TW201351155A - Controlled intermediate bus architecture optimization - Google Patents

Controlled intermediate bus architecture optimization Download PDF

Info

Publication number
TW201351155A
TW201351155A TW102115633A TW102115633A TW201351155A TW 201351155 A TW201351155 A TW 201351155A TW 102115633 A TW102115633 A TW 102115633A TW 102115633 A TW102115633 A TW 102115633A TW 201351155 A TW201351155 A TW 201351155A
Authority
TW
Taiwan
Prior art keywords
busbar
bus
voltage
converter
controlling
Prior art date
Application number
TW102115633A
Other languages
Chinese (zh)
Inventor
Karim Wassef
Richard Hock
Vijayan J Thottuvelil
Michael J Model
Allen F Rozman
Original Assignee
Gen Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/461,370 external-priority patent/US20120297104A1/en
Application filed by Gen Electric filed Critical Gen Electric
Publication of TW201351155A publication Critical patent/TW201351155A/en

Links

Abstract

An intermediate bus architecture power system includes a bus converter that converts an input voltage into a bus voltage on an intermediate bus and a point-of-load converter that supplies an output voltage from the bus voltage on the intermediate bus. Additionally, the intermediate bus architecture power system includes a decision engine optimizing controller that controls a system variable to improve an overall system performance based on a monitored system variable or a system constraint. In another aspect, a method of operating an intermediate bus architecture power system includes converting an input voltage into a bus voltage on an intermediate bus and converting the bus voltage on the intermediate bus into an output voltage. The method also includes controlling a system variable to improve overall system performance based on a monitored system variable or a system constraint.

Description

控制的中間滙流排架構最佳化 Controlled intermediate bus architecture optimization 相關申請案交互參照Related application cross-reference

本申請案主張於2011年5月20日由Vijayan Joseph Thottuvelil,Michael Model,Allen Rozman及Karim Wassef申請之名稱為「Bus Conversion System Optimizer」之美國臨時申請案第61/488440之優先權,與本申請案共同讓與且以引用方式併入本文中。 The present application claims priority to U.S. Provisional Application Serial No. 61/488,440, filed on Jan. The cases are collectively assigned and incorporated herein by reference.

本申請案主張於2011年5月20日由Richard Hock申請之名稱為「Controlled Intermediate Bus Architecture For Optimized Efficiency」之美國臨時申請案第61/488450之優先權,與本申請案共同讓與且以引用方式併入本文中。 This application claims priority to U.S. Provisional Application Serial No. 61/488,450, filed on Jan. The manner is incorporated herein.

本申請案大致係關於功率轉換,且更具體言之,本申請案係關於一種中間匯流排架構功率系統及一種操作一中間匯流排架構功率系統之方法。 This application is generally directed to power conversion, and more particularly to an intermediate busbar architecture power system and a method of operating an intermediate busbar architecture power system.

中間匯流排功率系統通常包含透過一中間匯流排結構將一DC匯流排電壓提供至複數個負載點轉換器(POL)之一匯流排轉換器。該複數個POL之各者對可隨時間改變之一負載提供一分離輸出電壓。熟習此項技術者應認知,POL可為模組化或離散實施方案且亦可對多個負載提供複數個輸出電壓。整體系統效率與該匯流排轉換器之效率成比 例,以及與所使用之該複數個POL之效能成比例。此整體系統效率取決於包含一DC輸入電壓及DC匯流排電壓以及匯流排轉換器及POL之設計及操作特徵之諸多因素。因此,該整體系統效率之最佳化為負載的,且取決於多種因素。此區域中之改良將證明本技術之優點。 The intermediate bus power system typically includes a DC bus voltage that is supplied to one of a plurality of load point converters (POLs) through an intermediate bus structure. Each of the plurality of POLs provides a separate output voltage for one of the loads that can change over time. Those skilled in the art will recognize that a POL can be a modular or discrete implementation and can also provide multiple output voltages for multiple loads. Overall system efficiency is proportional to the efficiency of the bus converter For example, and in proportion to the effectiveness of the plurality of POLs used. This overall system efficiency depends on a number of factors including a DC input voltage and DC bus voltage as well as the design and operational characteristics of the busbar converter and POL. Therefore, the overall system efficiency is optimized for the load and depends on a variety of factors. Improvements in this area will demonstrate the advantages of this technology.

本發明之實施例對應於一中間匯流排架構功率系統及操作一中間匯流排架構功率系統之一方法。 Embodiments of the present invention correspond to an intermediate bus architecture power system and a method of operating an intermediate bus architecture power system.

在一實施例中,該中間匯流排架構功率系統包含將一輸入電壓轉換成一中間匯流排上之一匯流排電壓之一匯流排轉換器,及自該中間匯流排上之匯流排電壓供應一輸出電壓之一負載點轉換器。另外,該中間匯流排架構功率系統包含基於一已監測的系統變數或一系統約束來控制一系統變數以改良一整體系統效能之一決策引擎最佳化控制器。 In one embodiment, the intermediate busbar architecture power system includes a busbar converter that converts an input voltage into a busbar voltage on an intermediate busbar, and a busbar voltage supply and an output from the intermediate busbar One of the voltage load point converters. Additionally, the intermediate busway architecture power system includes a decision engine optimization controller that controls a system variable based on a monitored system variable or a system constraint to improve an overall system performance.

在另一態樣中,操作一中間匯流排架構功率系統之方法包含將一輸入電壓轉換成一中間匯流排上之一匯流排電壓及接著將該中間匯流排上之匯流排電壓轉換成一輸出電壓。該方法亦包含基於一已監測的系統變數或一系統約束來控制一系統變數以改良整體系統效能。 In another aspect, a method of operating an intermediate busbar architecture power system includes converting an input voltage to a busbar voltage on an intermediate busbar and then converting the busbar voltage on the intermediate busbar to an output voltage. The method also includes controlling a system variable based on a monitored system variable or a system constraint to improve overall system performance.

上文已闡述本發明之替代特徵使得熟習此項技術者可更好地理解下列本發明之詳細描述。將在下文描述形成本發明之技術方案之標的之本發明額外特徵。熟習此項技術者將瞭解,其可輕易使用所揭示之概念及特定實施例作為用於設計或修改其他結構之一基礎以實施本發明之相同目的。 The above description of the invention has been set forth in the Detailed Description of the invention. Additional features of the invention that form the subject matter of the technical solutions of the present invention are described below. Those skilled in the art will appreciate that the concept and specific embodiments disclosed may be readily utilized as a basis for designing or modifying other structures to practice the invention.

100‧‧‧中間匯流排架構功率系統 100‧‧‧Intermediate busbar architecture power system

105‧‧‧匯流排轉換器 105‧‧‧ Busbar Converter

110‧‧‧中間匯流排 110‧‧‧Intermediate busbar

1151‧‧‧負載點轉換器 115 1 ‧‧‧Load Point Converter

1152‧‧‧負載點轉換器 115 2 ‧‧‧Load Point Converter

115N‧‧‧負載點轉換器 115 N ‧‧‧Load Point Converter

600‧‧‧基於決策之控制器 600‧‧‧Decision-based controller

605‧‧‧決策引擎最佳化控制器 605‧‧‧Decision Engine Optimization Controller

610‧‧‧獨立變數 610‧‧‧Independent variables

615‧‧‧相依變數 615‧‧‧Dependent variables

620‧‧‧系統約束 620‧‧‧System Constraints

700‧‧‧中間匯流排架構功率系統 700‧‧‧Intermediate busbar architecture power system

705‧‧‧匯流排轉換器 705‧‧‧ Bus Bar Converter

706‧‧‧匯流排連接 706‧‧‧ bus bar connection

710‧‧‧中間匯流排 710‧‧‧Intermediate busbar

7151‧‧‧負載點轉換器 715 1 ‧‧‧Load point converter

7152‧‧‧負載點轉換器 715 2 ‧‧‧Load Point Converter

715N‧‧‧負載點轉換器 715 N ‧‧‧Load Point Converter

720‧‧‧決策引擎最佳化控制器 720‧‧‧Decision Engine Optimization Controller

900‧‧‧中間匯流排架構功率系統 900‧‧‧Intermediate busbar architecture power system

905‧‧‧匯流排轉換器 905‧‧‧ Bus Bar Converter

906‧‧‧匯流排連接 906‧‧‧ bus bar connection

910‧‧‧中間匯流排 910‧‧‧Intermediate busbar

9151‧‧‧負載點轉換器 915 1 ‧‧‧Load point converter

9152‧‧‧負載點轉換器 915 2 ‧‧‧Load point converter

915N‧‧‧負載點轉換器 915 N ‧‧‧Point of Load Converter

920‧‧‧決策引擎最佳化控制器 920‧‧‧Decision Engine Optimization Controller

925‧‧‧資料及控制匯流排 925‧‧‧ data and control bus

930‧‧‧功率介面模組 930‧‧‧Power Interface Module

1000‧‧‧中間匯流排架構功率系統 1000‧‧‧Intermediate busbar architecture power system

1005‧‧‧匯流排轉換器 1005‧‧‧ Bus Bar Converter

1006‧‧‧匯流排連接 1006‧‧‧ bus bar connection

1010‧‧‧中間匯流排 1010‧‧‧Intermediate busbar

10151‧‧‧負載點轉換器 1015 1 ‧‧‧Load point converter

10152‧‧‧負載點轉換器 1015 2 ‧‧‧Load Point Converter

1015N‧‧‧負載點轉換器 1015 N ‧‧‧Load Point Converter

1020‧‧‧決策引擎最佳化控制器 1020‧‧‧Decision Engine Optimization Controller

1025‧‧‧資料及控制匯流排 1025‧‧‧Data and control bus

1030‧‧‧功率介面模組 1030‧‧‧Power Interface Module

1035‧‧‧全域系統控制器 1035‧‧‧Global System Controller

1100‧‧‧中間匯流排架構功率系統 1100‧‧‧Intermediate busbar architecture power system

1105‧‧‧匯流排轉換器 1105‧‧‧ Busbar Converter

1106‧‧‧匯流排連接 1106‧‧‧ bus bar connection

1110‧‧‧中間匯流排 1110‧‧‧Intermediate busbar

11151‧‧‧負載點轉換器 1115 1 ‧‧‧Load point converter

11152‧‧‧負載點轉換器 1115 2 ‧‧‧Load point converter

1115N‧‧‧負載點轉換器 1115 N ‧‧‧Load Point Converter

1120‧‧‧決策引擎最佳化控制器 1120‧‧‧Decision Engine Optimization Controller

1125‧‧‧資料及控制匯流排 1125‧‧‧ Data and Control Busbars

1130‧‧‧功率介面模組 1130‧‧‧Power Interface Module

1135‧‧‧全域系統控制器 1135‧‧‧Global System Controller

1145‧‧‧並聯匯流排轉換器 1145‧‧‧Parallel busbar converter

1146‧‧‧並聯匯流排連接 1146‧‧‧ parallel busbar connection

CIB‧‧‧中間匯流排電容 C IB ‧‧‧Intermediate busbar capacitor

VBUS‧‧‧匯流排電壓 V BUS ‧‧‧ busbar voltage

VINPUT‧‧‧輸入電壓 V INPUT ‧‧‧ input voltage

VO1‧‧‧輸出電壓 V O1 ‧‧‧Output voltage

VO2‧‧‧輸出電壓 V O2 ‧‧‧ output voltage

VON‧‧‧輸出電壓 V ON ‧‧‧ output voltage

VSOURCE‧‧‧電源電壓 V SOURCE ‧‧‧Power supply voltage

現結合附圖參考下列描述,其中:圖1繪示一中間匯流排功率系統之一簡化方塊圖,其可用於檢查中間匯流排架構之各種一般特徵; 圖2繪示各種輸出電壓處之一典型48伏特輸入、400瓦特轉換器之一組效率曲線;圖3繪示一負載點(POL)轉換器之一例示性之效率曲線組,其大體上展示增加之效率特徵隨較低中間匯流排電壓而變化;圖4繪示因各種匯流排分佈損失而引起之中間匯流排損失特徵之一實例;圖5繪示一寬功率轉換效率(整體標示為500),其組合先前關於圖2、圖3及圖4所討論之效率特徵;圖6繪示根據本發明之原理而建構之一基於決策之控制器之一實施例之一方塊圖;圖7繪示根據本發明之原理而建構之一中間匯流排架構功率系統之一實施例之一方塊圖;圖8A、圖8B及圖8C繪示用於根據本發明之原理而實施之一中間匯流排架構功率系統之效率最佳化之方法之實施例之流程圖,整體標示為800、820、850;圖9繪示根據本發明之原理而建構之一中間匯流排架構功率系統之另一實施例之一圖式;圖10繪示根據本發明之原理而建構之一中間匯流排架構功率系統之又一實施例之一方塊圖;圖11繪示根據本發明之原理而建構之一中間匯流排架構功率系統之又一實施例之一方塊圖;及圖12繪示根據本發明之原理而實施之操作一中間匯流排架構功率系統之一方法之一實施例之一流程圖。 The following description is now referred to in conjunction with the accompanying drawings in which: FIG. 1 illustrates a simplified block diagram of an intermediate bus power system that can be used to check various general features of the intermediate bus bar architecture; 2 illustrates a set of efficiency curves for a typical 48 volt input, 400 watt converter at various output voltages; FIG. 3 illustrates an exemplary set of efficiency curves for a point of load (POL) converter, which generally shows The increased efficiency characteristics vary with lower intermediate bus voltages; Figure 4 illustrates one example of intermediate bus loss characteristics due to various busbar distribution losses; Figure 5 illustrates a wide power conversion efficiency (indicated as 500 overall) ), which combines the efficiency features previously discussed with respect to Figures 2, 3, and 4; Figure 6 illustrates a block diagram of one embodiment of a decision-based controller constructed in accordance with the principles of the present invention; One block diagram of one embodiment of an intermediate busbar architecture power system constructed in accordance with the principles of the present invention; FIGS. 8A, 8B, and 8C illustrate an intermediate busbar architecture implemented in accordance with the principles of the present invention. A flowchart of an embodiment of a method for optimizing the efficiency of a power system, generally designated 800, 820, 850; FIG. 9 illustrates another embodiment of an intermediate bus structure power system constructed in accordance with the principles of the present invention. a picture 10 is a block diagram showing still another embodiment of an intermediate busbar architecture power system in accordance with the principles of the present invention; and FIG. 11 is a diagram showing the construction of an intermediate busbar power system in accordance with the principles of the present invention. A block diagram of an embodiment; and FIG. 12 is a flow diagram of one embodiment of a method of operating an intermediate bus architecture power system in accordance with the principles of the present invention.

對於具有至少50瓦特之功率能力之DC功率系統,一匯流排轉換器常用於產生供應複數個負載點轉換器(POL)之一中間匯流排電壓, 其繼而對分離負載提供複數個輸出電壓。圖1繪示一中間匯流排功率系統之一簡化方塊圖(整體標示為100),其可用於檢查中間匯流排架構之各種一般特徵。該中間匯流排功率系統100包含使用一輸入電壓(例如,48伏特DC)以在一中間匯流排110上提供一中間匯流排電壓之一匯流排轉換器105。該中間匯流排功率系統100亦包含提供N個獨立調節之DC輸出電壓(例如,1.0伏特、1.2伏特等)之複數個POL 1151至115N,如展示。 For DC power systems having a power capability of at least 50 watts, a busbar converter is commonly used to generate an intermediate busbar voltage that supplies one of a plurality of load point converters (POL), which in turn provides a plurality of output voltages to the split load. 1 illustrates a simplified block diagram of an intermediate bus power system (collectively indicated at 100) that can be used to examine various general features of the intermediate busbar architecture. The intermediate bus power system 100 includes a busbar converter 105 that uses an input voltage (e.g., 48 volts DC) to provide an intermediate busbar voltage on an intermediate busbar 110. The intermediate bus power system 100 also includes a plurality of POLs 115 1 through 115 N that provide N independently regulated DC output voltages (eg, 1.0 volts, 1.2 volts, etc.), as shown.

一般而言,對於一恆定輸入電壓,一匯流排轉換器之效率會隨著其匯流排輸出電壓增加而增加。例如,一12伏特輸出匯流排電壓轉換器將比一6伏特輸出匯流排電壓轉換器更有效,此係因為對於一恆定功率位準,該6伏特匯流排電壓轉換器供應為之該12伏特匯流排電壓轉換器之輸出電流兩倍之輸出電流,從而增加電阻損失,引起較低之整體效率。 In general, for a constant input voltage, the efficiency of a busbar converter increases as its busbar output voltage increases. For example, a 12 volt output bus voltage converter would be more efficient than a 6 volt output bus voltage converter because the 6 volt bus voltage converter supplies the 12 volt confluence for a constant power level. The output current of the voltage converter is twice the output current, which increases the resistance loss, resulting in lower overall efficiency.

圖2繪示各種輸出電壓處之一典型48伏特輸入、400瓦特轉換器之一組效率曲線(整體標示為200)。顯而易見,除極輕負載處,該匯流排轉換器因其輸出電壓之增加而針對一給定輸出功率進行更有效操作。另外,較低輸出電壓所招致之較高損失亦限制可用輸出功率。例如,若來自該匯流排轉換器之一輸出電流被吸納逾33安培,則一5伏特輸出匯流排轉換器僅可供應約165瓦特,而相同轉換器可在12伏特輸出處遞送400瓦特。 Figure 2 illustrates a set of efficiency curves (indicated generally at 200) for a typical 48 volt input, 400 watt converter at various output voltages. It is apparent that in addition to very light loads, the busbar converter operates more efficiently for a given output power due to an increase in its output voltage. In addition, the higher losses incurred by lower output voltages also limit the available output power. For example, if one of the output currents from the busbar converter is absorbed by more than 33 amps, a 5 volt output busbar converter can only supply about 165 watts, while the same converter can deliver 400 watts at a 12 volt output.

圖3繪示一POL轉換器之一例示性效率曲線組(整體標示為300),其展示增加之效率特徵隨較低中間匯流排電壓而變化。POL轉換器之效率特徵隨其輸出電壓、其負載電流及供應該POL轉換器輸入之匯流排電壓而變化。與匯流排轉換器相反,一POL轉換器之效率隨著匯流排電壓之減少而增加。因此,將一較低匯流排電壓供至POL轉換器增加其效率,而匯流排轉換器藉由一較高匯流排電壓而更有效地操作。 3 illustrates an exemplary set of efficiency curves (shown generally as 300) of a POL converter showing that the increased efficiency characteristic varies with lower intermediate bus voltage. The efficiency characteristics of a POL converter vary with its output voltage, its load current, and the bus voltage that supplies the POL converter input. In contrast to busbar converters, the efficiency of a POL converter increases as the busbar voltage decreases. Therefore, supplying a lower bus voltage to the POL converter increases its efficiency, while the bus converter operates more efficiently by a higher bus voltage.

產生損失之一第三因素係由於匯流排分佈電阻。圖4繪示因各種匯流排分佈損失而引起之中間匯流排損失特徵之一實例(整體標示為400)。如藉由檢查該損失特徵400可見,分佈損失因匯流排電壓之減小(該匯流排電壓之減小係因可供應至一所要負載之電流之增加而引起)而增加。 One of the third factors contributing to the loss is due to the distribution resistance of the busbar. Figure 4 illustrates an example of an intermediate busbar loss characteristic due to various busbar distribution losses (indicated generally as 400). As can be seen by examining the loss feature 400, the distribution loss is increased by the decrease in the busbar voltage (the decrease in the busbar voltage is due to an increase in the current that can be supplied to a desired load).

組合先前所討論之效率特徵產生一例示性整體效率特徵。圖5繪示一寬功率轉換效率(整體標示為500),其組合先前關於圖2、圖3及圖4所討論之效率特徵。在此實例中,最佳整體效率係藉由以最低匯流排電壓(在此情況中為5伏特)操作而獲得。然而,在此輸出電壓處,僅可自匯流排轉換器之輸出獲得165瓦特(在33A處為5V),此係因為該匯流排轉換器將限制其輸出電流。在此簡單實例中,將該匯流排電壓自輕負載處之5伏特調整至最大負載處之14伏特提供具有最佳化效率之一系統。當然,其他實例可展示不同之效率曲線組。 Combining the efficiency features previously discussed produces an exemplary overall efficiency feature. Figure 5 illustrates a wide power conversion efficiency (indicated generally at 500) that combines the efficiency characteristics previously discussed with respect to Figures 2, 3, and 4. In this example, the best overall efficiency is obtained by operating at the lowest busbar voltage (5 volts in this case). However, at this output voltage, only 165 watts (5V at 33A) can be obtained from the output of the busbar converter, since the busbar converter will limit its output current. In this simple example, adjusting the bus voltage from 5 volts at the light load to 14 volts at the maximum load provides one of the systems with optimized efficiency. Of course, other examples can show different sets of efficiency curves.

由於該匯流排電壓因輸入電壓及負載電流而改變,所以使用未調節之匯流排轉換器時之最佳化系統效率為更複雜。此外,儘管一未調節之匯流排轉換器自身可具有比一經調節之匯流排轉換器之效率稍高之一固有效率,然其供應之「未控制」匯流排電壓可導致低於使用具有一最佳化匯流排電壓之一經調節之匯流排轉換器之一功率系統之效率之一整體功率系統效率。 Since the bus voltage changes due to input voltage and load current, optimizing system efficiency when using an unregulated busbar converter is more complicated. In addition, although an unregulated bus converter can itself have an inherent efficiency that is slightly higher than the efficiency of a regulated bus converter, the supply of "uncontrolled" bus voltage can result in lower than the use of one of the most One of the efficiency of one of the regulated busbar converters, one of the efficiency of the power system, is the efficiency of the overall power system.

本發明之實施例使用基於一已監測的系統變數或一系統約束來控制一系統變數以改良一整體系統效率之一決策引擎最佳化控制器。相較於一中間匯流排功率系統之各組成部分之效率最佳化,此提供該中間匯流排功率系統之一整體效率之最佳化。即使該中間匯流排功率系統之一些組成部分以小於其最大可用效率而操作,然亦可達成此整體效率最佳化。該等組成部分之操作功率系統資料及操作特徵可提前被儲存或即時量測以用於最佳化該整體效率。 Embodiments of the present invention use a decision engine optimization controller that controls a system variable based on a monitored system variable or a system constraint to improve an overall system efficiency. This provides an optimization of the overall efficiency of one of the intermediate bus power systems as compared to the efficiency optimization of the various components of an intermediate bus power system. This overall efficiency optimization can be achieved even if some components of the intermediate bus power system operate at less than their maximum available efficiency. The operational power system data and operational characteristics of the components can be stored in advance or measured in time for optimization of the overall efficiency.

該中間匯流排功率系統之控制可由與該等組成部分之一或多者(例如,匯流排轉換器)或一獨立控制器整合之一局域控制器而提供。該局域控制器亦可結合一全域系統控制器或該三項實施例之一些組合而操作。 The control of the intermediate bus power system can be provided by a local area controller integrated with one or more of the components (e.g., a bus bar converter) or a separate controller. The local area controller can also operate in conjunction with a global system controller or some combination of the three embodiments.

另外,多個匯流排轉換器可用於提供一中間匯流排電壓且與複數個POL轉換器共用一中間匯流排電流。此等匯流排轉換器之至少一者為一經調節之匯流排轉換器,而其他匯流排轉換器可為調節或未調節。 Additionally, a plurality of busbar converters can be used to provide an intermediate busbar voltage and share an intermediate busbar current with a plurality of POL converters. At least one of the busbar converters is a regulated busbar converter, and the other busbar converters may be adjusted or unregulated.

圖6繪示根據本發明之原理而建構之一基於決策之控制器之一實施例之一方塊圖(整體標示為600)。該基於決策之控制器600包含使用獨立變數610、相依變數615及系統約束620以對一對應系統提供控制決策之一決策引擎最佳化控制器605。該決策引擎最佳化控制器605使用用於判定如何回應於已監測的獨立變數615或系統約束620而改變獨立變數610之一決策引擎。在一實施例中,該決策引擎使用一系列邏輯操作及基於相依變數及影響一個獨立變數之數學計算。在一更一般實施例中,可連同系統約束一起考量任意數量之相依變數及獨立變數。 6 is a block diagram (collectively designated 600) of one embodiment of a decision-based controller constructed in accordance with the principles of the present invention. The decision-based controller 600 includes a decision engine optimization controller 605 that uses independent variables 610, dependent variables 615, and system constraints 620 to provide control decisions to a corresponding system. The decision engine optimization controller 605 changes the decision engine of one of the independent variables 610 using the independent variable 615 or the system constraint 620 for determining how to respond to the monitored independent variable 615. In one embodiment, the decision engine uses a series of logical operations and mathematical calculations based on dependent variables and affecting an independent variable. In a more general embodiment, any number of dependent variables and independent variables can be considered along with system constraints.

例如,該決策引擎最佳化控制器605可包含用於執行一匯流排轉換器之調節及控制之一數位控制器之部分。更具體言之,例如,該決策引擎最佳化控制器605可包含嵌入於在一數位控制器積體電路(IC)上實行之電腦編碼中之一演算法或若干演算法。該數位控制器IC可包含實行該決策引擎最佳化控制器605演算法及一匯流排轉換器之調節及控制兩者之一單一數位控制器。替代地,該數位控制器IC可包含實行該匯流排轉換器調節、控制及該決策引擎最佳化控制器之多個數位控制IC。 For example, the decision engine optimization controller 605 can include portions of a digital controller for performing regulation and control of a bus converter. More specifically, for example, the decision engine optimization controller 605 can include one or several algorithms embedded in a computer code implemented on a digital controller integrated circuit (IC). The digital controller IC can include a single digital controller that implements both the decision engine optimization controller 605 algorithm and the adjustment and control of a bus converter. Alternatively, the digital controller IC can include a plurality of digital control ICs that implement the busbar converter regulation, control, and the decision engine optimization controller.

一般而言,圖6之所繪示之實施例及待討論之相關實施例具有獨 立於或取決於所使用之一控制架構之多個變數。出於本發明之目的,定義若干獨立變數,作為可直接控制之該等變數。相應地,出於本發明之目的,定義相依變數,作為經監測以判定(例如)是否已達成一所要結果之該等變數。 In general, the embodiment illustrated in FIG. 6 and related embodiments to be discussed have exclusive A variable that depends on or depends on one of the control architectures used. For the purposes of the present invention, a number of independent variables are defined as such variables that are directly controllable. Accordingly, for the purposes of the present invention, dependent variables are defined as such variables that are monitored to determine, for example, whether a desired result has been achieved.

一般而言,多個變數可用作為於使用一決策引擎最佳化控制器之本發明之一實施例內控制之獨立變數。對應於一相關實施例之功率解決方案之任意成員之獨立變數實例可包含一輸出電壓(諸如一匯流排電壓)、(功率解決方案之任意成員之)一切換頻率或相位、(功率解決方案之任意成員之任意組件之)一切換時序、(功率解決方案之任意成員之任意組件之)一閘極驅動電壓、(功率解決方案之任意成員之)多個致能切換裝置、(功率解決方案之任意成員之)多個致能切換階段或一主動產生擾動。熟習此項技術者能認知,其他獨立變數可同樣地控制於本發明之一實施例中。 In general, a plurality of variables can be used as independent variables controlled within one embodiment of the invention using a decision engine optimization controller. An independent variable instance corresponding to any member of a power solution of a related embodiment may include an output voltage (such as a bus voltage), a switching frequency or phase (of any member of the power solution), (power solution a switching sequence, a gate drive voltage (of any component of any member of the power solution), a plurality of enable switching devices (of any member of the power solution), (power solution Multiple enable switching phases or an active perturbation of any member. Those skilled in the art will recognize that other independent variables can be equally controlled in one embodiment of the invention.

多個變數亦可用作為藉由使用一決策引擎最佳化控制器之本發明之一實施例而監測之相依變數,及可用於或不可用於一決策中以對一獨立變數作一改變。對應於一相關實施例之功率解決方案之任意成員之相依變數實例可包含一輸出電流、一效率、一功率耗散、一電磁干擾(EMI)、一輸出突波、一瞬時回應、一溫度、一電流共用信號或對一主動產生之擾動之一回應。再者,熟習此項技術者能認知,其他變數可同樣地監測於一實施例中。 A plurality of variables can also be used as dependent variables monitored by an embodiment of the invention using a decision engine optimization controller, and can be used or not available in a decision to make a change to an independent variable. An example of a dependent variable corresponding to any member of a power solution of a related embodiment may include an output current, an efficiency, a power dissipation, an electromagnetic interference (EMI), an output surge, an instantaneous response, a temperature, A current sharing signal or response to one of the actively generated disturbances. Moreover, those skilled in the art will recognize that other variables can be similarly monitored in an embodiment.

另外,系統約束可用於一決策中以對一獨立變數作改變或限制一獨立變數之改變。系統約束亦可限制一相依變數之改變。該等約束包含在系統操作之前所建立之預設條件,以及為使用者所作出之改變以影響系統操作之使用者設定之約束。現場約束為系統操作中所固有之該等約束,其中警報可視為現場系統約束之一特殊例子。另外,當一系統在系統操作期間適應其功能性時,發生適應約束。此外,熟習 此項技術者能認知,此等類別內之特定約束或其他約束可應用於一實施例中。 In addition, system constraints can be used in a decision to make changes to an independent variable or to limit changes in an independent variable. System constraints can also limit changes in a dependent variable. These constraints include pre-set conditions established prior to system operation, as well as constraints imposed on the user to make changes to the user's settings that affect system operation. Field constraints are such constraints inherent in system operation, where an alarm can be considered as a special example of a field system constraint. In addition, adaptation constraints occur when a system adapts its functionality during system operation. In addition, familiar with Those skilled in the art will recognize that certain constraints or other constraints within such categories may be applied to an embodiment.

在為一匯流排電壓之一獨立變數之實例中,一對應相依變數為一匯流排電流,此係因為其部分取決於該匯流排電壓。例如,該匯流排電壓可經改變使得該匯流排電流滿足由系統約束所設定之需求。另一相依變數為可被間接改良為(相關於一靜態匯流排電壓)新匯流排電壓與匯流排電流變數之一結果之一系統效率。 In the example of one of the independent variables of a bus voltage, a corresponding dependent variable is a bus current because it depends in part on the bus voltage. For example, the bus voltage can be varied such that the bus current meets the requirements set by system constraints. Another dependent variable is one of the results that can be indirectly improved (associated with a static bus voltage) as one of the results of the new bus voltage and the bus current variable.

另外,一獨立變數可為一主動產生之擾動,及一或多個相依變數可回應於該主動產生之擾動。替代地,該等獨立及相依變數可使用被動系統特徵。此外,主動產生之擾動及被動系統特徵之一混合可組成獨立及相依變數。 Additionally, an independent variable can be an actively generated disturbance, and one or more dependent variables can be responsive to the actively generated disturbance. Alternatively, the independent and dependent variables may use passive system features. In addition, a mixture of actively generated disturbances and passive system features can form independent and dependent variables.

一獨立變數亦可用作為一相依變數。此之一實例為藉由一決策引擎最佳化控制器判定之一匯流排電壓,但可因其他影響而發生改變及因此需要被監測。在此情況中,其為一相依變數,及該控制器可制定一改變以影響其作為一獨立變數。相依變數亦可被直接或間接監測。此之實例為一匯流排電流作為一直接相依變數,及一系統效率作為一間接相依變數。 An independent variable can also be used as a dependent variable. An example of this is to determine one of the bus voltages by a decision engine optimization controller, but can change due to other effects and therefore needs to be monitored. In this case, it is a dependent variable, and the controller can make a change to affect it as an independent variable. Dependent variables can also be monitored directly or indirectly. An example of this is a bus current as a direct dependent variable, and a system efficiency as an indirect dependent variable.

一決策引擎最佳化控制器可監測一匯流排轉換器之溫度、電流及功率耗散。基於此等相依變數,該決策引擎最佳化控制器可在匯流排電壓或切換頻率及相位中建立一偏壓以基於該等相依變數來最小化優值。例如,獨立及相依變數可連同匯流排電壓一起使用匯流排切換頻率及相位之獨立變數以改良多個並聯匯流排轉換器之間之一熱分佈。對應相依變數可包含匯流排轉換器功率耗散、匯流排轉換器溫度及匯流排轉換器輸出電流。 A decision engine optimization controller monitors the temperature, current, and power dissipation of a bus converter. Based on the dependent variables, the decision engine optimization controller can establish a bias voltage in the bus voltage or switching frequency and phase to minimize the merit based on the dependent variables. For example, the independent and dependent variables can use the busbar switching frequency and phase independent variables along with the busbar voltage to improve one of the heat distributions between the plurality of parallel busbar converters. The corresponding dependent variables may include busbar converter power dissipation, busbar converter temperature, and busbar converter output current.

一決策引擎最佳化控制器可監測一系統特徵隨時間之改變,且回應於該改變。例如,一匯流排分佈損失可因隨時間之降級(例如, 因環境腐蝕)而改變。在此情況中,一約束(諸如一最大匯流排電壓)可經改變以對此降級進行補償。 A decision engine optimization controller can monitor changes in a system characteristic over time and respond to the change. For example, a bus distribution loss can be degraded over time (for example, Change due to environmental corrosion). In this case, a constraint, such as a maximum busbar voltage, can be varied to compensate for this degradation.

圖7繪示根據本發明之原理而建構之一中間匯流排架構功率系統之一實施例之一方塊圖(整體標示為700)。該中間匯流排架構功率系統700包含一匯流排轉換器705,其具有一匯流排連接706,將一DC輸入電壓VINPUT轉換成一中間匯流排710上之一DC匯流排電壓VBUS。該中間匯流排架構功率系統700亦包含具有連接至該中間匯流排710之複數個負載點轉換器(POL)7151、7152...715N,該中間匯流排710自該匯流排電壓VBUS供應複數個對應輸出電壓VO1、VO2...VON7 is a block diagram (indicated generally at 700) of one embodiment of an intermediate busbar power system constructed in accordance with the principles of the present invention. The intermediate busbar architecture power system 700 includes a busbar converter 705 having a busbar connection 706 that converts a DC input voltage VINPUT into a DC busbar voltage VBUS on an intermediate busbar 710. The intermediate bus bar architecture power system 700 also includes a plurality of load point converters (POL) 715 1 , 715 2 ... 715 N connected to the intermediate bus bar 710, the intermediate bus bar 710 from the bus bar voltage V The BUS supplies a plurality of corresponding output voltages V O1 , V O2 ... V ON .

該中間匯流排架構功率系統700進一步包含嵌入於且藉此耦合至匯流排轉換器705,及基於一已監測的系統變數或系統約束而控制一系統變數以改良整體系統效能之一決策引擎最佳化控制器720。例如,該決策引擎最佳化控制器720可包含用於執行一匯流排轉換器之調節及控制之一數位控制器之部分。更具體言之,例如,該決策引擎最佳化控制器720可包含嵌入於在一數位控制器IC上實行之電腦代碼中之一演算法或若干演算法。該數位控制器IC可包含實行該決策引擎最佳化控制器720演算法以及一匯流排轉換器之調節及控制兩者之一單一數位控制器。替代地,該數位控制器IC可包含實行該匯流排轉換器調節、控制及該決策引擎最佳化控制器之多個數位控制IC。 The intermediate busbar architecture power system 700 further includes an algorithm that is embedded in and coupled to the busbar converter 705, and controls a system variable based on a monitored system variable or system constraint to improve overall system performance. Controller 720. For example, the decision engine optimization controller 720 can include a portion of a digital controller for performing regulation and control of a bus converter. More specifically, for example, the decision engine optimization controller 720 can include one or several algorithms embedded in computer code implemented on a digital controller IC. The digital controller IC can include a single digital controller that implements both the decision engine optimization controller 720 algorithm and the adjustment and control of a bus converter. Alternatively, the digital controller IC can include a plurality of digital control ICs that implement the busbar converter regulation, control, and the decision engine optimization controller.

本發明有匯流排轉換器705能自動調整匯流排電壓VBUS之若干優點。首先,無需外部控制器,此係因為在此實施例中,決策引擎最佳化控制器720(亦即,至少其功能性及意圖)已整合至該匯流排轉換器705中。事實上,此方法可用於不同類型之匯流排轉換器中,自僅使用類比介面及類比控制之匯流排轉換器至一完全數位匯流排轉換器(包含介面及控制)之範圍。第二,由於無需外部控制器,所以設計及開發被簡化。此可期望大幅增加效率改良方案之一採用位準,該方案 使用具有系統負載之匯流排電壓調變。第三,此方案提供與現有插座互換之反向足跡,其中一現有匯流排轉換器被代替。具體言之,在現有應用中,經完全調節之類比轉換器上之一有效效率升壓可藉由使用類比介面及數位控制一組合而獲得。亦支援改裝選項以便可以節約能量及成本。 The present invention has the advantage that the busbar converter 705 can automatically adjust the busbar voltage VBUS . First, no external controller is required, as in this embodiment, the decision engine optimization controller 720 (i.e., at least its functionality and intent) has been integrated into the bus converter 705. In fact, this method can be used in different types of bus converters, from the use of analog interface and analog control bus converters to a full digital bus converter (including interface and control). Second, design and development are simplified because no external controller is required. This can be expected to significantly increase the efficiency of one of the improved schemes using a bus voltage modulation with system load. Third, this solution provides a reverse footprint that is interchangeable with existing outlets, with an existing busbar converter being replaced. In particular, in existing applications, an effective efficiency boost on a fully tuned analog converter can be obtained by using a combination of analog interface and digital control. Conversion options are also supported to save energy and cost.

該匯流排連接706在該匯流排轉換器705與由可分離控制之一個或複數個並聯開關(例如,場效電晶體(FET))組成之中間匯流排710之間提供一可控制連接。此能力容許修改用於該匯流排連接706之一開關電阻。替代地,該匯流排連接706可包含一簡單低阻抗焊接或連接器式連接以改良系統效率。 The busbar connection 706 provides a controllable connection between the busbar converter 705 and an intermediate busbar 710 comprised of one or a plurality of parallel switches (e.g., field effect transistors (FETs)) that are detachably controllable. This capability allows modification of the switching resistance for one of the busbar connections 706. Alternatively, the busbar connection 706 can include a simple low impedance soldering or connectorized connection to improve system efficiency.

在該所繪示之實施例中,該匯流排轉換器705包含該決策引擎最佳化控制器720,且可自動(亦即,在沒有來自一外部控制器之任意通信之情況下)改變匯流排電壓VBUS以最佳化該中間匯流排架構功率系統700之效率。此可藉由該匯流排轉換器705量測(例如)其輸出電流及將該匯流排電壓VBUS自動設定至改良以一固定匯流排電壓操作而滿足之一系統功率轉換效率之位準,同時滿足通電所需之一負載遞送至一設計最大值(亦即,一約束)之需求而完成。當該匯流排轉換器705通電時,(例如)可自動啟用該決策引擎最佳化控制器720中之演算法,或替代地,當該匯流排轉換器705為通電時,可停用該決策引擎最佳化控制器720中之演算法。若該決策引擎最佳化控制器720中之演算法為停用,則使用者可藉由經由(例如)一數位通信匯流排與該匯流排轉換器通信而啟用該決策引擎最佳化控制器720。替代地,該匯流排轉換器705之一接針可被該使用者使用以指示該匯流排電壓變化演算法是否被啟用。 In the illustrated embodiment, the bus converter 705 includes the decision engine optimization controller 720 and can automatically (ie, without any communication from an external controller) change the sink The voltage V BUS is drained to optimize the efficiency of the intermediate bus architecture power system 700. The bus bar converter 705 can measure, for example, its output current and automatically set the bus bar voltage V BUS to improve the operation of a fixed bus bar voltage to meet the level of one system power conversion efficiency. This is accomplished by meeting the need for one of the load requirements for powering up to a design maximum (ie, a constraint). When the busbar converter 705 is powered on, for example, the algorithm in the decision engine optimization controller 720 can be automatically enabled, or alternatively, when the busbar converter 705 is powered on, the decision can be deactivated. The engine optimizes the algorithm in controller 720. If the algorithm in the decision engine optimization controller 720 is deactivated, the user can enable the decision engine optimization controller by communicating with the bus converter via, for example, a digital communication bus. 720. Alternatively, one of the contacts of the busbar converter 705 can be used by the user to indicate whether the busbar voltage change algorithm is enabled.

另外,其他實施例可透過匯流排電壓VBUS(亦即,使用中間匯流排710作為一通信匯流排)在該匯流排轉換器705與該等POL 7151、 7152...715N之間提供通信以被整合決策引擎最佳化控制器720使用。例如,該中間匯流排電壓VBUS可經調變以在該匯流排轉換器705與該等POL轉換器7151、7152...715N之至少一者之間載送數位或類比資訊。 In addition, other embodiments may pass the bus bar voltage V BUS (ie, using the intermediate bus bar 710 as a communication bus bar) between the bus bar converter 705 and the POLs 715 1 , 715 2 ... 715 N Communication is provided for use by the integrated decision engine optimization controller 720. For example, the intermediate bus voltage V BUS can be modulated to carry digital or analog information between the bus converter 705 and at least one of the POL converters 715 1 , 715 2 ... 715 N .

該匯流排轉換器705亦可使用額外方法以依據一操作特徵(例如,包含(但不限於)一輸出電流、一輸入電流、一輸出功率、一輸入功率、一輸入電壓等)而改良系統效率。例如,該匯流排轉換器705可依據一操作特徵而調整其切換頻率。另外,其可有利於減小較低輸出功率位準處之一切換頻率以進一步改良效率。 The busbar converter 705 can also use additional methods to improve system efficiency based on an operational characteristic (eg, including, but not limited to, an output current, an input current, an output power, an input power, an input voltage, etc.) . For example, the busbar converter 705 can adjust its switching frequency in accordance with an operational characteristic. Additionally, it may be advantageous to reduce the switching frequency at one of the lower output power levels to further improve efficiency.

依據一輸出特徵良效率之另一方法可為,該匯流排轉換器705適應地調整其各種功率開關之間之時序。特定言之,可使用主要參考功率開關與二級參考同步整流器之間之時序調整。依據一輸出特徵改良效率之又一方法為,該匯流排轉換器705適應地調整一或多個功率開關之閘極驅動之一位準。效率改良之額外方法之此等實例意欲為繪示性而非限制性。 Alternatively to the efficiency of an output feature, the busbar converter 705 can adaptively adjust the timing between its various power switches. In particular, timing adjustments between the primary reference power switch and the secondary reference synchronous rectifier can be used. Yet another method of improving efficiency in accordance with an output feature is that the busbar converter 705 adaptively adjusts one of the gate drive levels of one or more power switches. These examples of additional methods of efficiency improvement are intended to be illustrative and not limiting.

此等效率改良方案中之一例示性理念在於,該匯流排轉換器705始終以最低可能匯流排電壓VBUS(或一最佳切換頻率、一最佳切換時序關係、一最佳閘極驅動電壓等)操作,同時滿足所汲取之輸出電流滿足其設計約束之條件。 An exemplary idea in such efficiency improvement schemes is that the bus converter 705 always has the lowest possible bus voltage V BUS (or an optimal switching frequency, an optimal switching timing relationship, an optimal gate driving voltage). The operation, while satisfying the conditions under which the extracted output current meets its design constraints.

圖8A、圖8B及圖8C繪示用於根據本發明之原理而實施之一中間匯流排架構功率系統之效率最佳化之方法之實施例之流程圖,整體標示為800、820、850。一般而言,該等方法800、820及850可應用至由如關於本發明所討論之決策引擎最佳化控制器之實施例所提供之控制決策。 8A, 8B, and 8C are flow diagrams showing an embodiment of a method for implementing efficiency optimization of an intermediate bus architecture power system in accordance with the principles of the present invention, generally designated 800, 820, 850. In general, the methods 800, 820, and 850 can be applied to control decisions provided by embodiments of a decision engine optimization controller as discussed with respect to the present invention.

在一實例中,此等方法可使用類比電路或數位電路或兩者之一組合而實施為一匯流排轉換器(例如,圖7之匯流排轉換器705)之部 分。由於數位實施方案通常提供更好的靈活度,所以數位實施方案可為一較佳實施例。可建立若干關鍵參數作為在匯流排轉換器製造測試期間儲存於該匯流排轉換器中之值,或作為透過一數位介面(諸如一功率管理匯流排)改變或儲存之值。此可在組裝匯流排轉換器之前或組裝之後,及在需要該匯流排轉換器來操作遞送輸出功率之前而發生。 In one example, the methods can be implemented as a busbar converter (eg, busbar converter 705 of FIG. 7) using an analog circuit or a digital circuit or a combination of the two. Minute. Digital implementations may be a preferred embodiment as digital implementations generally provide greater flexibility. A number of key parameters can be established as values stored in the busbar converter during the busbar converter manufacturing test, or as values that are changed or stored through a digital interface, such as a power management busbar. This can occur before or after assembly of the busbar converter, and before the busbar converter is required to operate to deliver output power.

此等參數之實例包含可使一匯流排電壓Vo(例如,圖7之中間匯流排710之DC匯流排電壓VBUS)經調整至其附近以最佳化效率之一單一匯流排轉換器輸出電流臨限值Io,1。另外,該等參數可包含一第一匯流排轉換器輸出電流臨限值Io,1(可減小一匯流排電壓Vo以低於其用於改良效率),及一第二匯流排轉換器輸出電流臨限值Io,2(需要升高該匯流排電壓Vo以高於其以基於最小及最大容許匯流排轉換器輸出電壓Vo,min、Vo,max而避免超過最大額定匯流排轉換器電流能力Io,max)。在此情況中,例如,Io,1可選擇為Io,max之70%,及Io,2可選擇為Io,max之85%。 Examples of such parameters include adjusting a bus bar voltage Vo (eg, the DC bus bar voltage V BUS of the intermediate bus bar 710 of FIG. 7) to its vicinity to optimize efficiency for a single bus bar converter output current. Threshold Io, 1. In addition, the parameters may include a first bus converter output current threshold Io, 1 (which can reduce a bus voltage Vo to be lower than its efficiency for improvement), and a second bus converter output Current threshold Io, 2 (need to raise the bus voltage Vo higher than it to avoid exceeding the maximum rated bus converter current capability based on the minimum and maximum allowable bus converter output voltages Vo, min, Vo, max Io, max). In this case, for example, Io, 1 may be selected as Io, 70% of max, and Io, and 2 may be selected as 85% of Io, max.

方法800使用一單一匯流排轉換器輸出電流臨限值Io,1,且起始於一步驟802。接著,在一步驟804中,量測由一中間匯流排供應之一輸出電流Io。一決策步驟806判定該輸出電流Io是否小於該匯流排轉換器輸出電流臨限值Io,1。若該輸出電流Io小於該匯流排轉換器輸出電流臨限值Io,1,則在一步驟808中,計算大於或等於一最小容許匯流排轉換器輸出電壓Vo,min之一新的較低輸出電壓Vo。此新的較低輸出電壓Vo設定於一步驟810中,及該方法返回至步驟804。若在步驟806中,該輸出電流Io不小於該匯流排轉換器輸出電流臨限值Io,1,則在一步驟812中計算小於或等於一最大容許匯流排轉換器輸出電壓Vo,max之一新的較高輸出電壓Vo。此新的較高輸出電壓Vo設定於一步驟814中,及該方法800再次返回至步驟804,其中繼續量測該輸出 電流Io且對應地調整該輸出電壓Vo。 Method 800 uses a single busbar converter to output current threshold Io,1 and begins at step 802. Next, in a step 804, one of the output currents Io is supplied from an intermediate bus. A decision step 806 determines if the output current Io is less than the busbar output current threshold Io,1. If the output current Io is less than the bus converter output current threshold Io,1, then in a step 808, calculate a new lower output that is greater than or equal to a minimum allowable bus converter output voltage Vo,min Voltage Vo. The new lower output voltage Vo is set in a step 810 and the method returns to step 804. If, in step 806, the output current Io is not less than the busbar converter output current threshold Io,1, then in one step 812, one of the maximum allowable busbar converter output voltages Vo,max is calculated to be less than or equal to one. New higher output voltage Vo. The new higher output voltage Vo is set in a step 814, and the method 800 returns again to step 804 where the output is continuously measured. The current Io is adjusted correspondingly to the output voltage Vo.

方法820使用第一匯流排轉換器輸出電流臨限值Io,1及第二匯流排轉換器輸出電流臨限值Io,2,及起始於一步驟822中。接著,在一步驟824中,量測由一中間匯流排供應之一輸出電流Io。一決策步驟826判定該輸出電流Io是否小於該第一匯流排轉換器輸出電流臨限值Io,1。若該輸出電流Io小於該第一匯流排轉換器輸出電流臨限值Io,1,一決策步驟828判定一輸出電壓Vo是否大於一最小容許匯流排電壓Vo,min。若該輸出電壓Vo不大於該最小容許匯流排電壓Vo,min,則該方法820返回至步驟824,其中繼續量測該輸出電流Io。 The method 820 uses the first busbar converter output current threshold Io,1 and the second busbar converter output current threshold Io,2, and begins in a step 822. Next, in a step 824, one of the output currents Io is supplied from an intermediate bus. A decision step 826 determines if the output current Io is less than the first bus converter output current threshold Io,1. If the output current Io is less than the first bus converter output current threshold Io, 1, a decision step 828 determines if an output voltage Vo is greater than a minimum allowable bus voltage Vo, min. If the output voltage Vo is not greater than the minimum allowable bus voltage Vo,min, then the method 820 returns to step 824 where the output current Io continues to be measured.

若該決策步驟828判定該輸出電壓Vo大於該最小容許匯流排電壓Vo,min,則在一步驟830中計算一新的較低輸出電壓Vo,及在一步驟832中設定該新的較低輸出電壓Vo(其中該新的較低輸出電壓Vo等於(Vo×Io)/(Io,1),其大於或等於該最小容許匯流排電壓Vo,min)。該方法820再次返回至該步驟824,其中繼續量測該輸出電流Io。 If the decision step 828 determines that the output voltage Vo is greater than the minimum allowable bus voltage Vo,min, then a new lower output voltage Vo is calculated in a step 830, and the new lower output is set in a step 832. Voltage Vo (wherein the new lower output voltage Vo is equal to (Vo x Io) / (Io, 1), which is greater than or equal to the minimum allowable bus bar voltage Vo, min). The method 820 again returns to step 824 where the output current Io continues to be measured.

若在決策步驟826中,該輸出電流Io不小於該第一匯流排轉換器輸出電流臨限值Io,1,則一決策步驟834判定該輸出電流Io是否大於或等於該第二匯流排轉換器輸出電流臨限值Io,2。若該輸出電流Io不大於或等於該第二匯流排轉換器輸出電流臨限值Io,2,則該方法820再次返回至該步驟824,其中繼續量測該輸出電流Io。 If, in decision step 826, the output current Io is not less than the first busbar converter output current threshold Io, 1, a decision step 834 determines if the output current Io is greater than or equal to the second busbar converter. Output current threshold Io, 2. If the output current Io is not greater than or equal to the second bus converter output current threshold Io, 2, the method 820 again returns to the step 824 where the output current Io continues to be measured.

若該輸出電流Io大於或等於該第二匯流排轉換器輸出電流臨限值Io,2,則在一步驟836中計算一新的較高輸出電壓Vo,及在一步驟838中設定該新的較高輸出電壓Vo(其中該新的較高輸出電壓Vo等於(Vo×Io)/(Io,2),其小於或等於最大容許匯流排電壓Vo,max)。該方法820接著返回至該步驟824,其中繼續量測該輸出電流Io且相應地調整該輸出電壓Vo。 If the output current Io is greater than or equal to the second bus converter output current threshold Io, 2, a new higher output voltage Vo is calculated in a step 836, and the new one is set in a step 838. A higher output voltage Vo (wherein the new higher output voltage Vo is equal to (Vo x Io) / (Io, 2), which is less than or equal to the maximum allowable bus bar voltage Vo, max). The method 820 then returns to the step 824 where the output current Io continues to be measured and the output voltage Vo is adjusted accordingly.

方法850亦使用第一匯流排轉換器輸出電流臨限值Io,1及第二匯 流排轉換器輸出電流臨限值Io,2以及使用離散輸出電壓步級之輸出電壓修改。該方法850起始於一步驟852,及在一步驟854中量測一輸出電流Io。接著,一決策步驟856判定該輸出電流Io是否大於該第二匯流排轉換器輸出電流臨限值Io,2。若該輸出電流Io大於該第二匯流排轉換器輸出電流臨限值Io,2,則將一輸出電壓Vo升高至一最大容許匯流排電壓Vo,max,及該方法850返回至步驟854。 Method 850 also uses the first busbar converter output current threshold Io, 1 and second sink The streamer converter outputs current thresholds Io, 2 and output voltage modifications using discrete output voltage steps. The method 850 begins at a step 852 and measures an output current Io in a step 854. Next, a decision step 856 determines if the output current Io is greater than the second bus converter output current threshold Io,2. If the output current Io is greater than the second bus converter output current threshold Io, 2, an output voltage Vo is raised to a maximum allowable bus voltage Vo, max, and the method 850 returns to step 854.

若該輸出電流Io不大於該第二匯流排轉換器輸出電流臨限值Io,2,則一決策步驟860判定該輸出電流Io是否小於該第一匯流排轉換器輸出電流臨限值Io,1。若該輸出電流Io不小於該第一匯流排轉換器輸出電流臨限值Io,1,則該方法850再次返回至步驟854。若該輸出電流Io小於該第一匯流排轉換器輸出電流臨限值Io,1,則一決策步驟862判定該輸出電壓Vo是否大於一最小容許匯流排電壓Vo,min。若該輸出電壓Vo不大於一最小容許匯流排電壓Vo,min,則該方法850再次返回至步驟854。若該輸出電壓Vo大於一最小容許匯流排電壓Vo,min,則一決策步驟864判定一電壓步級數是否大於一步級數限制值Co。若該電壓步級數不大於該步級數限制值Co,則該電壓步級數在一步驟866中增加一個,及該方法850返回至步驟854。若該電壓步級數大於Co,則該輸出電壓Vo在一步驟868中藉由一校正固定電壓步級Vstep而降低。在一步驟870中,將該電壓步級數重設為零,及該方法850再次返回至步驟854。 If the output current Io is not greater than the second bus converter output current threshold Io, 2, a decision step 860 determines whether the output current Io is less than the first bus converter output current threshold Io, 1 . If the output current Io is not less than the first busbar converter output current threshold Io, 1, the method 850 returns to step 854 again. If the output current Io is less than the first bus converter output current threshold Io, 1, a decision step 862 determines if the output voltage Vo is greater than a minimum allowable bus voltage Vo, min. If the output voltage Vo is not greater than a minimum allowable bus voltage Vo,min, then the method 850 returns to step 854 again. If the output voltage Vo is greater than a minimum allowable bus voltage Vo,min, then a decision step 864 determines if the number of voltage steps is greater than the one-step limit value Co. If the number of voltage steps is not greater than the step limit value Co, then the number of voltage steps is incremented by one in step 866, and the method 850 returns to step 854. If the number of voltage steps is greater than Co, the output voltage Vo is reduced in a step 868 by a correction of the fixed voltage step Vstep. In a step 870, the number of voltage steps is reset to zero, and the method 850 returns to step 854 again.

特定言之,例如,該方法850可降低用於匯流排轉換器705之一輸出電壓變更方案之實施方案複雜性。在離散步驟中對匯流排電壓VBUS提供變更可容許使用一查詢表以判定用於某一特定功率位準之一新匯流排電壓VBUS或系統變數之其他組合,及藉此消除需要乘法或除法之計算。使用離散匯流排電壓步級亦可最小化匯流排電壓改變之頻率,藉此減少匯流排電壓位準之擾動。使用決策步驟864可減慢匯流 排電壓減小之速率以確保將系統適當調整至一較低匯流排電壓(及因此一較高匯流排電流)。 In particular, for example, the method 850 can reduce implementation complexity of an output voltage change scheme for one of the busbar converters 705. Providing a change to the bus voltage V BUS in discrete steps may allow for the use of a lookup table to determine other combinations of new bus voltages V BUS or system variables for a particular power level, and thereby eliminating the need for multiplication or Division calculation. Using discrete bus voltage steps also minimizes the frequency of bus bar voltage changes, thereby reducing the disturbance of the bus bar voltage level. The use decision step 864 can slow down the rate at which the bus voltage is reduced to ensure that the system is properly adjusted to a lower bus voltage (and therefore a higher bus current).

匯流排電壓改變可以可變步長而實施以在最佳化時容納不同參數。例如,在減小匯流排電壓VBUS期間,該匯流排電壓VBUS中之較小步長可有利地用於在達成一最後匯流排轉換器輸出位準之前容許系統負載平衡。類似地,接續於負載功率位準之增加,該匯流排電壓VBUS在較大步級中漸增以快速適應該新的負載功率位準。 The bus voltage change can be implemented in variable steps to accommodate different parameters when optimized. For example, during the reduced bus voltage V BUS, the bus voltage V BUS in the smaller step size may advantageously be used for the system to load balance before reaching a final level converter output bus. Similarly, following the increase in load power level, the bus voltage V BUS is gradually increased in a larger step to quickly adapt to the new load power level.

除了在增加匯流排電壓但藉由使用較小步級更逐步降低匯流排電壓時具有侵略性之外,此等例示性方法之諸多其他變更亦為可能的。依據其他變數(諸如一匯流排電壓Vo,溫度等)使用Io,1及Io,2對Io,max之變數比率亦可使優點突出。另外,此等例示性方法可藉由併入其他參數或變數而修改。例如,可使用一週期T1,其係關於一匯流排轉換器電流量測效率最佳化需要多久(例如,每次T1秒)。替代地,在一輸出電流Io等於或大於Io,2時增加一輸出電壓之一變化率S1或當該輸出電流Io小於Io,1時減小一輸出電壓Vo之一變化率S2為其他實例。 In addition to being aggressive in increasing the busbar voltage but by gradually reducing the busbar voltage by using smaller steps, many other variations of such exemplary methods are also possible. The use of Io, 1 and Io according to other variables (such as a bus voltage Vo, temperature, etc.), the ratio of the variable ratio of 2 to Io, max can also make the advantages stand out. Additionally, such exemplary methods can be modified by incorporating other parameters or variables. For example, a period T1 can be used which is how long it takes to optimize the current measurement efficiency of a busbar converter (eg, every T1 second). Alternatively, increasing a rate of change S1 of an output voltage when an output current Io is equal to or greater than Io, 2 or decreasing a rate of change S2 of an output voltage Vo when the output current Io is less than Io, is another example.

此外,該匯流排電壓VBUS之改變可藉由因一中間匯流排電容CIB之充電而以比觸發一過電流條件更低之速率變換該匯流排電壓VBUS而達成。該最大容許匯流排電壓變化率可被一使用者設定或自預測試或藉由程式化該所使用之電容之值而判定(舉例而言,諸如,在一系統之製造測試期間)。 In addition, the change in the bus voltage V BUS can be achieved by charging the bus bar voltage V BUS at a lower rate than the triggering of an overcurrent condition by charging of an intermediate bus capacitor C IB . The maximum allowable bus voltage change rate can be determined by a user or from pre-test or by stylizing the value of the capacitor used (for example, during a manufacturing test of a system).

由於機載功率轉換系統可基於特定功率子系統特徵中之小差異而隨單元變化,所以測試期間(諸如,組件模組或組裝系統之製程期間)所構成之實際測量可用於判定一變數(諸如匯流排電壓VBUS)之最佳設定。最佳設定可隨一或多個功率轉換系統變數(諸如輸出功率、模組溫度等)而變化。預測試及特徵容許使用預最佳化設定,藉此減少 實際系統使用期間所涉及之計算且增加回應於新變數值之速度。 Since the onboard power conversion system can vary from unit to unit based on small differences in specific power subsystem characteristics, the actual measurements made during the test (such as during the process of the component module or assembly system) can be used to determine a variable (such as The optimum setting of bus voltage V BUS ). The optimal setting may vary with one or more power conversion system variables, such as output power, module temperature, and the like. Pre-tests and features allow for the use of pre-optimized settings, thereby reducing the calculations involved in actual system usage and increasing the speed of responding to new variable values.

例如,在一功率轉換實施例(諸如中間匯流排架構功率系統700)中,匯流排電壓VBUS可能需要改變以容納一增加之負載位準。在某些情況中,負載位準可發生快速增加以便超過用於匯流排轉換器705之一輸出電流限制。為支持負載位準之此短期增加而未使該匯流排轉換器705關機,可在一預定時間段內將該匯流排轉換器705之電流限制增加至較高電流位準,從而支持該匯流排轉換器705在一瞬時負載條件中之繼續操作。此能力可容許該匯流排電壓VBUS之最佳化之更侵略性設定。 For example, in a power conversion embodiment, such as intermediate busbar architecture power system 700, busbar voltage VBUS may need to be changed to accommodate an increased load level. In some cases, the load level can increase rapidly to exceed the output current limit for one of the busbar converters 705. To support this short-term increase in load level without shutting down the busbar converter 705, the current limit of the busbar converter 705 can be increased to a higher current level for a predetermined period of time to support the busbar Converter 705 continues to operate in an instantaneous load condition. This capability allows for a more aggressive setting of the optimization of the bus voltage V BUS .

對於熟習此項技術者應顯而易見,使用一自主匯流排轉換器(例如,一自主匯流排轉換器具有一嵌入式決策引擎最佳化控制器)之一中間匯流排架構功率系統之上文所描述之特徵及優點亦可應用至另一中間匯流排架構功率系統,其中一匯流排轉換器使用為獨立且與自身分離之一決策引擎最佳化控制器。 It should be apparent to those skilled in the art that one of the independent busbar converters (eg, an autonomous busbar converter having an embedded decision engine optimization controller) is described above as an intermediate busbar architecture power system. Features and advantages can also be applied to another intermediate bus architecture power system in which a bus converter optimizes the controller using one of the decision engines that are separate and separate from itself.

圖9繪示根據本發明之原理而建構之一中間匯流排架構功率系統之另一實施例之一圖式,整體標示為900。該中間匯流排架構功率系統900包含一匯流排轉換器905,其具有一匯流排連接906,將一輸入電壓VINPUT轉換成具有如展示連接之一中間匯流排電容CIB之一中間匯流排910上之一匯流排電壓VBUS。該中間匯流排架構功率系統900亦包含具有連接至該中間匯流排910之若干輸入之複數個POL轉換器(POL)9151、9152...915N,該中間匯流排910自該匯流排電壓VBUS供應複數個對應輸出電壓VO1、VO2...VON9 is a diagram of another embodiment of an intermediate busbar architecture power system constructed in accordance with the principles of the present invention, generally designated 900. The intermediate bus bar architecture power system 900 includes a bus bar converter 905 having a bus bar connection 906 that converts an input voltage V INPUT into an intermediate bus bar 910 having one of the intermediate bus bar capacitors C IB as shown in the display connection. One of the bus bars voltage V BUS . The intermediate busbar architecture power system 900 also includes a plurality of POL converters (POL) 915 1 , 915 2 ... 915 N having a number of inputs connected to the intermediate busbar 910, the intermediate busbar 910 from the busbar The voltage V BUS supplies a plurality of corresponding output voltages V O1 , V O2 ... V ON .

該中間匯流排架構功率系統900進一步包含基於一已監測的系統變數或系統約束來控制一系統變數以改良整體系統效能之一決策引擎最佳化控制器920。另外,該中間匯流排架構功率系統900包含操作為一通信匯流排之一資料及控制匯流排925,及連接至提供輸入電壓 VINPUT之一電源電壓VSOURCE之一功率介面模組930。 The intermediate busway architecture power system 900 further includes a decision engine optimization controller 920 that controls a system variable based on a monitored system variable or system constraint to improve overall system performance. In addition, the intermediate bus bar architecture power system 900 includes a data and control bus 925 operating as a communication bus, and a power interface module 930 connected to one of the supply voltages V SOURCE that provides an input voltage V INPUT .

如之前,該匯流排電流906提供該匯流排轉換器905至該中間匯流排910之一可控制連接。該匯流排連接906可包含一個或複數個並聯開關(例如FET),其中各開關可獨立控制以容許修改該複數個並聯開關之一開關電阻。替代地,該匯流排連接906可包含一簡單低阻抗焊接或連接器式連接以改良系統效率。該功率介面模組930之目的在於,在該電源電壓VSOURCE饋送至該匯流排轉換器905之前調節該電源電壓VSOURCE(例如,以提供電磁干擾之過濾、雙重電源電壓饋送之處置或該輸入電壓VINPUT之升壓以促進穿越)。 As before, the bus current 906 provides a controllable connection of the busbar converter 905 to one of the intermediate busbars 910. The bus bar connection 906 can include one or a plurality of parallel switches (eg, FETs), wherein each switch can be independently controlled to allow modification of one of the plurality of parallel switches. Alternatively, the busbar connection 906 can include a simple low impedance soldering or connectorized connection to improve system efficiency. The purpose of the power interface module 930 is to adjust the power supply voltage V SOURCE before the power supply voltage V SOURCE is fed to the bus bar converter 905 (eg, to provide electromagnetic interference filtering, dual power supply voltage feed processing or the input) The voltage V INPUT is boosted to facilitate traversal).

在該所繪示之實施例中,該資料及控制匯流排925連接於該中間匯流排架構功率系統900之組成部分之間,以容許在該等組成部分之所有或至少一部分之間進行資料傳送。另外,該決策引擎最佳化控制器920可提供透過該資料及控制匯流排925而控制之該等組成部分之系統控制。此處,將資料及控制信號整合至該資料及控制匯流排925中。替代地,該等資料及控制信號可使用分離匯流排。 In the illustrated embodiment, the data and control bus 925 is coupled between the components of the intermediate bus architecture power system 900 to permit data transfer between all or at least a portion of the components. . Additionally, the decision engine optimization controller 920 can provide system control of the components that are controlled by the data and control bus 925. Here, the data and control signals are integrated into the data and control bus 925. Alternatively, the data and control signals may use separate bus bars.

在一情況中,該決策引擎最佳化控制器920為與其他組成部分分離之一獨立系統控制器,替代地,該決策引擎最佳化控制器920可整合成該等其他組成部分之一或多者,舉例而言,諸如,匯流排控制器905或POL 9151、9152...915N之一或多者。 In one case, the decision engine optimization controller 920 is a separate system controller separate from the other components. Alternatively, the decision engine optimization controller 920 can be integrated into one of the other components or Many, for example, one or more of bus bar controller 905 or POL 915 1 , 915 2 ... 915 N.

在一實施例中,該決策引擎最佳化控制器920在調整該等組成部分內之各種參數(例如,匯流排電壓VBUS或一頻率或一切換時序)時自動操作以最佳化一整體系統效率。如提及,該等組成部分之各者係透過該資料及控制匯流排925而與該等其他組成部分之一或多者資料通信。例如,該資料及控制匯流排925可根據一內部整合電路(I2C)通信匯流排規格而操作。替代地,可使用其他通信匯流排及匯流排協定,包含一控制器區域網路(CAN)匯流排、一串列周邊介面(SPI)匯流排, 或任意有線、無線或光學通信匯流排方法。當然,此通信可為雙向或單向通信,如需要。 In one embodiment, the decision engine optimization controller 920 automatically operates to optimize a whole when adjusting various parameters within the components (eg, bus voltage V BUS or a frequency or a switching timing) System efficiency. As mentioned, each of the components communicates with one or more of the other components via the data and control bus 925. For example, the data and control bus 925 can operate in accordance with an internal integrated circuit (I 2 C) communication busbar specification. Alternatively, other communication bus and bus protocols can be used, including a controller area network (CAN) bus, a serial peripheral interface (SPI) bus, or any wired, wireless, or optical communication bus method. Of course, this communication can be bidirectional or one-way communication, as needed.

如之前,在某些實施例中,該等組成部分之至少一部分之間之通信可透過匯流排電壓VBUS而完成。此可包含匯流排轉換器905與PLO 9151、9152...915N之間之通信。作為一實例,該匯流排電壓VBUS可藉由一較高頻率資料信號而調變,其中該等作用組成部分之各者包含調變及解調高頻率資料信號,從而與該決策引擎最佳化控制器920通信之一能力,無關於其位置(亦即,獨立或整合)。在一些實施例中,經由中間匯流排910之通信可消除一分離資料及控制匯流排925之需要(例如,上文圖7之實施例之一者)。 As before, in some embodiments, communication between at least a portion of the components can be accomplished by bus bar voltage V BUS . This may include communication between bus bar converter 905 and PLOs 915 1 , 915 2 ... 915 N . As an example, the bus voltage V BUS can be modulated by a higher frequency data signal, wherein each of the active components includes a modulated and demodulated high frequency data signal to be optimal with the decision engine. The controller 920 communicates one of the capabilities regardless of its location (ie, independent or integrated). In some embodiments, communication via the intermediate bus 910 can eliminate the need for a separate data and control bus 925 (eg, one of the embodiments of FIG. 7 above).

如提及,該決策引擎最佳化控制器920可整合成該等組成部分之一者(例如,匯流排轉換器905),容許其監測系統效能且引導其他組成部分以執行內部調整。在此實例中,該匯流排轉換器905包含充分處理及記憶體能力以在(例如)調整該匯流排電壓VBUS時執行作為該決策引擎最佳化控制器920,同時亦指令該等POL 9151、9152...915N之一或多者以調整一切換頻率。當然,該等POL 9151、9152...915N亦可以其他方式調整。 As mentioned, the decision engine optimization controller 920 can be integrated into one of the components (eg, bus converter 905) allowing it to monitor system performance and direct other components to perform internal adjustments. In this example, the bus converter 905 includes sufficient processing and memory capabilities to perform as the decision engine optimization controller 920 when, for example, adjusting the bus voltage V BUS , while also instructing the POL 915 One of the 1 , 915 2 ... 915 N or more to adjust a switching frequency. Of course, these POL 915 1 , 915 2 ... 915 N can also be adjusted in other ways.

該等組成部分之各者(例如,POL 9151、9152...915N)可展示其等自身獨特效能特徵。一個POL模型在相較於一不同POL模型時可展示一不同效率曲線。該等模型之各者亦可與其他調整進行不同反應,諸如,切換時序或切換頻率之改變。不同POL模型之間之此等固有差異可使一整體系統效率最佳化變複雜,且可在考量該等固有差異時引起比以另外方式完成之效率較低之一整體效率。 Each of these components (eg, POL 915 1 , 915 2 ... 915 N ) can exhibit its own unique performance characteristics. A POL model can exhibit a different efficiency curve when compared to a different POL model. Each of these models can also react differently to other adjustments, such as switching timing or switching frequency changes. These inherent differences between different POL models can optimize an overall system efficiency and can cause an overall efficiency that is less efficient than otherwise accomplished when considering such inherent differences.

該決策引擎最佳化控制器920(無論獨立或整合)可經組態以讀取個別組成部分(例如,POL 9151、9152...915N)之型號,藉此瞭解該中間匯流排架構功率系統900之特定組態。該決策引擎最佳化控制器920 可接著以各特定型號之特定代表性特徵而程式化,且在計算整體效率最佳化時考量此資訊。以此方式,該決策引擎最佳化控制器920可稍不同地調整該等組成部分之各者,藉此通常達成比在不具有此資訊之情況下以另外方式完成之效率最佳化更佳之一效率最佳化。 The decision engine optimization controller 920 (whether independent or integrated) can be configured to read the model of individual components (eg, POL 915 1 , 915 2 ... 915 N ) to understand the intermediate bus The specific configuration of the architecture power system 900. The decision engine optimization controller 920 can then be programmed with specific representative features for each particular model and take this information into account when calculating overall efficiency optimization. In this manner, the decision engine optimization controller 920 can adjust each of the components a little differently, thereby generally achieving better efficiency optimization than otherwise done without this information. An efficiency optimization.

例如,針對不同之POL,一最佳切換頻率可為不同,其取決於特定操作條件。另外,一最佳匯流排電壓VBUS亦可經修正以最佳化一特定組態之效率。例如,此模型特定資訊可儲存於該決策引擎最佳化控制器920中作為查詢表,或此資訊可被包含作為被該決策引擎最佳化控制器920使用之一控制演算法之部分。 For example, for different POLs, an optimal switching frequency can be different depending on the particular operating conditions. In addition, an optimal bus voltage V BUS can also be modified to optimize the efficiency of a particular configuration. For example, the model specific information can be stored in the decision engine optimization controller 920 as a lookup table, or this information can be included as part of the control algorithm used by the decision engine optimization controller 920.

替代地,該等組成部分之各者可具有在一測試階段處判定之其特定效能特徵之某些態樣,及接著儲存至所測試之組成部分之非揮發性記憶體中之此資訊。該決策引擎最佳化控制器920可接著連同型號一起讀取此資訊,或可讀取此資訊而非型號,及使用一最佳化演算法中之特定效能特徵。以此方式,當該中間匯流排架構功率系統900可藉由考量該等組成部分之實際測試特徵而非其代表性特徵進行調整及最佳化時,可獲得一較高效率。 Alternatively, each of the components can have certain aspects of its particular performance characteristics determined at a test stage, and then stored in non-volatile memory of the tested component. The decision engine optimization controller 920 can then read this information along with the model number, or can read this information instead of the model number and use a particular performance feature in an optimized algorithm. In this manner, a higher efficiency can be achieved when the intermediate busway architecture power system 900 can be adjusted and optimized by considering the actual test characteristics of the components rather than their representative characteristics.

另外,該決策引擎最佳化控制器920可改變該匯流排電壓VBUS以藉由利用一演算法以最佳化效率以判定最大效率之操作點。例如,該決策引擎最佳化控制器920可執行增量該匯流排電壓VBUS之一常式,同時監測至該中間匯流排架構功率系統900之一輸入電流。接著,將該匯流排電壓VBUS設定於最小輸入電流之點處。此演算法可週期性運行或根據命令運行。該演算法可使用平均或平滑技術以避免回應於瞬時條件。 Additionally, the decision engine optimization controller 920 can change the bus voltage V BUS to optimize the efficiency to determine the operating point of maximum efficiency by utilizing an algorithm. For example, the decision engine optimization controller 920 can perform one of the routines of incrementing the bus voltage V BUS while monitoring one of the input currents to the intermediate bus architecture power system 900. Next, the bus voltage V BUS is set at the point of the minimum input current. This algorithm can be run periodically or according to commands. The algorithm can use averaging or smoothing techniques to avoid responding to transient conditions.

端視該決策引擎最佳化控制器920之處理能力,一最佳化演算法可超過可用處理器頻寬,尤其在該處理器具有其他任務要執行(諸如,迴圈補償及工作週期判定)時。因此,例如,可有利地使用該決 策引擎最佳化控制器920內之一分離處理器以執行最佳化任務或使用一多核心處理器中之一分離核心。 Looking at the processing power of the decision engine optimization controller 920, an optimized algorithm can exceed the available processor bandwidth, especially if the processor has other tasks to perform (such as loop compensation and duty cycle determination). Time. Thus, for example, the decision can be advantageously used The engine optimizes one of the controllers 920 to separate the processor to perform an optimization task or to separate the core using one of a multi-core processor.

在該中間匯流排架構功率系統900中,匯流排電壓VBUS之調整可有利地優先於由一負載直接提供之負載功率資訊。此容許調整該匯流排電壓VBUS以在實際上改變至新位準之負載前最佳對應於新負載功率位準。來自該負載之資訊可直接提供至該決策引擎最佳化控制器920,無關於其位置。 In the intermediate busbar architecture power system 900, the adjustment of the busbar voltage VBUS can advantageously take precedence over the load power information provided directly by a load. This allows the bus voltage V BUS to be adjusted to best correspond to the new load power level before actually changing to a new level of load. Information from the load can be provided directly to the decision engine optimization controller 920 regardless of its location.

應理解,高溫操作減少電子裝置之壽命且降低裝置可靠性。各功率組件之一操作溫度係與該組件連同影響其之局部周圍溫度及氣流之功率損失成比例。在複雜之電子系統中,功率裝置係定位於由特定負載裝置所指定之諸多位置中,該等特定負載裝置直接供能且因此經歷高度變化之局部周圍溫度及氣流。另外,許多系統在不存在冗餘功率組件之情況下操作,及因此,一單一功率組件之故障可引起該中間匯流排架構功率系統900及該負載系統之功能之損失。 It should be understood that high temperature operation reduces the life of the electronic device and reduces device reliability. The operating temperature of one of the power components is proportional to the component's power loss along with the local ambient temperature and airflow affecting it. In complex electronic systems, power devices are positioned in a number of locations specified by a particular load device that are directly powered and thus experience a highly varying local ambient temperature and airflow. In addition, many systems operate without redundant power components, and thus, failure of a single power component can cause loss of functionality of the intermediate busbar architecture power system 900 and the load system.

為達成最佳系統壽命及可靠性,操作各功率組件為有益的,使得其內部裝置達成其等實際操作溫度與其等最大額定溫度之間之最大可能裕度。可藉由調整各功率組件之切換頻率或匯流排電壓VBUS而平衡及最小化各功率組件所達成之個別功率損失。 In order to achieve optimum system life and reliability, it is beneficial to operate each power component such that its internal device achieves the maximum possible margin between its actual operating temperature and its maximum rated temperature. The individual power losses achieved by the various power components can be balanced and minimized by adjusting the switching frequency of each power component or the bus voltage V BUS .

在中間匯流排架構功率系統900之一實施例中,各功率組件使用(或至少關鍵功率組件使用)內部溫度量測及報告能力。此能力容許決策引擎最佳化控制器920藉由平衡或最大化各功率組件之溫度裕度而最佳化可靠性及裝置壽命。此可透過個別功率裝置切換頻率之改變或匯流排電壓VBUS之改變而完成,同時確保該系統具有適當操作裕度以容許轉變增加功率位準。 In one embodiment of the intermediate busbar architecture power system 900, each power component uses (or at least a critical power component) internal temperature measurement and reporting capabilities. This capability allows the decision engine optimization controller 920 to optimize reliability and device life by balancing or maximizing the temperature margin of each power component. This can be accomplished by a change in the switching frequency of the individual power devices or a change in the bus voltage V BUS while ensuring that the system has an appropriate operating margin to allow the transition to increase the power level.

當針對一恆定總負載功率降低匯流排電壓VBUS時,匯流排轉換器905內之損失增加,而一POL內之損失更大程度地減少,及因此,總 系統損失減少。然而,該匯流排轉換器905中之增加損失將使其經理更高之內部裝置溫度。因此,取決於影響功率組件之局部周圍溫度及氣流,一不同匯流排電壓VBUS可達成該中間匯流排架構功率系統900中之裝置之最佳操作溫度裕度。其他操作參數(例如,一切換頻率、一輸入或輸出電流以及一輸入或輸出電壓)亦可為控制及最佳化的關注點。例如,此包含多個POL中之切換頻率之座標以消除其等之間之差頻或次諧波。 When the bus bar voltage V BUS is reduced for a constant total load power, the losses within the bus bar converter 905 increase, while the losses within a POL are reduced to a greater extent, and thus, the total system loss is reduced. However, the increased loss in the busbar converter 905 will cause it to manage a higher internal device temperature. Thus, a different busbar voltage VBUS can achieve an optimal operating temperature margin for the device in the intermediate busbar architecture power system 900, depending on the local ambient temperature and airflow affecting the power component. Other operational parameters (eg, a switching frequency, an input or output current, and an input or output voltage) may also be a concern for control and optimization. For example, this includes coordinates of the switching frequencies of the plurality of POLs to eliminate the difference or subharmonics between them.

受該匯流排電壓VBUS影響之另一因素為由用於儲存中間匯流排910之能量之中間匯流排電容CIB提供之一保持時間。此儲存能量與該匯流排電壓VBUS乘該中間匯流排電容CIB之值之平方成比例。該儲存能量係用於在中斷至該匯流排轉換器905之輸入電壓VINPUT時之保持時間期間將功率提供至POL 9151、9152...915N。當針對效率最佳化減小該匯流排電壓VBUS時,該儲存能量亦因該平方電壓關係而減小達更大量。例如,此可引起在該輸入電壓VINPUT之暫時中斷期間穿越至該匯流排轉換器905之不可接受保持時間或回應於一迫切的系統關機警報信號之一系統功能關機(容許狀態及資料保留等)之不充分時間。 Another factor affected by the bus voltage V BUS is that one of the hold times is provided by the intermediate bus capacitor C IB for storing the energy of the intermediate bus 910. This stored energy is proportional to the square of the busbar voltage V BUS multiplied by the value of the intermediate busbar capacitance C IB . The stored energy is used to provide power to POLs 915 1 , 915 2 ... 915 N during the hold time when the input voltage V INPUT to the busbar converter 905 is interrupted. When the busbar voltage V BUS is reduced for efficiency optimization, the stored energy is also reduced by a larger amount due to the squared voltage relationship. For example, this may cause an unacceptable hold time to traverse to the busbar converter 905 during a temporary interruption of the input voltage V INPUT or a system function shutdown in response to an urgent system shutdown alert signal (permitted state and data retention, etc.) Insufficient time.

在一對應實施例中,該決策引擎最佳化控制器920恰在發生操作中斷之前引起該匯流排電壓VBUS增加至一最大匯流排電壓。增加該匯流排電壓VBUS至其最大值確保,在該匯流排轉換器905不再能維持該匯流排電壓VBUS之前將最大能量儲存於該中間匯流排電容CIB中。此容許使用比恰在中斷或關機之前將該匯流排電壓VBUS保持在一較低值時所需之該中間匯流排電容CIB之值更小之一值。 In a corresponding embodiment, the decision engine optimization controller 920 causes the bus voltage V BUS to increase to a maximum bus voltage just prior to the interruption of the operation. The bus voltage increases to its maximum value to ensure that V BUS, the bus converter 905 is no longer able to maintain the bus voltage V BUS before the maximum energy stored in the capacitor C IB of the intermediate busbar. This allows for a value that is less than the value of the intermediate busbar capacitance C IB required to maintain the bus voltage V BUS at a lower value just prior to interruption or shutdown.

如先前所提及,該決策引擎最佳化控制器920除了控制該匯流排電壓VBUS之外亦可使用其他方法以最佳化一效率。諸多功率階段使用並聯連接之切換式場效電晶體(FET)。與此並聯組態之一閘極驅動相關聯之損失可超過由一較低之導電或啟動電阻提供之減少之損失。該 決策引擎最佳化控制器920可(例如)藉由感測其個別輸出電流而監測POL 9151、9152...915N,及發佈命令以解除以一輕負載操作之該等POL 9151、9152...915N之一者中之一對應閘極驅動。該決策引擎最佳化控制器920亦可停用用於多相位POL中之一相位。 As mentioned previously, the decision engine optimization controller 920 can use other methods to optimize an efficiency in addition to controlling the bus voltage V BUS . Switching field effect transistors (FETs) connected in parallel are used in many power stages. The loss associated with one of the gate drives in this parallel configuration can exceed the reduced loss provided by a lower conduction or startup resistor. The decision engine optimization controller 920 can monitor POL 915 1 , 915 2 ... 915 N , for example, by sensing its individual output currents, and issue commands to relieve the POL 915 operating at a light load. One of the 1 , 915 2 ... 915 N corresponds to the gate drive. The decision engine optimization controller 920 can also deactivate one of the phases for the multi-phase POL.

圖10繪示根據本發明之原理而建構之一中間匯流排架構功率系統之又一實施例之一方塊圖,整體標示為1000。該中間匯流排架構功率系統1000包含一匯流排轉換器1005,其使用一匯流排連接1006,將一輸入電壓VINPUT轉換成具有如展示所連接之一中間匯流排電容CIB之一中間匯流排1010上之一匯流排電壓VBUS。該中間匯流排架構功率系統1000亦包含使用個別POL控制器1、2...N且具有連接至該中間匯流排1010之若干輸入之複數個POL轉換器(POL)10151、10152...1015N,該中間匯流排1010自該匯流排電壓VBUS供應複數個對應輸出電壓VO1、VO2...VON10 is a block diagram of still another embodiment of an intermediate busbar architecture power system constructed in accordance with the principles of the present invention, generally designated 1000. The intermediate bus architecture power system 1000 comprises a bus converter 1005, which is connected using a bus 1006, an input voltage V INPUT converted into a display as an intermediate one of the intermediate busbar connected one bus capacitor C IB One of the busbar voltages V BUS on 1010. The intermediate busbar architecture power system 1000 also includes a plurality of POL converters (POL) 1015 1 , 1015 2 using individual POL controllers 1, 2...N and having inputs to the intermediate busbar 1010. .1015 N , the intermediate bus bar 1010 supplies a plurality of corresponding output voltages V O1 , V O2 ... V ON from the bus bar voltage V BUS .

該中間匯流排架構功率系統1000進一步包含耦合至該匯流排轉換器1005及該複數個POL 10151、10152...1015N之一決策引擎最佳化控制器1020,其基於一已監測的系統變數或系統約束而控制一系統變數以改良整體系統效能。另外,該中間匯流排架構功率系統1000包含一資料及控制匯流排1025、連接至一電源電壓VSOURCE以提供輸入電壓VINPUT之一功率介面模組1030,及耦合至該決策引擎最佳化控制器1020之一全域系統控制器1035。 The intermediate busbar architecture power system 1000 further includes a decision engine optimization controller 1020 coupled to the busbar converter 1005 and the plurality of POLs 1015 1 , 1015 2 ... 1015 N based on a monitored System variables or system constraints control a system variable to improve overall system performance. Further, the intermediate power bus architecture system 1000 comprises a data and control bus 1025 is connected to a power voltage V input voltage V to the SOURCE INPUT one power interface module 1030, coupled to and controlling the optimization decision engine One of the devices 1020 is a global system controller 1035.

如之前,該匯流排連接1006提供該匯流排轉換器1005至該中間匯流排1010之一可控制連接。該匯流排連接1006由一個或複數個並聯開關(例如FET)中之一者組成,其中各開關可獨立控制以容許修改該複數個並聯開關之一開關電阻。替代地,該匯流排連接1006可包含一簡單的低阻抗焊接或連接器式連接以改良系統效率。 As before, the busbar connection 1006 provides a controllable connection of the busbar converter 1005 to one of the intermediate busbars 1010. The busbar connection 1006 is comprised of one of a plurality of parallel switches (eg, FETs), wherein each switch is independently controllable to permit modification of one of the plurality of parallel switches. Alternatively, the busbar connection 1006 can include a simple low impedance soldering or connectorized connection to improve system efficiency.

在該繪示之實施例中,該資料及控制匯流排1025係連接於該中 間匯流排架構功率系統1000之組成部分之間,以容許在該等組成部分之至少一部分之間傳送資料及控制信號。此處,資料及控制信號被整合至該資料及控制匯流排1025中。替代地,在其他實施例中,該等資料及控制信號可使用分離匯流排。 In the illustrated embodiment, the data and control busbar 1025 is connected thereto. Between the components of the busbar architecture power system 1000, to permit the transfer of data and control signals between at least a portion of the components. Here, the data and control signals are integrated into the data and control bus 1025. Alternatively, in other embodiments, the data and control signals may use separate bus bars.

此外,該中間匯流排架構功率系統1000中之功率介面模組1030之目的在於在將電源電壓VSOURCE饋送至該匯流排轉換器1005之前調節該電源電壓VSOURCE(例如,提供電磁干擾之過濾、雙重電源電壓饋送之處置或輸入電壓VINPUT之升壓以促進穿越)。 In addition, the purpose of the power interface module 1030 in the intermediate busbar architecture power system 1000 is to adjust the power supply voltage V SOURCE (eg, to provide electromagnetic interference filtering, before feeding the power supply voltage V SOURCE to the busbar converter 1005, The treatment of the dual supply voltage feed or the boosting of the input voltage V INPUT to facilitate traversal).

該決策引擎最佳化控制器1020提供可透過該資料及控制匯流排1025控制之該等組成部分之局域系統控制。相應地,該全域系統控制器1035可為提供該中間匯流排架構功率系統1000之監督及過載控制之一更普遍或階層式控制器。該複數個POL控制器10151、10152...1015N之各者常在該決策引擎最佳化控制器1020或該全域系統控制器1035之影響下,透過該資料及控制匯流排1025而提供其各自POL轉換器1、2...N之單元控制。 The decision engine optimization controller 1020 provides local system control of the components that are controllable by the data and control bus 1025. Accordingly, the global system controller 1035 can be a more general or hierarchical controller that provides supervision and overload control of the intermediate bus architecture power system 1000. Each of the plurality of POL controllers 1015 1 , 1015 2 ... 1015 N is often passed through the data and control bus 1025 under the influence of the decision engine optimization controller 1020 or the global system controller 1035. Unit control of their respective POL converters 1, 2...N is provided.

在此配置中,該決策引擎最佳化控制器1020能存取關於該等POL 10151、10152...1015N之一或多者之資料,包含靜態資訊(諸如其類型或模型)與其操作特徵。另外,即時操作資訊(例如,其電流負載、輸出電壓等)亦可為可接達。此資訊或其部分接著可藉由該決策引擎最佳化控制器1020而發送至一對應POL控制器以用於判定及設定其最大效率操作點。 In this configuration, the decision engine optimization controller 1020 can access information about one or more of the POLs 1015 1 , 1015 2 ... 1015 N , including static information (such as its type or model) and Operating characteristics. In addition, real-time operational information (eg, its current load, output voltage, etc.) can also be accessible. This information, or portions thereof, can then be sent to a corresponding POL controller by the decision engine optimization controller 1020 for use in determining and setting its maximum efficiency operating point.

例如,該決策引擎最佳化控制器1020可向該等POL控制器1、2...N之一者發信號,條件使得一多相位POL可以停用之一或多個相位操作。若該POL控制器將以停用相位進行更有效地操作,則該POL控制器可自其儲存資料或透過該資料及控制匯流排1025而判定。在此情況中,該等POL控制器1、2...N之一者可指令其對應POL以停用一相 位。 For example, the decision engine optimization controller 1020 can signal one of the POL controllers 1, 2...N such that a multi-phase POL can deactivate one or more phase operations. If the POL controller is to operate more efficiently with the deactivated phase, the POL controller can determine from its stored data or through the data and control bus 1025. In this case, one of the POL controllers 1, 2...N can instruct its corresponding POL to deactivate one phase Bit.

替代地,一POL控制器可告知該決策引擎最佳化控制器1020,停用一相位提供更好的效率,及該決策引擎最佳化控制器1020可命令該POL控制器以停用一相位。在接收此命令之後,該POL控制器亦可使用允許停用該相位之一演算法。可藉由此動作判定一操作效率,及可藉由改變該匯流排電壓VBUS達成進一步改良。 Alternatively, a POL controller can inform the decision engine to optimize the controller 1020, deactivating one phase provides better efficiency, and the decision engine optimization controller 1020 can command the POL controller to disable a phase . After receiving this command, the POL controller can also use an algorithm that allows the phase to be deactivated. An operational efficiency can be determined by this action, and further improvement can be achieved by changing the bus voltage V BUS .

若該新的操作效率高於停用相位之前之效率,則該POL控制器將使得相位保持停用,只要該決策引擎最佳化控制器1020允許。當然,其他POL特徵亦可用於停用該POL之一或多個相位。實例包含停用如上文所提及之並聯操作之FET,或改變該POL之操作頻率。亦可包含將該POL之輸出電壓調整至導致增加效率之一可接受範圍內之一值。 If the new operational efficiency is higher than before the deactivation phase, the POL controller will cause the phase to remain deactivated as long as the decision engine optimizes the controller 1020 to allow. Of course, other POL features can also be used to deactivate one or more phases of the POL. Examples include deactivating FETs in parallel operation as mentioned above, or changing the operating frequency of the POL. It may also include adjusting the output voltage of the POL to one of an acceptable range that results in increased efficiency.

若判定出一POL控制器之輸出為無負載,則該POL控制器可對其對應POL進行斷電。另外,一POL控制器可在該決策引擎最佳化控制器1020或該全域系統控制器1035自主認識或接收信號,其中可對該POL控制器之對應POL啟動一「輕負載」或「睡眠」狀態。替代地,該決策引擎最佳化控制器1020或該全域系統控制器1035可對一適當POL控制器起始命令以在該POL控制器可進行如此操作且仍滿足系統操作需求時進入至一低功率狀態或關機模式。該決策引擎最佳化控制器1020或該全域系統控制器1035可對該POL控制器發信號與充分的提前通知,特定POL輸出將被再次需要及該等適當POL可被恢復以遞送所需功率。 If it is determined that the output of a POL controller is no load, the POL controller can power off its corresponding POL. In addition, a POL controller can independently recognize or receive signals at the decision engine optimization controller 1020 or the global system controller 1035, wherein a "light load" or "sleep" can be initiated for the corresponding POL of the POL controller. status. Alternatively, the decision engine optimization controller 1020 or the global system controller 1035 can initiate a command to an appropriate POL controller to enter a low level when the POL controller can do so and still meet system operational requirements. Power state or shutdown mode. The decision engine optimization controller 1020 or the global system controller 1035 can signal the POL controller with sufficient advance notice that the particular POL output will be needed again and the appropriate POLs can be recovered to deliver the required power. .

恢復各POL之一所需時間可儲存於該決策引擎最佳化控制器1020、該全域系統控制器1035或適當POL控制器中。例如,該恢復時間可對於所有POL為恆定,或對於一或多個POL為不同,其取決於操作條件。使用此資訊確保充分之恢復時間係用於各POL。此一般類型之控制可應用於經調節或未調節之匯流排轉換器方案。 The time required to recover one of the POLs may be stored in the decision engine optimization controller 1020, the global system controller 1035, or an appropriate POL controller. For example, the recovery time may be constant for all POLs or different for one or more POLs, depending on operating conditions. Use this information to ensure that adequate recovery time is applied to each POL. This general type of control can be applied to regulated or unregulated busbar converter schemes.

當將該中間匯流排架構功率系統1000置於一低功率睡眠模式中時,可能有某些事件或系統操作模式。例如,該中間匯流排架構功率系統1000可在日間之一特定時間進入至一睡眠模式中。在該睡眠模式期間,該匯流排轉換器1005及該等POL 10151、10152...1015N進入一低功率狀態,其中(例如)該等匯流排電壓VBUS為一最小電壓,及該等POL 10151、10152...1015N在一輕負載狀態中操作。 When the intermediate bus architecture power system 1000 is placed in a low power sleep mode, there may be certain events or system operating modes. For example, the intermediate busway architecture power system 1000 can enter a sleep mode at a particular time of day. During the sleep mode, the bus bar converter 1005 and the POLs 1015 1 , 1015 2 ... 1015 N enter a low power state, wherein, for example, the bus bar voltage V BUS is a minimum voltage, and Wait for POL 1015 1 , 1015 2 ... 1015 N to operate in a light load state.

圖11繪示根據本發明之原理而建構之一中間匯流排架構功率系統之又一實施例之一方塊圖,整體標示為1100。該中間匯流排架構功率系統1100包含一匯流排轉換器1105,其使用一匯流排連接1106,將一輸入電壓VINPUT轉換成具有如展示所連接之一中間匯流排電容CIB之一中間匯流排1110上之一匯流排電壓VBUS。該中間匯流排架構功率系統1100亦包含具有連接至該中間匯流排1110之若干輸入之複數個POL轉換器(POL)11151、11152...1115N,該中間匯流排1110自該匯流排電壓VBUS供應複數個對應輸出電壓VO1、VO2...VON11 is a block diagram of still another embodiment of an intermediate busbar architecture power system constructed in accordance with the principles of the present invention, generally designated 1100. The intermediate bus architecture power converter system 1100 includes a bus 1105, which is connected using a 1106 bus, an input voltage V INPUT converted into a display as an intermediate one of the intermediate busbar connected one bus capacitor C IB One of the busbar voltages V BUS on the 1110. The intermediate busbar architecture power system 1100 also includes a plurality of POL converters (POL) 1115 1 , 1115 2 ... 1115 N having a number of inputs connected to the intermediate busbar 1110, the intermediate busbar 1110 being from the busbar The voltage V BUS supplies a plurality of corresponding output voltages V O1 , V O2 ... V ON .

該中間匯流排架構功率系統1100進一步包含耦合至該匯流排轉換器1105及該複數個POL轉換器11151、11152...1115N之一決策引擎最佳化控制器1120,其基於一已監測的系統變數或系統約束而控制一系統變數以改良整體系統效能。 The intermediate bus bar architecture power system 1100 further includes a decision engine optimization controller 1120 coupled to the bus bar converter 1105 and the plurality of POL converters 1115 1 , 1115 2 ... 1115 N based on a Monitor system variables or system constraints to control a system variable to improve overall system performance.

另外,該中間匯流排架構功率系統1100包含一資料及控制匯流排1125、連接一電源電壓VSOURCE以提供輸入電壓VINPUT之一功率介面模組1130,耦合至該決策引擎最佳化控制器1120之一全域系統控制器1135及使用一並聯匯流排連接1146之一並聯匯流排轉換器1145,該並聯匯流排連接1146與該匯流排轉換器1105並聯耦合至該中間匯流排1110。 In addition, the intermediate bus structure power system 1100 includes a data and control bus 1125, and a power supply voltage V SOURCE connected to provide an input voltage V INPUT , a power interface module 1130 coupled to the decision engine optimization controller 1120 . One global system controller 1135 and one parallel busbar switch 1145 using a parallel busbar connection 1146, which is coupled in parallel with the busbar converter 1105 to the intermediate busbar 1110.

該匯流排連接1106及該並聯匯流排連接1146將該匯流排轉換器1105及該並聯匯流排轉換器1145之各自可控制連接提供至該中間匯流 排1110。該匯流排連接1106及該並聯匯流排連接1146可(例如)各由一或複數個並聯開關(例如FET)組成,其中各開關可獨立控制器以容許修改該複數個並聯開關之一開關電阻。 The bus bar connection 1106 and the parallel bus bar connection 1146 provide respective controllable connections of the bus bar converter 1105 and the parallel bus bar converter 1145 to the intermediate bus Row 1110. The busbar connection 1106 and the parallel busbar connection 1146 can, for example, each consist of one or a plurality of parallel switches (eg, FETs), wherein each switch can be independently controlled to allow modification of one of the plurality of parallel switches.

該資料及控制匯流排1125係連接於該中間匯流排架構功率系統1100之組成部分之間,以容許該等組成部分之至少一部分之間之資料傳送及控制發信號。此處,資料及控制信號亦被整合至該資料及控制匯流排1125中。替代地,在其他實施例中,該等資料及控制信號可使用分離匯流排。再者,該功率介面模組1130之目的在於,在將電源電壓VSOURCE饋送至該匯流排轉換器1105及該並聯匯流排轉換器1145之前調節該電源電壓VSOURCEThe data and control bus 1125 is coupled between the components of the intermediate bus architecture power system 1100 to permit data transfer and control signaling between at least a portion of the components. Here, the data and control signals are also integrated into the data and control bus 1125. Alternatively, in other embodiments, the data and control signals may use separate bus bars. Moreover, the purpose of the power interface module 1130 is to adjust the power supply voltage V SOURCE before feeding the power supply voltage V SOURCE to the bus bar converter 1105 and the parallel bus bar converter 1145.

該決策引擎最佳化控制器1120提供可透過該資料及控制匯流排1125控制之該等組成部分之局域系統控制。如之前,該全域系統控制器1135可為提供該中間匯流排架構功率系統1100之監督及過載控制之一更一般控制器或階層式控制器。 The decision engine optimization controller 1120 provides local system control of the components that are controllable by the data and control bus 1125. As before, the global system controller 1135 can be a more general controller or a hierarchical controller that provides supervision and overload control of the intermediate bus architecture power system 1100.

該決策引擎最佳化控制器1120或該全域系統控制器1135可在修改該匯流排連接1106及並聯匯流排連接1146之開關電導時提供該複數個並聯開關(例如FET)之分離或集中控制。例如,該複數個並聯開關之一或多者可在輕負載條件期間斷開。另外,該匯流排轉換器1105及並聯匯流排轉換器1145之一者可在輕負載條件期間與該中間匯流排1110電性切斷連接。如先前所討論,此可能需要以考量經恢復之匯流排轉換器之中間匯流排保持時間(中間匯流排電容CIB能量儲存)及啟動特徵之一方式而完成。在該中間匯流排架構功率系統1100之一實施例中,在修改該匯流排連接1106及並聯匯流排連接1146之開關電阻時控制該複數個並聯開關之該決策引擎最佳化控制器1120之部分可駐存於該匯流排轉換器1105及該並聯匯流排轉換器1145中。 The decision engine optimization controller 1120 or the global system controller 1135 can provide separate or centralized control of the plurality of parallel switches (eg, FETs) when modifying the switch conductance of the busbar connection 1106 and the parallel busbar connection 1146. For example, one or more of the plurality of parallel switches can be disconnected during light load conditions. Additionally, one of the busbar converter 1105 and the parallel busbar converter 1145 can be electrically disconnected from the intermediate busbar 1110 during light load conditions. As discussed previously, this may need to be done in a manner that considers one of the intermediate bus retention times (intermediate busbar capacitance CIB energy storage) and startup characteristics of the recovered busbar converter. In one embodiment of the intermediate busbar architecture power system 1100, the portion of the decision engine optimization controller 1120 that controls the plurality of parallel switches is modified when the switch resistance of the busbar connection 1106 and the parallel busbar connection 1146 is modified. The busbar converter 1105 and the parallel busbar converter 1145 can be resident.

該決策引擎最佳化控制器1120可調節該匯流排轉換器1105及並聯 匯流排轉換器1145之各者,使得其共用相等地或呈產生一較高整體系統功率效率之一比例供應至該中間匯流排1110之一總負載電流,同時遞送一所需匯流排電壓VBUS。此等負載共用特徵可藉由預定限制而約束以滿足其他功率系統要求(諸如瞬時負載能力及步驟負載)。在一實施例中,此等限制或並聯條件可藉由該全域系統控制器1135而判定,且被提供至該決策引擎最佳化控制器1120,其可接著提供該匯流排轉換器1105及並聯匯流排轉換器1145之各者之調節及控制共用。 The decision engine optimization controller 1120 can adjust each of the busbar converter 1105 and the parallel busbar converter 1145 such that they are supplied to the middle equally or in proportion to produce a higher overall system power efficiency. One of the busbars 1110 has a total load current while delivering a desired busbar voltage V BUS . These load sharing features can be constrained by predetermined constraints to meet other power system requirements (such as instantaneous load capacity and step load). In an embodiment, such limiting or parallel conditions may be determined by the global system controller 1135 and provided to the decision engine optimization controller 1120, which may then provide the busbar converter 1105 and in parallel. The adjustment and control of each of the bus converters 1145 are shared.

此可藉由直接或間接手段量測一輸出電流而完成。間接手段可包含使用儲存資料(諸如變壓器匝數比、工作週期等)量測有關切換電晶體中之電流,及計算輸出電流。該決策引擎最佳化控制器1120可在一特定操作條件下具有關於可容許輸出電壓或工作週期偏移之預設限制以在瞬時條件期間限制該中間匯流排1110中之電壓擺動。 This can be done by measuring an output current directly or indirectly. The indirect means may include measuring the current in the switching transistor and calculating the output current using stored data (such as transformer turns ratio, duty cycle, etc.). The decision engine optimization controller 1120 can have a preset limit on the allowable output voltage or duty cycle offset under a particular operating condition to limit the voltage swing in the intermediate bus 1110 during transient conditions.

該匯流排轉換器1105及並聯匯流排轉換器1145可為經調節類型及未調節類型之一混合。該決策引擎最佳化控制器1120可修改經調節之匯流排轉換器之一輸出電壓以進行匹配(小於或大於未調節之匯流排轉換器)。此條件可達成該中間匯流排架構功率系統1100之較高整體效率,此係由於其可利用一未調節匯流排轉換器之固有較高效率及一經調節之匯流排轉換器之控制能力。 The busbar converter 1105 and the parallel busbar converter 1145 can be a mixture of one of an adjusted type and an unregulated type. The decision engine optimization controller 1120 can modify one of the regulated bus bar output voltages for matching (less than or greater than the unregulated bus bar converter). This condition can achieve a higher overall efficiency of the intermediate busbar architecture power system 1100 because it utilizes the inherently higher efficiency of an unregulated busbar converter and the control capabilities of a regulated busbar converter.

在一些環境中,可存在一最佳效率點,其中該決策引擎最佳化控制器1120設定該經調節之匯流排轉換器之輸出使得有在兩個匯流排轉換器1105、1145之間共用之相等或成比例負載。若一最大效率點需要低於由未調節之匯流排轉換器提供之一匯流排電壓,及經調節之匯流排轉換器自身能供應電流負載,則該決策引擎最佳化控制器1120可斷開該未調節之匯流排轉換器之匯流排連接或使其關機。 In some environments, there may be an optimum efficiency point, wherein the decision engine optimization controller 1120 sets the output of the regulated busbar converter so that it is shared between the two busbar converters 1105, 1145. Equal or proportional load. The decision engine optimization controller 1120 can be disconnected if a maximum efficiency point needs to be lower than one of the busbar voltages provided by the unregulated busbar converter, and the regulated busbar converter itself can supply the current load. The busbar of the unregulated busbar converter is connected or shut down.

圖12繪示根據本發明之原理而實施之操作一中間匯流排架構功率系統之一方法之一實施例之一流程圖,整體標示為1200。該方法 1200起始於一步驟1205中,及在一步驟1210中,將一輸入電壓轉換成一中間匯流排上之一匯流排電壓。接著,在一步驟1215中,藉由一負載點轉換器將該中間匯流排上之匯流排電壓轉換成一輸出電壓,及在一步驟1220中,基於一已監測的系統變數或一系統約束來控制一系統變數以改良整體系統效能。 12 is a flow chart of one embodiment of a method of operating an intermediate busbar power system implemented in accordance with the principles of the present invention, generally designated 1200. this method 1200 begins in a step 1205, and in a step 1210, an input voltage is converted to a bus voltage on an intermediate bus. Next, in a step 1215, the busbar voltage on the intermediate busbar is converted to an output voltage by a point-of-load converter, and in a step 1220, based on a monitored system variable or a system constraint. A system variable to improve overall system performance.

在一實施例中,控制該系統變數包含調節該輸入電壓(其中此調節包含過濾電磁干擾(EMI)),對該輸入電壓提供多個饋送或增加該輸入電壓之一值以促進穿越條件。 In an embodiment, controlling the system variable includes adjusting the input voltage (where the adjustment includes filtering electromagnetic interference (EMI)), providing a plurality of feeds to the input voltage or increasing a value of the input voltage to facilitate a crossing condition.

在另一實施例中,控制該系統變數包含內部控制或外部控制提供匯流排電壓之一匯流排轉換器,其中內部控制被定義為嵌入於該匯流排轉換器內之一控制功能,及外部控制被定義為在該匯流排轉換器之外之一控制功能。在任一情況中,可使用該匯流排轉換器至該中間匯流排之一匯流排電壓連接。替代地,控制該系統變數包含控制提供該匯流排電壓之複數個並聯匯流排轉換器,其中在一實例中,該複數個並聯匯流排轉換器之至少一者為一未調節匯流排轉換器。另外,控制該系統變數包含控制提供輸出電壓之一負載點轉換器。此外,控制該系統變數可包含控制複數個負載點轉換器。 In another embodiment, controlling the system variable comprises an internal control or an external control providing one of the busbar voltages, wherein the internal control is defined as a control function embedded in the busbar converter, and external control It is defined as one of the control functions outside of the bus converter. In either case, the busbar converter can be used to connect to one of the busbars of the intermediate busbar. Alternatively, controlling the system variable includes controlling a plurality of parallel busbar converters that provide the busbar voltage, wherein in one example, at least one of the plurality of parallel busbar converters is an unregulated busbar converter. Additionally, controlling the system variable includes controlling a point-of-load converter that provides an output voltage. Additionally, controlling the system variables can include controlling a plurality of load point converters.

在又一實施例中,控制該系統變數包含與該系統之外之一資源通信,其中該資源可為一外部系統控制器。另外,控制該系統變數包含使用測試資料、型號資料或序號資料,其中該測試資料、型號資料或序號資料可為儲存資料或即時資料。替代地,控制該系統變數包含以一逐步方式控制該系統變數之改變,其中該逐步方式可使用一可變步長。此外,控制該系統變數包含控制該系統變數之改變之一變化率。 In yet another embodiment, controlling the system variable comprises communicating with a resource other than the system, wherein the resource can be an external system controller. In addition, controlling the system variables includes using test data, model data, or serial number data, wherein the test data, model data, or serial number data may be stored data or real-time data. Alternatively, controlling the system variable includes controlling the change in the system variable in a stepwise manner, wherein the stepwise manner can use a variable step size. In addition, controlling the system variable includes controlling the rate of change of one of the changes in the system variables.

在又一實施例中,控制該系統變數包含自由中間匯流排上之一匯流排電壓、一輸出電壓、一控制信號切換頻率或相位、一控制信號 啟動時間或週期及已啟動之控制裝置的數量所組成之群組中選擇該系統變數。另外,控制該系統變數包含自由供應至中間匯流排之一匯流排電流、一負載點轉換器輸出電流、一系統裝置之一功率耗散、一系統裝置之一效率、一系統裝置之一溫度、一系統裝置之一電磁干擾(EMI)、一系統裝置之一電壓突波或電流突波、一系統裝置之一瞬時回應及對一主動產生之系統擾動之一回應組成之群組選擇已監測的系統變數。 In still another embodiment, controlling the system variable includes one of a bus bar voltage on the free intermediate bus, an output voltage, a control signal switching frequency or phase, and a control signal. The system variable is selected from the group consisting of the start time or period and the number of activated control devices. In addition, controlling the system variable includes freely supplying one of the bus bars current to the intermediate bus, a load point converter output current, one of the system devices, the power dissipation, one system device efficiency, one system device temperature, Electromagnetic interference (EMI), one of the system devices, one of the voltage surges or current surges of a system device, one of the transient responses of one of the system devices, and one of the responses to one of the actively generated system disturbances is selected for monitoring. System variables.

在一進一步實施例中,控制該系統變數包含自由一預設約束、一使用者定義約束、一現場約束及一適應約束組成之群組選擇系統約束。另外,控制該系統變數包含基於一警報信號控制該系統變數,其中在一實例中,該警報信號可指示一系統關機為迫切的。 In a further embodiment, controlling the system variable comprises a group selection system constraint consisting of a free-preset constraint, a user-defined constraint, a site constraint, and an adaptive constraint. Additionally, controlling the system variable includes controlling the system variable based on an alarm signal, wherein in an example, the alarm signal can indicate that a system shutdown is urgent.

在又一實施例中,控制該系統變數包含使用該系統之一通信能力。另外,該通信能力符合選自由一內部整合電路(I2C)匯流排規格、一控制器區域網路(CAN)匯流排規格及一串列周邊介面(SPI)匯流排規格組成之群組之一者。另外,該通信能力可使用有線元件、無線元件或光學元件。此外,中間匯流排可用作為該通信能力。該方法1200結束於一步驟1225中。 In yet another embodiment, controlling the system variable includes using one of the system's communication capabilities. In addition, the communication capability is in accordance with a group selected from an internal integrated circuit (I 2 C) bus bar specification, a controller area network (CAN) bus bar specification, and a serial peripheral interface (SPI) bus bar specification. One. In addition, the communication capability can use a wired component, a wireless component, or an optical component. In addition, an intermediate bus can be used as the communication capability. The method 1200 ends in a step 1225.

儘管本文所揭示之方法已參考以一特定順序執行之特定步驟而描述及展示,然應理解,此等步驟可在不脫離本發明之教示之情況下組合、細分或重新排序以形成一等效方法。相應地,除非本文具體指示,否則該等步驟之順序或分組並非為本發明之一限制。 Although the methods disclosed herein have been described and illustrated with reference to the specific steps that are performed in a particular order, it is understood that the steps can be combined, sub-divided or re-ordered to form an equivalent without departing from the teachings of the present invention. method. Accordingly, the order or grouping of the steps is not a limitation of the invention unless specifically indicated herein.

熟習與本申請案相關之此項技術者應瞭解,可對所描述之實施例作進一步添加、刪除、取代及修改。 Those skilled in the art to which this application pertains will be appreciated that the described embodiments may be further added, deleted, substituted, and modified.

700‧‧‧中間匯流排架構功率系統 700‧‧‧Intermediate busbar architecture power system

705‧‧‧匯流排轉換器 705‧‧‧ Bus Bar Converter

706‧‧‧匯流排連接 706‧‧‧ bus bar connection

710‧‧‧中間匯流排 710‧‧‧Intermediate busbar

7151‧‧‧負載點轉換器 715 1 ‧‧‧Load point converter

7152‧‧‧負載點轉換器 715 2 ‧‧‧Load Point Converter

715N‧‧‧負載點轉換器 715 N ‧‧‧Load Point Converter

CIB‧‧‧中間匯流排電容 C IB ‧‧‧Intermediate busbar capacitor

VBUS‧‧‧匯流排電壓 V BUS ‧‧‧ busbar voltage

VINPUT‧‧‧輸入電壓 V INPUT ‧‧‧ input voltage

VO1‧‧‧輸出電壓 V O1 ‧‧‧Output voltage

VO2‧‧‧輸出電壓 V O2 ‧‧‧ output voltage

VON‧‧‧輸出電壓 V ON ‧‧‧ output voltage

Claims (52)

一種中間匯流排架構功率系統,其包括:一匯流排轉換器,其將一輸入電壓轉換成一中間匯流排上之一匯流排電壓;一負載點轉換器,其自該中間匯流排上之該匯流排電壓供應一輸出電壓;及一決策引擎最佳化控制器,其基於一已監測的系統變數或一系統約束來控制一系統變數以改良一整體系統效能。 An intermediate busbar architecture power system includes: a busbar converter that converts an input voltage into a busbar voltage on an intermediate busbar; and a point-of-load converter from the confluence of the intermediate busbar The discharge voltage supplies an output voltage; and a decision engine optimization controller that controls a system variable based on a monitored system variable or a system constraint to improve an overall system performance. 如請求項1之系統,其中該決策引擎最佳化控制器選自由下列組成之群組:嵌入於該匯流排轉換器內之一控制器;及與該匯流排轉換器分離之一控制器。 The system of claim 1, wherein the decision engine optimization controller is selected from the group consisting of: a controller embedded in the busbar converter; and a controller separate from the busbar converter. 如請求項1之系統,其中該決策引擎最佳化控制器耦合至該匯流排轉換器之一中間匯流排連接。 The system of claim 1, wherein the decision engine optimization controller is coupled to an intermediate bus connection of the one of the bus converters. 如請求項1之系統,其中該決策引擎最佳化控制器耦合至複數個負載點轉換器以控制該系統變數。 The system of claim 1, wherein the decision engine optimization controller is coupled to a plurality of load point converters to control the system variables. 如請求項1之系統,其中該決策引擎最佳化控制器與另一控制器通信以控制該系統變數。 A system as claimed in claim 1, wherein the decision engine optimization controller communicates with another controller to control the system variables. 如請求項1之系統,其中該決策引擎最佳化控制器在控制該系統變數時使用測試資料、型號資料或序號資料。 The system of claim 1, wherein the decision engine optimization controller uses test data, model data, or serial number data when controlling the system variables. 如請求項6之系統,其中該測試資料、型號資料或序號資料為儲存資料。 The system of claim 6, wherein the test data, model data or serial number data is stored data. 如請求項1之系統,其中該決策引擎最佳化控制器以一逐步方式控制該系統變數之一改變。 A system as claimed in claim 1, wherein the decision engine optimization controller controls one of the system variables to change in a stepwise manner. 如請求項8之系統,其中該逐步方式使用一可變步長。 The system of claim 8, wherein the stepwise manner uses a variable step size. 如請求項1之系統,其中該決策引擎最佳化控制器控制該系統變數之改變之一變化率。 The system of claim 1, wherein the decision engine optimization controller controls a rate of change of the change in the system variable. 如請求項1之系統,其中該系統變數選自由下列組成之群組:該中間匯流排上之該匯流排電壓;該輸出電壓;一控制信號切換頻率或相位;一控制信號啟動時間或週期;及已啟動之控制裝置的數量。 The system of claim 1, wherein the system variable is selected from the group consisting of: the bus voltage on the intermediate bus; the output voltage; a control signal switching frequency or phase; a control signal activation time or period; And the number of control devices that have been activated. 如請求項1之系統,其中該已監測的系統變數選自由下列組成之群組:一匯流排電流,其供應至該中間匯流排;一輸出電流,其由該負載點轉換器供應;一系統裝置之一功率耗散;一系統裝置之一效率;一系統裝置之一溫度;一系統裝置之一電磁干擾(EMI);一系統裝置之一輸出電壓或電流突波;一系統裝置之一瞬時回應;及對一主動產生之系統擾動之一回應。 The system of claim 1, wherein the monitored system variable is selected from the group consisting of: a bus current supplied to the intermediate bus; an output current supplied by the point of load converter; One of the power dissipation of the device; one of the efficiency of one system device; one temperature of one system device; one electromagnetic interference (EMI) of one system device; one output voltage or current surge of one system device; one instantaneous of one system device Respond; and respond to one of the actively generated system disturbances. 如請求項1之系統,其中該系統約束選自由下列組成之群組:一預設約束;一使用者定義約束;一現場約束;及一適應約束。 The system of claim 1, wherein the system constraint is selected from the group consisting of: a predetermined constraint; a user-defined constraint; a site constraint; and an adaptive constraint. 如請求項1之系統,其中該系統約束係基於一警報信號。 The system of claim 1, wherein the system constraint is based on an alert signal. 如請求項14之系統,其中該警報信號指示一系統關機為迫切 的。 The system of claim 14, wherein the alarm signal indicates that a system shutdown is urgent of. 如請求項1之系統,其進一步包括將該決策引擎最佳化控制器耦合至一系統元件之一通信匯流排。 The system of claim 1, further comprising coupling the decision engine optimization controller to one of the communication elements of a system component. 如請求項16之系統,其中該通信匯流排經連接以在該決策引擎最佳化控制器與該系統元件之間提供資料傳送。 The system of claim 16, wherein the communication bus is connected to provide data transfer between the decision engine optimization controller and the system component. 如請求項16之系統,其中該通信匯流排經連接以在該決策引擎最佳化控制器與該系統元件之間提供控制信號。 The system of claim 16, wherein the communication bus is connected to provide a control signal between the decision engine optimization controller and the system component. 如請求項16之系統,其中該通信匯流排符合選自由下列組成之群組之一者:一內部整合電路(I2C)匯流排規格;一控制器區域網路(CAN)匯流排規格;及一串列周邊介面(SPI)匯流排規格。 The system of claim 16, wherein the communication bus is in accordance with one of the group consisting of: an internal integrated circuit (I 2 C) bus bar specification; a controller area network (CAN) bus bar specification; And a list of peripheral interface (SPI) busbar specifications. 如請求項16之系統,其中該通信匯流排使用有線元件、無線元件或光學元件。 The system of claim 16, wherein the communication bus uses a wired component, a wireless component, or an optical component. 如請求項16之系統,其中該中間匯流排被用作為該通信匯流排。 The system of claim 16, wherein the intermediate bus is used as the communication bus. 如請求項1之系統,其進一步包括提供該輸入電壓之一調節之一功率介面模組。 The system of claim 1, further comprising providing one of the input voltages to adjust one of the power interface modules. 如請求項22之系統,其中該輸入電壓之該調節包含選自由下列組成之群組之一者:過濾電磁干擾(EMI);對該輸入電壓提供多個饋送;及增加該輸入電壓之一值以促進穿越條件。 The system of claim 22, wherein the adjustment of the input voltage comprises one selected from the group consisting of: filtering electromagnetic interference (EMI); providing a plurality of feeds to the input voltage; and increasing a value of the input voltage To promote crossing conditions. 如請求項1之系統,其進一步包括將一輸入電壓轉換成該中間匯流排上之該匯流排電壓之一並聯匯流排轉換器。 The system of claim 1 further comprising converting an input voltage to one of the bus bar voltages on the intermediate bus bar. 如請求項24之系統,其中該決策引擎最佳化控制器耦合至該並 聯匯流排轉換器以控制該系統變數。 The system of claim 24, wherein the decision engine optimization controller is coupled to the A bus tie converter to control the system variables. 如請求項25之系統,其中該決策引擎最佳化控制器耦合至該並聯匯流排轉換器之一並聯中間匯流排連接。 The system of claim 25, wherein the decision engine optimization controller is coupled to one of the parallel busbar converters in parallel with the intermediate busbar connection. 如請求項24之系統,其中該並聯匯流排轉換器為一未調節之匯流排轉換器。 The system of claim 24, wherein the parallel busbar converter is an unregulated busbar converter. 一種操作一中間匯流排架構功率系統之方法,其包括:將一輸入電壓轉換成一中間匯流排上之一匯流排電壓;將該中間匯流排上之該匯流排電壓轉換成一輸出電壓;及基於一已監測的系統變數或一系統約束來控制一系統變數以改良整體系統效能。 A method of operating an intermediate busbar architecture power system, comprising: converting an input voltage into a busbar voltage on an intermediate busbar; converting the busbar voltage on the intermediate busbar into an output voltage; and based on Monitored system variables or a system constraint to control a system variable to improve overall system performance. 如請求項28之方法,其中控制該系統變數包含選自由下列組成之群組之一者:內部控制供應該匯流排電壓之一匯流排轉換器;及外部控制供應該匯流排電壓之一匯流排轉換器。 The method of claim 28, wherein controlling the system variable comprises one selected from the group consisting of: internal control supplying one of the busbar voltages; and externally controlling one of the busbar voltages converter. 如請求項28之方法,其中控制該系統變數包含:控制一匯流排轉換器至該中間匯流排之一匯流排電壓連接。 The method of claim 28, wherein controlling the system variable comprises: controlling a busbar converter to a busbar voltage connection of the intermediate busbar. 如請求項28之方法,其中控制該系統變數包含:控制提供該匯流排電壓之複數個並聯匯流排轉換器。 The method of claim 28, wherein controlling the system variable comprises: controlling a plurality of parallel busbar converters that provide the busbar voltage. 如請求項31之方法,其中該複數個並聯匯流排轉換器之至少一者為一未經調節之匯流排轉換器。 The method of claim 31, wherein at least one of the plurality of parallel busbar converters is an unregulated busbar converter. 如請求項28之方法,其中控制該系統變數包含:控制提供該輸出電壓之一負載點轉換器。 The method of claim 28, wherein controlling the system variable comprises: controlling a load point converter that provides the output voltage. 如請求項28之方法,其中控制該系統變數包含:控制複數個負載點轉換器。 The method of claim 28, wherein controlling the system variable comprises: controlling a plurality of load point converters. 如請求項28之方法,其中控制該系統變數包含:與該系統之外之一資源通信。 The method of claim 28, wherein controlling the system variable comprises: communicating with a resource other than the system. 如請求項35之方法,其中該資源為一外部系統控制器。 The method of claim 35, wherein the resource is an external system controller. 如請求項28之方法,其中控制該系統變數包含:使用測試資料、型號資料或序號資料。 The method of claim 28, wherein controlling the system variable comprises: using test data, model data, or serial number data. 如請求項37之方法,其中該測試資料、型號資料或序號資料為儲存資料。 The method of claim 37, wherein the test data, model data or serial number data is stored data. 如請求項28之方法,其中控制該系統變數包含:以一逐步方式控制該系統變數之一改變。 The method of claim 28, wherein controlling the system variable comprises: controlling one of the system variables to change in a stepwise manner. 如請求項39之方法,其中該逐步方式使用一可變步長。 The method of claim 39, wherein the stepwise manner uses a variable step size. 如請求項28之方法,其中控制該系統變數包含:控制該系統變數之改變之一變化率。 The method of claim 28, wherein controlling the system variable comprises controlling a rate of change of the change in the system variable. 如請求項28之方法,其中控制該系統變數包含自由下列組成之群組選擇該系統變數:該中間匯流排上之該匯流排電壓;該輸出電壓;一控制信號切換頻率或相位;一控制信號啟動時間或週期;及已啟動之控制裝置的數量。 The method of claim 28, wherein controlling the system variable comprises selecting a group of the following components to select the system variable: the bus bar voltage on the intermediate bus bar; the output voltage; a control signal switching frequency or phase; a control signal Start time or period; and the number of control devices that have been activated. 如請求項28之方法,其中控制該系統變數包含自由下列組成之群組選擇該已監測的系統變數:一匯流排電流,其供應至該中間匯流排;一負載點轉換器輸出電流;一系統裝置之一功率耗散;一系統裝置之一效率;一系統裝置之一溫度;一系統裝置之一電磁干擾(EMI);一系統裝置之一電壓突波或電流突波; 一系統裝置之一瞬時回應;及對一主動產生之系統擾動之一回應。 The method of claim 28, wherein controlling the system variable comprises selecting the monitored system variable by a group of the following components: a bus current supplied to the intermediate bus; a load point converter output current; a system Power dissipation of one of the devices; efficiency of one of the system devices; temperature of one of the system devices; electromagnetic interference (EMI) of one of the system devices; voltage surge or current surge of one of the system devices; One of the system devices responds instantaneously; and responds to one of the actively generated system disturbances. 如請求項28之方法,其中控制該系統變數包含自由下列組成之群組選擇該系統約束:一預設約束;一使用者定義約束;一現場約束;及一適應約束。 The method of claim 28, wherein controlling the system variable comprises selecting the system constraint from a group of the following components: a predetermined constraint; a user defined constraint; a site constraint; and an adaptive constraint. 如請求項28之方法,其中控制該系統變數包含:基於一警報信號控制該系統變數。 The method of claim 28, wherein controlling the system variable comprises: controlling the system variable based on an alert signal. 如請求項45之方法,其中該警報信號指示一系統關機為迫切的。 The method of claim 45, wherein the alert signal indicates that a system shutdown is urgent. 如請求項28之方法,其中控制該系統變數包含:對該系統使用一通信能力。 The method of claim 28, wherein controlling the system variable comprises using a communication capability for the system. 如請求項47之方法,其中該通信能力符合選自由下列組成之群組之一者:一內部整合電路(I2C)匯流排規格;一控制器區域網路(CAN)匯流排規格;及一串列周邊介面(SPI)匯流排規格。 The method of claim 47, wherein the communication capability is in accordance with one of the group consisting of: an internal integrated circuit (I 2 C) bus bar specification; a controller area network (CAN) bus bar specification; A series of peripheral interface (SPI) busbar specifications. 如請求項47之方法,其中該通信能力使用有線元件、無線元件或光學元件。 The method of claim 47, wherein the communication capability uses a wired component, a wireless component, or an optical component. 如請求項47之方法,其中該中間匯流排用作為該通信能力。 The method of claim 47, wherein the intermediate bus is used as the communication capability. 如請求項28之方法,其中控制該系統變數包含該輸入電壓之一調節。 The method of claim 28, wherein controlling the system variable comprises adjusting the one of the input voltages. 如請求項51之方法,其中該輸入電壓之該調節包含選自由下列組成之群組之一者: 過濾電磁干擾(EMI);對該輸入電壓提供多個饋送;及增加該輸入電壓之一值以促進穿越條件。 The method of claim 51, wherein the adjusting of the input voltage comprises one selected from the group consisting of: Filtering electromagnetic interference (EMI); providing a plurality of feeds to the input voltage; and increasing a value of the input voltage to facilitate a crossing condition.
TW102115633A 2012-05-01 2013-05-01 Controlled intermediate bus architecture optimization TW201351155A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/461,370 US20120297104A1 (en) 2011-05-20 2012-05-01 Controlled intermediate bus architecture optimization

Publications (1)

Publication Number Publication Date
TW201351155A true TW201351155A (en) 2013-12-16

Family

ID=50158283

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102115633A TW201351155A (en) 2012-05-01 2013-05-01 Controlled intermediate bus architecture optimization

Country Status (1)

Country Link
TW (1) TW201351155A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI697172B (en) * 2019-09-17 2020-06-21 台達電子工業股份有限公司 Vehicle charging system applied in solid state transformer structure and three-phase power system having the same
US11225160B2 (en) 2019-09-17 2022-01-18 Delta Electronics, Inc. Energy storage device charging system applied to solid state transformer structure and three-phase power system having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI697172B (en) * 2019-09-17 2020-06-21 台達電子工業股份有限公司 Vehicle charging system applied in solid state transformer structure and three-phase power system having the same
US11225160B2 (en) 2019-09-17 2022-01-18 Delta Electronics, Inc. Energy storage device charging system applied to solid state transformer structure and three-phase power system having the same

Similar Documents

Publication Publication Date Title
US20120297104A1 (en) Controlled intermediate bus architecture optimization
US7170194B2 (en) Configurable multiple power source system
US10819139B2 (en) Power supply including logic circuit
US8994346B2 (en) Systems and methods for dynamic management of switching frequency for voltage regulation
US7429806B2 (en) Smart power supply
US7605572B2 (en) Input current sensing AVP method for future VRM
US9430008B2 (en) Apparatus and method for optimizing use of NVDC chargers
US8125189B2 (en) Systems for charging a battery in a closed loop configuration
US9882423B2 (en) Uninterruptible power supply control
JP2008263771A (en) Dynamically adjusted multi-phase regulator
US9634512B1 (en) Battery backup with bi-directional converter
TW201330469A (en) Systems and methods for power management
US10948934B1 (en) Voltage regulator with piecewise linear loadlines
WO2013095514A1 (en) A dual mode voltage regulator with dynamic reconfiguration capability
JP2011142810A (en) Variable current limiter, power supply and point of load converter employing the limiter and method of operating non-isolated voltage converter
KR100778892B1 (en) Uninterruptible power supply system and method of supplying uninterruptible power thereof
US9088174B2 (en) Adjusting voltage regulator operating parameters
KR101680792B1 (en) Electric device and control method of the same
US20140167504A1 (en) Parallel boost voltage power supply with local energy storage
US20220094194A1 (en) Method and apparatus for efficient power delivery in power supply system
TW201351155A (en) Controlled intermediate bus architecture optimization
JP6902719B2 (en) Converter system
US20170110985A1 (en) Method for Controlling a Power Conversion System
CN108702091A (en) A kind of method and terminal of adjustment terminal supplying power efficiency
JP4624113B2 (en) Voltage monitoring control circuit