TW201350816A - Wavelength conversion element inspection method and inspection device - Google Patents
Wavelength conversion element inspection method and inspection device Download PDFInfo
- Publication number
- TW201350816A TW201350816A TW102105363A TW102105363A TW201350816A TW 201350816 A TW201350816 A TW 201350816A TW 102105363 A TW102105363 A TW 102105363A TW 102105363 A TW102105363 A TW 102105363A TW 201350816 A TW201350816 A TW 201350816A
- Authority
- TW
- Taiwan
- Prior art keywords
- wavelength
- light
- conversion element
- wavelength conversion
- inspection
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/0121—Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
- G02F1/0123—Circuits for the control or stabilisation of the bias voltage, e.g. automatic bias control [ABC] feedback loops
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/37—Non-linear optics for second-harmonic generation
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
Abstract
Description
本發明係關於具有分極反轉構造的波長變換元件之檢查方法及檢查裝置。 The present invention relates to an inspection method and an inspection apparatus for a wavelength conversion element having a polarization inversion structure.
近年來,使用擬似相位整合進行波長變換的技術持續進行著開發。擬似相位整合,是使用在強介電質結晶週期性形成分極反轉構造之元件來進行的。具有分極反轉構造的波長變換元件,藉由分極反轉的構造改變其特性。 In recent years, techniques for performing wavelength conversion using phase-like integration have continued to be developed. The pseudo phase integration is performed using an element in which a ferroelectric crystal periodically forms a pole inversion structure. The wavelength conversion element having the polarization inversion structure changes its characteristics by the structure of the polarization inversion.
於專利文獻1,記載著藉由把具有互異波長的複數雷射光輸入波長變換元件,解析其輸出光,而檢測出該波長變換元件的分極反轉構造所整合的波長。 Patent Document 1 describes that a plurality of laser beams having mutually different wavelengths are input to a wavelength conversion element, and the output light is analyzed to detect a wavelength integrated by a polarization inversion structure of the wavelength conversion element.
於專利文獻2,記載著藉由蝕刻波長變換元件,在分極反轉部與其他部分設階差,來檢查分極反轉構造。 Patent Document 2 describes that the polarization inversion structure is inspected by etching the wavelength conversion element with a step difference between the polarization inversion portion and the other portion.
[專利文獻1]日本專利特開2005-69984號公報 [Patent Document 1] Japanese Patent Laid-Open Publication No. 2005-69984
[專利文獻2]日本專利特開2007-232826號公報 [Patent Document 2] Japanese Patent Laid-Open Publication No. 2007-232826
本案發明人認為前述方法有以下的問題。在專利文獻1記載的構造,入射光的波長是離散的。因此,無法充分得到分極反轉構造的檢查所必須的光學上的資訊。此外,在專利文獻2記載的構造,無法檢查實際的光學特性。 The inventor of the present invention considered that the above method has the following problems. In the structure described in Patent Document 1, the wavelength of incident light is discrete. Therefore, the optical information necessary for the inspection of the polarization inversion structure cannot be sufficiently obtained. Further, in the structure described in Patent Document 2, actual optical characteristics cannot be inspected.
本發明係有鑑於前述情形而完成之發明,目的在於提供可以充分得到分極反轉構造的檢查所必要的光學資訊之波長變換元件的檢查方法及檢查裝置。 The present invention has been made in view of the above circumstances, and an object of the invention is to provide an inspection method and an inspection apparatus for a wavelength conversion element which can sufficiently obtain optical information necessary for inspection of a polarization inversion structure.
相關於本發明的波長變換元件的檢查方法,如以下所述。首先,把超寬頻光源產生的第1檢查用光,射入具有分極反轉構造的強介電質結晶之波長變換元件。接著,分光分析由波長變換元件射出的射出光,檢測出一或複數之第1峰值波長。進而,根據檢測出的第1峰值波長,判斷波長變換元件的檢查結果。 The inspection method of the wavelength conversion element according to the present invention is as follows. First, the first inspection light generated by the ultra-wideband light source is incident on a ferroelectric crystal having a polarization reversal structure. Next, the emitted light emitted from the wavelength conversion element is analyzed by spectroscopic analysis, and one or a plurality of first peak wavelengths are detected. Further, based on the detected first peak wavelength, the inspection result of the wavelength conversion element is determined.
相關於本發明的檢查裝置,具有超寬頻光源、導光部及分光部。超寬頻光源,產生第1檢查用光。導光部,使第1檢查用光射入波長變換元件。波長變換元 件,為具有分極反轉構造的強介電質結晶。分光部,分光分析由波長變換元件射出的射出光,檢測出一或複數之第1峰值波長。 An inspection apparatus according to the present invention has an ultra-wideband light source, a light guiding portion, and a spectroscopic portion. The ultra-wideband light source generates the first inspection light. The light guiding unit causes the first inspection light to enter the wavelength conversion element. Wavelength conversion element The piece is a ferroelectric crystal having a polarization inversion structure. The spectroscopic unit analyzes the emitted light emitted from the wavelength conversion element by spectroscopic detection, and detects one or a plurality of first peak wavelengths.
根據本發明的話,可以充分得到分極反轉構造的檢查所必須的光學上的資訊。 According to the present invention, the optical information necessary for the inspection of the polarization inversion structure can be sufficiently obtained.
10‧‧‧檢查裝置 10‧‧‧Inspection device
20‧‧‧波長變換元件 20‧‧‧ wavelength conversion components
110‧‧‧SC光源 110‧‧‧SC light source
120‧‧‧載物台 120‧‧‧stage
130‧‧‧分光部 130‧‧ ‧Distribution Department
140‧‧‧控制部 140‧‧‧Control Department
152‧‧‧光譜調整濾波器 152‧‧‧Spectral adjustment filter
153‧‧‧可變波長濾波器 153‧‧‧Variable Wavelength Filter
154‧‧‧光學系 154‧‧‧Optics
162‧‧‧光學系 162‧‧‧Optics
164‧‧‧泵截止濾波器(pump cut filter) 164‧‧‧pump cut filter
圖1係顯示相關於第1實施形態之檢查裝置的構成之圖。 Fig. 1 is a view showing the configuration of an inspection apparatus according to the first embodiment.
圖2係顯示檢查裝置的使用方法之流程圖。 Figure 2 is a flow chart showing the method of using the inspection device.
圖3係顯示相關於第2實施形態之檢查裝置的構成之圖。 Fig. 3 is a view showing the configuration of an inspection apparatus according to a second embodiment.
圖4係顯示圖3所示之檢查裝置的使用方法之流程圖。 4 is a flow chart showing a method of using the inspection apparatus shown in FIG.
圖5係顯示波長變換元件輸出的光的強度之頻率依存性之圖。 Fig. 5 is a graph showing the frequency dependence of the intensity of light output from the wavelength conversion element.
圖6係顯示波長變換元件輸出的光的強度之頻率依存性,隨著溫度而如何變化之圖。 Fig. 6 is a graph showing how the frequency dependence of the intensity of light output from the wavelength conversion element changes with temperature.
以下,使用圖面說明本發明之實施形態。 又,於所有的圖面,同樣的構成要素賦予同樣的符號,而適當地省略其說明。 Hereinafter, embodiments of the present invention will be described using the drawings. In the drawings, the same components are denoted by the same reference numerals, and the description thereof will be omitted as appropriate.
圖1係顯示相關於第1實施形態之檢查裝置10的構成之圖。檢查裝置10,係供檢查波長變換元件20之用的元件。檢查裝置10,具有SC(超寬頻光源)光源110,光學系(導光部)154,及分光部130。SC光源110,作為第1檢查用光,產生超寬頻光源光(SC光)。光學系154,使第1檢查用光射入波長變換元件20。波長變換元件20,為具有分極反轉構造的強介電質結晶。分光部130,分光分析由波長變換元件20射出的射出光,檢測出一或複數之第1峰值波長。第1峰值波長,係藉由波長變換元件20而波長變換的光。SC光是連續而寬頻帶的光。因此,與把具有互異的波長的複數雷射光作為檢查用之光來使用的場合相比,可以充分得到分極反轉構造的檢查所必要的光學上的資訊。以下詳細進行說明。 Fig. 1 is a view showing the configuration of an inspection apparatus 10 according to the first embodiment. The inspection device 10 is an element for inspecting the wavelength conversion element 20. The inspection device 10 includes an SC (Ultra Wide Frequency Light Source) light source 110, an optical system (light guide portion) 154, and a spectroscopic portion 130. The SC light source 110 generates ultra-wideband light source light (SC light) as the first inspection light. The optical system 154 causes the first inspection light to enter the wavelength conversion element 20. The wavelength conversion element 20 is a ferroelectric crystal having a polarization inversion structure. The spectroscopic unit 130 spectrally analyzes the emitted light emitted from the wavelength conversion element 20, and detects one or a plurality of first peak wavelengths. The first peak wavelength is light that is wavelength-converted by the wavelength conversion element 20. SC light is continuous and broadband light. Therefore, compared with the case where a plurality of laser beams having mutually different wavelengths are used as the light for inspection, optical information necessary for the inspection of the polarization inversion structure can be sufficiently obtained. The details will be described below.
於本實施形態,檢查裝置10,具有SC光源110,光譜調整濾波器152,載物台120,光學系162,泵截止濾波器(pump cut filter)164,分光部130,及控制部140。 In the present embodiment, the inspection apparatus 10 includes an SC light source 110, a spectrum adjustment filter 152, a stage 120, an optical system 162, a pump cut filter 164, a spectroscopic unit 130, and a control unit 140.
SC光源110,藉由使超短脈衝光射入非線性光學材料而產生SC光。SC光,係超短脈衝光於非線性光學材料中,藉由受到自己相位調變、相互相位調變、四光 波混合、拉曼散射等非線性光學效果而產生。亦即,SC光是連續而寬頻帶的脈衝光。 The SC light source 110 generates SC light by injecting ultrashort pulse light into the nonlinear optical material. SC light, which is ultrashort pulsed light in a nonlinear optical material, by self-phase modulation, mutual phase modulation, and four-light Produced by nonlinear optical effects such as wave mixing and Raman scattering. That is, the SC light is continuous and broadband pulsed light.
光譜調整濾波器152,由SC光源110射出的SC光,除去波長變換元件20的檢查所不需要的頻率成分。光學系154,由透鏡等構成,把透過光譜調整濾波器152的SC光,導引到波長變換元件20的射入側端面。 The spectral adjustment filter 152, the SC light emitted from the SC light source 110, removes frequency components unnecessary for inspection by the wavelength conversion element 20. The optical system 154 is constituted by a lens or the like, and guides the SC light transmitted through the spectrum adjustment filter 152 to the incident end surface of the wavelength conversion element 20.
載物台120,載置波長變換元件20。載物台120內藏加熱器,調整波長變換元件20的溫度。載物台120的加熱器,藉由控制部140控制。 The stage 120 mounts the wavelength conversion element 20. The stage 120 contains a heater to adjust the temperature of the wavelength conversion element 20. The heater of the stage 120 is controlled by the control unit 140.
光學系162,把波長變換元件20射出的光導光至泵截止濾波器(pump cut filter)164。泵截止濾波器(pump cut filter)164,除去波長變換元件20射出的光之中,包含於SC光的頻率成分。分光部130,分光透過泵截止濾波器(pump cut filter)164的光,檢測出具有峰值的波長(第1峰值波長)。第1峰值波長,通常存在複數個。接著分光部130,把檢測出的複數個第1峰值波長,輸出至分光結果之圖表,以及顯示部等。分光部130的動作,藉由控制部140控制。 The optical system 162 directs the light emitted from the wavelength conversion element 20 to a pump cut filter 164. A pump cut filter 164 removes the frequency component of the SC light among the light emitted from the wavelength conversion element 20. The spectroscopic unit 130 splits the light passing through the pump cut filter 164 to detect a wavelength having a peak (first peak wavelength). There are usually a plurality of first peak wavelengths. Next, the spectroscopic unit 130 outputs a plurality of detected first peak wavelengths to a graph of the spectroscopic result, a display unit, and the like. The operation of the spectroscopic unit 130 is controlled by the control unit 140.
波長變換元件20,如前所述,為具有分極反轉構造的強介電質結晶。作為強介電質結晶,例如為添加Mg的LiNbO3,但不以此為限。波長變換元件20,在射入的光具有特定的波長成分的場合,將此波長成分波長變換而輸出。波長變換元件20,輸出和頻率(SFG),例如第2次諧波(SHG),但輸出藉由參數(parametric)變換而產生的 光,藉由差頻變換而產生的光,或者藉由和頻率混合變換而產生的光亦可。 The wavelength conversion element 20 is a ferroelectric crystal having a polarization inversion structure as described above. As the ferroelectric crystal, for example, LiNbO 3 to which Mg is added is not limited thereto. When the incident light has a specific wavelength component, the wavelength conversion element 20 converts and converts the wavelength component into a wavelength. The wavelength conversion element 20 outputs an output and a frequency (SFG), for example, a second harmonic (SHG), but outputs light generated by parametric conversion, light generated by differential frequency conversion, or by and Light generated by frequency mixing can also be used.
其次,說明檢查裝置10之第1使用方法。首先,把載物台120設定為特定的溫度。接著,使SC光源110產生SC光。產生的SC光,透過光譜調整濾波器152及光學系154之後,射入波長變換元件20。射入波長變換元件20的SC光,滿足相位整合條件的波長成分被變換波長。泵截止濾波器(pump cut filter)164,除去由波長變換元件20射出的光之中,包含於SC光的波長成分。因此,射入分光部130的光,主要包含波長變換元件20進行了波長變化之光。分光部130進行分光分析,檢測出第1峰值波長。 Next, the first method of use of the inspection apparatus 10 will be described. First, the stage 120 is set to a specific temperature. Next, the SC light source 110 is caused to generate SC light. The generated SC light passes through the spectrum adjustment filter 152 and the optical system 154, and then enters the wavelength conversion element 20. The SC light incident on the wavelength conversion element 20 is converted into a wavelength component satisfying the phase integration condition. A pump cut filter 164 removes the wavelength component of the SC light among the light emitted from the wavelength conversion element 20. Therefore, the light incident on the spectroscopic unit 130 mainly includes light whose wavelength is changed by the wavelength conversion element 20. The spectroscopic unit 130 performs spectroscopic analysis to detect the first peak wavelength.
圖2係顯示檢查裝置10的第2使用方法之流程圖。於載物台120上,載置著波長變換元件20。首先,控制部140,把載物台120設定為特定的溫度(步驟S12)。 FIG. 2 is a flow chart showing a second method of using the inspection apparatus 10. The wavelength conversion element 20 is placed on the stage 120. First, the control unit 140 sets the stage 120 to a specific temperature (step S12).
接著,SC光源110產生SC光。產生的SC光,射入波長變換元件20。射入波長變換元件20的SC光,滿足相位整合條件的波長成分被變換波長。分光部130進行分光分析,檢測出第1峰值波長。此步驟之詳細內容,與第1使用方法相同(步驟S14)。 Next, the SC light source 110 generates SC light. The generated SC light is incident on the wavelength conversion element 20. The SC light incident on the wavelength conversion element 20 is converted into a wavelength component satisfying the phase integration condition. The spectroscopic unit 130 performs spectroscopic analysis to detect the first peak wavelength. The details of this step are the same as those of the first usage method (step S14).
接著,直到在應該檢查的所有的溫度下直到檢查結束為止,持續改變載物台120的溫度,反覆步驟S12及步驟S14之處理(步驟S16)。接著,進行波長變換 元件20的檢查者,使用第1峰值波長,判斷波長變換元件20的構造(步驟S18)。針對此判斷的詳細內容,與本實施形態之效果一起說明。 Next, until the end of the inspection at all the temperatures to be inspected, the temperature of the stage 120 is continuously changed, and the processing of steps S12 and S14 is repeated (step S16). Next, perform wavelength conversion The examiner of the element 20 determines the structure of the wavelength conversion element 20 using the first peak wavelength (step S18). The details of this determination will be described together with the effects of the present embodiment.
其次,說明本實施形態之效果。藉由前述之處理,於複數溫度,第1峰值波長被有效率地測定。例如波長變換元件20輸出根據SHG之變換光(亦即第2次高頻波)的場合,波長變換元件20之相位整合條件,如下列式(1)所示。 Next, the effect of this embodiment will be described. By the above-described processing, the first peak wavelength is efficiently measured at the complex temperature. For example, when the wavelength conversion element 20 outputs the converted light according to the SHG (that is, the second high frequency wave), the phase integration condition of the wavelength conversion element 20 is as shown in the following formula (1).
此處,Λ:分極反轉周期、λω:基本波之波長、λ2ω:第2次諧波之波長、nω:基本波波長下之結晶折射率、n2ω:第2次諧波的波長下之結晶折射率。 Here, Λ: polarization reversal period, λ ω : wavelength of fundamental wave, λ 2ω : wavelength of second harmonic, n ω : crystal refractive index at fundamental wavelength, n 2ω : second harmonic Crystalline refractive index at wavelength.
入射光之中,於滿足式(1)所示的相位整合條件的條件,產生第2次諧波。因此,在分極反轉的細微構造有參差不齊的場合,或者強介電質結晶的折射率有參差不齊的場合,第2次諧波的波長會改變。藉由調查此波長的變化,可以認識到波長變換元件20的分極反轉構造的詳細情形,及強介電質結晶的折射率的參差不齊。例如,知道分極反轉週期的場合,藉由調查第1峰值波長的溫度 依存性,可以認識到構成波長變換元件20的強介電質結晶內部的折射率分散之分布。 Among the incident light, the second harmonic is generated under the condition that the phase integration condition shown in the equation (1) is satisfied. Therefore, in the case where the fine structure of the polarization inversion is uneven, or when the refractive index of the ferroelectric crystal is uneven, the wavelength of the second harmonic changes. By investigating the change in this wavelength, it is possible to recognize the details of the polarization inversion structure of the wavelength conversion element 20 and the unevenness of the refractive index of the ferroelectric crystal. For example, when the polarization reversal period is known, by investigating the temperature of the first peak wavelength Depending on the dependence, it is possible to recognize the distribution of the refractive index dispersion inside the ferroelectric crystal constituting the wavelength conversion element 20.
此外,藉由使用這些第1峰值波長,可以有效率地判斷是否把該波長變換元件20設定為某一個溫度就可以得到所要的波長。 Further, by using these first peak wavelengths, it is possible to efficiently determine whether or not the wavelength conversion element 20 is set to a certain temperature to obtain a desired wavelength.
對此,考慮替代SC光源110,使用波長互異的複數雷射光源的場合。波長變換元件20的分極反轉構造,或強介電質結晶的折射率,有參差不齊的現象。因此,在設計上即使應該被波長變換的雷射射入波長變換元件20的場合,分光部130亦有未檢測出第1峰值波長的情形。在此場合,不知道是否把雷射的波長在短波長側及長波長側之某一個方向上挪移即可。因此,與使用檢查裝置10的場合進行同樣的檢查是困難的。 In this regard, it is considered to replace the SC light source 110 with a complex laser light source having mutually different wavelengths. The polarization inversion structure of the wavelength conversion element 20 or the refractive index of the ferroelectric crystal has a jagged phenomenon. Therefore, even if the wavelength-converted laser beam is incident on the wavelength conversion element 20, the spectroscopic unit 130 may not detect the first peak wavelength. In this case, it is not known whether or not the wavelength of the laser is shifted in one of the short-wavelength side and the long-wavelength side. Therefore, it is difficult to perform the same inspection as in the case of using the inspection apparatus 10.
圖3係顯示相關於第2實施形態之檢查裝置10的構成之圖。相關於本實施形態之檢查裝置10,除了以下之點以外,與相關於第1實施形態的檢查裝置10為相同的構成。 Fig. 3 is a view showing the configuration of the inspection apparatus 10 according to the second embodiment. The inspection apparatus 10 according to the present embodiment has the same configuration as that of the inspection apparatus 10 according to the first embodiment except for the following points.
首先,檢查裝置10,替代光譜調整濾波器152而具有可變波長濾波器153。接著控制部140,控制透過可變波長濾波器153的波長。 First, the inspection device 10 has a variable wavelength filter 153 instead of the spectral adjustment filter 152. Next, the control unit 140 controls the wavelength transmitted through the variable wavelength filter 153.
圖4係顯示圖3所示之檢查裝置10的使用方法之流程圖。把載物台120設定為特定的溫度。接著控制 部140,把可變波長濾波器153透過的波長設定於特定的波長(步驟S32)。接著,使SC光源110產生SC光。產生的SC光,僅設定的波長成分被切出,作為第2檢查用光射入波長變換元件20。 4 is a flow chart showing a method of using the inspection apparatus 10 shown in FIG. The stage 120 is set to a specific temperature. Then control The unit 140 sets the wavelength transmitted by the variable wavelength filter 153 to a specific wavelength (step S32). Next, the SC light source 110 is caused to generate SC light. The generated SC light is cut out only by the set wavelength component, and is incident on the wavelength conversion element 20 as the second inspection light.
射入波長變換元件20的第2檢查用光的波長滿足波長變換元件20的相位整合條件的場合,泵截止濾波器(pump cut filter)164透過由波長變換元件20射出的光。在此場合,分光部130檢測出峰值波長(第2峰值波長)(步驟S34)。 When the wavelength of the second inspection light incident on the wavelength conversion element 20 satisfies the phase integration condition of the wavelength conversion element 20, a pump cut filter 164 transmits the light emitted from the wavelength conversion element 20. In this case, the spectroscopic unit 130 detects the peak wavelength (second peak wavelength) (step S34).
另一方面,第2檢查用光的波長未滿足波長變換元件20的相位整合條件的場合,泵截止濾波器(pump cut filter)164截斷由波長變換元件20射出的光。在此場合,分光部130未檢測出峰值波長(步驟S34)。 On the other hand, when the wavelength of the second inspection light does not satisfy the phase integration condition of the wavelength conversion element 20, the pump cut filter 164 cuts off the light emitted from the wavelength conversion element 20. In this case, the beam splitting unit 130 does not detect the peak wavelength (step S34).
控制部140,掃描可變波長濾波器153的光的波長同時反覆進行步驟S32及步驟S34所示的處理(步驟S36)。 The control unit 140 scans the wavelength of the light of the variable wavelength filter 153 while repeating the processing shown in steps S32 and S34 (step S36).
此外,控制部140使可變波長濾波器153與光譜調整濾波器152發揮同樣的功能,且使SC光射入波長變換元件20。接著分光部130,由波長變換元件20所射出的光,檢測出第1峰值波長(步驟S38)。接著,進行波長變換元件20的檢查者,比較第1峰值波長與第2峰值波長而進行判斷(步驟S40)。藉此,可以判斷波長變換元件20的分極反轉週期的雜訊成分,亦即是否有不想要的寄生形成的分極反轉週期。 Further, the control unit 140 causes the variable wavelength filter 153 to function in the same manner as the spectrum adjustment filter 152, and causes the SC light to enter the wavelength conversion element 20. Next, the light splitting unit 130 detects the first peak wavelength by the light emitted from the wavelength conversion element 20 (step S38). Next, the examiner who performs the wavelength conversion element 20 compares the first peak wavelength and the second peak wavelength to determine (step S40). Thereby, it is possible to determine the noise component of the polarization inversion period of the wavelength conversion element 20, that is, whether or not there is an unwanted parasitic inversion period.
具體而言,於寄生形成的分極反轉週期Λa,有滿足以下之式(2)所示的相位整合條件者。 Specifically, the phase inversion period Λ a of the parasitic formation has a phase integration condition as shown in the following formula (2).
2Πnout/λout=2Π(n1/λ1+n2/λ2+1/Λa)‧‧‧(2) 2Πn out /λ out =2Π(n 1 /λ 1 +n 2 /λ 2 +1/Λ a )‧‧‧(2)
此處,λout:波長變換元件20變換的光的波長、nout:λout下之波長變換元件20的折射率、λ1,λ2:射入波長變換元件20的光的波長、n1:λ1下之波長變換元件20的折射率、n2:λ2下之波長變換元件20的折射率。 Here, λ out : wavelength of light converted by the wavelength conversion element 20, n out : refractive index of the wavelength conversion element 20 at λ out , λ 1 , λ 2 : wavelength of light incident on the wavelength conversion element 20, n 1 The refractive index of the wavelength conversion element 20 at λ 1 and the refractive index of the wavelength conversion element 20 at n 2 : λ 2 .
此相位整合條件,在波長互異的2道光(λ1,λ2)射入才被滿足。另一方面,第1峰值波長被檢測出時,於波長變換元件20有SC光射入,而在第2峰值波長被檢測出時,於波長變換元件20只有單一波長的光射入。亦即,根據式(2)的相位整合條件之變換光,包含於第1峰值波長,但未被包含於第2峰值波長。 This phase integration condition is satisfied when two wavelengths of light (λ 1 , λ 2 ) are different from each other. On the other hand, when the first peak wavelength is detected, SC light is incident on the wavelength conversion element 20, and when the second peak wavelength is detected, only a single wavelength of light is incident on the wavelength conversion element 20. That is, the converted light according to the phase integration condition of the formula (2) is included in the first peak wavelength, but is not included in the second peak wavelength.
另一方面,所要的相位整合條件,在被檢測出第1峰值波長時,以及被檢測出第2峰值波長時之任一場合都被滿足。亦即,藉由調查包含於第1峰值波長而未包含於第2峰值波長的頻率成分,可以判斷有無寄生形成的分極反轉週期。又,調查包含於第1峰值波長但未被包含於第2峰值波長的頻率成分之處理,亦可由控制部14來進行。 On the other hand, the desired phase integration condition is satisfied in either of the case where the first peak wavelength is detected and when the second peak wavelength is detected. In other words, by investigating the frequency component included in the first peak wavelength and not included in the second peak wavelength, it is possible to determine whether or not there is a parasitic inversion period of parasitic formation. Further, the process of including the frequency component included in the first peak wavelength but not included in the second peak wavelength may be performed by the control unit 14.
使用第1實施形態之第1檢查方法,檢查了以相同方法製作的複數試樣(波長變換元件20)。圖5係顯示各試樣輸出的光的強度之頻率依存性。由本圖可知,隨試樣不同,峰值波長也不同。這顯示隨著試樣不同,分極反轉週期有所差異。接著,藉由調查此波長的偏離,可以檢測出分極反轉週期的細微構造。 Using the first inspection method of the first embodiment, a plurality of samples (wavelength conversion elements 20) produced by the same method were examined. Fig. 5 shows the frequency dependence of the intensity of light output from each sample. As can be seen from the figure, the peak wavelengths vary depending on the sample. This shows that the polarization reversal period varies with the sample. Next, by investigating the deviation of this wavelength, the fine structure of the polarization inversion period can be detected.
使用第1實施形態的第2檢查方法,使載物台120的溫度改變同時檢查一個試樣。圖6係顯示試樣輸出的光的強度之頻率依存性,隨著溫度而如何變化。由本圖可知,隨著載物台120的溫度,亦即試樣的溫度改變峰值波長變得不同,亦即滿足相位整合條件的波長不同。接著,可以容易地判斷於各溫度下滿足相位整合條件的波長。 Using the second inspection method of the first embodiment, one sample is inspected while changing the temperature of the stage 120. Fig. 6 is a graph showing the frequency dependence of the intensity of light output from a sample, and how it changes with temperature. As can be seen from the figure, as the temperature of the stage 120, that is, the temperature change peak wavelength of the sample becomes different, that is, the wavelength satisfying the phase integration condition is different. Next, the wavelength satisfying the phase integration condition at each temperature can be easily judged.
以上,參照圖面說明本發明之實施形態,但此僅為本發明之例示,亦可採用前述以外的種種構成。 The embodiments of the present invention have been described above with reference to the drawings. However, the present invention is merely illustrative of the present invention, and various configurations other than the above may be employed.
10‧‧‧檢查裝置 10‧‧‧Inspection device
20‧‧‧波長變換元件 20‧‧‧ wavelength conversion components
110‧‧‧SC光源 110‧‧‧SC light source
120‧‧‧載物台 120‧‧‧stage
130‧‧‧分光部 130‧‧ ‧Distribution Department
140‧‧‧控制部 140‧‧‧Control Department
152‧‧‧光譜調整濾波器 152‧‧‧Spectral adjustment filter
154‧‧‧光學系 154‧‧‧Optics
162‧‧‧光學系 162‧‧‧Optics
164‧‧‧泵截止濾波器(pump cut filter) 164‧‧‧pump cut filter
Claims (6)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012028399A JP2015084007A (en) | 2012-02-13 | 2012-02-13 | Inspection method and inspection apparatus of wavelength conversion element |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201350816A true TW201350816A (en) | 2013-12-16 |
Family
ID=48983652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102105363A TW201350816A (en) | 2012-02-13 | 2013-02-08 | Wavelength conversion element inspection method and inspection device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2015084007A (en) |
TW (1) | TW201350816A (en) |
WO (1) | WO2013121482A1 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3050333B2 (en) * | 1991-05-10 | 2000-06-12 | 株式会社日立製作所 | Method for manufacturing second harmonic generation element |
JP3555414B2 (en) * | 1997-11-27 | 2004-08-18 | 松下電器産業株式会社 | Short wavelength light source, optical wavelength conversion element, and inspection method for optical wavelength conversion element |
JP3440273B2 (en) * | 2000-02-21 | 2003-08-25 | 東京大学長 | Nonlinear susceptibility spectrum measuring method and device |
JP2004020588A (en) * | 2002-06-12 | 2004-01-22 | Mitsubishi Cable Ind Ltd | Wavelength transformation device |
JP2005069984A (en) * | 2003-08-27 | 2005-03-17 | Noritsu Koki Co Ltd | Laser optical element inspection device and laser optical element inspection method |
-
2012
- 2012-02-13 JP JP2012028399A patent/JP2015084007A/en active Pending
- 2012-11-13 WO PCT/JP2012/007282 patent/WO2013121482A1/en active Application Filing
-
2013
- 2013-02-08 TW TW102105363A patent/TW201350816A/en unknown
Also Published As
Publication number | Publication date |
---|---|
JP2015084007A (en) | 2015-04-30 |
WO2013121482A1 (en) | 2013-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bégin et al. | Coherent anti-Stokes Raman scattering hyperspectral tissue imaging with a wavelength-swept system | |
Nader et al. | Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy | |
JP5100461B2 (en) | LIGHT SOURCE DEVICE FOR NONLINEAR SPECTROSCOPY MEASUREMENT SYSTEM | |
US8804117B2 (en) | Method for detecting a resonant nonlinear optical signal and device for implementing said method | |
Solntsev et al. | LiNbO3 waveguides for integrated SPDC spectroscopy | |
US20120287428A1 (en) | Nonlinear raman spectroscopic apparatus, microspectroscopic apparatus, and microspectroscopic imaging apparatus | |
Hiramatsu et al. | Observation of Raman Optical Activity by Heterodyne-Detected Polarization-Resolved<? format?> Coherent Anti-Stokes Raman Scattering | |
US20040145735A1 (en) | Coherently controlled nonlinear Raman spectroscopy and microscopy | |
US9163988B2 (en) | Detection systems and methods using coherent anti-stokes Raman spectroscopy | |
JP6304968B2 (en) | Information acquisition device | |
EP1975602B1 (en) | Optical analyzer | |
JP6501451B2 (en) | Light source device and information acquisition device using the same | |
Tani et al. | Time-domain coherent anti-Stokes Raman scattering signal detection for terahertz vibrational spectroscopy using chirped femtosecond pulses | |
d’Abzac et al. | Experimental and numerical analysis of ballistic and scattered light using femtosecond optical Kerr gating: a way for the characterization of strongly scattering media | |
JP7147657B2 (en) | Broadband pulse light source device, spectroscopic measurement device and spectroscopic measurement method | |
Sander | Mid-infrared photothermal imaging | |
TW201350816A (en) | Wavelength conversion element inspection method and inspection device | |
Pelegati et al. | Six-wave mixing coherent anti-Stokes Raman scattering microscopy | |
De la Cadena et al. | Multiplex chemical imaging based on broadband stimulated Raman scattering microscopy | |
JP6103008B2 (en) | Nonlinear Raman spectroscopic device, microspectroscopic device, and microspectroscopic imaging device | |
Konorov et al. | Narrowband spectroscopy by an all-optical correlation of broadband laser pulses | |
Risos et al. | Critical setup parameter for ultrafast whitelight coherent antistokes raman scattering spectroscopy of living plankton in sea water | |
Nakamura et al. | Broadband coherent Raman scattering spectroscopy at 50,000,000 spectra/s | |
Solntsev et al. | Integrated quantum spectroscopy on a nonlinear chip | |
JP2010127831A (en) | Optical delay element and light pulse measuring instrument |