TW201349032A - An anti-optical-noise pointer positioning system - Google Patents

An anti-optical-noise pointer positioning system Download PDF

Info

Publication number
TW201349032A
TW201349032A TW101118323A TW101118323A TW201349032A TW 201349032 A TW201349032 A TW 201349032A TW 101118323 A TW101118323 A TW 101118323A TW 101118323 A TW101118323 A TW 101118323A TW 201349032 A TW201349032 A TW 201349032A
Authority
TW
Taiwan
Prior art keywords
module
light source
infrared
host
infrared light
Prior art date
Application number
TW101118323A
Other languages
Chinese (zh)
Other versions
TWI501120B (en
Inventor
Jing-Hong Zeng
Xin-An Lin
Original Assignee
Tritan Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tritan Technology Inc filed Critical Tritan Technology Inc
Priority to TW101118323A priority Critical patent/TW201349032A/en
Publication of TW201349032A publication Critical patent/TW201349032A/en
Application granted granted Critical
Publication of TWI501120B publication Critical patent/TWI501120B/zh

Links

Abstract

The present invention provides an anti-optical-noise pointer positioning system for a display device. The said anti-optical-noise pointer positioning system comprises a host and a handheld pointing device; wherein the host further comprises a first RF module, a control unit, and an infrared light source (IR). The infrared light source is disposed at the top or bottom of the display. The portable pointing device further includes an image module, a computing unit, and a second RF module. The first RF module, the control unit, the infrared light source, the image module, the computing unit, and the second RF module form a closed control loop, which works as follows: the image module transmitting the IR information received from the infrared light source to the computing unit for computation, the computation result is then transmitted to the first RF module through the second RF module; the first RF module receiving signals from the second RF module and forwarding to the control unit; according to the signals, the control unit can be used to control the display screen of the display device and the pointer position, or through computation to control and adjust the light-emitting properties of the infrared light source so as to eliminate optical noise generation due to external light sources and reflected light, thereby achieving optical noise suppression pointer positioning function, and the purpose of the correct positioning.

Description

一種抗光雜訊指標定位系統 Anti-light noise index positioning system

本發明係有關一種指標定位系統,尤指一種具備抗光雜訊指標定位系統,以減少光雜訊的干擾。 The invention relates to an index positioning system, in particular to a positioning system with anti-light noise indicators to reduce the interference of optical noise.

隨著體感遊戲系統(例如,Wii)的風行,指標定位系統的技術發展與應用也越來越廣泛。第一圖所示為一習知的指標定位系統的示意圖。如第一圖所示,一指標定位系統包含一主機110與一手持指標裝置120。主機110更包含一第一RF模組111、一控制單元112、與一紅外線光源113;其中,該紅外線(IR)光源113係設置於一顯示器130處,通常是置放於顯示器130的正上方或正下方的中間處,且與顯示器130的顯示板平面對齊。手持指標裝置120更包含一濾鏡121、一影像模組122、一計算單元123、與一第二RF模組124;其中,來自該紅外線光源113的紅外線經過濾鏡121後由影像模組122所感測接收,影像模組122再將所感測接收的紅外線的資訊,傳至計算單元123加以計算,其計算結果再透過第二RF模組124傳至主機110。主機110透過第一RF模組111接收來自第二RF模組124的訊號,並藉以控制顯示器130的顯示內容,例如,畫面的內容與指標的位置等。 With the popularity of somatosensory gaming systems (eg, Wii), the technical development and application of index positioning systems has become more widespread. The first figure shows a schematic diagram of a conventional indicator positioning system. As shown in the first figure, an indicator positioning system includes a host 110 and a handheld indicator device 120. The host 110 further includes a first RF module 111, a control unit 112, and an infrared light source 113. The infrared (IR) light source 113 is disposed at a display 130, and is usually placed directly above the display 130. Or in the middle directly below, and aligned with the display panel plane of the display 130. The handheld indicator device 120 further includes a filter 121, an image module 122, a computing unit 123, and a second RF module 124. The infrared light from the infrared light source 113 passes through the filter 121 and is then used by the image module 122. After the sensing is received, the image module 122 transmits the information of the received infrared ray to the computing unit 123 for calculation, and the calculation result is transmitted to the host 110 through the second RF module 124. The host 110 receives the signal from the second RF module 124 through the first RF module 111, and thereby controls the display content of the display 130, for example, the content of the screen and the location of the indicator.

然而,當操作環境中有其他紅外線光源或包含紅外線的其他光源時,影像模組122所接收的紅外線除了來自紅外線光源113外,也包含來自環境中的其他光源。這樣的干擾,勢必會影響計算單元計算結 果的正確性。針對環境光源雜訊的干擾,常見的解決方式是除了前述的濾鏡121外,通常是在主機110的紅外線光源113中加入一特定頻率閃爍性的控制,使得主機110的紅外線光源113所發射的紅外線具有特定頻率閃爍的發光特性。該特定頻率應與環境中常見其他光源的頻率具有可辨識性,以便與環境中常見光源區隔。第二圖所示為第一圖中之影像模組感測紅外線之示意圖。如第二圖所示,環境中常見的日光燈201因交流電的關係,所發射的光具有60Hz的頻率。當然,全球各地的交流電頻率不盡相同,只要避開該頻率的設計即可,例如,該閃爍的特定頻率可設計為10Hz,以便與日光燈中的紅外線區隔辨識。如此一來,第二圖中的影像模組122上所感測接收的A點為特定頻率閃爍光,而B點則為非該特定頻率閃爍的紅外線,進而可以判定A點為來自主機110的紅外線光源113,而B點則是來自其他光源的干擾雜訊。 However, when there are other infrared light sources or other light sources including infrared rays in the operating environment, the infrared rays received by the image module 122 include, in addition to the infrared light source 113, other light sources from the environment. Such interference will inevitably affect the calculation unit calculation The correctness of the fruit. For the interference of ambient light source noise, a common solution is to add a specific frequency flickering control to the infrared light source 113 of the host 110 in addition to the aforementioned filter 121, so that the infrared light source 113 of the host 110 emits Infrared rays have an illuminating characteristic of a specific frequency flicker. This particular frequency should be identifiable with the frequencies of other sources commonly found in the environment to distinguish it from the common sources of light in the environment. The second figure shows a schematic diagram of sensing the infrared light of the image module in the first figure. As shown in the second figure, the fluorescent lamp 201 which is common in the environment has a frequency of 60 Hz due to the relationship of the alternating current. Of course, the frequency of alternating currents around the world is not the same, as long as the design of the frequency is avoided. For example, the specific frequency of the flash can be designed to be 10 Hz to distinguish it from the infrared rays in the fluorescent lamp. In this way, the point A received by the image module 122 in the second figure is the specific frequency flashing light, and the point B is the infrared light that is not flashing at the specific frequency, and then the point A can be determined as the infrared light from the host 110. Light source 113, and point B is interference noise from other sources.

雖然上述技術,配合濾鏡121的配置,通常可以阻絕若干雜訊的干擾。然而,濾鏡的設置會提高手持指標裝置120的製造成本。另一方面,若將濾鏡121移除,往往又有反射光干擾的問題,如第三圖所示。來自主機110的紅外線光源113的紅外線經過一物體301的反射後,其反射光亦到達影像模組122,由影像模組122所感測接收,成為影像模組122上所感測接收的C點。值得注意的是,第二圖中所示的利用特定頻率閃爍的特性加以區隔的辨識方法,並無法解決第三圖中反射光的問題,因為C點的反射光亦帶有特定頻率閃爍的特性。 Although the above technique, in conjunction with the configuration of the filter 121, it is generally possible to block interference of a number of noises. However, the setting of the filter increases the manufacturing cost of the handheld indicator device 120. On the other hand, if the filter 121 is removed, there is often a problem of reflected light interference, as shown in the third figure. After the infrared light from the infrared light source 113 of the host 110 is reflected by an object 301, the reflected light reaches the image module 122, and is sensed and received by the image module 122, and becomes the C point sensed on the image module 122. It is worth noting that the identification method using the characteristics of the specific frequency flicker shown in the second figure does not solve the problem of reflected light in the third figure, because the reflected light at point C also has a specific frequency flicker. characteristic.

基於上述習知技術之缺失,本發明之主要目的在於提供一種具備抗光雜訊能力的指標定位系統,以減少光雜訊的干擾。 Based on the above-mentioned shortcomings of the prior art, the main object of the present invention is to provide an index positioning system with anti-light noise capability to reduce interference of optical noise.

本發明之一實施例在於提供一種抗光雜訊指標定位系統,適用於一顯示器,該抗光雜訊指標定位系統包含一主機與一手持指標裝置;其中,該主機更包含一第一RF模組、一控制單元、與一紅外線光源(IR),該紅外線光源係設置於該顯示器的上方或下方;該手持指標裝置更包含一影像模組、一計算單元、與一第二RF模組。該第一RF模組、控制單元、紅外線光源、影像模組、計算單元、與第二RF模組形成一個封閉性的控制迴路,其運作方式如下:影像模組將所感測接收來自紅外線光源的紅外線資訊,傳至計算單元加以計算,其計算結果再透過第二RF模組傳至主機的第一RF模組;第一RF模組將接收來自第二RF模組的訊號,傳至控制單元;根據該訊號,控制單元一方面用以控制顯示器的顯示畫面與指標位置,另一方面透過運算以控制調整該紅外線光源的發光特性,以消除因外部光源與反射光所產生的光雜訊,達到抗光雜訊指標定位的功能,達到正確定位的目的。 An embodiment of the present invention provides an anti-light noise indicator positioning system, which is applicable to a display. The anti-light noise indicator positioning system includes a host and a handheld indicator device. The host further includes a first RF module. The group, a control unit, and an infrared light source (IR) are disposed above or below the display; the handheld indicator device further includes an image module, a computing unit, and a second RF module. The first RF module, the control unit, the infrared light source, the image module, the computing unit, and the second RF module form a closed control loop, and the operation mode is as follows: the image module senses the receiving from the infrared light source. The infrared information is transmitted to the computing unit for calculation, and the calculation result is transmitted to the first RF module of the host through the second RF module; the first RF module receives the signal from the second RF module and transmits the signal to the control unit. According to the signal, the control unit controls the display screen and the index position of the display on the one hand, and controls the adjustment of the light-emitting characteristics of the infrared light source through calculation to eliminate the optical noise generated by the external light source and the reflected light. The function of positioning the anti-light noise indicator is achieved, and the purpose of correct positioning is achieved.

根據上述實施例,其中手持指標裝置的計算單元的計算流程更包含:擷取影像模組所輸出的其所感測到的紅外線資訊;判斷該紅外線資訊中是否包括有依照一特定頻率閃爍的紅外線;若無,則透過第二RF模組發射一IR調控指令至主機的第一RF模組,該IR調控指令係為將該紅外線光源的亮度調強,並回到擷取影像模組所輸出的其所感測到的紅外線資訊的步驟;否則,則進行判斷該紅外線資訊中是否 包括有兩個以上依照一特定頻率閃爍的紅外線;若是,則透過第二RF模組發射一IR調控指令至主機的第一RF模組,該IR調控指令係為將該紅外線光源的亮度調弱,並回到擷取影像模組所輸出的其所感測到的紅外線資訊的步驟;否則,計算該主機的紅外線光源的座標;以及將計算結果透過第二RF模組發射一座標指令至主機的第一RF模組,並回到擷取影像模組所輸出的其所感測到的紅外線資訊的步驟。 According to the above embodiment, the calculation process of the computing unit of the handheld indicator device further includes: capturing the infrared information sensed by the image module; and determining whether the infrared information includes infrared rays blinking according to a specific frequency; If not, transmitting an IR control command to the first RF module of the host through the second RF module, the IR control command is to adjust the brightness of the infrared light source, and return to the output of the captured image module. The step of sensing the infrared information; otherwise, determining whether the infrared information is Including two or more infrared rays flickering according to a specific frequency; if yes, transmitting an IR control command to the first RF module of the host through the second RF module, the IR control command is to weaken the brightness of the infrared light source And returning to the step of capturing the infrared information sensed by the image module; otherwise, calculating the coordinates of the infrared light source of the host; and transmitting the calculation result to the host through the second RF module The first RF module returns to the step of capturing the infrared information sensed by the image module.

根據上述實施例,其中手持指標裝置的計算單元的計算流程更包含:擷取影像模組所輸出的其所感測到的紅外線資訊;判斷該紅外線資訊中是否包括有依照一特定頻率閃爍的紅外線;若無,則透過第二RF模組發射一IR調控指令至主機的第一RF模組,該IR調控指令係為將該紅外線光源的亮度調強,並回到擷取影像模組所輸出的其所感測到的紅外線資訊的步驟;否則,則進行判斷該紅外線資訊中是否包括有兩個以上依照一特定頻率閃爍的紅外線;若是,根據其中亮度最強之閃爍的紅外線計算該主機的紅外線光源的座標;否則,計算該主機的紅外線光源的座標;以及將計算結果透過第二RF模組發射一座標指令至主機的第一RF模組,並回到擷取影像模組所輸出的其所感測到的紅外線資訊的步驟。 According to the above embodiment, the calculation process of the computing unit of the handheld indicator device further includes: capturing the infrared information sensed by the image module; and determining whether the infrared information includes infrared rays blinking according to a specific frequency; If not, transmitting an IR control command to the first RF module of the host through the second RF module, the IR control command is to adjust the brightness of the infrared light source, and return to the output of the captured image module. The step of sensing the infrared information; otherwise, determining whether the infrared information includes two or more infrared rays that are flashed according to a specific frequency; if so, calculating the infrared light source of the host according to the infrared light having the strongest brightness Coordinates; otherwise, calculating the coordinates of the infrared light source of the host; and transmitting the calculation result to the first RF module of the host through the second RF module, and returning to the sensing of the output of the captured image module The steps to the infrared information.

根據上述實施例,其中主機的控制單元更包含一脈衝寬度調變(Pulse Width Modulation,PWM)控制器,利用PWM脈波的佔空比來控制調整該紅外線光源的發光強度。 According to the above embodiment, the control unit of the host further includes a Pulse Width Modulation (PWM) controller that controls the adjustment of the illumination intensity of the infrared light source by using the duty ratio of the PWM pulse wave.

根據上述實施例,其中主機的控制單元的運算方法如下:第一RF模組接收來自手持指標裝置的第二RF模組所發射的指令;若該 指令為一座標指令,則主機的控制單元則根據該座標指令呈現顯示器的畫面內容與指標位置;否則,根據該IR調控指令透過PWM控制器將該紅外線光源的亮度調強或調弱。其中,該調控方式可為PWM方式,透過調控IR光源發光週期內得佔空比來控制調整該紅外線光源的發光強度。 According to the above embodiment, the computing unit of the host is operated as follows: the first RF module receives an instruction transmitted by the second RF module from the handheld indicator device; The instruction is a standard instruction, and the control unit of the host presents the screen content and the indicator position of the display according to the coordinate instruction; otherwise, the brightness of the infrared light source is adjusted or weakened by the PWM controller according to the IR control instruction. The control mode may be a PWM mode, and the illumination intensity of the infrared light source is controlled by adjusting a duty ratio in an illumination period of the IR light source.

為期能對本發明之目的、功效及構造特徵有更詳盡明確的瞭解,茲舉可實施例併配合圖示說明如後: A more detailed and clear understanding of the objects, functions and structural features of the present invention is intended to be

第四圖所示為本發明之一種抗光雜訊指標定位系統的實施例的結構示意圖。如第四圖所示,本發明之抗光雜訊指標定位系統,適用於一顯示器430,該抗光雜訊指標定位系統包含一主機410與一手持指標裝置420;其中,該主機410更包含一第一RF模組411、一控制單元412、與一紅外線光源(IR)413,該紅外線光源係設置於該顯示器430;該手持指標裝置420更包含一影像模組421、一計算單元422、與一第二RF模組423。第一RF模組411係用於接收來自手持指標裝置420的至少一個指令,並將所接收的指令傳遞至控制單元412由控制單元412依照該指令執行。該指令可為一座標指令或一IR調控指令。若為座標指令,控制單元412將控制顯示器430的游標顯示;若為IR調控指令,控制單元412將調控紅外線光源413的亮度。來自一紅外線光源413的紅外線經過影像模組421感測接收後,轉變為n位元(n-bit)的資訊。該計算單元422係連接於影像模組421,用以接收與計算由影像模組421傳來的n-bit紅外線資訊,並依計算結果產生一個指令交由第二RF 模組423。第二RF模組423係連接於計算單元422,以接收來自計算單元422的指令,並將該指令傳至主機410,由主機410的第一RF模組411接收。依此方式,該第一RF模組411、控制單元412、紅外線光源413、影像模組421、計算單元422、與第二RF模組423形成一個封閉性的控制迴路。如此一來,可透過迴路的運算與控制來調整該紅外線光源的發光特性,以消除因外部光源與反射光所產生的光雜訊,達到抗光雜訊指標定位的功能,達到正確定位的目的。 The fourth figure shows a schematic structural view of an embodiment of an anti-light noise index positioning system of the present invention. As shown in the fourth figure, the anti-light noise indicator positioning system of the present invention is applicable to a display 430. The anti-light noise indicator positioning system includes a host 410 and a handheld indicator device 420. The host 410 further includes a first RF module 411, a control unit 412, and an infrared light source (IR) 413, the infrared light source is disposed on the display 430; the handheld indicator device 420 further includes an image module 421, a computing unit 422, And a second RF module 423. The first RF module 411 is configured to receive at least one instruction from the handheld indicator device 420 and pass the received command to the control unit 412 for execution by the control unit 412 in accordance with the instruction. The instruction can be a standard instruction or an IR control instruction. If it is a coordinate command, the control unit 412 will display the cursor display of the display 430; if it is an IR control command, the control unit 412 will adjust the brightness of the infrared light source 413. The infrared rays from an infrared light source 413 are sensed and received by the image module 421, and converted into n-bit (n-bit) information. The computing unit 422 is connected to the image module 421 for receiving and calculating the n-bit infrared information transmitted by the image module 421, and generating a command according to the calculation result to be sent to the second RF. Module 423. The second RF module 423 is coupled to the computing unit 422 for receiving instructions from the computing unit 422 and transmitting the instructions to the host 410 for receipt by the first RF module 411 of the host 410. In this manner, the first RF module 411, the control unit 412, the infrared light source 413, the image module 421, the calculation unit 422, and the second RF module 423 form a closed control loop. In this way, the illuminating characteristics of the infrared light source can be adjusted through the calculation and control of the loop, so as to eliminate the optical noise generated by the external light source and the reflected light, and achieve the function of locating the anti-light noise index, thereby achieving the purpose of correct positioning. .

如前所述,該封閉性的控制迴路係藉由該手持指標裝置420的計算單元422的計算判斷該紅外線光源413的發光特性是否受到外部光源與反射光所產生光雜訊的干擾,並將其計算結果以指令方式交由主機410的控制單元412來執行對該紅外線光源413的發光特性的調控,以消除光雜訊的干擾。根據上述實施例,第五圖所示為手持指標裝置420的計算單元422的計算流程的一實施例,更包含下列步驟:步驟501係擷取影像模組所輸出的其所感測到的紅外線資訊,其中該紅外線資訊可為n-bit的紅外線資訊。步驟502係判斷該紅外線資訊中是否包括有依照一特定頻率閃爍的紅外線;若無,則執行步驟503;否則,則進行步驟504。其中,該特定頻率閃爍的紅外線係指來自主機410之紅外線光源413的特定閃爍頻率,有別於日光燈或其它自然光源等的紅外線光源。步驟503係透過第二RF模組發射一IR調控指令至主機的第一RF模組,其中該IR調控指令係為將該紅外線光源的亮度調強,執行後,並回到步驟501以擷取影像模組所輸出的其所感測到的紅外線資訊。步驟504係判斷該紅外線資訊中是否包括有兩個以上依照一特 定頻率閃爍的紅外線;若是,則執行步驟505;否則,則進行步驟506。其中,兩個以上依照一特定頻率閃爍的紅外線係表示該紅外線光源413可能經過其他物體的反射而為影像模組所接受。步驟505係透過第二RF模組發射一IR調控指令至主機的第一RF模組,其中該IR調控指令係為將該紅外線光源的亮度調弱,執行後,並回到步驟501以擷取影像模組所輸出的其所感測到的紅外線資訊。步驟506係計算該主機的紅外線光源的座標,步驟507則是將計算結果透過第二RF模組發射一座標指令至主機的第一RF模組,執行後,並回到步驟501以擷取影像模組所輸出的其所感測到的紅外線資訊。 As described above, the closed control loop determines whether the illuminating characteristic of the infrared ray source 413 is interfered by the optical noise generated by the external light source and the reflected light by calculation of the calculating unit 422 of the handheld indicator device 420, and The calculation result is sent to the control unit 412 of the host 410 in an instruction manner to perform regulation of the illuminating characteristics of the infrared ray source 413 to eliminate interference of the optical noise. According to the above embodiment, the fifth figure shows an embodiment of the calculation flow of the calculation unit 422 of the handheld indicator device 420, and further includes the following steps: Step 501 is to capture the infrared information sensed by the image module. , wherein the infrared information can be n-bit infrared information. Step 502 is to determine whether the infrared information includes infrared rays blinking according to a specific frequency; if not, execute step 503; otherwise, proceed to step 504. The infrared light that blinks at the specific frequency refers to a specific blinking frequency of the infrared light source 413 from the host 410, and is different from an infrared light source such as a fluorescent lamp or other natural light source. Step 503: transmitting an IR control command to the first RF module of the host through the second RF module, wherein the IR control command is to adjust the brightness of the infrared light source, and after performing, return to step 501 to capture The infrared information sensed by the image module. Step 504 is to determine whether the infrared information includes two or more The frequency is flashing infrared; if so, step 505 is performed; otherwise, step 506 is performed. Among them, two or more infrared rays blinking according to a specific frequency indicate that the infrared light source 413 may be received by the image module through reflection of other objects. Step 505: transmitting an IR control command to the first RF module of the host through the second RF module, wherein the IR control command is to weaken the brightness of the infrared light source, and after performing, return to step 501 to capture The infrared information sensed by the image module. Step 506 is to calculate the coordinates of the infrared light source of the host. In step 507, the calculation result is sent to the first RF module of the host through the second RF module, and after execution, the process returns to step 501 to capture the image. The infrared information that the module outputs is sensed.

值得注意的是,上述計算方式係在感測到該紅外線光源413可能經過其他物體的反射而為影像模組所接受時,藉由IR調控指令係為將該紅外線光源的亮度調弱,以消除反射光的影響。 It should be noted that the above calculation method is to reduce the brightness of the infrared light source by using the IR control command when the infrared light source 413 is sensed to be reflected by other objects and accepted by the image module. The effect of reflected light.

根據第四圖之實施例,第六圖所示為手持指標裝置420的計算單元422的計算流程的另一實施例,更包含下列步驟:步驟601係擷取影像模組所輸出的其所感測到的紅外線資訊,其中該紅外線資訊可為n-bit的紅外線資訊。步驟602係判斷該紅外線資訊中是否包括有依照一特定頻率閃爍的紅外線;若無,則執行步驟603;否則,則進行步驟604。步驟603係透過第二RF模組發射一IR調控指令至主機的第一RF模組,其中該IR調控指令係為將該紅外線光源的亮度調強,執行後,並回到步驟601以擷取影像模組所輸出的其所感測到的紅外線資訊。步驟604係判斷該紅外線資訊中是否包括有兩個以上依照一特定頻率閃爍的紅外線;若是,則執行步驟605;否則,則進行步驟606。 步驟605係根據其中亮度最強之閃爍的紅外線計算該主機的紅外線光源的座標,並前進至步驟607。步驟606係計算該主機的紅外線光源的座標,步驟607則是將計算結果透過第二RF模組發射一座標指令至主機的第一RF模組,執行後,並回到步驟601以擷取影像模組所輸出的其所感測到的紅外線資訊。 According to the embodiment of the fourth figure, the sixth figure shows another embodiment of the calculation flow of the calculation unit 422 of the handheld indicator device 420, and further includes the following steps: Step 601 is to capture the sensed output by the image module. Infrared information, where the infrared information can be n-bit infrared information. Step 602 is to determine whether the infrared information includes infrared rays blinking according to a specific frequency; if not, execute step 603; otherwise, proceed to step 604. Step 603 is to transmit an IR control command to the first RF module of the host through the second RF module, wherein the IR control command is to adjust the brightness of the infrared light source, and after execution, return to step 601 to capture The infrared information sensed by the image module. Step 604 is to determine whether the infrared information includes two or more infrared rays that blink according to a specific frequency; if yes, execute step 605; otherwise, proceed to step 606. Step 605 calculates the coordinates of the infrared light source of the host based on the blinking infrared rays of which the brightness is the strongest, and proceeds to step 607. Step 606 is to calculate the coordinates of the infrared light source of the host, and step 607 is to transmit the calculation result to the first RF module of the host through the second RF module, and then return to step 601 to capture the image. The infrared information that the module outputs is sensed.

值得注意的是,上述計算方式係在感測到該紅外線光源413可能經過其他物體的反射而為影像模組所接受時,藉由忽略亮度較原始入射光弱的反射光,僅以亮度較強之原始入射光進行座標計算,以消除反射光的影響。 It is worth noting that the above calculation method is based on sensing that the infrared light source 413 may be reflected by other objects and accepted by the image module, by ignoring the reflected light whose brightness is weaker than the original incident light, only the brightness is strong. The original incident light is calculated by coordinates to eliminate the influence of reflected light.

根據第四圖之實施例,第七圖所示為其中主機410的運算流程的實施例,更包含下列步驟:步驟701為第一RF模組接收來自手持指標裝置的第二RF模組所發射的指令;步驟702,係判斷該指令是否為一座標指令;若該指令為一座標指令,則進行步驟703;否則,進行步驟704。步驟703係由主機的控制單元根據該座標指令呈現顯示器的畫面內容與指標位置,執行後,回到步驟701由第一RF模組接收來自手持指標裝置的第二RF模組所發射的指令。步驟704則根據該IR調控指令將該紅外線光源的亮度調強或調弱,執行後,回到步驟701由第一RF模組接收來自手持指標裝置的第二RF模組所發射的指令。其中,該調控方式並不限定何種特定的方式,例如,其調控方式可為脈衝寬度調變(Pulse Width Modulation,PWM)方式,透過調控該紅外線光源之發光週期內的佔空比來控制調整該紅外線光源的發光強度。根據此實施例,本發明中的主機控制單元更可包含一脈衝寬度調變(Pulse Width Modulation,PWM)控制器,以執行利用PWM脈波的佔空比來控制調整該紅外線光源的發光強度。再者,其調控方式亦可採用漸進式(increment或decrement),逐次調整該紅外線光源的發光強度,以增加效率且避免過度調控。 According to the embodiment of the fourth figure, the seventh figure shows an embodiment of the operation flow of the host 410, and further includes the following steps: Step 701: the first RF module receives the second RF module from the handheld indicator device. The instruction 702 is to determine whether the instruction is a target instruction; if the instruction is a standard instruction, proceed to step 703; otherwise, proceed to step 704. In step 703, the control unit of the host presents the screen content and the indicator position of the display according to the coordinate instruction. After execution, the method returns to step 701 to receive, by the first RF module, the command transmitted by the second RF module from the handheld indicator device. Step 704, according to the IR control command, the brightness of the infrared light source is adjusted or weakened. After execution, returning to step 701, the first RF module receives the command transmitted by the second RF module from the handheld indicator device. The regulation mode is not limited to a specific manner. For example, the regulation method may be a Pulse Width Modulation (PWM) method, and the adjustment is controlled by adjusting the duty ratio in the illumination period of the infrared light source. The intensity of the illumination of the infrared source. According to this embodiment, the host control unit in the present invention may further include a pulse width modulation (Pulse). A Width Modulation (PWM) controller is configured to control the illumination intensity of the infrared light source by using a duty cycle of the PWM pulse wave. Furthermore, the regulation method can also adopt incremental or decrement to adjust the luminous intensity of the infrared light source successively to increase efficiency and avoid excessive regulation.

因此,本發明之一種抗光雜訊指標定位系統,確能藉所揭露之技藝,達到所預期之目的與功效,符合發明專利之新穎性,進步性與產業利用性之要件。 Therefore, the anti-light noise index positioning system of the present invention can achieve the intended purpose and effect by the disclosed technology, and meets the requirements of novelty, advancement and industrial utilization of the invention patent.

惟,以上所揭露之圖示及說明,僅為本發明之較佳實施例而已,非為用以限定本發明之實施,大凡熟悉該項技藝之人士其所依本發明之精神,所作之變化或修飾,皆應涵蓋在以下本案之申請專利範圍內。 The illustrations and descriptions of the present invention are merely preferred embodiments of the present invention, and are not intended to limit the implementation of the present invention, and those who are familiar with the art are subject to the changes in the spirit of the present invention. Or the modifications should be covered by the following patent application in this case.

110‧‧‧主機 110‧‧‧Host

111‧‧‧第一RF模組 111‧‧‧First RF Module

112‧‧‧控制單元 112‧‧‧Control unit

113‧‧‧紅外線光源 113‧‧‧Infrared source

120‧‧‧手持指標裝置 120‧‧‧Handheld indicator device

121‧‧‧濾鏡 121‧‧‧Filter

122‧‧‧影像模組 122‧‧‧Image Module

123‧‧‧計算單元 123‧‧‧Computation unit

124‧‧‧第二RF模組 124‧‧‧Second RF module

130‧‧‧顯示器 130‧‧‧ display

201‧‧‧日光燈 201‧‧‧ fluorescent lamp

301‧‧‧物體 301‧‧‧ objects

410‧‧‧主機 410‧‧‧Host

411‧‧‧第一RF模組 411‧‧‧First RF Module

412‧‧‧控制單元 412‧‧‧Control unit

413‧‧‧紅外線光源 413‧‧‧Infrared source

420‧‧‧手持指標裝置 420‧‧‧Handheld indicator device

421‧‧‧影像模組 421‧‧‧Image Module

422‧‧‧計算單元 422‧‧‧Computation unit

423‧‧‧第二RF模組 423‧‧‧Second RF module

430‧‧‧顯示器 430‧‧‧ display

第一圖所示為一習知的指標定位系統的示意圖;第二圖所示為第一圖中之影像模組感測紅外線之示意圖;第三圖所示為第二圖中之影像模組在移除濾鏡後感測紅外線之示意圖;第四圖所示為本發明之一種抗光雜訊指標定位系統的實施例的結構示意圖;第五圖所示為本發明之手持指標裝置的計算單元的計算流程的一實施例;第六圖所示為本發明之手持指標裝置的計算單元的計算流程的另一 實施例;以及第七圖所示為本發明中主機的運算流程的實施例。 The first figure shows a schematic diagram of a conventional index positioning system; the second figure shows the schematic diagram of the image module sensing infrared rays in the first figure; the third figure shows the image module in the second figure. A schematic diagram of sensing infrared rays after removing a filter; FIG. 4 is a schematic structural view showing an embodiment of an anti-light noise index positioning system of the present invention; and FIG. 5 is a calculation of the handheld index device of the present invention. An embodiment of the calculation flow of the unit; the sixth figure shows another calculation flow of the calculation unit of the handheld indicator device of the present invention Embodiments; and the seventh figure shows an embodiment of the operation flow of the host in the present invention.

410‧‧‧主機 410‧‧‧Host

411‧‧‧第一RF模組 411‧‧‧First RF Module

412‧‧‧控制單元 412‧‧‧Control unit

413‧‧‧紅外線光源 413‧‧‧Infrared source

420‧‧‧手持指標裝置 420‧‧‧Handheld indicator device

421‧‧‧影像模組 421‧‧‧Image Module

422‧‧‧計算單元 422‧‧‧Computation unit

423‧‧‧第二RF模組 423‧‧‧Second RF module

430‧‧‧顯示器 430‧‧‧ display

Claims (11)

一種抗光雜訊指標定位系統,適用於一顯示器,該系統包含:一主機,該主機更包含:一第一RF模組、一控制單元、與一紅外線光源(IR),其中,該紅外線光源係設置於該顯示器上方或下方;以及一手持指標裝置,該手持指標裝置更包含:一影像模組、一計算單元、與一第二RF模組;其中,該第一RF模組、控制單元、紅外線光源、影像模組、計算單元、與第二RF模組形成一個封閉性的控制迴路;該第一RF模組係用於接收來自該手持指標裝置的至少一個指令,並將所接收的指令傳遞至該控制單元由該控制單元依照該指令執行;來自該紅外線光源的紅外線由該影像模組感測接收,該計算單元係連接於該影像模組,用以接收與計算由該影像模組傳來的紅外線資訊,並依計算結果產生一個指令交由該第二RF模組;該第二RF模組係連接於該計算單元,以接收來自該計算單元的指令,並將該指令傳至該主機,由該主機的第一RF模組接收;如此一來,可透過該封閉性迴路的運算與控制來調整該紅外線光源的發光特性,以消除因外部光源與反射光所產生的光雜訊,達到抗光雜訊指標定位的功能,達到正確定位的目的。 An anti-light noise indicator positioning system is applicable to a display. The system comprises: a host, the host further comprises: a first RF module, a control unit, and an infrared light source (IR), wherein the infrared light source The device is disposed above or below the display; and a handheld indicator device, the handheld indicator device further includes: an image module, a computing unit, and a second RF module; wherein the first RF module and the control unit The infrared light source, the image module, the computing unit, and the second RF module form a closed control loop; the first RF module is configured to receive at least one instruction from the handheld indicator device and receive the received The instruction is transmitted to the control unit by the control unit according to the instruction; the infrared light from the infrared light source is sensed and received by the image module, and the calculation unit is connected to the image module for receiving and calculating by the image module The infrared information transmitted by the group is generated, and an instruction is generated according to the calculation result to be handed to the second RF module; the second RF module is connected to the computing unit to receive the Calculating the instruction of the unit, and transmitting the instruction to the host, being received by the first RF module of the host; thus, the illumination characteristic of the infrared light source can be adjusted through the operation and control of the closed loop to eliminate Due to the optical noise generated by the external light source and the reflected light, the function of positioning the anti-light noise indicator is achieved, and the purpose of correct positioning is achieved. 如申請專利範圍第1項所述之抗光雜訊指標定位系統,其中該指令可為一座標指令或一IR調控指令。 For example, in the anti-light noise index positioning system described in claim 1, wherein the instruction may be a standard instruction or an IR control instruction. 如申請專利範圍第2項所述之抗光雜訊指標定位系統,其中該指令若為座標指令,該控制單元將控制該顯示器的游標顯示。 The anti-light noise index positioning system of claim 2, wherein if the command is a coordinate command, the control unit controls the cursor display of the display. 如申請專利範圍第2項所述之抗光雜訊指標定位系統,其中該指令若為IR調控指令,該控制單元將調控該紅外線光源的亮度。 For example, in the anti-light noise index positioning system described in claim 2, wherein the command is an IR control command, the control unit will adjust the brightness of the infrared light source. 如申請專利範圍第2項所述之抗光雜訊指標定位系統,其中該影像模組將所感測接收來自該紅外線光源的紅外線轉變為n位元(n-bit)的紅外線資訊。 The anti-light noise index positioning system of claim 2, wherein the image module converts the infrared light received from the infrared light source into n-bit (n-bit) infrared information. 如申請專利範圍第2項所述之抗光雜訊指標定位系統,其中該計算單元的計算流程更包含下列步驟:(a)擷取影像模組所輸出的其所感測到的紅外線資訊,其中該紅外線資訊可為n-bit的紅外線資訊;(b)判斷該紅外線資訊中是否包括有依照一特定頻率閃爍的紅外線;若無,則執行步驟(c);否則,則進行步驟(d);(c)透過第二RF模組發射一IR調控指令至主機的第一RF模組,其中該IR調控指令係為將該紅外線光源的亮度調強,執行後,並回到步驟(a);(d)判斷該紅外線資訊中是否包括有兩個以上依照一特定頻率閃爍的紅外線;若是,則執行步驟(e);否則,則進行步驟(f);(e)透過第二RF模組發射一IR調控指令至主機的第一RF模組,其中該IR調控指令係為將該紅外線光源的亮度調弱,執行後,並回到步驟(a);(f)計算該主機的紅外線光源的座標;以及(g)將計算結果透過第二RF模組發射一座標指令至主機的第一RF模組,執行後,並回到步驟(a)。 For example, the anti-light noise index positioning system described in claim 2, wherein the calculation process of the calculation unit further comprises the following steps: (a) capturing the infrared information sensed by the image module, wherein The infrared information may be n-bit infrared information; (b) determining whether the infrared information includes infrared rays flickering according to a specific frequency; if not, performing step (c); otherwise, performing step (d); (c) transmitting an IR control command to the first RF module of the host through the second RF module, wherein the IR control command is to adjust the brightness of the infrared light source, after execution, and return to step (a); (d) determining whether the infrared information includes two or more infrared rays flickering according to a specific frequency; if yes, performing step (e); otherwise, performing step (f); (e) transmitting through the second RF module An IR control command to the first RF module of the host, wherein the IR control command is to weaken the brightness of the infrared light source, after execution, and return to step (a); (f) calculate the infrared light source of the host Coordinate; and (g) pass the calculation result through the second RF Transmitting a target instruction set to a host a first RF module, after execution, and returns to step (a). 如申請專利範圍第2項所述之抗光雜訊指標定位系統,其中該計算單元的計算流程更包含下列步驟:(a)擷取影像模組所輸出的其所感測到的紅外線資訊,其中該紅外線資訊可為n-bit的紅外線資訊;(b)判斷該紅外線資訊中是否包括有依照一特定頻率閃爍的紅外線;若無,則執行步驟(c);否則,則進行步驟(d);(c)透過第二RF模組發射一IR調控指令至主機的第一RF模組,其中該IR調控指令係為將該紅外線光源的亮度調強,執行後,並回到步驟(a);(d)判斷該紅外線資訊中是否包括有兩個以上依照一特定頻率閃爍的紅外線;若是,則執行步驟(e);否則,則進行步驟(f);(e)根據其中亮度最強之閃爍的紅外線計算該主機的紅外線光源的座標,並前進至步驟(g);(f)計算該主機的紅外線光源的座標;以及(g)將計算結果透過第二RF模組發射一座標指令至主機的第一RF模組,執行後,並回到步驟(a)。 For example, the anti-light noise index positioning system described in claim 2, wherein the calculation process of the calculation unit further comprises the following steps: (a) capturing the infrared information sensed by the image module, wherein The infrared information may be n-bit infrared information; (b) determining whether the infrared information includes infrared rays flickering according to a specific frequency; if not, performing step (c); otherwise, performing step (d); (c) transmitting an IR control command to the first RF module of the host through the second RF module, wherein the IR control command is to adjust the brightness of the infrared light source, after execution, and return to step (a); (d) determining whether the infrared information includes two or more infrared rays flickering according to a specific frequency; if yes, performing step (e); otherwise, performing step (f); (e) according to the highest brightness flicker Infrared calculates the coordinates of the infrared light source of the host, and proceeds to step (g); (f) calculates the coordinates of the infrared light source of the host; and (g) transmits the calculation result to the host through the second RF module First RF module, After, and returns to step (a). 如申請專利範圍第2項所述之抗光雜訊指標定位系統,其中該主機的運算流程更包含下列步驟:(a)第一RF模組接收來自手持指標裝置的第二RF模組所發射的指令;(b)判斷該指令是否為一座標指令;若該指令為一座標指令,則進行步驟(c);否則,進行步驟(d); (c)由主機的控制單元根據該座標指令呈現顯示器的畫面內容與指標位置,執行後,回到步驟(a);以及(d)根據該IR調控指令將該紅外線光源的亮度調強或調弱,執行後,回到步驟(a)。 For example, the anti-light noise index positioning system described in claim 2, wherein the operation flow of the host further comprises the following steps: (a) the first RF module receives the second RF module from the handheld indicator device. (b) determining whether the instruction is a standard instruction; if the instruction is a standard instruction, proceeding to step (c); otherwise, performing step (d); (c) presenting, by the control unit of the host, the screen content and the indicator position of the display according to the coordinate instruction, after execution, returning to step (a); and (d) adjusting or adjusting the brightness of the infrared light source according to the IR control instruction Weak, after execution, return to step (a). 如申請專利範圍第2項所述之抗光雜訊指標定位系統,其中該調控方式為脈衝寬度調變(Pulse Width Modulation,PWM)方式,係透過調控該紅外線光源之發光週期內的佔空比來控制調整該紅外線光源的發光強度。 For example, the anti-light noise index positioning system described in claim 2, wherein the control mode is a Pulse Width Modulation (PWM) mode, which controls the duty cycle in the illumination period of the infrared light source. To control the adjustment of the luminous intensity of the infrared light source. 如申請專利範圍第9項所述之抗光雜訊指標定位系統,其中該主機的控制單元更包含一脈衝寬度調變(Pulse Width Modulation,PWM)控制器,以執行利用PWM脈波的佔空比來控制調整該紅外線光源的發光強度。 The anti-light noise index positioning system of claim 9, wherein the control unit of the host further comprises a Pulse Width Modulation (PWM) controller to perform duty using the PWM pulse wave. It is controlled to adjust the luminous intensity of the infrared light source. 如申請專利範圍第10項所述之抗光雜訊指標定位系統,其中該調控方式亦可採用漸進式,逐次調整該紅外線光源的發光強度,以增加效率且避免過度調控。 For example, the anti-light noise index positioning system described in claim 10, wherein the control mode can also adopt a progressive manner to sequentially adjust the luminous intensity of the infrared light source to increase efficiency and avoid excessive regulation.
TW101118323A 2012-05-23 2012-05-23 An anti-optical-noise pointer positioning system TW201349032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101118323A TW201349032A (en) 2012-05-23 2012-05-23 An anti-optical-noise pointer positioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101118323A TW201349032A (en) 2012-05-23 2012-05-23 An anti-optical-noise pointer positioning system

Publications (2)

Publication Number Publication Date
TW201349032A true TW201349032A (en) 2013-12-01
TWI501120B TWI501120B (en) 2015-09-21

Family

ID=50157414

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101118323A TW201349032A (en) 2012-05-23 2012-05-23 An anti-optical-noise pointer positioning system

Country Status (1)

Country Link
TW (1) TW201349032A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104731310A (en) * 2013-12-23 2015-06-24 原相科技股份有限公司 Optical object tracking method and optical object tracking system
US9258510B2 (en) 2013-12-10 2016-02-09 Pixart Imaging Inc. Method of optical tracking a frame of an object and related optical tracking system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI267754B (en) * 2005-05-18 2006-12-01 Zeroplus Technology Co Ltd Pointer positioning device of a video camera
US20090017910A1 (en) * 2007-06-22 2009-01-15 Broadcom Corporation Position and motion tracking of an object
TWI353736B (en) * 2007-11-23 2011-12-01 Compal Communications Inc Device of wireless remote control and operating me
CN101194859B (en) * 2007-12-14 2010-12-08 上海爱申科技发展股份有限公司 Body shaping positioning system and method of use thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9258510B2 (en) 2013-12-10 2016-02-09 Pixart Imaging Inc. Method of optical tracking a frame of an object and related optical tracking system
TWI621032B (en) * 2013-12-10 2018-04-11 原相科技股份有限公司 Method of optical object tracking and related optical tracking system
CN104731310A (en) * 2013-12-23 2015-06-24 原相科技股份有限公司 Optical object tracking method and optical object tracking system
CN104731310B (en) * 2013-12-23 2018-03-30 原相科技股份有限公司 Optical profile type object tracking method and its related optical formula tracing system
CN108279788A (en) * 2013-12-23 2018-07-13 原相科技股份有限公司 Control unit for remote controler

Also Published As

Publication number Publication date
TWI501120B (en) 2015-09-21

Similar Documents

Publication Publication Date Title
US10915186B2 (en) Projection video display apparatus and video display method
JP2017191792A (en) Light control method and lighting device using the same
KR20060132219A (en) Apparatus and method for implementing pointing user interface using signal of light emitter
CN105204650A (en) Gesture recognition method, controller, gesture recognition device and equipment
CN101442861A (en) Control system and control method for LED lamplight scene
CN1952851A (en) Electronic installation and method for realizing interactive display
US9690430B2 (en) Touch detection apparatus, touch detection method and recording medium
JP2012198858A5 (en)
CN103207665A (en) Screen position adjustment method and device as well as electronic equipment
TWI479391B (en) Optical touch control device and method for determining coordinate thereof
TW201349032A (en) An anti-optical-noise pointer positioning system
JP2009522681A (en) Remote pointing device and method using image sensor
TW201545024A (en) Touch detection method and optical touch system thereof
CN103870063A (en) Optical touch system, touch detection method and correction method
KR100773905B1 (en) Apparatus for remote pointing using image sensor and method of the same
CN107731175B (en) Bias light regulating system based on pupil radium detection
CN107103746B (en) Air conditioner control device and method
US20150138433A1 (en) Illumination Control System and Illumination Control Method
CN203606780U (en) Multi-touch and gesture recognition fusion system
CN103135801A (en) Human-computer interface system and finger mouse system
US9804694B2 (en) Control system, mouse and control method thereof
JP2006301740A5 (en)
JP2012149987A (en) Position detecting system, display system, and information processing system
US10942607B2 (en) Manipulation detection device and video display system that are capable detecting an object on a video display surface
US11900731B2 (en) Biometrics imaging device and biometrics imaging method for capturing image data of a body part of a person which enable improved image data quality