TW201406041A - Servo motor calibrating equipment for absolute coding encoder and a calibration method thereof - Google Patents

Servo motor calibrating equipment for absolute coding encoder and a calibration method thereof Download PDF

Info

Publication number
TW201406041A
TW201406041A TW101126804A TW101126804A TW201406041A TW 201406041 A TW201406041 A TW 201406041A TW 101126804 A TW101126804 A TW 101126804A TW 101126804 A TW101126804 A TW 101126804A TW 201406041 A TW201406041 A TW 201406041A
Authority
TW
Taiwan
Prior art keywords
servo motor
encoder
absolute
motor
calibration
Prior art date
Application number
TW101126804A
Other languages
Chinese (zh)
Other versions
TWI481184B (en
Inventor
Yen-Fang Li
Cheng-Hao Wang
Original Assignee
Univ Minghsin Sci & Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Minghsin Sci & Tech filed Critical Univ Minghsin Sci & Tech
Priority to TW101126804A priority Critical patent/TWI481184B/en
Publication of TW201406041A publication Critical patent/TW201406041A/en
Application granted granted Critical
Publication of TWI481184B publication Critical patent/TWI481184B/en

Links

Abstract

This invention discloses a servo motor calibrating equipment for absolute coding encoder and a calibration method thereof applicable to a servo motor having an absolute coding encoder. The calibration device comprises a driving motor driving the servo motor to rotate; and a processing unit at least having a calibrating circuit and a counter-EMF recognizing circuit and being used to calculate number of magnetic pole of the servo motor, a resolution of the absolute coding encoder, a current angular position and an angular offset quantity of the encoder installed in the servo motor according to a signal of servo motor rotated.

Description

絕對型編碼器伺服馬達之校準裝置及其校準方法Absolute encoder servo motor calibration device and calibration method thereof

本發明是有關於一種絕對型編碼器伺服馬達之校準裝置及其校準方法,特別是有關於一種可用以輔助校正絕對編碼型軸編碼器安裝於伺服馬達之精密校準裝置。
The present invention relates to a calibration apparatus for an absolute encoder servo motor and a calibration method thereof, and more particularly to a precision calibration apparatus that can be used to assist in correcting an absolute coding type shaft encoder mounted to a servo motor.

絕對型編碼器伺服馬達係大量的被應用於產業之自動化生產及機器手臂上。伺服馬達之定位精確度主要是繫於伺服馬達軸上之位置編碼器(Encoder),又稱軸編碼器。而伺服馬達與軸編碼器有一定之相對位置(安裝角度),因此伺服馬達與軸編碼器兩者必須正確的安裝,運用此伺服馬達之設備(如機器手臂等)才能正常的工作。Absolute encoder servo motors are used in a large number of industrial automated production and robotic arms. The positioning accuracy of the servo motor is mainly the position encoder (Encoder) on the servo motor shaft, also known as the shaft encoder. The servo motor and the shaft encoder have a certain relative position (mounting angle), so both the servo motor and the shaft encoder must be correctly installed, and the device using the servo motor (such as a robot arm) can work normally.


當伺服馬達安裝絕對編碼型之軸編碼器時,伺服馬達於維修保養或者是更換伺服馬達之軸承,就必須面臨伺服馬達與軸編碼器兩者之間之相對位置變動而需重新校正之問題。然而,由於一般馬達維修的廠商不具備軸編碼器校準的能力,因此若遇到上述問題,尤其是伺服馬達維修時,便將無法進一步的做處理。如此一來,當伺服馬達於維修時,往往都是直接更換整組伺服馬達,而因為伺服馬達之價格高昂,安裝有高解析度之絕對型軸編碼器的伺服馬達之價格就更高,如要更換整組馬達,將造成相當大的成本負擔,故綜觀上述,本發明之發明人思索並設計一種絕對型編碼器伺服馬達之校準裝置及其校準方法,以期針對現有技術之缺失加以改善,進而增進產業上之實施利用。


When the servo motor is equipped with an absolute encoder type shaft encoder, the servo motor must face the problem of relative positional change between the servo motor and the shaft encoder for maintenance or replacement of the servo motor bearing. However, since the general motor repair manufacturer does not have the ability to calibrate the shaft encoder, if the above problems are encountered, especially when the servo motor is repaired, no further processing can be performed. In this way, when the servo motor is repaired, the entire set of servo motors is often replaced directly, and because the price of the servo motor is high, the price of the servo motor with the high resolution absolute type shaft encoder is higher, such as In order to replace the entire set of motors, a considerable cost burden will be incurred. Therefore, the inventors of the present invention have conceived and designed an apparatus for calibrating an absolute encoder servo motor and a calibration method thereof, in order to improve the lack of the prior art. In addition, it will enhance the implementation and utilization of the industry.

有鑑於上述習知技藝之問題,本發明之其中一目的就是在提供一種絕對型編碼器伺服馬達之校準裝置及其校準方法,以解決習知技術無法輕易校準伺服馬達之軸編碼器之安裝角度之問題。In view of the above problems of the prior art, one of the objects of the present invention is to provide a calibration device for an absolute encoder servo motor and a calibration method thereof to solve the installation angle of a shaft encoder that cannot be easily calibrated by a prior art servo motor. The problem.


根據本發明之目的,提出一種絕對型編碼器伺服馬達之校準裝置,適用於具有一絕對編碼型軸編碼器之一伺服馬達,其包含:
一驅動馬達,用以帶動該伺服馬達運轉;一處理單元,係接收該伺服馬達運轉時之一訊號,以根據該訊號運算出該伺服馬達之一磁極數及該絕對編碼型軸編碼器之一解析度,並計算該絕對編碼型軸編碼器安裝於該伺服馬達中之一目前角度位置及一角度偏移量;該處理單元包含一校準電路及一反電勢識別電路,該校準電路係用以處理該伺服馬達運轉時該絕對編碼型軸編碼器所輸出之一序列訊號,該反電勢識別電路係用以量測該伺服馬達運轉時一定子線圈之一反電勢訊號,該處理單元便係根據該序列訊號及該反電勢訊號運算出該伺服馬達之磁極數、該軸編碼器之解析度、該目前軸編碼器角度位置及該磁極與軸編碼器角度之偏移量。

In accordance with the purpose of the present invention, a calibration apparatus for an absolute encoder servo motor is provided, which is suitable for a servo motor having an absolute encoder type shaft encoder, comprising:
a driving motor for driving the servo motor; a processing unit receiving a signal of the servo motor during operation to calculate a magnetic pole number of the servo motor and one of the absolute encoding shaft encoders according to the signal a resolution, and calculating a current angular position and an angular offset of the absolute encoder type shaft encoder mounted in the servo motor; the processing unit includes a calibration circuit and a back potential identification circuit, wherein the calibration circuit is used to Processing a sequence signal output by the absolute coding type shaft encoder when the servo motor is running, the back potential identification circuit is configured to measure a back electromotive signal of a certain sub coil when the servo motor is running, and the processing unit is based on The sequence signal and the back EMF signal calculate the number of magnetic poles of the servo motor, the resolution of the shaft encoder, the current shaft encoder angular position, and the offset between the magnetic pole and the shaft encoder angle.


其中該絕對型編碼器伺服馬達之校準裝置或可進一步包含:一聯軸器,其兩端係分別連接並固定該驅動馬達與該伺服馬達之軸心,以將該驅動馬達之運轉動力傳送至該伺服馬達;及一顯示器,其用以顯示該伺服馬達磁極數、該軸編碼器解析度、該目前軸編碼器角度位置及該磁極與軸編碼器角度之偏移量;而其中,若該角度偏移量不為一基準值時,該處理單元則鎖定該驅動馬達之軸心以進一步造成該伺服馬達之軸心被鎖定,以允許使用者校準該伺服馬達之該絕對編碼型軸編碼器之該角度偏移量。

The calibration device of the absolute encoder servo motor may further include: a coupling, the two ends of which are respectively connected and fixed to the shaft of the servo motor to transmit the driving power of the driving motor to The servo motor; and a display for displaying the number of magnetic poles of the servo motor, the resolution of the shaft encoder, the angular position of the current shaft encoder, and the offset of the magnetic pole from the shaft encoder angle; When the angular offset is not a reference value, the processing unit locks the axis of the drive motor to further cause the axis of the servo motor to be locked, to allow the user to calibrate the absolute encoder type shaft encoder of the servo motor. The angular offset.


其中於結構上更包含一第一固定架及一第一底座,該驅動馬達係固定於該第一固定架之一面,且該驅動馬達之軸心係穿設於該第一固定架之該面上所具有之一通孔;該第一底座之一面係連接該第一固定架之一側;此外,其更包含一第二固定架及一第二底座,該伺服馬達係活動性地固定於該第二固定架之一面,且該伺服馬達之軸心係穿設於該第二固定架之該面上所具有之一通孔;該第二底座之一面係連接該第二固定架之一側;其中該第二固定架之該通孔周圍具有複數個螺孔。

The structure further includes a first fixing frame and a first base, wherein the driving motor is fixed to one side of the first fixing frame, and the axis of the driving motor is disposed on the surface of the first fixing frame One of the first bases is connected to one side of the first mount; and further includes a second mount and a second base, the servo motor is movably fixed to the One of the second mounting brackets, and the shaft of the servo motor has a through hole formed in the surface of the second mounting bracket; one side of the second base is connected to one side of the second mounting bracket; The through hole of the second fixing frame has a plurality of screw holes around the through hole.


其中該處理單元包含一驅動電路,係用以驅動該驅動馬達運轉,並用以鎖定該驅動馬達之軸心,且其中該基準值可為自訂之值;其中該聯軸器連接該伺服馬達之一端係呈夾頭式,用以夾持固定不同軸心大小之該伺服馬達。

The processing unit includes a driving circuit for driving the driving motor to lock the axis of the driving motor, and wherein the reference value can be a customized value; wherein the coupling is connected to the servo motor One end is in the form of a chuck for holding and fixing the servo motor of different axial centers.


此外,於本說明書中進一步揭露了一種校準方法,適用於具有一絕對編碼型軸編碼器之一伺服馬達,包含下列步驟:
利用一驅動馬達帶動該伺服馬達運轉;藉由一處理單元接收該伺服馬達運轉時之一訊號,該處理單元包含一校準電路及一反電勢識別電路,首先利用該校準電路處理該伺服馬達運轉時該絕對編碼型軸編碼器所輸出之一序列訊號;而後藉由該反電勢識別電路量測該伺服馬達運轉時一定子線圈之一反電勢訊號;並藉此經解碼與運算出該伺服馬達之一磁極數及該絕對編碼型軸編碼器之一解析度,並計算該絕對編碼型軸編碼器安裝於該伺服馬達中之一目前角度位置及一角度偏移量;若該角度偏移量不為一基準值,則利用該處理單元鎖定該驅動馬達之軸心,藉此使該伺服馬達之軸心同時被鎖定,以提供使用者校準該伺服馬達之該絕對編碼型軸編碼器之該角度偏移量。

In addition, a calibration method is further disclosed in the present specification, which is suitable for a servo motor having an absolute coding type shaft encoder, and includes the following steps:
The servo motor is driven by a driving motor; and receiving, by a processing unit, a signal of the servo motor, the processing unit includes a calibration circuit and a back potential identification circuit, and the calibration circuit is first used to process the servo motor The absolute coding type shaft encoder outputs a sequence signal; and the back potential identification circuit measures the back potential signal of the certain sub-coil during operation of the servo motor; and thereby decoding and calculating the servo motor a magnetic pole number and a resolution of the absolute encoder type shaft encoder, and calculating a current angular position and an angular offset of the absolute encoder type shaft encoder mounted in the servo motor; if the angular offset is not For a reference value, the processing unit is used to lock the axis of the drive motor, so that the axis of the servo motor is simultaneously locked to provide the user with the angle of the absolute encoder type shaft encoder for calibrating the servo motor. Offset.


而後可將該磁極數、該解析度、該目前角度位置及該角度偏移量透過一顯示器顯示;且其中該基準值可為任意之自訂值並進一步利用一聯軸器連接並固定該驅動馬達與該伺服馬達之軸心,以將該驅動馬達之運轉動力傳送至該伺服馬達。

The number of poles, the resolution, the current angular position, and the angular offset can then be displayed through a display; and wherein the reference value can be any custom value and further connected and fixed by a coupling The motor and the axis of the servo motor transmit the operating power of the drive motor to the servo motor.


此外,該絕對編碼型軸編碼器之該角度偏移量經校準後,利用該處理單元解除鎖定該驅動馬達之軸心,並重新使該驅動馬達運作以帶動該伺服馬達,以再次運算並顯示該磁極數、該解析度、該目前角度位置及該角度偏移量。

In addition, after the angular offset of the absolute coding type shaft encoder is calibrated, the processing unit is used to unlock the axis of the drive motor, and the drive motor is again operated to drive the servo motor to perform calculation and display again. The number of magnetic poles, the resolution, the current angular position, and the angular offset.


承上所述,透過本發明之絕對型編碼器伺服馬達之校準裝置及其校準方法,其可利用一驅動馬達帶動伺服馬達運轉,並利用處理電路將伺服馬達之磁極數、軸編碼器之解析度、軸編碼器之目前角度位置及軸編碼器之安裝角度偏移量運算出來,再經由顯示器顯示之,使用者便可根據顯示器所顯示之內容,輕易地對伺服馬達之絕對編碼型軸編碼器進行校準動作,以使絕對編碼型軸編碼器安裝於伺服馬達之角度偏移量為一基準值。

According to the above, the calibration device for the absolute encoder servo motor of the present invention and the calibration method thereof can drive the servo motor by a driving motor, and use the processing circuit to analyze the number of magnetic poles of the servo motor and the shaft encoder. The degree, the current angular position of the shaft encoder and the mounting angle offset of the shaft encoder are calculated, and then displayed on the display, the user can easily encode the absolute coding type of the servo motor according to the display content of the display. The calibration operation is performed such that the angular offset of the absolute coding type shaft encoder mounted to the servo motor is a reference value.


此外由於該絕對型編碼器伺服馬達之校準裝置可提供使用者對各種款式及各種軸徑之伺服馬達進行校準工作,在使用上相當的方便實用,而為了讓上述目的、技術特徵以及實際實施後之增益性更為明顯易懂,於下文中將係以較佳之實施範例輔佐對應相關之圖式來進行更詳細之說明。


In addition, since the calibration device of the absolute encoder servo motor can provide the user to calibrate the servo motor of various styles and various shaft diameters, it is quite convenient and practical in use, and in order to make the above purpose, technical features and actual implementation The gain is more apparent and will be explained in more detail below with reference to the corresponding figures in the preferred embodiment.

為利貴審查員瞭解本發明之發明特徵、內容與優點及其所能達成之功效,茲將本發明配合附圖,並以實施例之表達形式詳細說明如下,而其中所使用之圖式,其主旨僅為示意及輔助說明書之用,未必為本發明實施後之真實比例與精準配置,故不應就所附之圖式的比例與配置關係侷限本發明於實際實施上的專利範圍。The present invention will be described in conjunction with the accompanying drawings in the accompanying drawings, and the drawings The subject matter is only for the purpose of illustration and description. It is not intended to be a true proportion and precise configuration after the implementation of the present invention. Therefore, the scope of the accompanying drawings and the configuration relationship should not be limited to the scope of the invention.


本發明之優點、特徵以及達到之技術方法將參照例示性實施例及所附圖式進行更詳細地描述而更容易理解,且本發明或可以不同形式來實現,故不應被理解僅限於此處所陳述的實施例,相反地,對所屬技術領域具有通常知識者而言,所提供的實施例將使本揭露更加透徹與全面且完整地傳達本發明的範疇,且本發明將僅為所附加的申請專利範圍所定義。

The advantages and features of the present invention, as well as the technical methods of the present invention, are described in more detail with reference to the exemplary embodiments and the accompanying drawings, and the present invention may be implemented in various forms and should not be construed as limited thereby. The embodiments of the present invention, and the embodiments of the present invention are intended to provide a more complete and complete and complete disclosure of the scope of the present invention, and The scope of the patent application is defined.


而除非另外定義,所有使用於後文的術語(包含科技及科學術語)與專有名詞,於實質上係與本發明所屬該領域的技術人士一般所理解之意思相同,而例如於一般所使用的字典所定義的那些術語應被理解為具有與相關領域的內容一致的意思,且除非明顯地定義於後文,將不以過度理想化或過度正式的意思理解,合先敘明。

Unless otherwise defined, all terms (including technical and scientific terms) and proper nouns used hereinafter are used in the same meaning as commonly understood by those skilled in the art to which the invention belongs. Those terms defined by the dictionary should be understood to have the meaning consistent with the relevant fields, and unless explicitly defined in the following text, they will not be understood in terms of excessive idealization or excessive formality.


請參閱第1圖,其係為本發明之絕對型編碼器伺服馬達之校準裝置之實施例之示意圖。圖中,本發明之絕對型編碼器伺服馬達之校準裝置100係適用於一伺服馬達200,此伺服馬達200具有一絕對編碼型軸編碼器201絕對編碼型軸編碼器201。此絕對型編碼器伺服馬達之校準裝置100主要可提供生產廠商或使用者將絕對編碼型軸編碼器201安裝於伺服馬達200時之精準校正用,或者是絕對編碼型軸編碼器201發生鬆脫偏移或伺服馬達200維修保養需對絕對編碼型軸編碼器201重新校準其安裝角度之用。

Please refer to FIG. 1 , which is a schematic diagram of an embodiment of a calibration device for an absolute encoder servo motor of the present invention. In the figure, the calibration device 100 for an absolute encoder servo motor of the present invention is applied to a servo motor 200 having an absolute encoder type shaft encoder 201 and an absolute encoder type shaft encoder 201. The calibration device 100 of the absolute encoder servo motor mainly provides precision correction for the manufacturer or the user to mount the absolute coding type shaft encoder 201 to the servo motor 200, or the absolute coding type shaft encoder 201 is loose. Offset or servo motor 200 maintenance requires recalibration of the mounting angle of the absolute encoder type shaft encoder 201.


此絕對型編碼器伺服馬達之校準裝置100包含一驅動馬達101、一聯軸器102、一驅動電路103、一校準電路104、一反電勢識別電路105、一顯示器106、一第一固定架107、一第二固定架108及兩底座109。驅動電路103、校準電路104及反電勢識別電路105被包含在如本發明所述之處理單元中,此處理單元可為一現場可程式邏輯閘陣列( Field Programmable Gate Array, FPGA)晶片或微處理機晶片,處理單元中更包含了解碼運算程式,如超高速集成電路硬體描述語言(Very-High-Speed Integrated Circuit Hardware Description Language, VHDL)程式或微處理機程式。而其中顯示器106可為一LCD顯示器,但不以此為限。

The calibration device 100 of the absolute encoder servo motor includes a driving motor 101, a coupling 102, a driving circuit 103, a calibration circuit 104, a back potential identification circuit 105, a display 106, and a first holder 107. a second holder 108 and two bases 109. The driving circuit 103, the calibration circuit 104 and the back EMF identification circuit 105 are included in the processing unit according to the present invention. The processing unit can be a Field Programmable Gate Array (FPGA) chip or micro processing. The processor chip further includes a decoding operation program, such as a Very-High-Speed Integrated Circuit Hardware Description Language (VHDL) program or a microprocessor program. The display 106 can be an LCD display, but is not limited thereto.


上述中,第一固定架107之一側係連接於其中一底座109,其間或可藉由支撐元件110支撐,其三者接合方式係將螺絲穿設於底座109之螺孔1091、兩支撐元件110之定位孔1101及第一固定架107左右兩端之螺孔1072及定位孔1073中,使三者相互得以固定。第二固定架108之一側係連接於另一底座109,其或可透過兩支撐元件110分別設於第二固定架108與底座109連接處之兩端,以穩固支撐第二固定架108,此三者接合方式亦係將螺絲穿設於底座109之螺孔1091、兩支撐元件110之定位孔1101以及第二固定架108之螺孔1083及定位孔1084,使三者相互固定。第2圖、第3圖、第4圖及第5圖分別係為底座109、第一固定架107、第二固定架108及支撐元件110之示意圖,其各孔位分佈之位置如各圖式所示。

In the above, one side of the first fixing frame 107 is connected to one of the bases 109, and may be supported by the supporting member 110. The three engaging manners are to thread the screws through the screw holes 1091 of the base 109 and the two supporting members. The positioning holes 1101 of the 110 and the screw holes 1072 and the positioning holes 1073 of the left and right ends of the first fixing frame 107 are fixed to each other. One side of the second fixing frame 108 is connected to the other base 109, and the two supporting members 110 are respectively disposed at two ends of the connection between the second fixing frame 108 and the base 109 to stably support the second fixing frame 108. The three joints are also provided by screwing the screw hole 1091 of the base 109, the positioning hole 1101 of the two supporting members 110, and the screw hole 1083 and the positioning hole 1084 of the second fixing frame 108 to fix the three. 2, 3, 4, and 5 are schematic views of the base 109, the first mount 107, the second mount 108, and the support member 110, respectively, and the positions of the holes are distributed as shown in the drawings. Shown.


由第3圖可看出,第一固定架107更包含一通孔1071,通孔1071之周圍具有四螺孔1072,該些螺孔1072可提供使用者利用螺絲將驅動馬達101固定於第一固定架107之一面,且驅動馬達101之軸心1011將穿設於通孔1071中。第4圖可看出,第二固定架108更包含一通孔1081,通孔1081周圍具有複數螺孔1082,以供使用者利用螺絲將不同款式及大小之伺服馬達200活動性地固定於第二固定架108之一面,且伺服馬達200之軸心202將穿設於通孔1081中。

As can be seen from FIG. 3, the first fixing frame 107 further includes a through hole 1071. The through hole 1071 has a four screw holes 1072 around the through hole 1071. The screw holes 1072 can provide a user to fix the driving motor 101 to the first fixing by using a screw. One side of the frame 107, and the axis 1011 of the drive motor 101 will pass through the through hole 1071. As can be seen from FIG. 4, the second fixing frame 108 further includes a through hole 1081. The through hole 1081 has a plurality of screw holes 1082 around the through hole 1081 for the user to securely fix the servo motor 200 of different styles and sizes to the second by using a screw. One side of the holder 108 and the axis 202 of the servo motor 200 will pass through the through hole 1081.


上述中,聯軸器102可用以連接並固定驅動馬達101之軸心1011以及伺服馬達200之軸心202,聯軸器102之示意圖如第6圖所示。此聯軸器102用以固定伺服馬達200之軸心202之一端係為夾頭式設計,可用以夾持固定不同軸徑大小之軸心202之伺服馬達200。聯軸器102主要可用以將驅動馬達101之運轉動力傳送至伺服馬達200。

In the above, the coupling 102 can be used to connect and fix the shaft center 1011 of the drive motor 101 and the shaft center 202 of the servo motor 200. The schematic diagram of the coupling 102 is as shown in FIG. One end of the shaft 102 of the coupling 102 for fixing the servo motor 200 is a collet type design, and can be used to clamp the servo motor 200 of the shaft 202 of different shaft diameters. The coupling 102 can be mainly used to transmit the operating power of the drive motor 101 to the servo motor 200.


於第一實施例中,當驅動電路103驅使驅動馬達101運轉時,藉由聯軸器102之傳動,可使驅動馬達101帶動伺服馬達200運轉。而當伺服馬達200運轉時,校準電路104係處理絕對編碼型軸編碼器201所輸出之一序列訊號Rx、A、B,反電勢識別電路105則係量測伺服馬達200之定子線圈之一反電勢訊號Van,再經由處理單元中之VHDL程式計算,以根據序列訊號及反電勢訊號運算出伺服馬達200之磁極數、絕對編碼型軸編碼器201之解析度、絕對編碼型軸編碼器201安裝於伺服馬達200之一目前角度位置及一伺服馬達200之磁極位置與絕對編碼型軸編碼器201之角度位置之角度偏移量,最後利用顯示器106將磁極數、解析度、目前角度位置及角度偏移量顯示出來。其絕對型編碼器伺服馬達之校準裝置100之校準電路及反電勢識別電路之訊號處理之示意圖可如第7圖所示。

In the first embodiment, when the drive circuit 103 drives the drive motor 101 to operate, the drive motor 101 can drive the servo motor 200 to operate by the transmission of the coupling 102. When the servo motor 200 is running, the calibration circuit 104 processes one of the sequence signals R x , A, B output by the absolute coding type shaft encoder 201, and the back potential identification circuit 105 measures one of the stator coils of the servo motor 200. The back EMF signal V an is calculated by the VHDL program in the processing unit to calculate the number of magnetic poles of the servo motor 200, the resolution of the absolute coding type shaft encoder 201, and the absolute coding type shaft encoder according to the sequence signal and the back electromotive signal. 201 is mounted at an angular position of one of the servo motor 200 and an angular offset between the magnetic pole position of the servo motor 200 and the angular position of the absolute encoder shaft encoder 201. Finally, the number of poles, the resolution, and the current angular position are determined by the display 106. And the angular offset is displayed. A schematic diagram of the signal processing of the calibration circuit and the back EMF identification circuit of the calibration device 100 of the absolute encoder servo motor can be as shown in FIG.


上述中,若顯示器106所顯示出之角度偏移量不為一基準值時,表示絕對編碼型軸編碼器201安裝之角度有所偏差,此時可利用驅動電路103中之軸鎖定功能(shaft locked)將驅動馬達101之軸心1011鎖定。而由於驅動馬達101可經由聯軸器102帶動伺服馬達200運轉,故當驅動馬達101之軸心1011被鎖定時,伺服馬達200之軸心202同樣亦被鎖定,此時使用者便可根據顯示器106所顯示之內容,來校準伺服馬達200之絕對編碼型軸編碼器201之角度偏移量,使角度偏移量調整為該基準值。接著再解除驅動馬達101之軸心1011鎖定,然後再次的驅使驅動馬達101轉動,以再次運算經調整後之伺服馬達200之絕對編碼型軸編碼器201之磁極數、解析度、目前角度位置及角度偏移量,並經由顯示器106顯示,若角度偏移量為該基準值時,校準程序則結束。

In the above, if the angular offset displayed by the display 106 is not a reference value, the angle at which the absolute coding type shaft encoder 201 is mounted is deviated. In this case, the shaft locking function in the drive circuit 103 can be utilized (shaft) Locked) locks the shaft 1011 of the drive motor 101. Since the driving motor 101 can drive the servo motor 200 to operate via the coupling 102, when the shaft center 1011 of the driving motor 101 is locked, the shaft center 202 of the servo motor 200 is also locked, and the user can display the display according to the display. The content displayed in 106 is used to calibrate the angular offset of the absolute encoder type shaft encoder 201 of the servo motor 200, and the angular offset amount is adjusted to the reference value. Then, the shaft 1011 of the drive motor 101 is unlocked, and then the drive motor 101 is driven to rotate again to calculate the number of poles, the resolution, the current angular position of the absolute encoder shaft encoder 201 of the adjusted servo motor 200, and The angular offset is displayed via display 106, and if the angular offset is the reference value, the calibration procedure ends.


其中,角度偏移量之調整可依使用者所需或工具之規格進行調整,因此上述所舉使角度偏移量調整為「基準值」可為任一自訂角度,包含零度、30度或60度等等。意即,若使用者欲使角度偏移量為零度、30度或60度時,而第一次校正時顯示器106所顯示出之角度偏移量不為零度、30度或60度,使用者便可依據上述方式將角度偏移量調整為零度、30度或60度。

The adjustment of the angular offset can be adjusted according to the requirements of the user or the tool. Therefore, the above-mentioned adjustment of the angular offset to the "reference value" can be any custom angle, including zero degrees, 30 degrees or 60 degrees and so on. That is, if the user wants the angle offset to be zero degree, 30 degrees or 60 degrees, and the angle offset displayed by the display 106 during the first correction is not zero, 30 degrees or 60 degrees, the user The angular offset can be adjusted to zero, 30 or 60 degrees as described above.


請參閱第8圖,其係為本發明之校準方法之第一實施例之流程圖,其流程步驟為:
S11:利用一驅動馬達帶動伺服馬達運轉;
S12:藉由一處理單元接收伺服馬達運轉時之一訊號,以根據訊號運算出伺服馬達之一磁極數及該絕對編碼型軸編碼器之一解析度,並計算絕對編碼型軸編碼器安裝於伺服馬達中之一目前角度位置及一角度偏移量;
S13:經由一顯示器顯示磁極數、解析度、目前角度位置及角度偏移量;
S14:若角度偏移量不為一基準值,則利用處理單元鎖定驅動馬達之軸心,藉此使伺服馬達之軸心同時被鎖定,以提供使用者依據顯示器所顯示之內容,校準伺服馬達之絕對編碼型軸編碼器之角度偏移量。其中,該基準值可為零、30度、60度等角度。

Please refer to FIG. 8 , which is a flowchart of the first embodiment of the calibration method of the present invention, and the process steps are as follows:
S11: driving a servo motor by using a driving motor;
S12: receiving, by a processing unit, one of the signals when the servo motor is running, calculating a magnetic pole number of the servo motor and a resolution of the absolute encoder shaft encoder according to the signal, and calculating an absolute coding type shaft encoder is installed on the One of the current angular position and an angular offset of the servo motor;
S13: displaying a magnetic pole number, a resolution, a current angular position, and an angular offset through a display;
S14: If the angular offset is not a reference value, the processing unit is used to lock the axis of the driving motor, so that the axis of the servo motor is simultaneously locked, so as to provide the user to calibrate the servo motor according to the display content of the display. The angular offset of the absolute encoder type shaft encoder. Wherein, the reference value can be angles of zero, 30 degrees, 60 degrees, and the like.


上述中,在進行步驟S11前更包含了利用一聯軸器連接並固定驅動馬達與伺服馬達之軸心,以將驅動馬達之運轉動力傳送至伺服馬達。而步驟S14校準完絕對編碼型軸編碼器之角度偏移量後,可利用處理單元解除鎖定驅動馬達之軸心,並重新使驅動馬達運作以帶動伺服馬達,以再次運算並顯示磁極數、解析度、目前角度位置及角度偏移量,直到角度偏移量為該基準值時才完成校準程序。

In the above, before the step S11, the shaft of the drive motor and the servo motor is connected and fixed by a coupling to transmit the operating power of the drive motor to the servo motor. After step S14 calibrates the angular offset of the absolute coding type shaft encoder, the processing unit can unlock the axis of the drive motor and re-operate the drive motor to drive the servo motor to calculate and display the number of magnetic poles and analyze again. Degree, current angular position, and angular offset until the angular offset is the reference value.


請參閱第9圖,其係為本發明之校準方法之第二實施例之流程圖。首先,先取與待校正之伺服馬達相同類型之標準馬達,經此絕對編碼型編碼器伺服馬達之校準裝置預先量測並儲存製造廠所設計之正常角度基準值後,即可作為待校正伺服馬達之角度偏移量比對依據,接著再依以下流程步驟進行絕對編碼型軸編碼器之校準。此絕對型編碼器伺服馬達之校準裝置進行校準之使用步驟與動作流程如下所示:
(A) 首先須將驅動馬達與待校正之伺服馬達鎖固於一馬達架台,馬達架台之組成如第1圖所示之第一固定架107、第二固定架108、底座109及支撐元件110。
(B) 將聯軸器裝上並固定住驅動馬達與伺服馬達之軸心。
(C) 開始驅使驅動馬達運轉使其帶動待校正之伺服馬達轉動。
(D) FPGA 晶片電路則可讀取到經過處理之軸編碼序列訊號Rx、A、B以及反電勢訊號Van
(E) 經FPAG程式解碼此Rx、A、B序列訊號後產生軸編碼所傳輸至之角度資訊再與反電勢訊號Van做運算處理(PPR、磁極數、偏移量及校正位置計算),則可得到馬達參數、絕對編碼型軸編碼之資訊與校正之數據。
(F) 經由LCD顯示器顯示各項數據。
(G) 判斷偏移量是否為一基準值,此偏移量為偏移之安裝角度值,若不為該基準值則開始校正。其中該基準值可為任一角度,如零度、30度、60度等角度。
(H) 在校正前須先將驅動馬達做軸鎖定的功能(shaft locked)且同時也會將待校正之伺服馬達軸做鎖定。
(I) 鎖定後則可開始做絕對編碼型軸編碼器之校正而其偏移量可從顯示器顯示得知,其偏移量為偏移之安裝角度值,由此可得知應將絕對編碼型軸編碼器之光盤做順或逆時針調整,而調整時FPGA 內部程式之校正位置計算會依照光盤之順或逆時針調整,可即時加減而得到已移動之角度值。
(J) 在調整完軸編碼之光盤後,則可將驅動馬達做軸鎖定的功能解除,並重回至(C)步驟,重新開始驅動馬達使其帶動待校正之伺服馬達運轉,接下來再繼續做(D)~(G)之動作,若偏移量為零則馬達校正工作即完成。用此方法可方便進行絕對編碼型軸編碼器之校正並且能一次性即可完成校正之目的。
(K) 當偏移量角度顯示為該基準值(與標準馬達之值相同),則校正完成。

Please refer to FIG. 9, which is a flow chart of a second embodiment of the calibration method of the present invention. Firstly, the standard motor of the same type as the servo motor to be calibrated is taken first, and the calibration device of the absolute encoder encoder servo motor is pre-measured and stored with the normal angle reference value designed by the manufacturer, and then can be used as the servo motor to be corrected. The angular offset is compared, and then the absolute coding type axis encoder is calibrated according to the following process steps. The procedure and operation flow for calibration of the absolute encoder servo motor calibration device are as follows:
(A) First, the drive motor and the servo motor to be corrected must be locked to a motor frame, and the motor frame is composed of the first holder 107, the second holder 108, the base 109 and the supporting member 110 as shown in FIG. .
(B) Install and secure the coupling to the shaft of the drive motor and servo motor.
(C) Start driving the drive motor to rotate to drive the servo motor to be calibrated.
(D) The FPGA chip circuit can read the processed axis coded sequence signals R x , A, B and the back EMF signal V an .
(E) After the R x , A, and B sequence signals are decoded by the FPAG program, the angle information transmitted by the axis code is generated and then processed with the back EMF signal V an (PPR, magnetic pole number, offset, and corrected position calculation) , the motor parameters, absolute coding type axis coding information and correction data can be obtained.
(F) Display each data via the LCD display.
(G) Determine whether the offset is a reference value, and the offset is the installation angle value of the offset. If it is not the reference value, the correction is started. The reference value can be any angle, such as zero, 30 degrees, 60 degrees, and the like.
(H) Before the calibration, the drive motor must be shaft locked (the shaft is locked) and the servo motor shaft to be corrected is also locked.
(I) After locking, the correction of the absolute encoder type shaft encoder can be started and the offset can be seen from the display. The offset is the offset installation angle value, so that the absolute code should be known. The disc of the shaft encoder is adjusted smoothly or counterclockwise, and the correction position calculation of the internal program of the FPGA is adjusted according to the smooth or counterclockwise adjustment of the disc, and the angle value of the movement can be obtained by adding or subtracting immediately.
(J) After adjusting the axis coded disc, the function of the drive motor to lock the shaft can be released, and return to step (C) to restart the drive motor to drive the servo motor to be calibrated, and then Continue to do the action of (D)~(G). If the offset is zero, the motor calibration is completed. This method makes it easy to correct the absolute encoder type shaft encoder and can perform the calibration in one shot.
(K) When the offset angle is displayed as the reference value (same value as the standard motor), the correction is completed.


請進一步參閱第10圖,其係為FPGA訊號處理之流程示意圖,其中首先由反電勢識別電路105將處理之Van訊號與編碼器所輸出之RX、A、B訊號以及控制指令輸入至FPGA做運算/解碼/處理。將RX訊號做解碼,解碼完成會得到絕對編碼型編碼器目前之編碼值、馬達目前之已轉之圈數值。而後於一同步計數方塊,當指令訊號動作時,將已解碼之RX編碼值,下載至同步計數方塊內,而以A、B訊號作為計數基礎與RX編碼值做同步計數動作。且於一馬達參數計算方塊以該A、B、Van運算出馬達參數,該馬達參數包含馬達極數(Pole)、解析度(PPR)及誤差量(DPPR)。而後透過顯示面板驅動,於顯示器106之顯示面板屏幕(包含硬體電路)做顯示。

Please refer to FIG. 10, which is a schematic diagram of the process of FPGA signal processing. First, the back E-recognition circuit 105 inputs the processed V an signal and the R X , A, B signals and control commands output by the encoder to the FPGA. Do arithmetic / decoding / processing. The R X signal is decoded, and the decoding is completed to obtain the current code value of the absolute code type encoder and the current circle value of the motor. Then, in a synchronous counting block, when the command signal is activated, the decoded R X encoded value is downloaded into the synchronous counting block, and the A and B signals are used as the counting basis and the R X encoded value is synchronized. The motor parameters are calculated by the A, B, and V an in a motor parameter calculation block, and the motor parameters include a motor pole number (Pole), a resolution (PPR), and an error amount (DPPR). Then, it is driven by the display panel to display on the display panel screen (including the hardware circuit) of the display 106.


綜合上述,經由本發明之絕對型編碼器伺服馬達之校準裝置,可快速且方便地完成伺服馬達之軸絕對編碼型之校準,當伺服馬達於維修或任何情況下絕對編碼型軸編碼器需要重新定位時,便不需要更換整組馬達,可有效地降低成本之花費。

In summary, the calibration device for the absolute encoder servo motor of the present invention can quickly and conveniently perform the calibration of the absolute encoder type of the servo motor. When the servo motor is repaired or under any circumstances, the absolute encoder type shaft encoder needs to be renewed. When positioning, there is no need to replace the entire set of motors, which can effectively reduce the cost.


綜觀上述,可見本發明在突破先前之技術下,確實已達到所欲增進之功效,且也非熟悉該項技藝者所易於思及,再者,本發明申請前未曾公開,且其所具之進步性、實用性,顯已符合專利之申請要件,爰依法提出專利申請,懇請貴局核准本件發明專利申請案,以勵發明,至感德便。

Looking at the above, it can be seen that the present invention has achieved the desired effect under the prior art, and is not familiar to those skilled in the art. Moreover, the present invention has not been disclosed before the application, and it has Progressive and practical, it has already met the requirements for patent application, and has filed a patent application according to law. You are requested to approve the application for this invention patent to encourage invention.


以上所述之實施例僅係為說明本發明之技術思想及特點,其目的在使熟習此項技藝之人士能夠瞭解本發明之內容並據以實施,當不能以之限定本發明之專利範圍,即大凡依本發明所揭示之精神所作之均等變化或修飾,仍應涵蓋在本發明之專利範圍內。


The embodiments described above are merely illustrative of the technical spirit and the features of the present invention, and the objects of the present invention can be understood by those skilled in the art, and the scope of the present invention cannot be limited thereto. That is, the equivalent variations or modifications made by the spirit of the present invention should still be included in the scope of the present invention.

100...絕對型編碼器伺服馬達之校準裝置100. . . Absolute encoder servo motor calibration device

101...驅動馬達101. . . Drive motor

1011、202...軸心1011, 202. . . Axis

102...聯軸器102. . . Coupling

103...驅動電路103. . . Drive circuit

104...校準電路104. . . Calibration circuit

105...反電勢識別電路105. . . Back EMF recognition circuit

106...顯示器106. . . monitor

107...第一固定架107. . . First holder

1071、1081...通孔1071, 1081. . . Through hole

1072、1082、1083、1091...螺孔1072, 1082, 1083, 1091. . . Screw hole

1073、1084、1101...定位孔1073, 1084, 1101. . . Positioning hole

108...第二固定架108. . . Second holder

109...底座109. . . Base

110...支撐元件110. . . Supporting element

200...伺服馬達200. . . Servo motor

201...絕對編碼型軸編碼器201. . . Absolute coding type shaft encoder

Z、A、B...相位訊號Z, A, B. . . Phase signal

Van...反電勢訊號V an . . . Back EMF signal

S11~S14、(A)~(K)...步驟S11~S14, (A)~(K). . . step

第1圖係為本發明之絕對型編碼器伺服馬達之校準裝置之實施例之示意圖。
第2圖係為本發明之絕對型編碼器伺服馬達之校準裝置之實施例之底座之示意圖。
第3圖係為本發明之絕對型編碼器伺服馬達之校準裝置之實施例之第一固定架之示意圖。
第4圖係為本發明之絕對型編碼器伺服馬達之校準裝置之實施例之第二固定架之示意圖。
第5圖係為本發明之絕對型編碼器伺服馬達之校準裝置之實施例之支撐元件之示意圖。
第6圖係為本發明之絕對型編碼器伺服馬達之校準裝置之實施例之聯軸器之示意圖。
第7圖係為本發明之絕對型編碼器伺服馬達之校準裝置之實施例之校準電路及反電勢識別電路之訊號處理之示意圖。
第8圖係為本發明之校準方法之第一實施例之流程圖。
第9圖係為本發明之校準方法之第二實施例之流程圖。
第10圖係為本發明之絕對型編碼器伺服馬達之校準裝置之實施例中FPGA訊號處理流程示意圖。

Figure 1 is a schematic illustration of an embodiment of a calibration apparatus for an absolute encoder servo motor of the present invention.
Figure 2 is a schematic view of the base of the embodiment of the calibration device for the absolute encoder servo motor of the present invention.
Figure 3 is a schematic view of the first holder of the embodiment of the calibration device for the absolute encoder servo motor of the present invention.
Figure 4 is a schematic view of the second holder of the embodiment of the calibration device for the absolute encoder servo motor of the present invention.
Figure 5 is a schematic illustration of the support elements of an embodiment of a calibration device for an absolute encoder servo motor of the present invention.
Figure 6 is a schematic view of a coupling of an embodiment of a calibration device for an absolute encoder servo motor of the present invention.
Figure 7 is a schematic diagram showing the signal processing of the calibration circuit and the back EMF identification circuit of the embodiment of the calibration device for the absolute encoder servo motor of the present invention.
Figure 8 is a flow chart of a first embodiment of the calibration method of the present invention.
Figure 9 is a flow chart of a second embodiment of the calibration method of the present invention.
Figure 10 is a schematic diagram of the processing of the FPGA signal processing in the embodiment of the calibration device for the absolute encoder servo motor of the present invention.

100...絕對型編碼器伺服馬達之校準裝置100. . . Absolute encoder servo motor calibration device

101...驅動馬達101. . . Drive motor

1011、202...軸心1011, 202. . . Axis

102...聯軸器102. . . Coupling

103...驅動電路103. . . Drive circuit

104...校準電路104. . . Calibration circuit

105...反電勢識別電路105. . . Back EMF recognition circuit

106...顯示器106. . . monitor

107...第一固定架107. . . First holder

108...第二固定架108. . . Second holder

109...底座109. . . Base

110...支撐元件110. . . Supporting element

200...伺服馬達200. . . Servo motor

201...絕對編碼型軸編碼器201. . . Absolute coding type shaft encoder

Claims (10)

一種絕對型編碼器伺服馬達之校準裝置,適用於具有一絕對編碼型軸編碼器之一伺服馬達,其包含:
一驅動馬達,用以帶動該伺服馬達運轉;
一處理單元,係接收該伺服馬達運轉時之一訊號,以根據該訊號運算出該伺服馬達之一磁極數及該絕對編碼型軸編碼器之一解析度,並計算該絕對編碼型軸編碼器安裝於該伺服馬達中之一目前角度位置及一角度偏移量;該處理單元可為一現場可程式邏輯閘陣列或微處理器,其包含一校準電路及一反電勢識別電路,該校準電路係用以處理該伺服馬達運轉時該絕對編碼型軸編碼器所輸出之一序列訊號,該反電勢識別電路係用以量測該伺服馬達運轉時一定子線圈之一反電勢訊號,該處理單元便係根據該序列訊號及該反電勢訊號運算出該磁極數、該解析度、該目前角度位置及該角度偏移量以供校準之參考依據。
A calibration device for an absolute encoder servo motor for a servo motor having an absolute encoder type shaft encoder, comprising:
a drive motor for driving the servo motor to operate;
a processing unit receives a signal of the servo motor during operation to calculate a magnetic pole number of the servo motor and a resolution of the absolute encoder type shaft encoder according to the signal, and calculate the absolute encoding type shaft encoder a current angular position and an angular offset of the servo motor; the processing unit can be a field programmable logic gate array or a microprocessor, comprising a calibration circuit and a back potential identification circuit, the calibration circuit The system is configured to process a sequence signal output by the absolute encoder type shaft encoder when the servo motor is running, and the back potential identification circuit is configured to measure a back potential signal of a certain sub coil when the servo motor is running, the processing unit The magnetic pole number, the resolution, the current angular position and the angular offset are calculated according to the sequence signal and the back electromotive signal for reference of calibration.
如申請專利範圍第1項所述之絕對型編碼器伺服馬達之校準裝置,其中進一步包含:
一聯軸器,其兩端係分別連接並固定該驅動馬達與該伺服馬達之軸心,以將該驅動馬達之運轉動力傳送至該伺服馬達;及
一顯示器,其用以顯示該磁極數、該解析度、該目前角度位置及該角度偏移量;
而其中,若該角度偏移量不為一基準值時,該處理單元則鎖定該驅動馬達之軸心以進一步造成該伺服馬達之軸心被鎖定,以允許使用者校準該伺服馬達之該絕對編碼型軸編碼器之該角度偏移量。
The calibration device for an absolute encoder servo motor according to claim 1, wherein the method further comprises:
a coupling, the two ends of which are respectively connected and fixed to the axis of the driving motor and the servo motor to transmit the driving power of the driving motor to the servo motor; and a display for displaying the number of magnetic poles, The resolution, the current angular position, and the angular offset;
Wherein, if the angular offset is not a reference value, the processing unit locks the axis of the driving motor to further cause the axis of the servo motor to be locked, to allow the user to calibrate the absolute of the servo motor. The angular offset of the coded shaft encoder.
如申請專利範圍第2項所述之絕對型編碼器伺服馬達之校準裝置,其更包含一第一固定架及一第一底座,該驅動馬達係固定於該第一固定架之一面,且該驅動馬達之軸心係穿設於該第一固定架之該面上所具有之一通孔;該第一底座之一面係連接該第一固定架之一側。The calibration device of the absolute encoder servo motor of claim 2, further comprising a first fixing frame and a first base, wherein the driving motor is fixed to one side of the first fixing frame, and the driving motor is fixed to the first fixing frame The shaft of the driving motor has a through hole formed on the surface of the first fixing frame; one side of the first base is connected to one side of the first fixing frame. 如申請專利範圍第3項所述之絕對型編碼器伺服馬達之校準裝置,其更包含一第二固定架及一第二底座,該伺服馬達係活動性地固定於該第二固定架之一面,且該伺服馬達之軸心係穿設於該第二固定架之該面上所具有之一通孔,該通孔周圍具有複數個螺孔;該第二底座之一面係連接該第二固定架之一側。The calibration device for an absolute encoder servo motor according to claim 3, further comprising a second fixing frame and a second base, wherein the servo motor is movably fixed to one side of the second fixing frame And a shaft hole of the servo motor is disposed on the surface of the second fixing frame, and has a plurality of screw holes around the through hole; and one of the second bases is connected to the second fixing frame One side. 如申請專利範圍第2項所述之絕對型編碼器伺服馬達之校準裝置,其中該處理單元包含一驅動電路,係用以驅動該驅動馬達運轉,並用以鎖定該驅動馬達之軸心,且其中該基準值為任一自訂角度。The calibration device for an absolute encoder servo motor according to claim 2, wherein the processing unit includes a driving circuit for driving the driving motor to operate and locking the axis of the driving motor, and wherein The baseline value is any custom angle. 如申請專利範圍第1項所述之絕對型編碼器伺服馬達之校準裝置,其中該聯軸器連接該伺服馬達之一端具有一夾頭。The calibration device for an absolute encoder servo motor according to claim 1, wherein the coupling has one collet connected to one end of the servo motor. 一種校準方法,適用於具有一絕對編碼型軸編碼器之一伺服馬達,包含下列步驟:
利用一驅動馬達帶動該伺服馬達運轉;
藉由一處理單元接收該伺服馬達運轉時之一訊號,該處理單元為一現場可程式邏輯閘陣列,且進一步包含一校準電路及一反電勢識別電路,首先利用該校準電路處理該伺服馬達運轉時該絕對編碼型軸編碼器所輸出之一序列訊號;而後藉由該反電勢識別電路量測該伺服馬達運轉時一定子線圈之一反電勢訊號;並藉此運算出該伺服馬達之一磁極數及該絕對編碼型軸編碼器之一解析度,並計算該絕對編碼型軸編碼器安裝於該伺服馬達中之一目前角度位置及一角度偏移量;
若該角度偏移量不為一基準值,則利用該處理單元鎖定該驅動馬達之軸心,藉此使該伺服馬達之軸心同時被鎖定,以提供使用者校準該伺服馬達之該絕對編碼型軸編碼器之該角度偏移量。
A calibration method for a servo motor with an absolute encoder type shaft encoder, comprising the following steps:
Driving the servo motor with a driving motor;
Receiving, by a processing unit, one of the signals of the servo motor, the processing unit is a field programmable logic gate array, and further comprising a calibration circuit and a back potential identification circuit, firstly processing the servo motor operation by using the calibration circuit And the absolute coding type shaft encoder outputs a sequence signal; and the back potential identification circuit measures the back electromotive signal of the certain sub coil when the servo motor is running; and thereby calculating a magnetic pole of the servo motor And a resolution of one of the absolute coding type shaft encoders, and calculating a current angular position and an angular offset of the absolute coding type shaft encoder mounted in the servo motor;
If the angular offset is not a reference value, the processing unit is used to lock the axis of the driving motor, so that the axis of the servo motor is simultaneously locked to provide the user to calibrate the absolute encoding of the servo motor. The angular offset of the shaft encoder.
如申請專利範圍第7項所述之校準方法,其更包含下列步驟:
將該磁極數、該解析度、該目前角度位置及該角度偏移量透過一顯示器顯示;
且其中該基準值可為任一自訂值。
For example, the calibration method described in claim 7 further includes the following steps:
The magnetic pole number, the resolution, the current angular position, and the angular offset are displayed on a display;
And wherein the reference value can be any custom value.
如申請專利範圍第8項所述之校準方法,其更包含下列步驟:
利用一聯軸器連接並固定該驅動馬達與該伺服馬達之軸心。
For example, the calibration method described in claim 8 further includes the following steps:
The shaft of the drive motor and the servo motor is connected and fixed by a coupling.
如申請專利範圍第9項所述之校準方法,其更包含下列步驟:
該絕對編碼型軸編碼器之該角度偏移量經校準後,利用該處理單元解除鎖定該驅動馬達之軸心,並重新使該驅動馬達運作以帶動該伺服馬達,以再次運算並顯示該磁極數、該解析度、該目前角度位置及該角度偏移量。
For example, the calibration method described in claim 9 further includes the following steps:
After the angular offset of the absolute coding type shaft encoder is calibrated, the processing unit is used to unlock the axis of the drive motor, and the drive motor is again operated to drive the servo motor to calculate and display the magnetic pole again. Number, the resolution, the current angular position, and the angular offset.
TW101126804A 2012-07-25 2012-07-25 Servo motor calibrating equipment for absolute coding encoder and a calibration method thereof TWI481184B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101126804A TWI481184B (en) 2012-07-25 2012-07-25 Servo motor calibrating equipment for absolute coding encoder and a calibration method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101126804A TWI481184B (en) 2012-07-25 2012-07-25 Servo motor calibrating equipment for absolute coding encoder and a calibration method thereof

Publications (2)

Publication Number Publication Date
TW201406041A true TW201406041A (en) 2014-02-01
TWI481184B TWI481184B (en) 2015-04-11

Family

ID=50550177

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101126804A TWI481184B (en) 2012-07-25 2012-07-25 Servo motor calibrating equipment for absolute coding encoder and a calibration method thereof

Country Status (1)

Country Link
TW (1) TWI481184B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI687656B (en) * 2018-05-08 2020-03-11 日商三菱電機股份有限公司 Encoder and servomotor
CN114111687A (en) * 2021-12-03 2022-03-01 中国原子能科学研究院 Detection method, correction method and rotation system
TWI805157B (en) * 2021-12-28 2023-06-11 財團法人工業技術研究院 Servo motor and encoder calculation method thereof
TWI817381B (en) * 2022-03-10 2023-10-01 台達電子工業股份有限公司 Motor detection method and motor detection device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY120887A (en) * 1995-06-08 2005-12-30 Sony Corp Rotation position detecting device and motor device.
CN201607244U (en) * 2009-12-04 2010-10-13 威海华东数控股份有限公司 On-line detection device for digital encoder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI687656B (en) * 2018-05-08 2020-03-11 日商三菱電機股份有限公司 Encoder and servomotor
CN114111687A (en) * 2021-12-03 2022-03-01 中国原子能科学研究院 Detection method, correction method and rotation system
TWI805157B (en) * 2021-12-28 2023-06-11 財團法人工業技術研究院 Servo motor and encoder calculation method thereof
US11934171B2 (en) 2021-12-28 2024-03-19 Industrial Technology Research Institute Servo motor and encoder calibration method thereof
TWI817381B (en) * 2022-03-10 2023-10-01 台達電子工業股份有限公司 Motor detection method and motor detection device

Also Published As

Publication number Publication date
TWI481184B (en) 2015-04-11

Similar Documents

Publication Publication Date Title
TWI504861B (en) Calibration device for encoder positioning and calibration method thereof
TWI481184B (en) Servo motor calibrating equipment for absolute coding encoder and a calibration method thereof
TWI463113B (en) Servo motor calibration device and calibration method thereof applicable to a servo motor having an encoder
US9257923B2 (en) Control system for synchronous motor including abnormality detection and diagnosis function
KR100889961B1 (en) Method and system for compensating position error of step motor
US7370508B2 (en) Rotor position detection in an electrical machine
WO2015131546A1 (en) Motor encoder positioning method and system
US8049446B2 (en) Motor control device and magnetic pole position estimation precision confirming method
JP6668143B2 (en) Motor, motor with encoder, method of manufacturing motor with encoder, and method of replacing encoder with motor with encoder
TW201431270A (en) Module and method for detecting motor rotor angle
JP7076985B2 (en) Motor calibration method and system
US20040128106A1 (en) Method for adjusting a sensor device for determining the rotational position of an electronically-commutated motor rotor
CN102577081A (en) Machine type identification
TW201325067A (en) Method and apparatus for automatically positioning encoder
KR101361551B1 (en) device and method for correcting phase error of resolver
CN110323987B (en) Parameter calibration method and system for permanent magnet synchronous motor
TW202027428A (en) A rotary encoder eccentricity correction apparatus
JP2012192498A (en) Robot control device and calibration method
JP5581100B2 (en) Motor magnetic pole position correction method
TWM577495U (en) A rotary encoder eccentricity correction apparatus
JP4206374B2 (en) Synchronous motor control device and initial phase setting method thereof
JP2000213959A (en) Position detecting device
CN106610277B (en) automatic angle measuring device and method thereof
JP2007312535A (en) Drive device for synchronous motor, and device for manufacturing the drive device for synchronous motor
JP5875966B2 (en) Permanent magnet motor system and magnetic pole alignment method for permanent magnet motor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees