 (en) Electrode and method for manufacturing the same
US11027337B2 (en) Set of cutting inserts and methods of making a set of cutting inserts
EP1521657B1 (en) Metal workpiece
KR101940890B1 (en) Indexable cutting insert and milling tool
EP2808106B1 (en) Method for manufacturing a cutting insert
US20070256938A1 (en) Method for Electro-Chemical Processing of a Work Piece and Electrode for Such a Method
JP6875515B2 (en) Cemented Carbide Pressed Product Manufacturing Method and Equipment and Cemented Carbide Pressed Product
JP4684973B2 (en) Electrode for electric discharge machining and method for producing the same
WO2018099733A1 (en) Anvil with curved passage for cutting tool
CN110545992A (en) Compacting device and method for producing a cutting insert green body by compacting a powder
CN105563062A (en) Machining method for hard-alloy turning tool
CN111559077A (en) Method for molding three-dimensional object
JP7086545B2 (en) Support removal tool for additive manufacturing
CN109514200B (en) Method for manufacturing nonlinear arc-shaped empennage
KR19990071603A (en) Milling method and milling device for three-dimensional workpieces
US11712755B2 (en) Method for workpiece processing and cutter manufacturing using a laser
JP3838135B2 (en) Separator molding apparatus for fuel cell
DE10211511A1 (en) Joining of laminates by laser welding, e.g. for rapid prototyping, includes perforating the laminates in a staggered pattern
Chunliang et al. Blasting erosion arc machining of turbine blisk flow channel with laminated electrode
Wang et al. The feasibility study on a fabricated micro slit die using micro EDM
Li et al. Rapid-tooling of bunched electrode for EDM
Sabine et al. Laminated tool manufacturing by laser cutting and diffusion bonding
KR100383425B1 (en) Method and device for fabricating mold insert by three-dimensional welding and milling
JP4869567B2 (en) Method of manufacturing cutting blade member of cutting tool and press molding die of green compact used in the manufacturing method