TW201350432A - Using shell as raw material to form calcium phosphate material and the method of making calcium phosphate material - Google Patents

Using shell as raw material to form calcium phosphate material and the method of making calcium phosphate material Download PDF

Info

Publication number
TW201350432A
TW201350432A TW101119729A TW101119729A TW201350432A TW 201350432 A TW201350432 A TW 201350432A TW 101119729 A TW101119729 A TW 101119729A TW 101119729 A TW101119729 A TW 101119729A TW 201350432 A TW201350432 A TW 201350432A
Authority
TW
Taiwan
Prior art keywords
shell
calcium phosphate
phosphate material
material according
powder
Prior art date
Application number
TW101119729A
Other languages
Chinese (zh)
Other versions
TWI448419B (en
Inventor
Hsiu-Mei Lin
Tsung-Yuan Chang
Tzu-Yi Yu
Original Assignee
Univ Nat Taiwan Ocean
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan Ocean filed Critical Univ Nat Taiwan Ocean
Priority to TW101119729A priority Critical patent/TWI448419B/en
Publication of TW201350432A publication Critical patent/TW201350432A/en
Application granted granted Critical
Publication of TWI448419B publication Critical patent/TWI448419B/en

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

The present invention provide shells as raw material to form calcium phosphate material, the shells is species one of the Veneroida, otherwise, it also provide a method to form calcium phosphate material, wherein the method at least includes steps of (a) grinding shells to be a shell powder; (b) adding phosphate to the shell powder to form a mixture; and (c) forming calcium phosphate material by a heating procedure.

Description

一種以貝殼做為基礎原料所製成之磷酸鈣材料及製造該磷酸鈣 材料的方法 Calcium phosphate material prepared by using shell as a base material and manufacturing the calcium phosphate Material method

本發明係關於一種磷酸鈣材料及製造該磷酸鈣材料的方法,尤指一種以生物礦化所形成之碳酸鈣作為基礎原料及利用該種碳酸鈣合成磷酸鈣的方法。 The present invention relates to a calcium phosphate material and a method for producing the calcium phosphate material, and more particularly to a method for synthesizing calcium phosphate by using calcium carbonate formed by biomineralization as a base material and using the calcium carbonate.

隨著骨腫瘤患者的增加與人口逐漸的老化,人的骨骼在發生大範圍的骨缺損時,由於身體自身修復的能力下降或是不足,必須經由骨移植來幫助修補,使得骨移植已經成為世界第二大宗之器官移植手術,隨著骨移植數量的增加,骨移植材料的需求也日益增加。 With the increase of bone tumor patients and the gradual aging of the population, when bone defects occur in a large range of bone defects, due to the decreased or insufficient ability of the body to repair itself, it is necessary to help repair through bone transplantation, making bone transplantation a world. The second largest organ transplant surgery, with the increase in the number of bone grafts, the demand for bone graft materials is also increasing.

而一般骨移植的材料可分為四種,包括(1)自體移植(autogenous graft):取出患者自己身上的骨頭移植到需要的部位;(2)同種異質骨移植(allogenic graft):患者接受來自他人的骨組織移植;(3)異體移植(heterogenous graft):用牛、豬等動物的骨骼或骨髓組織移植到人體;(4)人工取代物(cancellous bone substitutes):使用化學合成的類骨質或處理過的珊瑚骨骼或海膽骨骼,來作為骨質缺損時的充填物。由於自體移植可用的骨骼量並不多,而同種異質骨移植與異體移植需要避免疾病傳染或是器官排斥的情況發生,而利用人工取代物作為骨替代材料是目前最合乎效益與安全性的方式。 The general bone graft materials can be divided into four types, including (1) autogenous graft: taking out the bone graft of the patient's own body to the required site; (2) allogenic graft: the patient accepts Transplantation of bone tissue from others; (3) Heterogenous graft: transplantation of bone or bone marrow tissue from animals such as cattle and pigs to humans; (4) Cancellous bone substitutes: chemically synthesized osteoids Or treated coral skeleton or sea urchin skeleton as a filling for bone defects. Since the amount of bone available for autologous transplantation is not large, allogeneic bone grafts and allografts need to avoid disease or organ rejection, and the use of artificial substitutes as bone substitute materials is currently the most beneficial and safe. the way.

其中,人工取代物作為骨替代材料需要良好的生物相容性,而羥基磷灰石即是其中之一,近年來以磷酸鈣如氫氧基磷灰石(hydroxyapatite,HA)與α/β-三鈣磷酸鹽(α/β-tricalcium phosphate,β-TCP)等作為基礎原料的人工合成骨替代材料已廣泛應用於牙齒與骨移植手術,然而,由於化學合成之磷酸鈣材料欠缺網狀結構與相連的空隙,較不利於細胞的貼附與增生,而延緩骨移植術後的復元速度,利用天然的材料轉化合成的羥基磷灰石則具有天然的網狀結構與相連的空隙,直至目前為止,已有許多以生物礦化所形成之碳酸鈣(如珊瑚骨骼、珍珠層、海膽刺、墨魚骨等)作為原料合成磷酸鈣,進而合成骨組織支架材料的研究。 Among them, artificial substitutes need good biocompatibility as a bone substitute material, and hydroxyapatite is one of them. In recent years, calcium phosphate such as hydroxyapatite (HA) and α/β- Synthetic bone substitute materials such as α/β-tricalcium phosphate (β-TCP) have been widely used in dental and bone grafting. However, due to the lack of network structure of chemically synthesized calcium phosphate materials The connected voids are more unfavorable to the attachment and proliferation of cells, and delay the recovery rate after bone transplantation. The natural hydroxyapatite transformed with natural materials has a natural network structure and connected voids. Many kinds of calcium carbonate (such as coral skeleton, nacre, sea urchin, cuttlefish bone, etc.) formed by biomineralization have been used as raw materials to synthesize calcium phosphate, and then the bone tissue scaffold material has been synthesized.

由於天然生物合成之衍生材料其抗原性較弱,並有較好的組織親和力與結合力,其天然孔隙結構利於成骨細胞的貼附與增生,但習知由生物礦化的基礎原料如珊瑚骨骼,因其數量較少,無法大量取得,抑或如海膽骨骼與海膽針,由於其鎂離子含量較高導致其結構較為堅硬,當用於製造磷酸鈣材料時,所需能源的消耗較高,且其製造方式較為費時;是以,尋找一種普遍存在與環境中的生物礦化的基礎原料與合適的磷酸鈣的製造方法,即為本案欲解決的技術課題之一。 Because natural biosynthetic derivatives are weak in antigenicity and have good tissue affinity and binding, their natural pore structure is beneficial to the attachment and proliferation of osteoblasts, but it is known that the basic raw materials such as corals are biomineralized. Bone, because of its small number, can not be obtained in large quantities, or such as sea urchin bones and sea urchin needles, due to its high magnesium ion content, its structure is relatively hard, when used to manufacture calcium phosphate materials, the energy consumption is more High, and its manufacturing method is more time-consuming; it is to find a ubiquitous and environmentally-based biomineralization of the basic raw materials and the appropriate calcium phosphate manufacturing method, which is one of the technical issues to be solved in this case.

另一方面,在習知發光二極體(light emitting diodes,LED)所使用之螢光粉材料多為化學合成的產物,若能找到發光效率更高且使用量減少的替代產品,亦為本案欲解決之另一技術課題。 On the other hand, fluorescent powder materials used in conventional light emitting diodes (LEDs) are mostly chemically synthesized products. If an alternative product with higher luminous efficiency and reduced usage is found, this is also the case. Another technical issue to be solved.

本案提供一種利用貝殼作為基礎原料合成之磷酸鈣材料。 The present invention provides a calcium phosphate material synthesized using shells as a base material.

本案另提供一種利用貝殼作為基礎原料合成不同結晶相之磷酸鈣材料的方法。 The present invention further provides a method for synthesizing calcium phosphate materials of different crystal phases by using shells as a base material.

本案再提供一種利用貝殼作為基礎原料,以形成用於骨替代材料的方法。 The present invention further provides a method of using a shell as a base material to form a bone substitute material.

本案更提供一種利用貝殼作為基礎原料,以形成用於發光二極體之螢光粉材料的方法。 The present invention further provides a method of using a shell as a base material to form a phosphor powder material for a light-emitting diode.

本案一較佳做法,係提供一種磷酸鈣材料,其係以一貝殼作為基礎原料,其中所述之貝殼包含簾蛤目(Veneroida)中之至少任一種類。 In a preferred embodiment of the present invention, a calcium phosphate material is provided which is based on a shell as a base material, wherein the shell comprises at least one of the species of Veeroroida.

於上述較佳實施方式中,其中該磷酸鈣材料的製造方法包括下列步驟:(a)提供該貝殼;其中,該貝殼係為一文石相之貝殼;(b)加熱該文石相之貝殼,使其轉換為一方解石相之貝殼;以及(c)加工該方解石相之貝殼,使其形成該磷酸鈣材料。 In the above preferred embodiment, the method for manufacturing the calcium phosphate material comprises the steps of: (a) providing the shell; wherein the shell is a shell of aragonite; (b) heating the shell of the aragonite, Converting it into a shell of a calcite phase; and (c) processing the shell of the calcite phase to form the calcium phosphate material.

於上述較佳實施方式中,其中該步驟(a)包括下列步驟:(a1)清洗該貝殼;以及(a2)乾燥該貝殼。 In the above preferred embodiment, wherein the step (a) comprises the steps of: (a1) washing the shell; and (a2) drying the shell.

於上述較佳實施方式中,其中於該步驟(a1)中,係以一界面活 性劑伴隨超音波震盪去除附著於該貝殼表面之雜質;抑或,其中於該步驟(a2)中,係將該貝殼置於一室溫下進行乾燥。 In the above preferred embodiment, wherein in the step (a1), the interface is alive. The agent is accompanied by ultrasonic vibration to remove impurities attached to the surface of the shell; or, in the step (a2), the shell is dried at room temperature.

於上述較佳實施方式中,其中該步驟(b)中,以溫度400℃~500℃,以及恆溫加熱2小時以上之條件下,對該文石相之貝殼遂行加熱。 In the above preferred embodiment, in the step (b), the shell of the aragonite phase is heated under the conditions of a temperature of 400 ° C to 500 ° C and a constant temperature of 2 hours or more.

於上述較佳實施方式中,其中該步驟(c)包括下列步驟:(c1)加工該方解石相之貝殼,使其形成一貝殼粉末;(c2)加入一磷酸鹽至該貝殼粉末,使其形成一貝殼粉末混合物;以及(c3)加工該貝殼粉末混合物,使其形成該磷酸鈣材料。 In the above preferred embodiment, wherein the step (c) comprises the steps of: (c1) processing the shell of the calcite phase to form a shell powder; (c2) adding a phosphate to the shell powder to form a shell powder mixture; and (c3) processing the shell powder mixture to form the calcium phosphate material.

於上述較佳實施方式中,其中於該步驟(c1)中,係以一研磨棒對該方解石相之貝殼進行研磨。 In the above preferred embodiment, in the step (c1), the shell of the calcite phase is ground by a grinding rod.

於上述較佳實施方式中,其中於該步驟(c2)中,加入一磷酸鹽粉末至該貝殼粉末,使其形成該貝殼粉末混合物;且,其中於該步驟(c3)中,以溫度900℃~1300℃,以及恆溫燒結2小時以上之條件下,對該貝殼粉末混合物遂行一固態擴散反應(solid state diffusion reaction)程序,使其形成該磷酸鈣材料。 In the above preferred embodiment, in the step (c2), a phosphate powder is added to the shell powder to form the shell powder mixture; and wherein, in the step (c3), the temperature is 900 ° C. At ~1300 ° C, and under constant temperature sintering for 2 hours or more, a solid state diffusion reaction procedure is performed on the shell powder mixture to form the calcium phosphate material.

於上述較佳實施方式中,其中於該步驟(c2)中,該磷酸鹽粉末重量為0.6~1.0倍之該貝殼粉末之重量;且,其中於該步驟(c3)中,該磷酸鈣材料係為一β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)。 In the above preferred embodiment, wherein the phosphate powder has a weight of 0.6 to 1.0 times the weight of the shell powder in the step (c2); and wherein, in the step (c3), the calcium phosphate material is It is a β-tricalcium phosphate (β-TCP).

於上述較佳實施方式中,其中於該步驟(c2)中,加入一磷酸鹽水溶液至該貝殼粉末,使其形成該貝殼粉末混合物;且,其中於該 步驟(c3)中,以溫度100℃~180℃,以恆溫加熱4小時以上之條件下,對該貝殼粉末混合物遂行一水熱反應(hydrothermal)程序,使其形成該磷酸鈣材料。 In the above preferred embodiment, wherein in the step (c2), an aqueous solution of phosphate is added to the shell powder to form the shell powder mixture; and wherein In the step (c3), the shell powder mixture is subjected to a hydrothermal reaction at a temperature of 100 ° C to 180 ° C under a constant temperature for 4 hours or more to form the calcium phosphate material.

於上述較佳實施方式中,其中於該步驟(c2)中,該磷酸鹽水溶液濃度為0.1 g mL-1;且,其中於該步驟(c3)中,該磷酸鈣材料係為一氫氧基磷灰石(hydroxyapatite,HA)。 In the above preferred embodiment, wherein the concentration of the aqueous phosphate solution is 0.1 g mL -1 in the step (c2); and wherein, in the step (c3), the calcium phosphate material is monohydroxyl Apatite (HA).

於上述較佳實施方式中,其中該氫氧基磷灰石(hydroxyapatite,HA)可經由一加熱程序轉換成一β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)。 In the above preferred embodiment, the hydroxyapatite (HA) can be converted into a β-tricalcium phosphate (β-TCP) via a heating procedure.

於上述較佳實施方式中,其中該加熱程序係以以溫度800℃~1000℃,以及恆溫加熱3天以上之條件下,對該氫氧基磷灰石遂加熱程序。 In the above preferred embodiment, the heating procedure is to heat the hydroxyapatite enthalpy under the conditions of a temperature of 800 ° C to 1000 ° C and a constant temperature of 3 days or more.

於上述較佳實施方式中,其中於該步驟(c2)中,可加入一金屬至該貝殼粉末混合物;且,其中於該步驟(c3)中,該磷酸鈣材料可作為一螢光粉材料。 In the above preferred embodiment, in the step (c2), a metal may be added to the shell powder mixture; and wherein, in the step (c3), the calcium phosphate material is used as a phosphor material.

於上述較佳實施方式中,其中該磷酸鈣材料的製造方法包括下列步驟:(d)提供該貝殼;其中,該貝殼係為一文石相之貝殼;以及(e)加工該文石相之貝殼,使其形成該磷酸鈣材料。 In the above preferred embodiment, the method for producing the calcium phosphate material comprises the steps of: (d) providing the shell; wherein the shell is a shell of aragonite; and (e) processing the shell of the aragonite To form the calcium phosphate material.

於上述較佳實施方式中,其中該步驟(d)包括下列步驟:(d1)清洗該貝殼;以及(d2)乾燥該貝殼。 In the above preferred embodiment, wherein the step (d) comprises the steps of: (d1) washing the shell; and (d2) drying the shell.

於上述較佳實施方式中,其中於該步驟(d1)中,係以一界面活性劑伴隨超音波震盪去除附著於該貝殼表面之雜質;且,其中於該步驟(d2)中,係將該貝殼置於一室溫下進行乾燥。 In the above preferred embodiment, in the step (d1), the surfactant attached to the surface of the shell is removed by ultrasonic vibration accompanied by ultrasonic wave oscillating; and, in the step (d2), The shells were dried at room temperature.

於上述較佳實施方式中,其中該步驟(e)包括下列步驟:(e1)加工該文石相之貝殼,使其形成一貝殼粉末;(e2)加入一磷酸鹽至該貝殼粉末,使其形成一貝殼粉末混合物;以及(e3)加工該貝殼粉末混合物,使其形成該磷酸鈣材料。 In the above preferred embodiment, wherein the step (e) comprises the steps of: (e1) processing the shell of the aragonite phase to form a shell powder; (e2) adding a phosphate to the shell powder to cause Forming a shell powder mixture; and (e3) processing the shell powder mixture to form the calcium phosphate material.

於上述較佳實施方式中,其中於該步驟(e1)中,係以一研磨棒對該文石相之貝殼進行研磨。 In the above preferred embodiment, in the step (e1), the shell of the aragonite phase is ground by a grinding rod.

於上述較佳實施方式中,其中於該步驟(e2)中,加入一磷酸鹽水溶液至該貝殼粉末,使其形成該貝殼粉末混合物;且,其中於該步驟(e3)中,以溫度100℃~180℃,以及恆溫加熱4小時以上之條件下,對該貝殼粉末之混合物遂行一水熱反應(hydrothermal)程序,使其形成該磷酸鈣材料。 In the above preferred embodiment, in the step (e2), an aqueous solution of a phosphate solution is added to the shell powder to form the shell powder mixture; and wherein, in the step (e3), the temperature is 100 ° C. The mixture of the shell powder was subjected to a hydrothermal process to form the calcium phosphate material at ~180 ° C and under constant temperature for 4 hours or more.

於上述較佳實施方式中,其中於該步驟(e2)中,該磷酸鹽水溶液濃度為0.1 g mL-1;且,其中於該步驟(e3)中,該磷酸鈣材料係由一β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)與一氫氧基磷灰石(hydroxyapatite,HA)共同組成。 In the above preferred embodiment, wherein in the step (e2), the concentration of the aqueous phosphate solution is 0.1 g mL -1 ; and wherein, in the step (e3), the calcium phosphate material is composed of a β-three --tricalcium phosphate (β-TCP) is composed of hydroxyapatite (HA).

於上述較佳實施方式中,其中該步驟(e3)所得之該磷酸鈣材料可經由一加熱程序轉換成一β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)。 In the above preferred embodiment, the calcium phosphate material obtained in the step (e3) can be converted into a β-tricalcium phosphate (β-TCP) via a heating procedure.

於上述較佳實施方式中,其中該加熱程序係以溫度800℃~1000℃,以及恆溫加熱3天以上之條件下,對該磷酸鈣材料遂加熱程序。 In the above preferred embodiment, the heating procedure is performed by heating the calcium phosphate material at a temperature of 800 ° C to 1000 ° C and a constant temperature heating for 3 days or more.

於上述較佳實施方式中,其中於該步驟(e2)中,加入一磷酸鹽粉末至該貝殼粉末,使其形成該貝殼粉末混合物;且,其中於該步驟(e3)中,以溫度900℃~1300℃,以及恆溫燒結2小時以上之條件下,對該貝殼粉末混合物遂行一固態擴散反應(solid state diffusion reaction)程序,使其形成該磷酸鈣材料。 In the above preferred embodiment, in the step (e2), a phosphate powder is added to the shell powder to form the shell powder mixture; and wherein, in the step (e3), the temperature is 900 ° C. At ~1300 ° C, and under constant temperature sintering for 2 hours or more, a solid state diffusion reaction procedure is performed on the shell powder mixture to form the calcium phosphate material.

於上述較佳實施方式中,其中於該步驟(e2)中,該磷酸鹽粉末重量為0.6~1.0倍之該貝殼粉末之重量;且,其中於該步驟(e3)中,該磷酸鈣材料係為一β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)。 In the above preferred embodiment, wherein the phosphate powder has a weight of 0.6 to 1.0 times the weight of the shell powder in the step (e2); and wherein, in the step (e3), the calcium phosphate material is It is a β-tricalcium phosphate (β-TCP).

於上述較佳實施方式中,其中於該步驟(e2)中,可加入一金屬至該貝殼粉末混合物;且,其中於該步驟(e3)中,該磷酸鈣材料可作為一螢光粉材料。 In the above preferred embodiment, in the step (e2), a metal may be added to the shell powder mixture; and, in the step (e3), the calcium phosphate material may serve as a phosphor material.

於上述較佳實施方式中,其中所述之磷酸鹽係為:磷酸氫二胺((NH4)2HPO4)、磷酸二氫胺((NH4)H2PO4)中之任一者。 In the above preferred embodiment, the phosphate system is any one of hydrogen phosphate diamine ((NH 4 ) 2 HPO 4 ) and dihydrogen phosphate ((NH 4 )H 2 PO 4 ). .

於上述較佳實施方式中,其中該金屬包括:鑭系金屬、鹼金屬、鹼土金屬、過渡金屬中之至少一者。 In the above preferred embodiment, the metal comprises at least one of a lanthanide metal, an alkali metal, an alkaline earth metal, and a transition metal.

本案另一較佳做法,係關於一種磷酸鈣材料的製造方法,其係以一貝殼作為基礎原料,所述之貝殼包含簾蛤目(Veneroida)中之至少任一種類,其中,該磷酸鈣材料的製造方法包括下列步驟:(a)提供該貝殼,其中,該貝殼係為一文石相之貝殼; (b)加熱該文石相之貝殼,以使其轉換為一方解石相之貝殼;(c)加工該方解石相之貝殼,使其形成一貝殼粉末;(d)加入一磷酸鹽至該貝殼粉末中,使其形成一貝殼粉末混合物;以及(e)加熱該貝殼粉末混合物,使其形成一磷酸鈣材料。 Another preferred method of the present invention relates to a method for producing a calcium phosphate material, which comprises a shell as a base material, and the shell comprises at least any one of Veenoroida, wherein the calcium phosphate material The manufacturing method comprises the following steps: (a) providing the shell, wherein the shell is a shell of aragonite; (b) heating the shell of the aragonite phase to convert it into a shell of a calcite phase; (c) processing the shell of the calcite phase to form a shell powder; (d) adding a phosphate to the shell powder Forming a shell powder mixture; and (e) heating the shell powder mixture to form a calcium phosphate material.

於上述較佳實施方式中,其中該步驟(a)包括下列步驟:(a1)清洗該貝殼;以及(a2)乾燥該貝殼。 In the above preferred embodiment, wherein the step (a) comprises the steps of: (a1) washing the shell; and (a2) drying the shell.

於上述較佳實施方式中,其中於該步驟(a1)中,係以一界面活性劑伴隨超音波震盪去除附著於該貝殼表面之雜質;抑或,其中於該步驟(a2)中,係將該貝殼置於一室溫下進行乾燥。 In the above preferred embodiment, in the step (a1), an interface surfactant is used to remove impurities attached to the surface of the shell with ultrasonic vibration; or, in the step (a2), The shells were dried at room temperature.

於上述較佳實施方式中,其中該步驟(b)中,以溫度400℃~500℃,以及恆溫加熱2小時以上之條件下,對該文石相之貝殼遂行加熱。 In the above preferred embodiment, in the step (b), the shell of the aragonite phase is heated under the conditions of a temperature of 400 ° C to 500 ° C and a constant temperature of 2 hours or more.

於上述較佳實施方式中,其中於該步驟(c)中,係以一研磨棒對該方解石相之貝殼進行研磨。 In the above preferred embodiment, in the step (c), the shell of the calcite phase is ground by a grinding rod.

於上述較佳實施方式中,其中於該步驟(d)中,加入一磷酸鹽粉末至該貝殼粉末,使其形成該貝殼粉末混合物;且,其中於該步驟(e)中,以溫度900℃~1300℃,以及恆溫燒結2小時以上之條件下,對該貝殼粉末混合物遂行一固態擴散反應(solid state diffusion reaction)程序,使其形成該磷酸鈣材料。 In the above preferred embodiment, wherein in the step (d), a phosphate powder is added to the shell powder to form the shell powder mixture; and wherein, in the step (e), the temperature is 900 ° C. At ~1300 ° C, and under constant temperature sintering for 2 hours or more, a solid state diffusion reaction procedure is performed on the shell powder mixture to form the calcium phosphate material.

於上述較佳實施方式中,其中於該步驟(d)中,該磷酸鹽粉末重 量為0.6~1.0倍之該貝殼粉末之重量;且,其中於該步驟(e)中,該磷酸鈣材料係為一β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)。 In the above preferred embodiment, wherein in the step (d), the phosphate powder is heavy The amount of the shell powder is 0.6 to 1.0 times; and, in the step (e), the calcium phosphate material is β-tricalcium phosphate (β-TCP).

於上述較佳實施方式中,其中於該步驟(d)中,加入一磷酸鹽水溶液至該貝殼粉末,使其形成該貝殼粉末混合物;且,其中於該步驟(e)中,以溫度100℃~180℃,以恆溫加熱4小時以上之條件下,對該貝殼粉末之混合物遂行一水熱反應(hydrothermal)程序,使其形成該磷酸鈣材料。 In the above preferred embodiment, wherein in the step (d), an aqueous solution of phosphate is added to the shell powder to form the shell powder mixture; and wherein, in the step (e), the temperature is 100 ° C. The mixture of the shell powder was subjected to a hydrothermal process at ~180 ° C under a constant temperature for 4 hours or more to form the calcium phosphate material.

於上述較佳實施方式中,其中於該步驟(d)中,該磷酸鹽水溶液濃度為0.1 g mL-1;且,其中於該步驟(e)中,該磷酸鈣材料係為一氫氧基磷灰石(hydroxyapatite,HA)。 In the above preferred embodiment, wherein the concentration of the aqueous phosphate solution is 0.1 g mL -1 in the step (d); and wherein, in the step (e), the calcium phosphate material is monohydroxyl Apatite (HA).

於上述較佳實施方式中,其中該氫氧基磷灰石(hydroxyapatite,HA)可經由一加熱程序轉換成一β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)。 In the above preferred embodiment, the hydroxyapatite (HA) can be converted into a β-tricalcium phosphate (β-TCP) via a heating procedure.

於上述較佳實施方式中,其中該加熱程序係以以溫度800℃~1000℃,以及恆溫加熱3天以上之條件下,對該氫氧基磷灰石(hydroxyapatite,HA)遂加熱程序。 In the above preferred embodiment, the heating procedure is performed by heating the hydroxyapatite (HA) under the conditions of a temperature of 800 ° C to 1000 ° C and a constant temperature of 3 days or more.

於上述較佳實施方式中,其中於該步驟(d)中,可加入一金屬至該貝殼粉末混合物;且,其中於該步驟(e)中,該磷酸鈣材料可作為一螢光粉材料。 In the above preferred embodiment, in the step (d), a metal may be added to the shell powder mixture; and wherein, in the step (e), the calcium phosphate material is used as a phosphor material.

本案又一較佳作法,係關於另一種磷酸鈣材料的製造方法,其係以一貝殼作為基礎原料,所述之貝殼包含簾蛤目(Veneroida)中之至少任一種類,其中,該磷酸鈣材料的製造方法包括下列步驟: (a)提供該貝殼,其中,該貝殼係為一文石相之貝殼;(b)加工該文石相之貝殼,使其形成一貝殼粉末;(c)加入一磷酸鹽至該貝殼粉末中,使其形成一貝殼粉末混合物;以及(d)加熱該貝殼粉末混合物,使其形成一磷酸鈣材料。 Another preferred method of the present invention relates to a method for producing another calcium phosphate material, which comprises a shell as a base material, and the shell comprises at least any one of the species of Veneroida, wherein the calcium phosphate The method of manufacturing the material includes the following steps: (a) providing the shell, wherein the shell is a shell of aragonite; (b) processing the shell of the aragonite phase to form a shell powder; (c) adding a phosphate to the shell powder, Forming a shell powder mixture; and (d) heating the shell powder mixture to form a calcium phosphate material.

於上述較佳實施方式中,其中該步驟(a)包括下列步驟:(a1)清洗該貝殼;以及(a2)乾燥該貝殼。 In the above preferred embodiment, wherein the step (a) comprises the steps of: (a1) washing the shell; and (a2) drying the shell.

於上述較佳實施方式中,其中於該步驟(a1)中,係以一界面活性劑伴隨超音波震盪去除附著於該貝殼表面之雜質;抑或,其中於該步驟(a2)中,係將該貝殼置於一室溫下進行乾燥。 In the above preferred embodiment, in the step (a1), an interface surfactant is used to remove impurities attached to the surface of the shell with ultrasonic vibration; or, in the step (a2), The shells were dried at room temperature.

於上述較佳實施方式中,其中於該步驟(b)中,係以一研磨棒對該文石相之貝殼進行研磨。 In the above preferred embodiment, in the step (b), the shell of the aragonite phase is ground by a grinding rod.

於上述較佳實施方式中,其中於該步驟(c)中,加入一磷酸鹽水溶液至該貝殼粉末,使其形成該貝殼粉末混合物;且,其中於該步驟(d)中,以溫度100℃~180℃,以及恆溫加熱4小時以上之條件下,對該貝殼粉末混合物遂行一水熱反應(hydrothermal)程序,使其形成該磷酸鈣材料。 In the above preferred embodiment, wherein in the step (c), an aqueous solution of phosphate is added to the shell powder to form the shell powder mixture; and wherein, in the step (d), the temperature is 100 ° C. The shell powder mixture was subjected to a hydrothermal process to form the calcium phosphate material at ~180 ° C and under constant temperature for 4 hours or more.

於上述較佳實施方式中,其中於該步驟(c)中,該磷酸鹽水溶液濃度為0.1 g mL-1;且,其中於該步驟(d)中,該磷酸鈣材料係由一β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)與一氫氧基磷灰石(hydroxyapatite,HA)共同組成。 In the above preferred embodiment, wherein in the step (c), the concentration of the aqueous phosphate solution is 0.1 g mL -1 ; and wherein, in the step (d), the calcium phosphate material is composed of a β-three --tricalcium phosphate (β-TCP) is composed of hydroxyapatite (HA).

於上述較佳實施方式中,其中該步驟(d)所得之該磷酸鈣材料可經由一加熱程序轉換成一β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)。 In the above preferred embodiment, the calcium phosphate material obtained in the step (d) can be converted into a β-tricalcium phosphate (β-TCP) via a heating procedure.

於上述較佳實施方式中,其中該加熱程序係以溫度800℃~1000℃,以及恆溫加熱3天以上之條件下,對該磷酸鈣材料遂加熱程序。 In the above preferred embodiment, the heating procedure is performed by heating the calcium phosphate material at a temperature of 800 ° C to 1000 ° C and a constant temperature heating for 3 days or more.

於上述較佳實施方式中,其中於該步驟(c)中,加入一磷酸鹽粉末至該貝殼粉末,使其形成該貝殼粉末混合物;且,其中於該步驟(d)中,以溫度900℃~1300℃,以及恆溫燒結2小時以上之條件下,對該貝殼粉末之混合物遂行一固態擴散反應(solid state diffusion reaction)程序,使其形成該磷酸鈣材料。 In the above preferred embodiment, wherein in the step (c), a phosphate powder is added to the shell powder to form the shell powder mixture; and wherein, in the step (d), the temperature is 900 ° C. The mixture of the shell powder is subjected to a solid state diffusion reaction process to form the calcium phosphate material at ~1300 ° C and under constant temperature sintering for 2 hours or more.

於上述較佳實施方式中,其中於該步驟(c)中,該磷酸鹽粉末重量為0.6~1.0倍之該貝殼粉末之重量;且,其中於該步驟(d)中,該磷酸鈣材料係為一β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)。 In the above preferred embodiment, wherein in the step (c), the phosphate powder has a weight of 0.6 to 1.0 times the weight of the shell powder; and wherein, in the step (d), the calcium phosphate material is It is a β-tricalcium phosphate (β-TCP).

於上述較佳實施方式中,其中於該步驟(c)中,可加入一金屬至該貝殼粉末混合物;且,其中於該步驟(d)中,該磷酸鈣材料可作為一螢光粉材料。 In the above preferred embodiment, in the step (c), a metal may be added to the shell powder mixture; and wherein, in the step (d), the calcium phosphate material is used as a phosphor material.

於上述較佳實施方式中,其中所述之磷酸鹽係為:磷酸氫二胺((NH4)2HPO4)、磷酸二氫胺((NH4)H2PO4)中之任一者。 In the above preferred embodiment, the phosphate system is any one of hydrogen phosphate diamine ((NH 4 ) 2 HPO 4 ) and dihydrogen phosphate ((NH 4 )H 2 PO 4 ). .

於上述較佳實施方式中,其中該金屬包括:鑭系金屬、鹼金屬、鹼土金屬、過渡金屬中之至少一者。 In the above preferred embodiment, the metal comprises at least one of a lanthanide metal, an alkali metal, an alkaline earth metal, and a transition metal.

本案一較佳做法,係提供一種磷酸鈣材料,其係以一貝殼作為 基礎原料,所述之貝殼包含簾蛤目(Veneroida)中之至少任一種類;其中,該磷酸鈣材料係應用作為一骨替代材料或一螢光粉材料中之任一者。 In a preferred practice of the present invention, a calcium phosphate material is provided which is a shell The base material, the shell comprising at least one of the species of Venerodia; wherein the calcium phosphate material is applied as any one of a bone substitute material or a phosphor powder material.

於上述較佳實施方式中,其中所述之磷酸鈣材料其結晶相包括:氫氧基磷灰石(hydroxyapatite,HA)、β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)中之至少一者。 In the above preferred embodiment, the crystalline phase of the calcium phosphate material comprises: hydroxyapatite (HA), β-tricalcium phosphate (β-TCP). At least one.

於上述較佳實施方式中,其中該螢光粉材料係於合成過程中添加一金屬。 In the above preferred embodiment, the phosphor material is added with a metal during the synthesis.

於上述較佳實施方式中,其中該金屬包括:鑭系金屬、鹼金屬、鹼土金屬、過渡金屬中之至少一者。 In the above preferred embodiment, the metal comprises at least one of a lanthanide metal, an alkali metal, an alkaline earth metal, and a transition metal.

在日常生活當中,蛤或蜆在食用後所留下的殼體,往往無法有效地利用而只能丟棄,但本發明就蛤或蜆之殼體成份的特性,特別將其應用於磷酸鈣鈣材料的製作。 In daily life, the shell left by the cockroaches or cockroaches after eating is often not used effectively and can only be discarded. However, the present invention applies the characteristics of the shell component of bismuth or bismuth, especially to calcium calcium phosphate. Production of materials.

本案所述之生物礦化之碳酸鈣,較佳者,係指貝類中簾蛤目(Veneroida)任一種類之貝殼,亦可為碳酸鈣結晶相為文石相、方解石相或可由文石相轉換成方解石相三者之任一種類。 The biomineralized calcium carbonate described in the present invention preferably refers to a shell of any species of the family Veeniroida, and may also be a crystalline phase of calcium carbonate, an aragonite phase, a calcite phase or an aragonite phase. Convert to any of the three types of calcite.

本案之基礎原料及所合成之磷酸鈣材料,可藉由X光粉末繞射儀(X-Ray powder diffractometer)分析,得到其繞射角(2θ)與強度(intensity)的關係圖,並如圖1所示;其中,x軸代表繞射角(2θ),y 軸則代表強度(intensity),11係為本案所提供之未經任何處理的貝殼其結晶相分析圖表,10代表文石相晶格之標準關係圖(JCPDS:05-0453);經比對上述符號10、11所代表的圖式後,可確定本案所提供之貝殼,其晶格種類為一文石相。 The basic raw materials and the synthesized calcium phosphate materials in this case can be analyzed by X-ray powder diffractometer to obtain the relationship between the diffraction angle (2θ) and the intensity (intensity). 1; where the x-axis represents the diffraction angle (2θ), y The axis represents the intensity (intensity), 11 is the crystal phase analysis chart of the shell provided by the case without any treatment, and 10 represents the standard relationship diagram of the aragonite phase lattice (JCPDS: 05-0453); After the pattern represented by 11, the shell provided in this case can be determined, and the crystal lattice type is a stone phase.

請參閱圖2所示,其中,20係為本案之一第一較佳磷酸鈣材料的製造概念流程示意圖。申言之,首先收集蛤殼或蜆殼(當然,此僅為一舉例,亦可改為簾蛤目之任一種類之貝殼),由圖1得知,未經任何處理的蛤殼或蜆殼,其結晶相為文石相。要合成磷酸鈣材料,首先需去除雜質(步驟S21),其中,去除雜質(步驟S21)的過程包括:先以清水、稀釋漂白水或界面活性劑伴隨超音波震盪的方式,清洗並去除殼體表面的雜質或有機物質等。 Please refer to FIG. 2 , wherein 20 is a schematic diagram of the manufacturing process of the first preferred calcium phosphate material. In other words, first collect the clam shell or clam shell (of course, this is only an example, and it can also be changed to any type of shell of the curtain), as shown in Figure 1, the clam shell or clam shell without any treatment, Its crystalline phase is an aragonite phase. To synthesize the calcium phosphate material, the impurities are first removed (step S21), wherein the process of removing the impurities (step S21) includes: first cleaning and removing the shell by means of clear water, diluted bleach or surfactant accompanied by ultrasonic oscillation Surface impurities or organic substances.

接著進行乾燥(步驟S22),乾燥(步驟S22)的過程包括:將洗淨的殼體置於室溫下烘乾,抑或利用烘乾機加溫至100℃進行烘乾的動作,即獲得一文石相之貝殼(當然,也可以直接提供其它結晶相為文石相之碳酸鈣,並不以此為限)。 Then, drying is performed (step S22), and the process of drying (step S22) includes: drying the washed casing at room temperature, or drying by using a dryer to 100 ° C, thereby obtaining a text Stone shells (of course, other crystal phases can also be directly supplied to the aragonite phase of calcium carbonate, not limited to this).

之後進行研磨(步驟S23),研磨(步驟S23)係利用研磨棒研磨該文石相之貝殼,使其形成一文石相之貝殼的粉末;研磨完成之後加入磷酸鹽粉末(步驟S24),加入磷酸鹽粉末(步驟S24)的過程包括:秤取1g文石相之貝殼的粉末,隨後加入0.893g的磷酸氫二胺((NH4)2HPO4)粉末或0.7778g的磷酸二氫胺((NH4)H2PO4)粉末,將該文石相貝殼粉末之混合物置入研磨玻或是球磨機作用30分鐘,使貝殼的粉末與磷酸鹽粉末充份混合。 Then, grinding is performed (step S23), and grinding (step S23) is to grind the shell of the aragonite phase with a grinding rod to form a powder of a shell of aragonite phase; after the grinding is completed, phosphate powder is added (step S24), and phosphoric acid is added. The process of the salt powder (step S24) comprises: weighing 1 g of a powder of a shell of aragonite phase, followed by adding 0.893 g of hydrogen phosphate diamine ((NH 4 ) 2 HPO 4 ) powder or 0.7778 g of dihydrogen phosphate (( NH 4 )H 2 PO 4 ) powder, the mixture of the aragonite shell powder was placed in a grinding glass or a ball mill for 30 minutes to fully mix the powder of the shell with the phosphate powder.

待充份混合之後,則遂行一燒結(步驟S25),所述之燒結之程序(步驟S25)係以溫度900℃~1300℃,及恆溫燒結2小時以上之條件下,對該貝殼粉末之混合物遂行一固態擴散反應(solid state diffusion reaction)程序,使其形成該磷酸鈣材料,經由X光粉末繞射儀分析發現,所得之磷酸鈣材料結晶相為一粉末狀純相之β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)。 After being fully mixed, the sintering is performed (step S25), and the sintering process (step S25) is a mixture of the shell powder at a temperature of 900 ° C to 1300 ° C and a constant temperature sintering for 2 hours or more. A solid state diffusion reaction procedure was performed to form the calcium phosphate material, and it was found by an X-ray powder diffraction apparatus that the crystal phase of the obtained calcium phosphate material was a powdery pure phase of β-tricalcium phosphate. Salt (β-tricalcium phosphate, β-TCP).

其中,請參閱圖3,31係為本案第一較佳實施例所得產物之結晶相之分析圖表,30代表β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)晶格之標準關係圖(JCPDS:09-0169),經比對上述符號30、31所代表的圖式後,確定所得之磷酸鈣材料為一β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)。 3, 31 is an analytical chart of the crystalline phase of the product obtained in the first preferred embodiment of the present invention, and 30 represents a standard relationship diagram of β-tricalcium phosphate (β-TCP) crystal lattice. (JCPDS: 09-0169), after comparing the patterns represented by the above symbols 30 and 31, it was confirmed that the obtained calcium phosphate material was β-tricalcium phosphate (β-TCP).

請參閱圖4,其中40係為本案之一第二較佳磷酸鈣材料的製造概念流程示意圖。其中,步驟S41至步驟S43與圖2之步驟S21至步驟S23相同,在此不多做贅述。 Please refer to FIG. 4, wherein 40 is a schematic diagram of the manufacturing process of a second preferred calcium phosphate material. The steps S41 to S43 are the same as the steps S21 to S23 of FIG. 2, and details are not described herein.

另外,在完成研磨(步驟S43),隨後加入磷酸鹽水溶液(步驟S44),其中加入磷酸鹽水溶液(步驟S44)的流程包括:秤取0.4g文石相之貝殼的粉末,將之置入鐵氟龍杯中,隨後加入3.3 mL、濃度為0.1 g mL-1之磷酸鹽水溶液,所述之磷酸鹽水溶液包括:磷酸氫二胺((NH4)2HPO4)水溶液或磷酸二氫胺((NH4)H2PO4)水溶液中之任一者,並將其充分混合。 Further, after the grinding is completed (step S43), a phosphate aqueous solution is subsequently added (step S44), wherein the addition of the aqueous phosphate solution (step S44) includes: weighing 0.4 g of aragonite shell powder and placing it in iron In the Fluorine cup, 3.3 mL of a phosphate aqueous solution having a concentration of 0.1 g mL -1 is added, and the phosphate aqueous solution includes: an aqueous solution of hydrogen phosphate diamine ((NH 4 ) 2 HPO 4 ) or dihydrogen phosphate ( Either (NH 4 )H 2 PO 4 ) aqueous solution, and thoroughly mixed.

將該文石相之貝殼的粉末與磷酸鹽水溶液充份混合之後,遂行一水熱(步驟S45)程序,其中,水熱(步驟S45)程序包括:將裝有貝 殼粉末與磷酸鹽混合水溶液之鐵氟龍杯放入不銹鋼反應器中密封,將不銹鋼反應器放入高溫反應爐中;以溫度100℃~180℃,以及恆溫加熱4小時以上之條件下,遂行一水熱反應(hydrothermal)程序,待反應完成後,置於室溫下冷卻,之後再行過濾即可得到灰白色的沉澱物,將該灰白色沉澱物以100℃乾燥12小時,即可得到該磷酸鈣材料,經由X光粉末繞射儀分析發現,該磷酸鈣材料為一雙相混合之磷酸鈣(BCP),由β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)與氫氧基磷灰石(hydroxyapatite,HA)共同組成。 After the powder of the acacia phase shell is thoroughly mixed with the phosphate aqueous solution, a water heat (step S45) procedure is performed, wherein the water heat (step S45) procedure comprises: loading the shell The Teflon cup of the shell powder and the phosphate mixed aqueous solution is sealed in a stainless steel reactor, and the stainless steel reactor is placed in a high temperature reaction furnace; the temperature is 100 ° C to 180 ° C, and the temperature is heated for 4 hours or more. A hydrothermal process, after the reaction is completed, it is cooled at room temperature, and then filtered to obtain an off-white precipitate. The off-white precipitate is dried at 100 ° C for 12 hours to obtain the phosphoric acid. Calcium material, analyzed by X-ray powder diffractometer, found that the calcium phosphate material is a two-phase mixed calcium phosphate (BCP), which is composed of β-tricalcium phosphate (β-TCP) and hydroxyl groups. Apatite (HA) is composed of apatite.

是以,請參閱圖5;其中,52係為本案第二較佳實施例所得產物之結晶相之分析圖表,50代表氫氧基磷灰石(hydroxyapatite,HA)晶格之標準關係圖(JCPDS:09-0432),51代表β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)晶格之標準關係圖(JCPDS:09-0169),經比對過後,確定所得之磷酸鈣材料由氫氧基磷灰石(hydroxyapatite,HA)與β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)共同組成,為一雙相混合之磷酸鈣材料(HA/beta-TCP,BCP);當然,於圖5中係分別以符號H代表氫氧基磷灰石(hydroxyapatite,HA)之波峰,符號β代表β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)之波峰。 Therefore, please refer to FIG. 5; wherein 52 is an analytical chart of the crystalline phase of the product obtained in the second preferred embodiment of the present invention, and 50 represents a standard relationship diagram of the hydroxylapatite (HA) crystal lattice (JCPDS). :09-0432), 51 represents the standard relationship diagram of β-tricalcium phosphate (β-TCP) crystal lattice (JCPDS: 09-0169). After comparison, the obtained calcium phosphate material is determined by Hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) are a two-phase mixed calcium phosphate material (HA/beta-TCP, BCP); Of course, in Fig. 5, the symbol H represents the peak of hydroxyapatite (HA), and the symbol β represents the peak of β-tricalcium phosphate (β-TCP).

再則,本案除了利用文石相的貝殼製作磷酸鈣材料外,亦可將該文石相的貝殼以溫度400℃~500℃,以及恆溫加熱2小時以上加熱處理,使其結晶相由文石相轉換成方解石相。 In addition, in this case, in addition to using the shell of aragonite phase to make calcium phosphate material, the shell of the aragonite phase can be heated at a temperature of 400 ° C ~ 500 ° C, and heated at a constant temperature for more than 2 hours, so that the crystal phase is aragonite. The phase is converted into a calcite phase.

請參閱圖6之結晶相之分析圖表,其中,61為經過前述加熱程序處理過後,貝殼之結晶相關係圖,60代表方解石相晶格之標準關 係圖(JCPDS:05-0586);經比對上述符號60、61所代表的圖式後,可確定該文石相之殼體藉所述加熱的過程,其晶格可由文石相轉換成方解石相。 Please refer to the analysis chart of the crystal phase of Fig. 6, wherein 61 is the crystal phase relationship diagram of the shell after the above heating process, and 60 represents the standard of the calcite phase lattice. Diagram (JCPDS: 05-0586); after comparing the patterns represented by the above symbols 60, 61, it can be determined that the shell of the aragonite phase is converted by the aragonite phase by the heating process. Calcite phase.

請參閱圖7,70為本案之一第三較佳磷酸鈣材料的製造概念流程示意圖。其中,步驟S71至步驟S72與圖2中之步驟S21至步驟S22和圖4中之步驟S41至步驟S42相同,在此不多作贅述。 Please refer to FIG. 7 and FIG. 70 is a schematic flow chart showing the manufacturing process of a third preferred calcium phosphate material. The steps S71 to S72 are the same as the steps S21 to S22 in FIG. 2 and the steps S41 to S42 in FIG. 4, and are not described here.

再則,待乾燥(步驟S72)完成後,遂行一加熱(步驟S73)程序,其中該加熱(步驟S73)的流程係以溫度400℃~500℃,以及恆溫加熱2小時以上之條件下,對該文石相之貝殼進行加熱,該文石相之貝殼轉換成一方解石相之貝殼(亦可直接提供結晶相為方解石相之碳酸鈣)。 Further, after the drying (step S72) is completed, the heating (step S73) is performed, wherein the heating (step S73) is performed at a temperature of 400 ° C to 500 ° C and a constant temperature heating for 2 hours or more. The shell of the aragonite phase is heated, and the shell of the aragonite phase is converted into a shell of a calcite phase (the calcium carbonate of the calcite phase can also be directly supplied).

接著進行研磨(步驟S74),所述研磨(步驟S74)係以研磨棒研磨該方解石相之貝殼使其形成一方解石相之貝殼的粉末,待研磨完成之後,加入磷酸鹽粉末(步驟S75),加入磷酸鹽粉末(步驟S75)的程序包括:秤取1g方解石相之貝殼的粉末,隨後加入0.893g的磷酸氫二胺粉末或0.7778g的磷酸二氫胺粉末,將方解石相貝殼粉末之混合物放入研磨缽或是球磨機作用30分鐘,使貝殼的粉末與磷酸鹽粉末充份混合。 Next, grinding is performed (step S74), and the grinding (step S74) is to grind the shell of the calcite phase with a grinding rod to form a powder of a shell of the calcite phase, and after the grinding is completed, the phosphate powder is added (step S75). The procedure of adding the phosphate powder (step S75) comprises: weighing 1 g of the powder of the shell of the calcite phase, followed by adding 0.893 g of hydrogen phosphate diamine powder or 0.7778 g of dihydrogen phosphate powder, and placing the mixture of the calcite shell powder Into the grinding crucible or a ball mill for 30 minutes, the shell powder is mixed with the phosphate powder.

待貝殼的粉末與磷酸鹽粉末充份混合後,再進行一燒結(步驟S76)程序,其中,燒結(步驟S76)程序係以溫度900℃~1300℃,及恆溫燒結2小時以上之條件下,對該方解石相貝殼粉末之混合物遂行一固態擴散反應(solid state diffusion reaction)程序,使其形成該磷酸 鈣材料,經由X光粉末繞射儀分析發現,所得之磷酸鈣材料結晶相為一粉末狀純相之β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)。 After the powder of the shell is fully mixed with the phosphate powder, a sintering (step S76) procedure is performed, wherein the sintering (step S76) is performed at a temperature of 900 ° C to 1300 ° C and a constant temperature sintering for 2 hours or more. The solid state diffusion reaction process is performed on the mixture of the calcite shell powder to form the phosphoric acid The calcium material was analyzed by X-ray powder diffraction. The crystal phase of the obtained calcium phosphate material was a powdery pure phase of β-tricalcium phosphate (β-TCP).

於此要說明的是,以本案第三較佳實施例所得到的磷酸鈣材料,其結晶相係相同於以本案第一較佳實施例所得產物的結晶相,皆確實為一粉末狀純相之β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP),其確認比對的方法類似圖3所示者,在此即不再予以贅述。 It should be noted that the calcium phosphate material obtained in the third preferred embodiment of the present invention has the same crystal phase as the crystalline phase of the product obtained in the first preferred embodiment of the present invention, and is indeed a powdery pure phase. The β-tricalcium phosphate (β-TCP), which confirms the alignment method, is similar to that shown in Fig. 3 and will not be further described herein.

請參閱圖8,80為本案之一第四較佳磷酸鈣材料的製造概念流程示意圖。其中,步驟S81至步驟S84與圖7中之步驟S71至步驟S74相同,在此不多作贅述。 Please refer to FIG. 8 , which is a schematic diagram of the manufacturing process of the fourth preferred calcium phosphate material. The steps S81 to S84 are the same as the steps S71 to S74 in FIG. 7, and are not described here.

申言之,在研磨(步驟S84)完成之後,加入磷酸鹽水溶液(步驟S85),其中加入磷酸鹽水溶液(步驟S85)的程序包括:秤取0.4g方解石相之貝殼的粉末,將之放入鐵氟龍杯中,隨後加入3.3 mL、濃度為0.1 g mL-1之磷酸鹽水溶液;所述之磷酸鹽水溶液包括:磷酸氫二胺水溶液或磷酸二氫胺水溶液中之任一者,並將其充份混合。 To be stated, after the grinding (step S84) is completed, an aqueous phosphate solution is added (step S85), wherein the procedure of adding the aqueous phosphate solution (step S85) comprises: weighing 0.4 g of the calcite phase of the shell powder, placing it In the Teflon cup, 3.3 mL of a phosphate aqueous solution having a concentration of 0.1 g mL -1 is subsequently added; the phosphate aqueous solution includes any one of an aqueous solution of hydrogen phosphate diamine or an aqueous solution of dihydrogenamine phosphate, and It is fully mixed.

待磷酸鹽水溶液與貝殼粉末充分混合後,遂行一水熱(步驟S86)程序,所述之水熱(步驟S86)的程序為:將裝有貝殼粉末與磷酸鹽混合水溶液之鐵氟龍杯放入不銹鋼反應器中密封,將不銹鋼反應器放入高溫反應爐中,以溫度100℃~180℃,以及恆溫加熱4小時以上之條件下,遂行一水熱反應(hydrothermal),待反應完成後,置於室溫下冷卻,之後再行過濾即可得到灰白色的沉澱物,將該灰白色沉澱物以100℃乾燥12小時,即可得到該磷酸鈣材料,經由X光粉末繞射儀分析發現,所得該磷酸鈣材料係由一純相之氫氧基磷灰石 (hydroxyapatite,HA)組成。 After the phosphate aqueous solution is sufficiently mixed with the shell powder, a water heat step (step S86) is performed, and the procedure of the water heat (step S86) is: placing the Teflon cup containing the shell powder and the phosphate mixed aqueous solution The stainless steel reactor is sealed in a stainless steel reactor, and the stainless steel reactor is placed in a high temperature reaction furnace at a temperature of 100 ° C to 180 ° C and heated at a constant temperature for 4 hours or more, and a hydrothermal reaction is carried out. After the reaction is completed, The mixture was cooled at room temperature, and then filtered to obtain an off-white precipitate. The pale-white precipitate was dried at 100 ° C for 12 hours to obtain the calcium phosphate material, which was analyzed by X-ray powder diffraction. The calcium phosphate material is composed of a pure phase of hydroxyapatite (hydroxyapatite, HA) composition.

請參閱圖9,其中,91係為本案第四較佳實施例所得產物之結晶相之分析圖表,90代表氫氧基磷灰石(hydroxyapatite,HA)晶格之標準關係圖(JCPDS:09-0432),經比對上述符號90、91所代表的圖式後後,確定所得之磷酸鈣材料為一氫氧基磷灰石(hydroxyapatite,HA)。 Please refer to FIG. 9 , wherein 91 is an analytical chart of the crystalline phase of the product obtained in the fourth preferred embodiment of the present invention, and 90 represents a standard relationship diagram of the hydroxylapatite (HA) crystal lattice (JCPDS: 09- 0432), after comparing the patterns represented by the above symbols 90, 91, it is determined that the obtained calcium phosphate material is hydroxyapatite (HA).

本案亦可將純相之氫氧基磷灰石(hydroxyapatite,HA)或雙相混合之磷酸鈣(BCP)經過一加熱處理,將其轉換成純相之β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)。 In this case, the pure phase of hydroxyapatite (HA) or the two-phase mixed calcium phosphate (BCP) may be subjected to a heat treatment to convert it into a pure phase of β-tricalcium phosphate (β-tricalcium). Phosphate, β-TCP).

請參閱圖10,100本案之一第五較佳磷酸鈣材料的製造概念流程示意圖,其步驟包括:提供一純相之氫氧基磷灰石(hydroxyapatite,HA)或雙相混合之磷酸鈣(BCP)(步驟S101),隨後遂行一加熱(步驟S102)程序,所述之加熱(步驟S102)程序係以溫度800℃~1000℃,以及恆溫加熱3天以上之條件下,對提供之磷酸鈣材料遂行加熱,所得致之產物,為一粉末狀純相之β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)。 Please refer to FIG. 10, a schematic diagram of a process flow for manufacturing a fifth preferred calcium phosphate material in the present invention, the steps comprising: providing a pure phase of hydroxyapatite (HA) or a two-phase mixed calcium phosphate ( BCP) (step S101), followed by a heating (step S102) program, the heating (step S102) program is based on the temperature of 800 ° C ~ 1000 ° C, and constant temperature heating for more than 3 days, the supply of calcium phosphate The material is heated and the resulting product is a powdery pure phase of β-tricalcium phosphate (β-TCP).

於此要說明的是,以本案第五較佳實施例所得到的磷酸鈣材料,其結晶相係相同於以本案第一較佳實施例或第三較佳實施例所得產物的結晶相,皆確實為一粉末狀純相之β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP),其確認比對的方法類似圖3所示者,在此即不再予以贅述。 It is to be noted that the calcium phosphate material obtained in the fifth preferred embodiment of the present invention has the same crystal phase as that of the product obtained in the first preferred embodiment or the third preferred embodiment of the present invention. It is indeed a powdery pure phase of β-tricalcium phosphate (β-TCP), and the method for confirming the alignment is similar to that shown in Fig. 3, and will not be further described herein.

透過本案上述方式所合成之磷酸鈣材料,係可應用於骨替代材 材的製成;當然,本案中亦可在磷酸鹽混合的過程當中加入鑭系金屬、鹼金屬、鹼土金屬、過渡金屬中之至少任一者,而加入金屬所合成之磷酸鈣材料可作為螢光粉材料。 The calcium phosphate material synthesized by the above method in this case can be applied to bone substitute materials. The material is formed; of course, in the present case, at least one of a lanthanide metal, an alkali metal, an alkaline earth metal, and a transition metal may be added during the process of mixing the phosphate, and the calcium phosphate material synthesized by adding the metal may be used as the fluorite. Light powder material.

請參閱圖11,110為本案之一第一較佳螢光粉材料的製造概念流程示意圖,其中步驟S111至步驟S113及步驟S115與圖2中之步驟S21至步驟S23及步驟S25相同,不同處在於步驟S114中加入一磷酸鹽粉末與金屬粉末,較佳者,如可在步驟S114中加入0.893g的磷酸氫二胺粉末或0.7778g的磷酸二氫胺粉末,並將其與0.033g的Eu2O3混合,所得之螢光粉材料經由X光粉末繞射儀分析發現,其結晶相為一β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)。 Please refer to FIG. 11 , which is a schematic diagram of the manufacturing process of the first preferred phosphor material of the present invention. Steps S111 to S113 and S115 are the same as steps S21 to S23 and S25 in FIG. 2 . In the step S114, a phosphate powder and a metal powder are added. Preferably, 0.893 g of hydrogen phosphate diamine powder or 0.7778 g of dihydrogen phosphate powder may be added in step S114, and 0.033 g of Eu is added. 2 O 3 was mixed, and the obtained phosphor powder material was analyzed by X-ray powder diffractometer to find that the crystal phase was β-tricalcium phosphate (β-TCP).

請參閱圖12,121係為本案螢光粉材料合成之第一較佳實施例所得產物之結晶相之分析圖表,其中,120代表β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)晶格之標準關係圖(JCPDS:09-0169),經比對過後,確定所得之螢光粉材料為一β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)。 Referring to FIG. 12, 121 is an analysis chart of the crystal phase of the product obtained in the first preferred embodiment of the phosphor powder material synthesis, wherein 120 represents β-tricalcium phosphate (β-TCP). The standard relationship diagram of the crystal lattice (JCPDS: 09-0169), after comparison, determines that the obtained phosphor material is a β-tricalcium phosphate (β-TCP).

請參閱圖13,130為本案之一第二較佳螢光粉材料的製造概念流程示意圖,其中步驟S121至步驟S123及步驟S125與圖3之步驟S31至步驟S33及步驟S35相同,不同處在於步驟S124中加入一磷酸鹽水溶液與金屬溶液,較佳者,如可在步驟S124中加入3.3 mL、濃度為0.1 g mL-1之磷酸鹽水溶液與600μL的Eu(NO3)3(aq)或200μL的Gd(NO3)3(aq),所得之螢光粉材料經由X光粉末繞射儀分析發現,係由β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)與氫氧基磷灰石 (hydroxyapatite,HA)共同組成。 Referring to FIG. 13, 130 is a schematic flow chart of manufacturing a second preferred phosphor material of the present invention, wherein steps S121 to S123 and step S125 are the same as steps S31 to S33 and S35 of FIG. 3, and the difference lies in In step S124, an aqueous solution of a monophosphate solution and a metal solution are added. Preferably, in step S124, 3.3 mL of a phosphate aqueous solution having a concentration of 0.1 g mL -1 and 600 μL of Eu(NO 3 ) 3 (aq) or 200 μL of Gd(NO 3 ) 3 (aq) , the obtained phosphor powder material was analyzed by X-ray powder diffractometer and found to be β-tricalcium phosphate (β-TCP) and hydroxyl group. Apatite (HA) is composed of apatite.

請參閱圖14,其中,142係為本案螢光粉材料合成之第二較佳實施例所得產物之結晶相之分析圖表,140代表氫氧基磷灰石(hydroxyapatite,HA)晶格之標準關係圖(JCPDS:09-0432),141代表β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)晶格之標準關係圖(JCPDS:09-0169),經比對過後,確定所得之螢光粉材料由氫氧基磷灰石(hydroxyapatite,HA)與β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)共同組成,為一雙相混合之磷酸鈣材料(HA/beta-TCP,BCP),此外,分別以符號H代表氫氧基磷灰石(hydroxyapatite,HA)之波峰,符號β代表β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)之波峰。 Please refer to FIG. 14 , wherein 142 is an analysis chart of the crystal phase of the product obtained in the second preferred embodiment of the phosphor powder material synthesis, and 140 represents the standard relationship of the hydroxyl apatite (HA) crystal lattice. Figure (JCPDS: 09-0432), 141 represents the standard relationship diagram of β-tricalcium phosphate (β-TCP) crystal lattice (JCPDS: 09-0169). After comparison, the obtained firefly is determined. The light powder material is composed of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP), which is a two-phase mixed calcium phosphate material (HA/beta-TCP). , BCP), in addition, the symbol H represents the peak of hydroxyapatite (HA), and the symbol β represents the peak of β-tricalcium phosphate (β-TCP).

請參閱圖15,150為本案之一第三較佳螢光粉材料的製造概念流程示意圖,其中步驟S151至步驟S154及步驟S156與圖7中之步驟S71至步驟S74及步驟S76相同,不同處在於步驟S155中加入一磷酸鹽粉末與金屬粉末,較佳者,如可在步驟S155中加入0.893g的磷酸氫二胺粉末或0.7778g的磷酸二氫胺粉末,並將其與0.033g的Eu2O3混合,所得之螢光粉材料經由X光粉末繞射儀分析發現,其結晶相為一β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)。 Please refer to FIG. 15, which is a schematic flow chart of the manufacturing process of a third preferred phosphor material of the present invention. Steps S151 to S154 and S156 are the same as steps S71 to S74 and S76 in FIG. In step S155, a phosphate powder and a metal powder are added. Preferably, 0.893 g of hydrogen phosphate diamine powder or 0.7778 g of dihydrogen phosphate powder may be added in step S155, and 0.033 g of Eu is added. 2 O 3 was mixed, and the obtained phosphor powder material was analyzed by X-ray powder diffractometer to find that the crystal phase was β-tricalcium phosphate (β-TCP).

於此要說明的是,以本案第三較佳實施例所得到的螢光粉材料,其結晶相係相同於本案螢光粉材料合成之第一較佳實施例所得產物的結晶相,皆確實為一粉末狀純相之β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP),其確認比對的方法類似圖12所示者,在此即不再予以贅述。 It is to be noted that the phosphor powder material obtained in the third preferred embodiment of the present invention has the same crystal phase as the crystal phase of the product obtained in the first preferred embodiment of the phosphor powder material synthesis of the present invention. It is a powdery pure phase of β-tricalcium phosphate (β-TCP), and the method for confirming the alignment is similar to that shown in Fig. 12, and will not be further described herein.

請參閱圖16,160為本案之一第四較佳螢光粉材料的製造概念流程示意圖,其中步驟S161至步驟S164及步驟S166與圖8中之步驟S81至步驟S84及步驟S86相同,不同處在於步驟S165中加入一磷酸鹽水溶液與金屬溶液,較佳者,如可在步驟S145中加入加入3.3 mL、濃度為0.1 g mL-1之磷酸鹽水溶液與600μL的Eu(NO3)3(aq)或200μL的Gd(NO3)3(aq),所得之螢光粉材料經由X光粉末繞射儀分析發現,係由氫氧基磷灰石(hydroxyapatite,HA)所組成。 Please refer to FIG. 16, which is a schematic diagram of the manufacturing process of a fourth preferred phosphor material of the present invention. Steps S161 to S164 and S166 are the same as steps S81 to S84 and S86 in FIG. In step S165, an aqueous solution of a monophosphate solution and a metal solution are added. Preferably, in step S145, 3.3 mL of a phosphate aqueous solution having a concentration of 0.1 g mL -1 and 600 μL of Eu(NO 3 ) 3 (aq) may be added. ) or 200μL of Gd (NO 3) 3 (aq ), the resulting phosphor material was found by analysis of X-ray powder diffractometer, Department of hydroxyapatite (hydroxyapatite, HA) is composed.

請參閱圖17,其中,171係為本案螢光粉材料合成之第四較佳實施例所得產物之結晶相之分析圖表,170代表氫氧基磷灰石(hydroxyapatite,HA)晶格之標準關係圖(JCPDS:09-0432),經比對過後,確定所得之螢光粉材料為一氫氧基磷灰石(hydroxyapatite,HA)。 Please refer to FIG. 17, wherein 171 is an analysis chart of the crystalline phase of the product obtained in the fourth preferred embodiment of the phosphor powder material synthesis, and 170 represents the standard relationship of the hydroxyapatite (HA) crystal lattice. Figure (JCPDS: 09-0432), after comparison, determined that the resulting phosphor material is hydroxyapatite (HA).

本案亦可將結晶相為氫氧基磷灰石(hydroxyapatite,HA)之螢光粉材料或結晶相為雙相混合之磷酸鈣(BCP)之螢光粉材料透過一加熱處理,將其轉換成結晶相為β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)之螢光粉材料。 In this case, the phosphor powder material having a crystal phase of hydroxyapatite (HA) or a phosphor powder material having a crystal phase of two-phase mixed calcium phosphate (BCP) may be converted into a heat treatment to convert it into a The crystal phase is a phosphor powder material of β-tricalcium phosphate (β-TCP).

請參閱圖18,180本案之一第五較佳螢光粉材料的製造概念流程示意圖,其步驟包括:提供結晶相為氫氧基磷灰石(hydroxyapatite,HA)或雙相混合之磷酸鈣(BCP)之螢光粉(步驟S181),隨後遂行一加熱(步驟S182)程序,所述之加熱(步驟S182)程序係以溫度800℃~1000℃,以及恆溫加熱3天以上之條件下,對提供之螢光粉遂行加熱,而經該加熱處理後之產物,經由X光粉末繞射儀分析發現,其結晶相為β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)。 Please refer to FIG. 18, a schematic diagram of a process flow for manufacturing a fifth preferred phosphor material in the present invention, the steps comprising: providing a crystalline phase of hydroxyapatite (HA) or a two-phase mixed calcium phosphate ( BCP) phosphor powder (step S181), followed by a heating (step S182) program, the heating (step S182) program is carried out at a temperature of 800 ° C ~ 1000 ° C, and a constant temperature heating for more than 3 days, The provided fluorescent powder was heated, and the heat-treated product was analyzed by X-ray powder diffraction to find that the crystal phase was β-tricalcium phosphate (β-TCP).

於此要說明的是,以本案第五較佳實施例所得到的螢光粉材料,其結晶相係相同於本案螢光粉材料合成之第一較佳實施例或第三較佳實施例所得產物的結晶相,皆確實為一粉末狀純相之β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP),其確認比對的方法類似圖12所示者,在此即不再予以贅述。 It is to be noted that the phosphor powder material obtained in the fifth preferred embodiment of the present invention has the same crystal phase as that of the first preferred embodiment or the third preferred embodiment of the phosphor powder material synthesis of the present invention. The crystalline phase of the product is indeed a powdery pure phase of β-tricalcium phosphate (β-TCP), which confirms that the alignment method is similar to that shown in Figure 12, and is no longer given here. Narration.

藉由本案所提供之基礎原料與方法所合成之螢光粉材料,由於其天然結構的關係,其光吸收能力與光激發強度均高於化學合成之螢光粉材料。 The phosphor powder material synthesized by the basic materials and methods provided by the present invention has higher light absorption capacity and photoexcitation intensity than the chemically synthesized phosphor powder material due to its natural structure.

如圖19所示,以化學合成方式與貝殼加熱燒結合成方式合成之螢光粉材料:Ca3(PO4)2-Eu3+,其莫耳(mole)百分濃度均等於2,其中,x軸代表波長(wavelength(nm)),y軸代表強度(intensity),191代表貝殼合成之螢光粉材料之光吸收率,192代表化學合成之螢光粉材料之光吸收率;193代表貝殼合成之螢光粉材料之光激發強度,194代表化學合成之螢光粉材料之光激發強度。 As shown in FIG. 19, the phosphor powder material synthesized by chemical synthesis and shell-and-sinter synthesis is Ca 3 (PO 4 ) 2 -Eu 3+ , and the molar percentage of the mole is equal to 2, wherein The x-axis represents the wavelength (wavelength (nm)), the y-axis represents the intensity (intensity), 191 represents the light absorptivity of the shell-formed phosphor material, 192 represents the light absorptivity of the chemically synthesized phosphor material; 193 represents the shell The photoexcitation intensity of the synthesized phosphor material, and 194 represents the photoexcitation intensity of the chemically synthesized phosphor material.

結果顯視,在相同濃度的條件下,由貝殼合成之螢光粉材料其光吸收率及光激發強度均較化學合成之螢光粉材料高出許多,此外,由於不同生物礦化所形成之碳酸鈣其成分中金屬濃度不同的關係,以簾蛤目(Veneroida)之貝殼所合成之螢光粉材料,其光吸收率與光激發強度均優於以海膽針或是珊瑚合成之螢光粉材料。 The results show that under the same concentration conditions, the light absorption rate and photoexcitation intensity of the phosphor powder material synthesized by the shell are much higher than that of the chemically synthesized phosphor powder material. In addition, due to different biomineralization The relationship between the concentration of metal in calcium carbonate and the phosphor powder synthesized by the shell of Veneroida is better than that of sea urchin needle or coral. Powder material.

再則,本案所合成之氫氧基磷灰石(hydroxyapatite,HA)經由電子顯微鏡(electron microscope)觀察,發現其結構的排列與海膽針或是珊瑚所合成之氫氧基磷灰石(hydroxyapatite,HA)明顯不同,此等結 構於應用於骨替材料時,即可與以其它生物礦化或化學合成的材料間,取得一很好的區別性。 Furthermore, the hydroxyapatite (HA) synthesized in this case was observed by an electron microscope, and its structure was arranged and the hydroxyapatite synthesized by the sea urchin needle or coral (hydroxyapatite) was observed. , HA) distinctly different, these knots When applied to bone substitute materials, a good distinction can be made between materials that are otherwise mineralized or chemically synthesized.

綜上所述,以本案所提供之貝殼為原料合成之磷酸鈣材料(可直接作為骨替材料)或是螢光粉材料,其應用性均高於以其它生物礦化的碳酸鈣與化學合成之磷酸鈣材料(骨替材料)或是螢光粉;另一方面,相較於習知技術,本案也提供一種能量消耗較低、時間較短的合成方式,而可大大地提升了磷酸鈣合成的效率;故,本案實為一極具產業價值之作。 In summary, the calcium phosphate material (which can be directly used as a bone substitute material) or the phosphor powder material synthesized from the shell provided by the present case is more applicable than the other biomineralized calcium carbonate and chemical synthesis. Calcium phosphate material (bone material) or phosphor powder; on the other hand, compared with the prior art, the present invention also provides a synthesis method with lower energy consumption and shorter time, which can greatly enhance the calcium phosphate. The efficiency of synthesis; therefore, this case is actually a very industrial value.

本案得由熟悉本技藝之人士任施匠思而為諸般修飾,然皆不脫如附申請專利範圍所欲保護。 This case has been modified by people who are familiar with the art, and is not intended to be protected as intended.

S21~S25‧‧‧步驟 S21~S25‧‧‧Steps

S41~S45‧‧‧步驟 S41~S45‧‧‧Steps

S71~S76‧‧‧步驟 S71~S76‧‧‧Steps

S81~S86‧‧‧步驟 S81~S86‧‧‧ steps

S101~102‧‧‧步驟 S101~102‧‧‧Steps

S111~S115‧‧‧步驟 S111~S115‧‧‧Steps

S131~S135‧‧‧步驟 S131~S135‧‧‧Steps

S151~S156‧‧‧步驟 S151~S156‧‧‧Steps

S161~S166‧‧‧步驟 S161~S166‧‧‧Steps

S181~S182‧‧‧步驟 S181~S182‧‧‧Steps

圖1:其係為本案所提供之未處理的蛤類貝殼之X光粉末繞射圖。 Figure 1: It is an X-ray powder diffraction pattern of untreated anthraquinone shells provided in this case.

圖2:其係為本案所提供之合成磷酸鈣材料的第一較佳實施步驟流程示意圖。 Figure 2 is a schematic flow chart showing the first preferred embodiment of the synthetic calcium phosphate material provided in the present invention.

圖3:其係本案合成之磷酸鈣材料-β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)之X光粉末繞射關係圖。 Figure 3: X-ray powder diffraction diagram of β-tricalcium phosphate (β-TCP), a calcium phosphate material synthesized in the present invention.

圖4:其係為本案所提供之合成磷酸鈣材料的第二較佳實施步驟流程示意圖。 Figure 4 is a schematic flow chart of a second preferred embodiment of the synthetic calcium phosphate material provided herein.

圖5:其係本案合成之磷酸鈣材料-雙相混合(HA/beta-TCP,BCP)之X光粉末繞射關係圖。 Figure 5: X-ray powder diffraction diagram of the calcium phosphate material synthesized in this case - two-phase mixing (HA/beta-TCP, BCP).

圖6:其係為本案所提供之蛤類貝殼經加熱處理之後之X光粉末繞射圖。 Figure 6: It is a diffraction diagram of X-ray powder after heat treatment of the shells provided in this case.

圖7:其係為本案所提供之合成磷酸鈣材料的第三較佳實施步驟流程示意圖。 Figure 7 is a schematic flow chart of a third preferred embodiment of the synthetic calcium phosphate material provided in the present invention.

圖8:其係為本案所提供之合成磷酸鈣材料的第四較佳實施步驟流程示意圖。 Figure 8 is a schematic flow chart of a fourth preferred embodiment of the synthetic calcium phosphate material provided herein.

圖9:其係本案合成之磷酸鈣材料-氫氧基磷灰石(hydroxyapatite,HA)之X光粉末繞射關係圖。 Figure 9: X-ray powder diffraction diagram of the calcium phosphate material - hydroxyapatite (HA) synthesized in this case.

圖10:其係為本案所提供之合成磷酸鈣材料的第五較佳實施步驟流程示意圖。 Figure 10 is a schematic flow chart showing a fifth preferred embodiment of the synthetic calcium phosphate material provided in the present invention.

圖11:其係為本案所提供之合成螢光粉材料的第一較佳實施步驟流程示意圖。 Figure 11 is a flow chart showing the first preferred embodiment of the synthetic phosphor material provided in the present invention.

圖12:其係本案合成之螢光粉材料-β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)之X光粉末繞射關係圖。 Fig. 12 is a diffraction diagram of X-ray powder of β-tricalcium phosphate (β-TCP), which is a phosphor material synthesized in the present invention.

圖13:其係為本案所提供之合成螢光粉材料的第二較佳實施步驟流程示意圖。 Figure 13 is a schematic flow chart showing a second preferred embodiment of the synthetic phosphor material provided in the present invention.

圖14:其係本案合成之螢光粉材料-雙相混合(HA/beta-TCP,BCP)之X光粉末繞射關係圖。 Figure 14: X-ray powder diffraction diagram of the phosphor powder material synthesized in this case - two-phase mixing (HA/beta-TCP, BCP).

圖15:其係為本案所提供之合成螢光粉材料的第三較佳實施步驟流程示意圖。 Figure 15 is a flow chart showing a third preferred embodiment of the synthetic phosphor material provided in the present invention.

圖16:其係為本案所提供之合成螢光粉材料的第四較佳實施步驟流程示意圖。 Figure 16 is a flow chart showing a fourth preferred embodiment of the synthetic phosphor material provided in the present invention.

圖17:其係本案合成之螢光粉材料-氫氧基磷灰石(hydroxyapatite,HA)之X光粉末繞射關係圖。 Figure 17 is a diagram showing the X-ray powder diffraction relationship of the phosphor powder material hydroxyapatite (HA) synthesized in the present invention.

圖18:其係為本案所提供之合成螢光粉材料的第五較佳實施步驟流程示意圖。 Figure 18 is a flow chart showing the fifth preferred embodiment of the synthetic phosphor material provided in the present invention.

圖19:其係本案合成之螢光粉材料之光吸收率與光激發強度之圖表。 Figure 19 is a graph showing the light absorptivity and photoexcitation intensity of the phosphor material synthesized in this case.

Claims (57)

一種磷酸鈣材料,其係以一貝殼作為基礎原料,其中所述之貝殼包含簾蛤目(Veneroida)中之至少任一種類。 A calcium phosphate material comprising a shell as a base material, wherein the shell comprises at least one of the species of Veerroida. 如專利申請範圍第1項所述之磷酸鈣材料,其中該磷酸鈣材料的製造方法包括下列步驟:(a)提供該貝殼;其中,該貝殼係為一文石相之貝殼;(b)加熱該文石相之貝殼,使其轉換為一方解石相之貝殼;以及(c)加工該方解石相之貝殼,使其形成該磷酸鈣材料。 The calcium phosphate material according to claim 1, wherein the method for producing the calcium phosphate material comprises the steps of: (a) providing the shell; wherein the shell is a shell of aragonite; (b) heating the shell The shell of the aragonite phase converts it into a shell of a calcite phase; and (c) processes the shell of the calcite phase to form the calcium phosphate material. 如專利申請範圍第2項所述之磷酸鈣材料,其中該步驟(a)包括下列步驟:(a1)清洗該貝殼;以及(a2)乾燥該貝殼。 The calcium phosphate material of claim 2, wherein the step (a) comprises the steps of: (a1) washing the shell; and (a2) drying the shell. 如專利申請範圍第3項所述之磷酸鈣材料,其中於該步驟(a1)中,係以一界面活性劑伴隨超音波震盪去除附著於該貝殼表面之雜質;抑或,其中於該步驟(a2)中,係將該貝殼置於一室溫下進行乾燥。 The calcium phosphate material according to claim 3, wherein in the step (a1), a surfactant is accompanied by ultrasonic vibration to remove impurities attached to the surface of the shell; or, wherein, in the step (a2) In the case, the shell is dried at room temperature. 如專利申請範圍第2項所述之磷酸鈣材料,其中該步驟(b)中,以溫度400℃~500℃,以及恆溫加熱2小時以上之條件下,對該文石相之貝殼遂行加熱。 The calcium phosphate material according to the second aspect of the patent application, wherein in the step (b), the shell of the aragonite phase is heated under the conditions of a temperature of 400 ° C to 500 ° C and a constant temperature heating for 2 hours or more. 如專利申請範圍第2項所述之磷酸鈣材料,其中該步驟(c)包括下列步驟: (c1)加工該方解石相之貝殼,使其形成一貝殼粉末;(c2)加入一磷酸鹽至該貝殼粉末,使其形成一貝殼粉末混合物;以及(c3)加工該貝殼粉末之混合物,使其形成該磷酸鈣材料。 The calcium phosphate material as described in claim 2, wherein the step (c) comprises the following steps: (c1) processing the shell of the calcite phase to form a shell powder; (c2) adding a monophosphate to the shell powder to form a shell powder mixture; and (c3) processing the shell powder mixture to The calcium phosphate material is formed. 如專利申請範圍第6項所述之磷酸鈣材料,其中於該步驟(c1)中,係以一研磨棒對該方解石相之貝殼進行研磨。 The calcium phosphate material according to claim 6, wherein in the step (c1), the shell of the calcite phase is ground by a grinding rod. 如專利申請範圍第6項所述之磷酸鈣材料,其中於該步驟(c2)中,加入一磷酸鹽粉末至該貝殼粉末,使其形成該貝殼粉末混合物;且,其中於該步驟(c3)中,以溫度900℃~1300℃,以及恆溫燒結2小時以上之條件下,對該貝殼粉末之混合物遂行一固態擴散反應(solid state diffusion reaction)程序,使其形成該磷酸鈣材料。 The calcium phosphate material according to the sixth aspect of the invention, wherein in the step (c2), a phosphate powder is added to the shell powder to form the shell powder mixture; and wherein, in the step (c3) The solid state diffusion reaction procedure is carried out on the mixture of the shell powder at a temperature of 900 ° C to 1300 ° C and a constant temperature sintering for 2 hours or more to form the calcium phosphate material. 如專利申請範圍第8項所述之磷酸鈣材料,其中於該步驟(c2)中,該磷酸鹽粉末重量為0.6~1.0倍之該貝殼粉末之重量;且,其中於該步驟(c3)中,該磷酸鈣材料係為一β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)。 The calcium phosphate material according to claim 8, wherein in the step (c2), the phosphate powder has a weight of 0.6 to 1.0 times the weight of the shell powder; and wherein, in the step (c3) The calcium phosphate material is a β-tricalcium phosphate (β-TCP). 如專利申請範圍第6項所述之磷酸鈣材料,其中於該步驟(c2)中,加入一磷酸鹽水溶液至該貝殼粉末,使其形成該貝殼粉末混合物;且,其中於該步驟(c3)中,以溫度100℃~180℃,以恆溫加熱4小時以上之條件下,對該貝殼粉末之混合物遂行一水熱反應(hydrothermal)程序,使其形成該磷酸鈣材料。 The calcium phosphate material according to the sixth aspect of the invention, wherein in the step (c2), an aqueous solution of a phosphate solution is added to the shell powder to form the shell powder mixture; and wherein, in the step (c3) The mixture of the shell powder is subjected to a hydrothermal process at a temperature of 100 ° C to 180 ° C and heated at a constant temperature for 4 hours or more to form the calcium phosphate material. 如專利申請範圍第10項所述之磷酸鈣材料,其中於該步驟(c2)中,該磷酸鹽水溶液濃度為0.1 g mL-1;且,其中於該步驟(c3)中,該 磷酸鈣材料係為一氫氧基磷灰石(hydroxyapatite,HA)。 The calcium phosphate material according to claim 10, wherein in the step (c2), the aqueous phosphate solution has a concentration of 0.1 g mL -1 ; and wherein, in the step (c3), the calcium phosphate material It is a hydroxyapatite (HA). 如申請專利範圍第11項所述之磷酸鈣材料,其中該氫氧基磷灰石(hydroxyapatite,HA)可經由一加熱程序轉換成一β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)。 The calcium phosphate material according to claim 11, wherein the hydroxyapatite (HA) can be converted into a β-tricalcium phosphate (β-TCP) via a heating procedure. . 如申請專利範圍第12項所述之磷酸鈣材料,其中該加熱程序係以以溫度800℃~1000℃,以及恆溫加熱3天以上之條件下,對該氫氧基磷灰石遂加熱程序。 The calcium phosphate material according to claim 12, wherein the heating procedure is a heating procedure of the hydroxyapatite enthalpy under the conditions of a temperature of 800 ° C to 1000 ° C and a constant temperature of 3 days or more. 如專利申請範圍第6項所述之磷酸鈣材料,其中於該步驟(c2)中,可加入一金屬至該貝殼粉末混合物;且,其中於該步驟(c3)中,該磷酸鈣材料可作為一螢光粉材料。 The calcium phosphate material according to claim 6, wherein in the step (c2), a metal may be added to the shell powder mixture; and wherein, in the step (c3), the calcium phosphate material is used as A phosphor powder material. 如專利申請範圍第1項所述之磷酸鈣材料,其中該磷酸鈣材料的製造方法包括下列步驟:(d)提供該貝殼;其中,該貝殼係為一文石相之貝殼;以及(e)加工該文石相之貝殼,使其形成該磷酸鈣材料。 The calcium phosphate material according to claim 1, wherein the method for producing the calcium phosphate material comprises the steps of: (d) providing the shell; wherein the shell is a shell of aragonite; and (e) processing The shell of the aragonite phase forms the calcium phosphate material. 如專利申請範圍第15項所述之磷酸鈣材料,其中該步驟(d)包括下列步驟:(d1)清洗該貝殼;以及(d2)乾燥該貝殼。 The calcium phosphate material of claim 15, wherein the step (d) comprises the steps of: (d1) washing the shell; and (d2) drying the shell. 如專利申請範圍第16項所述之磷酸鈣材料,其中於該步驟(d1)中,係以一界面活性劑伴隨超音波震盪去除附著於該貝殼表面之雜質;且,其中於該步驟(d2)中,係將該貝殼置於一室溫下進行乾燥。 The calcium phosphate material according to claim 16, wherein in the step (d1), an interfacial activator is accompanied by ultrasonic vibration to remove impurities attached to the surface of the shell; and wherein, in the step (d2) In the case, the shell is dried at room temperature. 如專利申請範圍第15項所述之磷酸鈣材料,其中該步驟(e)包括 下列步驟:(e1)加工該文石相之貝殼,使其形成一貝殼粉末;(e2)加入一磷酸鹽至該貝殼粉末,使其形成一貝殼粉末混合物;以及(e3)加工該貝殼粉末之混合物,使其形成該磷酸鈣材料。 A calcium phosphate material as described in claim 15 wherein the step (e) comprises The following steps: (e1) processing the shell of the aragonite phase to form a shell powder; (e2) adding a phosphate to the shell powder to form a shell powder mixture; and (e3) processing the shell powder The mixture is allowed to form the calcium phosphate material. 如專利申請範圍第18項所述之磷酸鈣材料,其中於該步驟(e1)中,係以一研磨棒對該文石相之貝殼進行研磨。 The calcium phosphate material according to claim 18, wherein in the step (e1), the shell of the aragonite phase is ground by a grinding rod. 如專利申請範圍第18項所述之磷酸鈣材料,其中於該步驟(e2)中,加入一磷酸鹽水溶液至該貝殼粉末,使其形成該貝殼粉末之混合物;且,其中於該步驟(e3)中,以溫度100℃~180℃,以及恆溫加熱4小時以上之條件下,對該貝殼粉末之混合物遂行一水熱反應(hydrothermal)程序,使其形成該磷酸鈣材料。 The calcium phosphate material according to claim 18, wherein in the step (e2), an aqueous solution of phosphate is added to the shell powder to form a mixture of the shell powder; and wherein, in the step (e3) In the case, the mixture of the shell powder is subjected to a hydrothermal reaction at a temperature of 100 ° C to 180 ° C and a constant temperature of 4 hours or more to form the calcium phosphate material. 如專利申請範圍第18項所述之磷酸鈣材料,其中於該步驟(e2)中,該磷酸鹽水溶液濃度為0.1 g mL-1;且,其中於該步驟(e3)中,該磷酸鈣材料係由一β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)與一氫氧基磷灰石(hydroxyapatite,HA)共同組成。 The calcium phosphate material according to claim 18, wherein in the step (e2), the aqueous phosphate solution has a concentration of 0.1 g mL -1 ; and wherein, in the step (e3), the calcium phosphate material It consists of a β-tricalcium phosphate (β-TCP) and a hydroxyapatite (HA). 如專利申請範圍第21項所述之磷酸鈣材料,其中該步驟(e3)所得之該磷酸鈣材料可經由一加熱程序轉換成一β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)。 The calcium phosphate material according to claim 21, wherein the calcium phosphate material obtained in the step (e3) can be converted into a β-tricalcium phosphate (β-TCP) via a heating procedure. 如申請專利範圍第22項所述之磷酸鈣材料,其中該加熱程序係以溫度800℃~1000℃,以及恆溫加熱3天以上之條件下,對該磷酸鈣材料遂加熱程序。 The calcium phosphate material according to claim 22, wherein the heating procedure is a heating procedure of the calcium phosphate material at a temperature of 800 ° C to 1000 ° C and a constant temperature heating for 3 days or more. 如專利申請範圍第18項所述之磷酸鈣材料,其中於該步驟(e2)中,加入一磷酸鹽粉末至該貝殼粉末,使其形成該貝殼粉末混合物;且,其中於該步驟(e3)中,以溫度900℃~1300℃,以及恆溫燒結2小時以上之條件下,對該貝殼粉末之混合物遂行一固態擴散反應(solid state diffusion reaction)程序,使其形成該磷酸鈣材料。 The calcium phosphate material according to claim 18, wherein in the step (e2), a phosphate powder is added to the shell powder to form the shell powder mixture; and wherein, in the step (e3) The solid state diffusion reaction procedure is carried out on the mixture of the shell powder at a temperature of 900 ° C to 1300 ° C and a constant temperature sintering for 2 hours or more to form the calcium phosphate material. 如專利申請範圍第24項所述之磷酸鈣材料,其中於該步驟(e2)中,該磷酸鹽粉末重量為0.6~1.0倍之該貝殼粉末之重量;且,其中於該步驟(e3)中,該磷酸鈣材料係為一β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)。 The calcium phosphate material according to claim 24, wherein in the step (e2), the phosphate powder has a weight of 0.6 to 1.0 times the weight of the shell powder; and wherein, in the step (e3) The calcium phosphate material is a β-tricalcium phosphate (β-TCP). 如專利申請範圍第18項所述之磷酸鈣材料,其中於該步驟(e2)中,可加入一金屬至該貝殼粉末混合物;且,其中於該步驟(e3)中,該磷酸鈣材料可作為一螢光粉材料。 The calcium phosphate material according to claim 18, wherein in the step (e2), a metal may be added to the shell powder mixture; and wherein, in the step (e3), the calcium phosphate material is used as A phosphor powder material. 如專利申請範圍第6項或第18項中之任一項所述之磷酸鈣材料,其中所述之磷酸鹽係為:磷酸氫二胺((NH4)2HPO4)、磷酸二氫胺((NH4)H2PO4)中之任一者。 The calcium phosphate material according to any one of claims 6 to 18, wherein the phosphate system is: hydrogen phosphate diamine ((NH 4 ) 2 HPO 4 ), dihydrogen phosphate Any of ((NH 4 )H 2 PO 4 ). 如專利申請範圍第14項或第26項中之任一項所述之磷酸鈣材料,其中該金屬包括:鑭系金屬、鹼金屬、鹼土金屬、過渡金屬中之至少一者。 The calcium phosphate material according to any one of claims 14 to 26, wherein the metal comprises at least one of a lanthanide metal, an alkali metal, an alkaline earth metal, and a transition metal. 一種磷酸鈣材料的製造方法,其係以一貝殼作為基礎原料,所述之貝殼包含簾蛤目(Veneroida)中之至少任一種類;其中,該磷酸鈣材料的製造方法包括下列步驟:(a)提供該貝殼;其中,該貝殼係為一文石相之貝殼; (b)加熱該文石相之貝殼,以使其轉換為一方解石相之貝殼;(c)加工該方解石相之貝殼,使其形成一貝殼粉末;(d)加入一磷酸鹽至該貝殼粉末中,使其形成一貝殼粉末混合物;以及(e)加熱該貝殼粉末混合物,使其形成一磷酸鈣材料。 A method for producing a calcium phosphate material, which comprises a shell as a base material, wherein the shell comprises at least one of the species of Velenoida; wherein the method for producing the calcium phosphate material comprises the following steps: (a Providing the shell; wherein the shell is a shell of aragonite; (b) heating the shell of the aragonite phase to convert it into a shell of a calcite phase; (c) processing the shell of the calcite phase to form a shell powder; (d) adding a phosphate to the shell powder Forming a shell powder mixture; and (e) heating the shell powder mixture to form a calcium phosphate material. 如專利申請範圍第29項所述之磷酸鈣材料的製造方法,其中該步驟(a)包括下列步驟:(a1)清洗該貝殼;以及(a2)乾燥該貝殼。 The method for producing a calcium phosphate material according to claim 29, wherein the step (a) comprises the steps of: (a1) washing the shell; and (a2) drying the shell. 如專利申請範圍第30項所述之磷酸鈣材料的製造方法,其中於該步驟(a1)中,係以一界面活性劑伴隨超音波震盪去除附著於該貝殼表面之雜質;抑或,其中於該步驟(a2)中,係將該貝殼置於一室溫下進行乾燥。 The method for producing a calcium phosphate material according to claim 30, wherein in the step (a1), a surfactant is accompanied by ultrasonic vibration to remove impurities attached to the surface of the shell; or In the step (a2), the shell is dried at room temperature. 如專利申請範圍第29項所述之磷酸鈣材料的製造方法,其中該步驟(b)中,以溫度400℃~500℃,以及恆溫加熱2小時以上之條件下,對該文石相之貝殼遂行加熱。 The method for producing a calcium phosphate material according to claim 29, wherein in the step (b), the acacia phase shell is heated at a temperature of 400 ° C to 500 ° C and at a constant temperature for 2 hours or more. It is heated. 如專利申請範圍第29項所述之磷酸鈣材料的製造方法,其中於該步驟(c)中,係以一研磨棒對該方解石相之貝殼進行研磨。 The method for producing a calcium phosphate material according to claim 29, wherein in the step (c), the shell of the calcite phase is ground by a grinding rod. 如專利申請範圍第29項所述之磷酸鈣材料的製造方法,其中於該步驟(d)中,加入一磷酸鹽粉末至該貝殼粉末,使其形成該貝殼粉末之混合物;且,其中於該步驟(e)中,以溫度900℃~1300℃,以及恆溫燒結2小時以上之條件下,對該貝殼粉末之混合物遂行一固態擴 散反應(solid state diffusion reaction)程序,使其形成該磷酸鈣材料。 The method for producing a calcium phosphate material according to claim 29, wherein in the step (d), a phosphate powder is added to the shell powder to form a mixture of the shell powder; and wherein In the step (e), the mixture of the shell powder is subjected to a solid state expansion at a temperature of 900 ° C to 1300 ° C and a constant temperature sintering for 2 hours or more. A solid state diffusion reaction procedure is performed to form the calcium phosphate material. 如專利申請範圍第34項所述之磷酸鈣材料的製造方法,其中於該步驟(d)中,該磷酸鹽粉末重量為0.6~1.0倍之該貝殼粉末之重量;且,其中於該步驟(e)中,該磷酸鈣材料係為一β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)。 The method for producing a calcium phosphate material according to claim 34, wherein in the step (d), the weight of the phosphate powder is 0.6 to 1.0 times the weight of the shell powder; and wherein, in the step ( In e), the calcium phosphate material is a β-tricalcium phosphate (β-TCP). 如專利申請範圍第29項所述之磷酸鈣材料的製造方法,其中於該步驟(d)中,加入一磷酸鹽水溶液至該貝殼粉末,使其形成該貝殼粉末混合物;且,其中於該步驟(e)中,以溫度100℃~180℃,以恆溫加熱4小時以上之條件下,對該貝殼粉末混合物遂行一水熱反應(hydrothermal)程序,使其形成該磷酸鈣材料。 The method for producing a calcium phosphate material according to claim 29, wherein in the step (d), an aqueous solution of an aqueous phosphate is added to the shell powder to form the shell powder mixture; and wherein the step is In (e), the shell powder mixture is subjected to a hydrothermal reaction at a temperature of 100 ° C to 180 ° C for 4 hours or more to form the calcium phosphate material. 如專利申請範圍第36項所述之磷酸鈣材料的製造方法,其中於該步驟(d)中,該磷酸鹽水溶液濃度為0.1 g mL-1;且,其中於該步驟(e)中,該磷酸鈣材料係為一氫氧基磷灰石(hydroxyapatite,HA)。 The method for producing a calcium phosphate material according to claim 36, wherein in the step (d), the concentration of the aqueous phosphate solution is 0.1 g mL -1 ; and wherein, in the step (e), the The calcium phosphate material is hydroxyapatite (HA). 如專利申請範圍第37項所述之磷酸鈣材料的製造方法,其中該氫氧基磷灰石(hydroxyapatite,HA)可經由一加熱程序轉換成一β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)。 The method for producing a calcium phosphate material according to claim 37, wherein the hydroxyapatite (HA) can be converted into a β-tricalcium phosphate (β-) by a heating procedure. -TCP). 如專利申請範圍第38項所述之磷酸鈣材料的製造方法,其中該加熱程序係以以溫度800℃~1000℃,以及恆溫加熱3天以上之條件下,對該氫氧基磷灰石(hydroxyapatite,HA)遂加熱程序。 The method for producing a calcium phosphate material according to claim 38, wherein the heating procedure is performed at a temperature of 800 ° C to 1000 ° C and at a constant temperature for 3 days or more, the hydroxyapatite ( Hydroxypatite, HA) 遂 heating procedure. 如專利申請範圍第29項所述之磷酸鈣材料的製造方法,其中於該步驟(d)中,可加入一金屬至該貝殼粉末混合物;且,其中於該步驟(e)中,該磷酸鈣材料可作為一螢光粉材料。 The method for producing a calcium phosphate material according to claim 29, wherein in the step (d), a metal is added to the shell powder mixture; and wherein, in the step (e), the calcium phosphate is The material can be used as a phosphor material. 一種磷酸鈣材料的製造方法,其係以一貝殼作為基礎原料,所述之貝殼包含簾蛤目(Veneroida)中之至少任一種類;其中,該磷酸鈣材料的製造方法包括下列步驟:(a)提供該貝殼;其中,該貝殼係為一文石相之貝殼;(b)加工該文石相之貝殼,使其形成一貝殼粉末;(c)加入一磷酸鹽至該貝殼粉末中,使其形成一貝殼粉末混合物;以及(d)加熱該貝殼粉末混合物,使其形成一磷酸鈣材料。 A method for producing a calcium phosphate material, which comprises a shell as a base material, wherein the shell comprises at least one of the species of Velenoida; wherein the method for producing the calcium phosphate material comprises the following steps: (a Providing the shell; wherein the shell is a shell of aragonite; (b) processing the shell of the aragonite phase to form a shell powder; (c) adding a phosphate to the shell powder to cause Forming a shell powder mixture; and (d) heating the shell powder mixture to form a calcium phosphate material. 如專利申請範圍第41項所述之磷酸鈣材料的製造方法,其中該步驟(a)包括下列步驟:(a1)清洗該貝殼;以及(a2)乾燥該貝殼。 The method for producing a calcium phosphate material according to claim 41, wherein the step (a) comprises the steps of: (a1) washing the shell; and (a2) drying the shell. 如專利申請範圍第42項所述之磷酸鈣材料的製造方法,其中於該步驟(a1)中,係以一界面活性劑伴隨超音波震盪去除附著於該貝殼表面之雜質;抑或,其中於該步驟(a2)中,係將該貝殼置於一室溫下進行乾燥。 The method for producing a calcium phosphate material according to the invention of claim 42, wherein in the step (a1), a surfactant is accompanied by ultrasonic vibration to remove impurities attached to the surface of the shell; or In the step (a2), the shell is dried at room temperature. 如專利申請範圍第41項所述之磷酸鈣材料的製造方法,其中於該步驟(b)中,係以一研磨棒對該文石相之貝殼進行研磨。 The method for producing a calcium phosphate material according to claim 41, wherein in the step (b), the shell of the aragonite phase is ground by a grinding rod. 如專利申請範圍第41項所述之磷酸鈣材料的製造方法,其中於該步驟(c)中,加入一磷酸鹽水溶液至該貝殼粉末,使其形成該貝殼粉末混合物;且,其中於該步驟(d)中,以溫度100℃~180℃,以及恆溫加熱4小時以上之條件下,對該貝殼粉末混合物遂行一水熱反應 (hydrothermal)程序,使其形成該磷酸鈣材料。 The method for producing a calcium phosphate material according to claim 41, wherein in the step (c), an aqueous solution of a phosphate solution is added to the shell powder to form the shell powder mixture; and wherein, in the step In (d), the shell powder mixture is hydrothermally reacted at a temperature of 100 ° C to 180 ° C and a constant temperature of 4 hours or more. (hydrothermal) procedure to form the calcium phosphate material. 如專利申請範圍第45項所述之磷酸鈣材料的製造方法,其中於該步驟(c)中,該磷酸鹽水溶液濃度為0.1 g mL-1;且,其中於該步驟(d)中,該磷酸鈣材料係由一β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)與一氫氧基磷灰石(hydroxyapatite,HA)共同組成。 The method for producing a calcium phosphate material according to claim 45, wherein in the step (c), the aqueous phosphate solution has a concentration of 0.1 g mL -1 ; and wherein, in the step (d), the The calcium phosphate material is composed of a β-tricalcium phosphate (β-TCP) and a hydroxyapatite (HA). 如專利申請範圍第46項所述之磷酸鈣材料,其中該步驟(d)所得之該磷酸鈣材料可經由一加熱程序轉換成一β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)。 The calcium phosphate material according to claim 46, wherein the calcium phosphate material obtained in the step (d) can be converted into a β-tricalcium phosphate (β-TCP) via a heating procedure. 如申請專利範圍第47項所述之磷酸鈣材料的製造方法,其中該加熱程序係以溫度800℃~1000℃,以及恆溫加熱3天以上之條件下,對該磷酸鈣材料遂加熱程序。 The method for producing a calcium phosphate material according to claim 47, wherein the heating procedure is a heating procedure of the calcium phosphate material under the conditions of a temperature of 800 ° C to 1000 ° C and a constant temperature heating for 3 days or more. 如專利申請範圍第41項所述之磷酸鈣材料的製造方法,其中於該步驟(c)中,加入一磷酸鹽粉末至該貝殼粉末,使其形成該貝殼粉末混合物;且,其中於該步驟(d)中,以溫度900℃~1300℃,以及恆溫燒結2小時以上之條件下,對該貝殼粉末之混合物遂行一固態擴散反應(solid state diffusion reaction)程序,使其形成該磷酸鈣材料。 The method for producing a calcium phosphate material according to claim 41, wherein in the step (c), a phosphate powder is added to the shell powder to form the shell powder mixture; and wherein, in the step In (d), a mixture of the shell powder is subjected to a solid state diffusion reaction process at a temperature of 900 ° C to 1300 ° C and a constant temperature sintering for 2 hours or more to form the calcium phosphate material. 如專利申請範圍第49項所述之磷酸鈣材料的製造方法,其中於該步驟(c)中,該磷酸鹽粉末重量為0.6~1.0倍之該貝殼粉末之重量;且,其中於該步驟(d)中,該磷酸鈣材料係為一β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)。 The method for producing a calcium phosphate material according to claim 49, wherein in the step (c), the weight of the phosphate powder is 0.6 to 1.0 times the weight of the shell powder; and wherein, in the step ( In d), the calcium phosphate material is a β-tricalcium phosphate (β-TCP). 如專利申請範圍第49項所述之磷酸鈣材料的製造方法,其中於該步驟(c)中,可加入一金屬至該貝殼粉末混合物;且,其中於該步驟 (d)中,該磷酸鈣材料可作為一螢光粉材料。 The method for producing a calcium phosphate material according to claim 49, wherein in the step (c), a metal may be added to the shell powder mixture; and wherein, in the step In (d), the calcium phosphate material can be used as a phosphor material. 如專利申請範圍第29項或第41項中之任一項所述之磷酸鈣材料的製造方法,其中所述之磷酸鹽係為:磷酸氫二胺((NH4)2HPO4)、磷酸二氫胺((NH4)H2PO4)中之任一者。 The method for producing a calcium phosphate material according to any one of the preceding claims, wherein the phosphate system is: hydrogen phosphate diamine ((NH 4 ) 2 HPO 4 ), phosphoric acid Any of dihydrogenamines ((NH 4 )H 2 PO 4 ). 如專利申請範圍第40項或第51項中之任一項所述之磷酸鈣材料的製造方法,其中該金屬包括:鑭系金屬、鹼金屬、鹼土金屬、過渡金屬中之至少一者。 The method for producing a calcium phosphate material according to any one of the preceding claims, wherein the metal comprises at least one of a lanthanide metal, an alkali metal, an alkaline earth metal, and a transition metal. 一種磷酸鈣材料,其係以一貝殼作為基礎原料,所述之貝殼包含簾蛤目(Veneroida)中之至少任一種類;其中,該磷酸鈣材料係應用作為一骨替代材料或一螢光粉材料中之任一者。 A calcium phosphate material comprising a shell as a base material, the shell comprising at least one of Veenoroida; wherein the calcium phosphate material is applied as a bone substitute material or a phosphor powder Any of the materials. 如專利申請範圍第54項所述之磷酸鈣材料,其中所述之磷酸鈣材料其結晶相包括:氫氧基磷灰石(hydroxyapatite,HA)、β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)中之至少一者。 The calcium phosphate material according to claim 54, wherein the calcium phosphate material comprises: a hydroxyl apatite (HA), a β-tricalcium phosphate (β-tricalcium phosphate, At least one of β-TCP). 如專利申請範圍第54項所述之磷酸鈣材料,其中該螢光粉材料係於合成過程中添加一金屬。 A calcium phosphate material as described in claim 54 wherein the phosphor material is added to the metal during the synthesis. 如專利申請範圍第56項所述之磷酸鈣材料,其中該金屬包括:鑭系金屬、鹼金屬、鹼土金屬、過渡金屬中之至少一者。 The calcium phosphate material according to claim 56, wherein the metal comprises at least one of a lanthanide metal, an alkali metal, an alkaline earth metal, and a transition metal.
TW101119729A 2012-06-01 2012-06-01 Using shell as raw material to form calcium phosphate material and the method of making calcium phosphate material TWI448419B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101119729A TWI448419B (en) 2012-06-01 2012-06-01 Using shell as raw material to form calcium phosphate material and the method of making calcium phosphate material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101119729A TWI448419B (en) 2012-06-01 2012-06-01 Using shell as raw material to form calcium phosphate material and the method of making calcium phosphate material

Publications (2)

Publication Number Publication Date
TW201350432A true TW201350432A (en) 2013-12-16
TWI448419B TWI448419B (en) 2014-08-11

Family

ID=50157845

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101119729A TWI448419B (en) 2012-06-01 2012-06-01 Using shell as raw material to form calcium phosphate material and the method of making calcium phosphate material

Country Status (1)

Country Link
TW (1) TWI448419B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI558790B (en) * 2016-02-03 2016-11-21 國立臺灣海洋大學 Method for preparing phosphor host material using biogenic sources

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1268540C (en) * 2004-10-29 2006-08-09 宁波经济技术开发区晶格新材料开发有限公司 Preparation method of hydroxyapatite
CN101620176B (en) * 2009-06-10 2011-01-12 钱国英 Method for distinguishing pearl powders from shell powders
CN101920947A (en) * 2010-09-20 2010-12-22 上海师范大学 Preparation method of slice-shaped B type carbonate phosphorite
CN102139866B (en) * 2010-09-28 2013-05-29 上海师范大学 Method for preparing magnetic mesoporous apatite microsphere material by utilizing hydrothermal method
CN101983728B (en) * 2010-11-09 2013-12-04 厦门大学 Shell porous hydroxyapatite basal bone repair material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI558790B (en) * 2016-02-03 2016-11-21 國立臺灣海洋大學 Method for preparing phosphor host material using biogenic sources

Also Published As

Publication number Publication date
TWI448419B (en) 2014-08-11

Similar Documents

Publication Publication Date Title
Agbeboh et al. Environmentally sustainable processes for the synthesis of hydroxyapatite
Laonapakul Synthesis of hydroxyapatite from biogenic wastes
Bellucci et al. In situ Raman spectroscopy investigation of bioactive glass reactivity: Simulated body fluid solution vs TRIS-buffered solution
Macha et al. An alternative synthesis method for di calcium phosphate (Monetite) powders from mediterranean mussel (Mytilus galloprovincialis) shells
US7700066B1 (en) Process for preparing alpha calcium sulfate hemihydrate
Iwata et al. Sintering behavior and apatite formation of diopside prepared by coprecipitation process
JPH01502812A (en) Method for producing hydroxylapatite material
CN106115642B (en) A kind of large scale hydroxyapatite porous microsphere material and preparation method thereof
US7008450B2 (en) Porous hydroxy apatite containing silicon and magnesium, and a preparation method thereof
JP2004026648A (en) Method for manufacture alpha- and beta-tricalcium phosphate powder
CN1307490A (en) Synthetic biomaterial compound
TWI448419B (en) Using shell as raw material to form calcium phosphate material and the method of making calcium phosphate material
Malau et al. Synthesis of hydrokxyapatite based duck egg shells using precipitation method
KR100787526B1 (en) Synthesis of spherical shaped hydroxyapatite, alpha-tricalcium phosphate and beta-tricalcium phosphate nano powders depending on the ph by microwave assisted process
CN1826147A (en) Inorganic resorbable bone substitute material
CN106747566A (en) A kind of preparation method of new mg-doped bioceramic porous material
CN107456605A (en) A kind of biphasic calcium phosphate porous bio-ceramic bone holder material and preparation method and application
JP6259926B2 (en) Method for producing calcium carbonate block
CN104623727B (en) Biological material for bone tissue repair and preparation method thereof
da Silva et al. Alveolar regeneration induced by calcium phosphate ceramics after dental avulsion: Study in young rats
Herliansyah et al. Natural bioceramics bone graft: A comparative study of calcite hydroxyapatite, gypsum hydroxyapatite, bovine hydroxyapatite and cuttlefish shell hydroxyapatite
CN104147638B (en) A kind of three-dimensional connected porous artificial bone scaffold and its preparation method and application
Atiyah et al. Synthesis and characterization of porous β-calcium pyrophosphate bone scaffold derived from avian eggshell.
JP2023529954A (en) Manufacture of xenografts from animal bones
Kareem et al. Preparation and characterization of natural rice husk-derived silica and Eggshell-derived calcium carbonate composite as a coating material

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees