TW201348241A - Unconventional chemical doping of organic semiconducting materials - Google Patents

Unconventional chemical doping of organic semiconducting materials Download PDF

Info

Publication number
TW201348241A
TW201348241A TW101151078A TW101151078A TW201348241A TW 201348241 A TW201348241 A TW 201348241A TW 101151078 A TW101151078 A TW 101151078A TW 101151078 A TW101151078 A TW 101151078A TW 201348241 A TW201348241 A TW 201348241A
Authority
TW
Taiwan
Prior art keywords
organic
dopant
composition
group
alkyl
Prior art date
Application number
TW101151078A
Other languages
Chinese (zh)
Inventor
Thomas D Anthopoulos
Original Assignee
Imp Innovations Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imp Innovations Ltd filed Critical Imp Innovations Ltd
Publication of TW201348241A publication Critical patent/TW201348241A/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • H10K10/488Insulated gate field-effect transistors [IGFETs] characterised by the channel regions the channel region comprising a layer of composite material having interpenetrating or embedded materials, e.g. a mixture of donor and acceptor moieties, that form a bulk heterojunction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/623Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)

Abstract

Compositions comprising doped organic semiconductors with high charge carrier mobilities are formed which comprise at least one polycrystalline organic semiconductor comprising crystalline domains and grain boundaries at the interfaces, at least one neutral molecular dopant, wherein the dopant is dopant is not evenly distributed throughout the composition. Methods of making the compositions are also described.

Description

有機半導體材料之非習用性化學摻雜 Non-practical chemical doping of organic semiconductor materials

在有機(小分子和聚合物)半導體中摻雜的基本原理類似於在無機半導體中的原理。在每一種情況下都需要引入“雜質”,即可以將一電子轉移到電子傳導能帶或能態(例如,在有機物的情況下的最低未佔據分子軌道(LUMO))的外來原子或分子,從而形成n-型摻雜,或可以從電洞傳導能帶/能態(例如,最高佔據分子軌道(HOMO))遷移一電子的外來原子或分子,來產生一自由電洞,並且因此形成p-型摻雜。 The basic principle of doping in organic (small molecule and polymer) semiconductors is similar to the principle in inorganic semiconductors. In each case, it is necessary to introduce an "impurity", that is, a foreign atom or molecule that can transfer an electron to an electron conduction band or an energy state (for example, the lowest unoccupied molecular orbital (LUMO) in the case of an organic matter), Thereby forming an n-type doping, or a foreign atom or molecule that can migrate an electron from a hole conduction band/energy state (eg, the highest occupied molecular orbital (HOMO)) to generate a free hole, and thus form a p - type doping.

使用這種方法在有機半導體和裝置中的p-型及n-型摻雜已被證明。見,例如Pfeiffer等人,Org.Electr.4,89(2003),Zhang等人,Phys.Rev.B,81,085201(2010)。在大多數情況下,摻雜工藝通常是一宏觀現象,其中摻雜劑分子/元素均勻地分佈在整個半導體中,雖然也已經證明了替代方法,例如遠端摻雜。Zhao等人,Appl.Phys.Lett.97,123305(2010)。迄今使用的材料主要是具有相對較低的電荷載子遷移率的有機物。 P-type and n-type doping in organic semiconductors and devices using this method have been demonstrated. See, for example, Pfeiffer et al, Org. Electron. 4, 89 (2003), Zhang et al, Phys. Rev. B , 81, 085201 (2010). In most cases, the doping process is typically a macroscopic phenomenon in which dopant molecules/elements are evenly distributed throughout the semiconductor, although alternative methods such as far-end doping have also been demonstrated. Zhao et al., Appl. Phys. Lett. 97, 123305 (2010). The materials used hitherto are mainly organic substances having relatively low charge carrier mobility.

然而,當實質上是高電荷載子遷移率的有機半導體時,分子摻雜劑的引入可能破壞分子堆積,即獲得高載子遷移率的薄膜和電子裝置的一關鍵特性,並且 會導致電洞/電子遷移率降低。其結果係,傳統的摻雜可能被限制於具有相對低的電荷載子遷移率的有機材料。存在不是非常好地進行的自組裝/堆積的材料(例如,固態的非晶結構)。 However, when it is essentially an organic semiconductor with high charge carrier mobility, the introduction of molecular dopants may destroy molecular packing, a key property of thin films and electronic devices that achieve high carrier mobility, and This can result in reduced hole/electron mobility. As a result, conventional doping may be limited to organic materials having relatively low charge carrier mobility. There are self-assembled/stacked materials that are not very well performed (eg, solid amorphous structures).

因此,對於具有高電荷載子遷移率的摻雜的有機半導體的組合物和製造方法存在一種需要。此外,對於基本上不影響薄膜的結晶堆積來摻雜結晶薄膜電晶體(TFT)存在一種需要。 Therefore, there is a need for a composition and a manufacturing method of a doped organic semiconductor having high charge carrier mobility. In addition, there is a need to dope a crystalline thin film transistor (TFT) with substantially no effect on the crystal packing of the film.

本文所描述的實施方式包括組合物和化合物,以及製造方法、使用方法、包含該等組合物和化合物的油墨和裝置。 Embodiments described herein include compositions and compounds, as well as methods of manufacture, methods of use, inks and devices comprising the compositions and compounds.

一實施方式提供了一種方法,包括:提供至少一種液體先質組合物,該先質組合物係藉由至少混合下列成分而形成,(i)至少一種適合形成有機多晶相的電洞或電子傳導有機材料,(ii)至少一種中性分子摻雜劑,和(iii)至少一種溶劑;從該液體先質組合物形成至少一種固體薄膜,其中該固體薄膜包括該至少一種有機多晶相,其包括晶界,並且其中該摻雜劑在晶界處富集。 An embodiment provides a method comprising: providing at least one liquid precursor composition formed by mixing at least the following components, (i) at least one hole or electron suitable for forming an organic polycrystalline phase Conducting an organic material, (ii) at least one neutral molecular dopant, and (iii) at least one solvent; forming at least one solid film from the liquid precursor composition, wherein the solid film comprises the at least one organic polycrystalline phase, It includes grain boundaries, and wherein the dopant is concentrated at the grain boundaries.

另一實施方式提供了一種組合物,包括:包含結晶區域和位於結晶區域之界面處的晶界的至少一種多晶有機半導體,和至少一種中性分子摻雜劑,其中該 摻雜劑在位於結晶區域之界面處的晶界富集。 Another embodiment provides a composition comprising: at least one polycrystalline organic semiconductor comprising a crystalline region and a grain boundary at an interface of the crystalline region, and at least one neutral molecular dopant, wherein The dopant is enriched at the grain boundary at the interface of the crystalline region.

另一實施方式提供了一種方法,包括:提供一油墨,該油墨係藉由至少混合下列成分而形成:(i)至少一種適合形成多晶相的有機半導體,(ii)至少一種中性分子摻雜劑,和(iii)至少一種溶劑;從該油墨形成至少一種固體薄膜,其中該固體薄膜包括該至少一種有機半導體多晶相,其包括晶界,並且其中該摻雜劑沒有均勻地分佈在整個固體薄膜。 Another embodiment provides a method comprising: providing an ink formed by mixing at least: (i) at least one organic semiconductor suitable for forming a polycrystalline phase, (ii) at least one neutral molecular dopant a dopant, and (iii) at least one solvent; forming at least one solid film from the ink, wherein the solid film comprises the at least one organic semiconductor polycrystalline phase comprising a grain boundary, and wherein the dopant is not uniformly distributed The entire solid film.

至少一個實施方式的至少一個優點係優異的電子或電洞遷移率。 At least one advantage of at least one embodiment is excellent electron or hole mobility.

至少一個實施方式的另一優點包括,在一個單一的溶液相沈積中摻雜一具有高電荷載子遷移率的結晶半導體。 Another advantage of at least one embodiment includes doping a crystalline semiconductor having a high charge carrier mobility in a single solution phase deposition.

然而,至少一個實施方式的另一優點包括,向結晶材料使用具有不同結構和中性電荷的摻雜劑,從而允許摻雜參數和組合物具有靈活性。 However, another advantage of at least one embodiment includes the use of dopants having different structures and neutral charges to the crystalline material, thereby allowing the doping parameters and compositions to be flexible.

至少一個實施方式的一進一步的優點係,對於小的摻雜濃度,所得到的共混(blend)薄膜的多晶微觀結構似乎仍然相同,而沒有任何顯著的變化。 A further advantage of at least one embodiment is that for a small doping concentration, the resulting polycrystalline microstructure of the blend film appears to remain the same without any significant change.

詳細說明 Detailed description 引言 introduction

在此提及的所有參考文件都藉由引用以其全部內容結合在此。 All references cited herein are hereby incorporated by reference in their entirety.

2011年4月26日提交的授予普林斯頓大學的PCT/EP2011/056584藉由引用以其全部內容結合在此。 PCT/EP2011/056584 to Princeton University, filed on April 26, 2011, is hereby incorporated by reference in its entirety herein.

產生具有高電荷載子遷移率的有機半導體的組合物、化合物、衍生物和材料在本領域中是已知的。見,例如,PCT/EP2011/056584,2011年4月26日提交,Jones等人,Adv.Funct.Mater.,2010,20,2330-2337;Hamilton等人,Adv.Mater.,2009,21,1166-1171;Verlaak等人,Appl.Phys.Lett.(2003),82(5),745-747;以及Smith等人,J.Mater.Chem.2010,20,2562。這種類型的組合物、化合物、衍生物和材料可以藉由以下方法摻雜,如遠端摻雜和其他方法。見,例如,Zhao等人,Appl.Phys.Lett.,2010,97,123305。另見,Chen等人,J.Phys.Chem.B,2004,108,17329-17336。先前技術中的組合物、化合物、衍生物和/或材料沒有傳授或建議本發明揭露的實施方式。 Compositions, compounds, derivatives and materials that produce organic semiconductors with high charge carrier mobility are known in the art. See, for example, PCT/EP2011/056584, filed April 26, 2011, Jones et al, Adv. Funct. Mater. , 2010, 20 , 2330-2337; Hamilton et al, Adv. Mater. , 2009 , 21, 1166-1171; Verlaak et al, Appl. Phys. Lett. (2003), 82(5), 745-747; and Smith et al, J. Mater. Chem. 2010, 20, 2562. Compositions, compounds, derivatives and materials of this type can be doped by methods such as remote doping and other methods. See, for example, Zhao et al., Appl. Phys. Lett. , 2010, 97, 123305. See also, Chen et al, J. Phys. Chem. B, 2004, 108, 17329-17336. The compositions, compounds, derivatives and/or materials of the prior art do not teach or suggest embodiments of the present invention.

組合物 combination

至少一個實施方式提供了包含結晶區域和位於結晶區域之界面處的晶界的至少一種多晶有機半導體,和至少一種中性分子摻雜劑,其中該摻雜劑位於結晶區域之界面處的晶界富集。另一個實施方式提供了包含結晶區域和位於結晶區域之界面處的晶界的至少一種多晶有機半導體,和至少一種中性分子摻雜劑,其中該摻雜劑沒有均勻地分佈在整個固體薄膜。體現的 組合物可進一步包括至少一種非晶聚合物的非導電或半導電的材料。 At least one embodiment provides at least one polycrystalline organic semiconductor comprising a crystalline region and a grain boundary at an interface of the crystalline region, and at least one neutral molecular dopant, wherein the dopant is located at an interface of the crystalline region Enrichment. Another embodiment provides at least one polycrystalline organic semiconductor comprising a crystalline region and a grain boundary at an interface of the crystalline region, and at least one neutral molecular dopant, wherein the dopant is not uniformly distributed throughout the solid film . Reflected The composition may further comprise a non-conductive or semi-conductive material of at least one amorphous polymer.

多晶有機半導體材料 Polycrystalline organic semiconductor material

在一些實施方式中,多晶有機半導體材料可包括結晶或半結晶的電洞傳輸材料或結晶或半結晶的電子傳輸材料。 In some embodiments, the polycrystalline organic semiconductor material can include a crystalline or semi-crystalline hole transport material or a crystalline or semi-crystalline electron transport material.

在一實施方式中,該至少一個多晶有機半導體包括選自化學式(I)表示的隨意地經取代的低聚稠苯的電洞傳輸材料。 In one embodiment, the at least one polycrystalline organic semiconductor comprises a hole transport material selected from the group consisting of randomly substituted oligomeric thick benzene represented by the formula (I).

其中R1-R10獨立地為H、烷基、氟烷基、烷氧基、芳基、雜芳基、鹵素、三烷基矽基乙炔基,每個可隨意地被一或多個鹵素、氰基、烷基或烷氧基取代,並且n係0至10。 Wherein R 1 to R 10 are independently H, alkyl, fluoroalkyl, alkoxy, aryl, heteroaryl, halogen, trialkyldecylethynyl, each optionally substituted by one or more halogens Substituted with a cyano group, an alkyl group or an alkoxy group, and n is from 0 to 10.

在一較佳的實施方式中,該至少一個多晶有機半導體包括化學式(II)表示的電洞傳輸材料: 其中在每一種情況下R’係獨立地選自C1-C10烷基、芳基或雜芳基,每個可隨意地被一或多個鹵素、氰基、烷基或烷氧基基團取代。 In a preferred embodiment, the at least one polycrystalline organic semiconductor comprises a hole transport material represented by the chemical formula (II): Wherein in each case R' is independently selected from C 1 -C 10 alkyl, aryl or heteroaryl, each optionally being one or more halogen, cyano, alkyl or alkoxy Replaced by the regiment.

在另一實施方式中,該至少一個多晶有機半導體包括選自化學式(III)表示的隨意地經取代的低聚雜並苯的電洞傳輸材料: 其中該兩個X部分(moiety)獨立地為O、S、Se、NH;並且R1-R8獨立地為H、烷基、氟烷基、烷氧基、芳基、雜芳基、三烷基矽基乙炔基、鹵素、芳基乙炔基、雜芳基乙炔基;並且n係0至10。在一較佳的實施方式中,該至少一個多晶有機半導體包括化學式(IV)表示的電洞傳輸材料: 其中在每一種情況下R’係獨立地選自C1-C10烷基、芳基或雜芳基,每個可隨意地被一或多個鹵素、氰基、烷基、或烷氧基基團取代。 In another embodiment, the at least one polycrystalline organic semiconductor comprises a hole transport material selected from the group consisting of randomly substituted oligoacene benzene represented by the formula (III): Wherein the two X moieties are independently O, S, Se, NH; and R 1 - R 8 are independently H, alkyl, fluoroalkyl, alkoxy, aryl, heteroaryl, tri Alkylmercaptoethynyl, halogen, arylethynyl, heteroarylethynyl; and n is 0 to 10. In a preferred embodiment, the at least one polycrystalline organic semiconductor comprises a hole transport material represented by the chemical formula (IV): Wherein in each case R' is independently selected from C 1 -C 10 alkyl, aryl or heteroaryl, each optionally being one or more halogen, cyano, alkyl, or alkoxy Replacement of the group.

在另一實施方式中,該至少一個多晶有機半導體包括選自化學式(V)表示的隨意地經取代的低聚雜並苯的電洞傳輸材料: 其中在每一種情況下X獨立地為O、S、Se、NH;R1-R8獨立地為H、烷基、氟烷基、烷氧基、芳基、雜芳基、三烷基矽基乙炔基、鹵素、芳基乙炔基、雜芳基乙炔基;並且n和n’獨立地為0至5。 In another embodiment, the at least one polycrystalline organic semiconductor comprises a hole transport material selected from the group consisting of randomly substituted oligoacene benzene represented by the formula (V): Wherein in each case X is independently O, S, Se, NH; R 1 - R 8 are independently H, alkyl, fluoroalkyl, alkoxy, aryl, heteroaryl, trialkyl fluorene Ethyl ethynyl, halogen, arylethynyl, heteroarylethynyl; and n and n' are independently from 0 to 5.

在一較佳的實施方式中,該至少一個多晶有機半導體包括選自化學式(VI)表示的隨意地經取代的低聚稠苯稠合的噻吩並噻吩的電洞傳輸材料: 其中R1和R2獨立地選自H、烷基、氟烷基、芳基、雜芳基、三烷基矽基乙炔基、芳基乙炔基和雜芳基乙炔基;並且n和n’獨立地為0,1或2。 In a preferred embodiment, the at least one polycrystalline organic semiconductor comprises a hole transporting material selected from the group consisting of randomly substituted oligomeric fused benzene fused thienothiophenes represented by the formula (VI): Wherein R 1 and R 2 are independently selected from the group consisting of H, alkyl, fluoroalkyl, aryl, heteroaryl, trialkyldecylethynyl, arylethynyl and heteroarylethynyl; and n and n' Independently 0, 1 or 2.

在另一實施方式中,該至少一個多晶有機半導體包括一電子傳輸材料,該電子傳輸材料包括隨意地經取代的伸芳基或雜伸芳基。隨意地經取代的伸芳基或雜伸芳基作為電子傳輸材料在本領域中是已知的,並且可以被體現,例如,以引用結合在此。 In another embodiment, the at least one polycrystalline organic semiconductor comprises an electron transporting material comprising randomly substituted aryl or heteroaryl groups. Optionally substituted aryl or heteroaryl groups are known in the art as electron transporting materials and can be embodied, for example, by reference.

在另一實施方式中,該至少一個多晶有機半導體包括選自化學式(VII)表示的苝二醯亞胺的電子傳輸材料: 其中R1和R2係獨立地選自一直鏈的、支鏈的、或環狀的烷基、芳基、雜芳基、烷基-芳基,或烷基-雜芳基之C1-C30有機基團,(可隨意地經一或多個鹵素、氰基、烷基或烷氧基取代)。見,例如,Nature Mater.,2009,8,952。 In another embodiment, the at least one polycrystalline organic semiconductor comprises an electron transport material selected from the group consisting of indenyl imine represented by the formula (VII): Wherein R 1 and R 2 are independently selected from the group consisting of a straight chain, a branched chain, or a cyclic alkyl group, an aryl group, a heteroaryl group, an alkyl-aryl group, or an alkyl-heteroaryl group C 1 - a C 30 organic group (optionally substituted with one or more halogen, cyano, alkyl or alkoxy groups). See, for example, Nature Mater. , 2009, 8, 952.

在另一實施方式中,該至少一個多晶有機半導體包括選自化學式(VIII)表示的萘二醯亞胺的電子傳輸材料: 其中hAr係雜芳基;R1和R1’係獨立地選自一直鏈的、支鏈的、或環狀的烷基、芳基、雜芳基、烷基-芳基、或烷基-芳雜基基團之C1-C30有機基團,(可隨意地經一或多個鹵素、氰基、烷基或烷氧基基團取代);R2、R3和R4獨立地選自氫、鹵素,或C1-C30有機基團獨立地選自氰基,直鏈的、支鏈的、或環狀的烷基、氟烷基、芳基、雜芳基、烷基-芳基、醯基-雜芳基和烷基-雜芳基基團(可隨意地經一或多個氟、氰基、烷基、烷氧基基團取代)。 In another embodiment, the at least one polycrystalline organic semiconductor comprises an electron transport material selected from the group consisting of naphthalene diimine represented by the formula (VIII): Wherein hAr is heteroaryl; R 1 and R 1 ' are each independently selected from a straight chain, branched, or cyclic alkyl, aryl, heteroaryl, alkyl-aryl, or alkyl- a C 1 -C 30 organic group of an arylalkyl group (optionally substituted with one or more halogen, cyano, alkyl or alkoxy groups); R 2 , R 3 and R 4 independently An organic group selected from the group consisting of hydrogen, halogen, or C 1 -C 30 is independently selected from the group consisting of a cyano group, a linear, branched, or cyclic alkyl group, a fluoroalkyl group, an aryl group, a heteroaryl group, an alkyl group. An aryl, fluorenyl-heteroaryl and alkyl-heteroaryl group (optionally substituted with one or more fluorine, cyano, alkyl, alkoxy groups).

本文所體現的結晶或半結晶的電洞傳輸材料的進一步的實例包括並五苯或取代的並五苯衍生物,如TIPS並五苯(6,13-雙(三異丙基-矽基乙炔基)並五苯)、紅熒烯或紅熒烯衍生物,金屬酞菁,例如銅酞菁或鋅酞菁,或區域規則烷基聚噻吩,其結構如下所示。 Further examples of crystalline or semi-crystalline hole transport materials embodied herein include pentacene or substituted pentacene derivatives such as TIPS pentacene (6,13-bis(triisopropyl-decylacetylene) A pentacene), a rubrene or a rubrene derivative, a metal phthalocyanine such as copper phthalocyanine or zinc phthalocyanine, or a regioregular alkyl polythiophene, the structure of which is shown below.

非晶聚合物有機材料 Amorphous polymer organic material

在一實施方式中,該組合物進一步包括至少一種非晶聚合物有機半導體或非導電的材料。非晶聚合物有機半導體材料可以是一已知的化合物,如藉由引用結合於此的那些。在另一實施方式中,該組合物不包 括非晶聚合物有機材料。在另一實施方式中,非晶聚合物有機半導體或非導電的材料係一聚合物黏合劑。 In one embodiment, the composition further comprises at least one amorphous polymer organic semiconductor or a non-conductive material. The amorphous polymer organic semiconductor material can be a known compound, such as those incorporated by reference. In another embodiment, the composition does not comprise Including amorphous polymer organic materials. In another embodiment, the amorphous polymer organic semiconductor or non-conductive material is a polymeric binder.

在一實施方式中,該至少一種非晶聚合物有機材料包括一聚合物,該聚合物的主鏈或聚合物骨架包括隨意地經取代的芳基胺單元。非晶聚合物有機材料可以選自,例如,側鏈包括三芳基胺或咔唑單元的聚合物。 In one embodiment, the at least one amorphous polymeric organic material comprises a polymer, the backbone or polymer backbone of the polymer comprising randomly substituted arylamine units. The amorphous polymer organic material may be selected, for example, from a polymer whose side chain includes a triarylamine or carbazole unit.

在一實施方式中,該至少一種非晶聚合物有機材料包括化學式(IX)表示的亞單元的材料: 其中Ra在每一種情況下是獨立地選自C1-C10烷基,隨意地經取代的芳基或雜芳基,k係從0到5的整數,並且n可以是,例如,從10到1000,作為在聚合物化學領域中的技術人員已知的統計平均值。數目平均分子量可以是,例如,2,500 g/mol至25,000 g/mol,並且n的值可從重複單元的數目平均分子量和分子量來確定。 In one embodiment, the at least one amorphous polymer organic material comprises a material of a subunit represented by the chemical formula (IX): Wherein R a is, in each case, independently selected from C 1 -C 10 alkyl, optionally substituted aryl or heteroaryl, k is an integer from 0 to 5, and n can be, for example, from 10 to 1000 as a statistical average known to those skilled in the art of polymer chemistry. The number average molecular weight may be, for example, 2,500 g/mol to 25,000 g/mol, and the value of n may be determined from the number average molecular weight and molecular weight of the repeating unit.

在一些實施方式中,該至少一種非晶聚合物有機材料可以進一步包括至少一種選自隨意地經取代的聚(苯乙烯)、聚(α-甲基苯乙烯)和聚(乙烯基聯苯),或聚(甲基丙烯酸甲酯)中的非晶聚合物。 In some embodiments, the at least one amorphous polymer organic material may further include at least one selected from the group consisting of randomly substituted poly(styrene), poly(α-methylstyrene), and poly(vinylbiphenyl). , or an amorphous polymer in poly(methyl methacrylate).

在其他實施方式中,非晶聚合物有機材料係處於 共聚物、嵌段聚合物、或者兩種或更多種聚合物的混合物的形式。在另外的實施方式中,聚合物係直鏈或支鏈的,包括星形聚合物、梳狀聚合物、刷狀聚合物、樹枝狀聚合物和樹枝狀化合物。 In other embodiments, the amorphous polymer organic material is in A copolymer, a block polymer, or a mixture of two or more polymers. In other embodiments, the polymer is linear or branched and includes star polymers, comb polymers, brush polymers, dendrimers, and dendrimers.

摻雜劑 Dopant

本文所體現的摻雜劑可以為p-型摻雜劑或n-型摻雜劑。在一實施方式中,摻雜劑係包括一過渡金屬的p-型摻雜劑。在另一實施方式中,摻雜劑係包含一金屬的n-型摻雜劑。本文所體現的摻雜劑可以包括已知的化合物。在一實施方式中,摻雜劑的特徵在於藉由選擇性分離(例如,摻雜劑分子趨向於在組合物中的特定位置分離,如在薄膜內的晶界)。 The dopants embodied herein may be p-type dopants or n-type dopants. In one embodiment, the dopant comprises a transition metal p-type dopant. In another embodiment, the dopant comprises a metallic n-type dopant. The dopants embodied herein may include known compounds. In one embodiment, the dopant is characterized by selective separation (eg, dopant molecules tend to separate at specific locations in the composition, such as grain boundaries within the film).

本發明的實施方式設想包括範圍廣泛的摻雜劑材料。在一實施方式中,摻雜劑係一中性分子摻雜劑,這係說,它不是一種兩性離子型或離子型分子。 Embodiments of the invention contemplate a wide range of dopant materials. In one embodiment, the dopant is a neutral molecular dopant, which is said to be not a zwitterionic or ionic molecule.

在許多實施方式中,摻雜劑係p-型摻雜劑。在一實施方式中,該p-型摻雜劑係一強氧化劑,例如,已知的摻雜劑四氟TCNQ(四氰基對苯醌二甲烷)。 In many embodiments, the dopant is a p-type dopant. In one embodiment, the p-type dopant is a strong oxidant, such as the known dopant tetrafluoro-TCNQ (tetracyano-p-benzoquinodimethane).

在一些實施方式中,該p-型摻雜劑的材料係過渡金屬錯合物,如在WO 2008/061517中揭露的那些,例如,其包括如下所示的結構1至6: 其中M係過渡金屬,較佳的是Cr、Mo或W,並且R1-R6獨立地選自H、取代的或未取代的C1-C10烷基、C1-C10-噻吩基、全氟化烷基、苯基、甲苯基、N,N-二甲基胺基苯基、茴香基、苯甲醯基、CN或COOR7,其中R7係C1-C5-烷基;X係S、Se、NR10,其中R10為烷基、全氟烷基、環烷基、芳基、雜芳基、乙醯基或CN。 In some embodiments, the material of the p-type dopant is a transition metal complex, such as those disclosed in WO 2008/061517, for example, including structures 1 through 6 as shown below: Wherein M is a transition metal, preferably Cr, Mo or W, and R 1 - R 6 are independently selected from H, substituted or unsubstituted C 1 -C 10 alkyl, C 1 -C 10 -thienyl , perfluorinated alkyl, phenyl, tolyl, N,N-dimethylaminophenyl, anisyl, benzhydryl, CN or COOR 7 wherein R 7 is C 1 -C 5 -alkyl X system S, Se, NR 10 wherein R 10 is alkyl, perfluoroalkyl, cycloalkyl, aryl, heteroaryl, ethenyl or CN.

在一實施方式中,過渡金屬p-型摻雜劑包括化學式(X)表示的錯合物: 其中M係Cr、Mo或W,並且R1-R6獨立地選自C1-C30氟化烷基、氰基、或隨意地經取代的芳基、雜芳基。此實施方式包括較佳的p-型摻雜劑Mo(tfd)3,其結 構如下所示: In one embodiment, the transition metal p-type dopant comprises a complex represented by formula (X): Wherein M is Cr, Mo or W, and R 1 -R 6 are independently selected from C 1 -C 30 fluorinated alkyl, cyano, or optionally substituted aryl, heteroaryl. This embodiment includes a preferred p-type dopant Mo(tfd) 3 having the structure shown below:

在一實施方式中,該至少一種摻雜劑係已知的n-型摻雜劑。在一實施方式中,已知的n-型摻雜劑使得組合物的導電性和/或電子遷移率可測量,該組合物包括至少一種含結晶區域和位於界面處的晶界的多晶有機半導體,和以非常大幅增加的至少一種摻雜物,較佳的是以至少因數二增加,或較佳的是以至少因數10增加。 In one embodiment, the at least one dopant is a known n-type dopant. In one embodiment, a known n-type dopant allows the conductivity and/or electron mobility of the composition to be measured, the composition comprising at least one polycrystalline organic comprising a crystalline region and a grain boundary at the interface The semiconductor, and at least one dopant with a very large increase, is preferably increased by at least a factor of two, or preferably by at least a factor of 10.

在另一實施例中,n-型摻雜劑的電離能,如使用光電子能譜測定,是小於大約3.5eV。 In another embodiment, the ionization energy of the n-type dopant, as determined using photoelectron spectroscopy, is less than about 3.5 eV.

該摻雜劑可以是,例如,n-型摻雜劑,包括鹼金屬、過渡金屬、鑭系金屬或錒系金屬。 The dopant can be, for example, an n-type dopant including an alkali metal, a transition metal, a lanthanide metal or a lanthanide metal.

在另一實施方式中,摻雜劑包括至少一種以化學式(XI-XIII)表示的過渡金屬夾心錯合物: In another embodiment, the dopant comprises at least one transition metal sandwich complex represented by the formula (XI-XIII):

其中,Mvii係錳或錸;Mviii係鐵、釕或鋨;Mix係銠或銥;每個Rcp和Rbz獨立地選自氫或隨意地經取代的 C1-C12烷基基團或C1-C12苯基基團;x和x’均獨立地選自從1至5的整數;而且y和y”均獨立地選自從1-5的整數,並且y’係從1-6的整數。 Wherein M vii is manganese or ruthenium; M viii is iron, ruthenium or osmium; M ix is ruthenium or osmium; each R cp and R bz are independently selected from hydrogen or optionally substituted C 1 -C 12 alkyl a group or a C 1 -C 12 phenyl group; x and x' are each independently selected from an integer from 1 to 5; and y and y" are each independently selected from an integer from 1 to 5, and y' is from 1 An integer of -6.

在另一實施方式中,摻雜劑包括至少一種以化學式(XIV-XVI)表示的過渡金屬夾心錯合物: 其中,Mvii係錳或錸;Mviii係鐵、釕或鋨;Mix係銠或銥;每個Rcp、Rbz和Rd獨立地選自氫或隨意地經取代的C1-C12烷基基團或C1-C12苯基基團;x和x’均獨立地選自從1至5的整數;而且y和y”均獨立地選自從1-5的整數,並且y’係從1-6的整數。 In another embodiment, the dopant comprises at least one transition metal sandwich complex represented by the chemical formula (XIV-XVI): Wherein M vii is manganese or ruthenium; M viii is iron, ruthenium or osmium; M ix is ruthenium or osmium; each R cp , R bz and R d are independently selected from hydrogen or optionally substituted C 1 -C a 12 alkyl group or a C 1 -C 12 phenyl group; x and x' are each independently selected from an integer from 1 to 5; and y and y" are each independently selected from an integer from 1 to 5, and y' An integer from 1-6.

在另一實施方式中,該至少一種摻雜劑包括,如那些在J.Am.Chem.Soc.,2010,132,8852中揭露的摻雜劑,如由化學式(XVII)表示的N-DMBI衍生物: 其中R1,R2獨立地選自烷基、芳基或雜芳基。 In another embodiment, the at least one dopant comprises a dopant as disclosed in J. Am. Chem. Soc. , 2010, 132, 8852, such as N-DMBI represented by chemical formula (XVII) derivative: Wherein R 1 , R 2 are independently selected from alkyl, aryl or heteroaryl.

本實施方式的獨特摻雜的另一作用可以是縮小不同的薄膜電晶體之間的閾值電壓波動。因此,藉由縮小閾值電壓波動,以相似的方式製造的薄膜電晶體可以提供更一致的電學特性。在一些實施方式中,據信,可以看出此縮小的閾值電壓,例如,一個7級環形振盪器的改進的性能。在一實施方式中,以相同的方式製造的兩個電晶體之間的波動係在約±5%、±4%、±3%、±2%、±1%、±0.1%、±0.01%、±0.001%或±0.0001%的範圍內。 Another effect of the unique doping of this embodiment may be to reduce threshold voltage fluctuations between different thin film transistors. Thus, thin film transistors fabricated in a similar manner can provide more consistent electrical characteristics by reducing threshold voltage fluctuations. In some embodiments, it is believed that this reduced threshold voltage can be seen, for example, an improved performance of a 7-stage ring oscillator. In one embodiment, the fluctuation between the two transistors fabricated in the same manner is about ± 5%, ± 4%, ± 3%, ± 2%, ± 1%, ± 0.1%, ± 0.01%. Within ±0.001% or ±0.0001%.

摻雜劑可在組合物中以有效的濃度存在,從而引起材料或其中併入該材料的裝置的電學特性的所希望的變化。在一實施方式中,摻雜劑存在的濃度係為該組合物的從約0.001重量%至約2.0重量%。在另一實施方式中,摻雜劑存在的濃度係為該組合物的從約0.0001重量%至約2.0重量%。在另一實施方式中,摻雜劑存在的量係為該組合物的小於2.0重量%。 The dopant can be present in the composition at an effective concentration to cause a desired change in the electrical properties of the material or device in which the material is incorporated. In one embodiment, the dopant is present at a concentration of from about 0.001% to about 2.0% by weight of the composition. In another embodiment, the dopant is present at a concentration of from about 0.0001% to about 2.0% by weight of the composition. In another embodiment, the dopant is present in an amount of less than 2.0% by weight of the composition.

在一實施方式中,摻雜劑係至少一種p-型摻雜劑,其半導體或組合物的電洞遷移率係至少0.2 cm2/V.s,至少0.5 cm2/V.s,或至少1.0 cm2/V.s。在另一實施方式中,摻雜劑係n-型摻雜劑,半導體或組合物的電 子遷移率係至少0.2 cm2/V.s,或至少0.5 cm2/V.s,或至少1.0 cm2/V.s。 In one embodiment, the dopant is at least one p-type dopant, and the semiconductor or composition thereof has a hole mobility of at least 0.2 cm 2 /V. s, at least 0.5 cm 2 /V. s, or at least 1.0 cm 2 /V. s. In another embodiment, the dopant is an n-type dopant, and the semiconductor or composition has an electron mobility of at least 0.2 cm 2 /V. s, or at least 0.5 cm 2 /V. s, or at least 1.0 cm 2 /V. s.

在另一實施方式中,摻雜劑的濃度係以這樣的量來將離散的裝置參數縮小至少20%,或至少30%,或至少40%,或至少50%,或至少50%或更多。在另一實施方式中,摻雜劑的濃度係以這樣的量,使得將組合物或裝置的閾值電壓減少至少50%,或至少60%或至少70%,相比缺乏摻雜劑的相同的組合物或裝置。 In another embodiment, the concentration of the dopant is such that the discrete device parameters are reduced by at least 20%, or at least 30%, or at least 40%, or at least 50%, or at least 50% or more. . In another embodiment, the concentration of the dopant is such that the threshold voltage of the composition or device is reduced by at least 50%, or at least 60% or at least 70%, compared to the lack of dopants. A composition or device.

在一些實施方式中,該至少一種摻雜劑包括兩種或更多種摻雜劑。在一些實施方式中,該組合物中存在的摻雜劑的係1、2、3、4或5種摻雜劑。該等摻雜劑可以是本文所揭露的,或除在本文所揭露的之外的任何摻雜劑,另外還有在本領域中已知的另外的摻雜劑的組合。 In some embodiments, the at least one dopant comprises two or more dopants. In some embodiments, the dopants present in the composition are 1, 2, 3, 4 or 5 dopants. The dopants can be any of the dopants disclosed herein, or in addition to those disclosed herein, in addition to additional combinations of dopants known in the art.

晶界 Grain boundaries

在一實施方式中,該組合物包括至少一種多晶有機半導體,其包括結晶區域和位於界面處的晶界。在另一實施方式中,該組合物可以進一步包括一非晶聚合物有機化合物。晶界可以是在兩個晶粒或兩個結晶區域之間的界面,或者可以是在結晶區域和非晶聚合物有機化合物之間的界面。 In one embodiment, the composition includes at least one polycrystalline organic semiconductor comprising a crystalline region and a grain boundary at the interface. In another embodiment, the composition may further comprise an amorphous polymer organic compound. The grain boundary may be an interface between two crystal grains or two crystal regions, or may be an interface between the crystal region and an amorphous polymer organic compound.

結晶區域 Crystallized area

本實施方式中的結晶區域包括一有機半導體材料。在一些實施方式中,結晶區域基本上不含除該有機半導體材料以外的成分。在其他實施方式中,結晶區域係95%、98%、99%、99.5%、99.9%或99.99%的不含除該有機半導體材料以外的成分。在一些實施方式中,除有機半導體材料以外的成分,例如,摻雜劑或非晶聚合物有機化合物可以存在於結晶區域內。在一實施方式中,當摻雜劑存在於結晶區域內時,它係以低於在晶界上摻雜劑的濃度的濃度存在。 The crystalline region in this embodiment includes an organic semiconductor material. In some embodiments, the crystalline region is substantially free of components other than the organic semiconductor material. In other embodiments, the crystalline region is 95%, 98%, 99%, 99.5%, 99.9%, or 99.99% free of components other than the organic semiconductor material. In some embodiments, a component other than the organic semiconductor material, for example, a dopant or an amorphous polymer organic compound, may be present in the crystalline region. In one embodiment, when the dopant is present in the crystalline region, it is present at a concentration that is lower than the concentration of the dopant at the grain boundary.

在另一實施方式中,結晶區域可以包括對齊的聚結晶區域。 In another embodiment, the crystalline regions can include aligned polycrystalline regions.

製造薄膜的方法 Method of manufacturing a film

製造用於OTFT的薄膜的方法列舉和設想如下。在至少一個實施方式中,提供了一種用於形成至少一種固體薄膜的方法,包括:提供至少一種液體先質組合物,該先質組合物係藉由至少混合下列成分而形成:(i)至少一種適合形成有機多晶相的電洞或電子傳導有機材料,(ii)至少一種中性分子摻雜劑,和(iii)至少一種溶劑;從該液體先質組合物形成至少一種固體薄膜,其中該固體薄膜包括該至少一種有機多晶相,其包括晶界,並且其中該摻雜劑在晶界處富集。在一些實施方式中,該液體先質另外還包括至少一種適合形成有機非晶相的電洞或電子傳導有機材料。 A method of manufacturing a film for an OTFT is enumerated and conceived as follows. In at least one embodiment, a method for forming at least one solid film is provided, comprising: providing at least one liquid precursor composition formed by mixing at least the following components: (i) at least a hole or electron conducting organic material suitable for forming an organic polycrystalline phase, (ii) at least one neutral molecular dopant, and (iii) at least one solvent; forming at least one solid film from the liquid precursor composition, wherein The solid film includes the at least one organic polycrystalline phase comprising a grain boundary, and wherein the dopant is concentrated at the grain boundary. In some embodiments, the liquid precursor further comprises at least one hole or electron conducting organic material suitable for forming an organic amorphous phase.

在另一實施方式中,該方法包括:提供一種油墨,該油墨係藉由至少混合下列成分而形成:(i)至少一種適合形成多晶相的有機半導體,(ii)至少一種中性分子摻雜劑,和(iii)至少一種溶劑;從該油墨形成至少一個固體薄膜,其中該固體薄膜包括該至少一種有機半導體多晶相,其包括晶界,並且其中該摻雜劑沒有均勻地分佈在整個固體薄膜。本實施方式中的油墨,可以藉由另外混合至少一種有機材料而形成,該有機材料係有機半導體多晶相的一聚合物黏合劑。 In another embodiment, the method comprises: providing an ink formed by at least mixing the following components: (i) at least one organic semiconductor suitable for forming a polycrystalline phase, (ii) at least one neutral molecular dopant a dopant, and (iii) at least one solvent; forming at least one solid film from the ink, wherein the solid film comprises the at least one organic semiconductor polycrystalline phase comprising a grain boundary, and wherein the dopant is not uniformly distributed The entire solid film. The ink in the present embodiment can be formed by additionally mixing at least one organic material which is a polymer binder of the organic semiconductor polycrystalline phase.

在一實施方式中,液體先質係藉由將至少一種多晶有機半導體材料溶解、懸浮或以其他方式與在一或多種有機溶劑中的至少一種摻雜劑合併而形成。可隨意地,非晶聚合物有機化合物,或聚合物黏合劑,其可以是半導體材料或非導電材料,也可併入該液體先質中。可以設想,不同的材料即(i)小分子半導體,(ii)非晶聚合物有機化合物或聚合物黏合劑,和/或(iii)摻雜劑分子可以製備成單獨的溶液,其在稍後的階段中混合以形成最終的共混溶液。所涉及的溶劑一般都超過一種:一種為任選的聚合物黏合劑和小分子半導體,並且另一種不同的為摻雜劑。可以使用對每個任選的共混組分具有三種不同的溶劑。另外的化合物可併入該液體先質。 In one embodiment, the liquid precursor is formed by combining, suspending, or otherwise combining at least one polycrystalline organic semiconductor material with at least one dopant in one or more organic solvents. Optionally, an amorphous polymer organic compound, or a polymeric binder, which may be a semiconducting material or a non-conductive material, may also be incorporated into the liquid precursor. It is contemplated that different materials, ie (i) small molecule semiconductors, (ii) amorphous polymer organic compounds or polymer binders, and/or (iii) dopant molecules can be prepared as separate solutions, which are later The stages are mixed to form the final blend solution. There are generally more than one solvent involved: one is an optional polymer binder and a small molecule semiconductor, and the other is a dopant. It is possible to use three different solvents for each optional blending component. Additional compounds can be incorporated into the liquid precursor.

在一實施方式中,沈積係藉由已知的技術,例如溶解過程,在該過程中,將形成膜的材料如聚合物溶 於通常的有機溶劑來形成該液體先質,然後藉由旋轉塗覆或噴墨印刷這樣的溶液到基片的方法來實現。 In one embodiment, the deposition is carried out by known techniques, such as a dissolution process, in which the material forming the film, such as a polymer, is dissolved. The liquid precursor is formed in a usual organic solvent and then carried out by spin coating or ink jet printing of such a solution to a substrate.

在一實施方式中,該固體薄膜係藉由蒸發來自於沈積的液體先質的該至少一種有機溶劑而形成的。任選的附加液體化合物,如果存在於液體先質中,可能會被蒸發或固化,從而形成固體薄膜。該液體先質通常是沈積在固體表面上,例如基片。該基片可能已經包含其他塗層,因為該固體基片最終可以採取多種物理形式。形式包括,例如,用於裝置和場效應電晶體的,包括底閘極頂接觸型和底接觸頂柵場型場效應電晶體。該等可以藉由在有機電子裝置領域中的普通技術人員眾所周知的那些用於合成有機電子裝置的標準技術來製造,如本文提及的各種先前技術部分示出,並藉由引用併入。 In one embodiment, the solid film is formed by evaporating the at least one organic solvent from the deposited liquid precursor. The optional additional liquid compound, if present in the liquid precursor, may be evaporated or solidified to form a solid film. The liquid precursor is typically deposited on a solid surface, such as a substrate. The substrate may already contain other coatings because the solid substrate can ultimately take a variety of physical forms. Forms include, for example, for devices and field effect transistors, including bottom gate top contact type and bottom contact top gate field type field effect transistors. These may be fabricated by standard techniques for synthesizing organic electronic devices well known to those of ordinary skill in the art of organic electronic devices, as shown in various prior art portions referred to herein, and incorporated by reference.

本實施方式中也考慮油墨。在一些實施方式中,油墨可以包括液體先質。在另一實施方式中,該油墨在一種方法中使用,該方法包括提供一種油墨,該油墨係藉由至少混合下列成分而形成:(i)至少一種適合形成多晶相的有機半導體,(ii)可隨意地,至少一種有機材料,其是有機半導體多晶相的一聚合物黏合劑,(iii)至少一種分子摻雜劑,和(iv)至少一種溶劑;從該油墨形成至少一種固體薄膜,其中該固體薄膜包括該至少一種有機半導體多晶相,其包括晶界,並且其中該摻雜劑沒有均勻地分佈在整個固體薄膜。 Ink is also considered in the present embodiment. In some embodiments, the ink can include a liquid precursor. In another embodiment, the ink is used in a method comprising providing an ink formed by at least mixing the following components: (i) at least one organic semiconductor suitable for forming a polycrystalline phase, (ii) Optionally, at least one organic material, which is a polymer binder of an organic semiconductor polycrystalline phase, (iii) at least one molecular dopant, and (iv) at least one solvent; forming at least one solid film from the ink Wherein the solid film comprises the at least one organic semiconductor polycrystalline phase comprising grain boundaries, and wherein the dopant is not uniformly distributed throughout the solid film.

在一實施方式中,有機半導體係本文所揭露的多晶有機半導體材料。在一實施方式中,該至少一種有機材料(有機半導體多晶相的一聚合物黏合劑)係一適合形成有機非晶相的電洞或電子傳導有機材料,或者它係一非晶聚合物非導電材料,或者它係一非晶聚合物有機半導體。在一實施方式中,該摻雜劑包括本文所體現的摻雜劑。在另一實施方式中,方法包括該至少一種有機材料,其是有機半導體多晶相的一聚合物黏合劑。 In one embodiment, the organic semiconductor is a polycrystalline organic semiconductor material as disclosed herein. In one embodiment, the at least one organic material (a polymer binder of the organic semiconductor polycrystalline phase) is a hole or an electron conducting organic material suitable for forming an organic amorphous phase, or it is an amorphous polymer non- A conductive material, or it is an amorphous polymer organic semiconductor. In an embodiment, the dopant comprises a dopant as embodied herein. In another embodiment, the method comprises the at least one organic material which is a polymeric binder of the organic semiconductor polycrystalline phase.

工作實例 Working example 實例1.液體先質和固體薄膜的製造 Example 1. Production of liquid precursors and solid films

向含有2,8-二氟-5,11-雙(三乙基矽基乙炔基)雙噻吩蒽(diF-TESADT)和在四氫萘中的非晶p-型聚合物聚(三芳基胺)(PTAA)聚合物的有機共混物中,加入一定量的溶於氯苯的已知的p-型摻雜劑有機金屬錯合物Mo三-[1,2-雙(三氟甲基)乙烷-1,2-二硫雜環戊烯(dithiolene)](MoTDT)。摻雜濃度藉由控制添加到純淨半導體溶液的摻雜劑溶液中固體成分的濃度來調節。將該溶液沈積到基片上,並藉由蒸發溶劑形成複合膜。 To an amorphous p-type polymer poly(triarylamine) containing 2,8-difluoro-5,11-bis(triethyldecylethynyl)dithiophene (diF-TESADT) and in tetrahydronaphthalene An organic blend of (PTAA) polymer, adding a certain amount of a known p-type dopant organometallic complex Mo tri-[1,2-bis(trifluoromethyl) dissolved in chlorobenzene Ethane-1,2-dithiolene] (MoTDT). The doping concentration is adjusted by controlling the concentration of solid components in the dopant solution added to the neat semiconductor solution. The solution was deposited onto a substrate and a composite film was formed by evaporating the solvent.

實例2.基於底閘極底接觸型電晶體的環形振盪器的製 造 Example 2. Making of a ring oscillator based on a bottom gate contact type transistor Make

使用聚乙烯苯酚(PVPh)為閘極介電質採用底閘極底接觸型裝置體系結構的積體電路和一定數目的分立電晶體在圖5中示出,其中採用基於聚乙烯吡咯烷酮(PVP,即介電質)通用結構的電晶體來構建反轉和環形振盪器電路。這裡的SAM係指自組裝的單層五氟苯硫醇(PFBT),用作接觸功函數調節劑,以改善從金(Au)電極到電洞傳輸小分子HOMO能級的電洞注入。 An integrated circuit using a polyethylene phenol (PVPh) as a gate dielectric using a bottom gate contact type device architecture and a number of discrete transistors are shown in Figure 5, using polyvinylpyrrolidone (PVP, That is, dielectric) a general-purpose transistor to construct a reverse and ring oscillator circuit. SAM here refers to self-assembled monolayer pentafluorobenzenethiol (PFBT) used as a contact work function modifier to improve hole injection from the gold (Au) electrode to the hole transporting small molecule HOMO levels.

詳細製作過程在其他地方有描述(見,例如,G. H. Gelinck等人,Nature Mater.3,106(2004))。簡而言之,電路結構由金電極、連接體和一圖案化以形成垂直互連(通孔)的300 nm的聚乙烯吡咯烷酮(PVP)層。源極和汲極在半導體沈積前使用五氟苯硫醇溶液(PFBT)處理以改善電荷注入和通道內部材料結晶性(見,例如,D. J. Gundlach等人,Nature Mater.7,216(2008))。半導體共混過程藉由旋轉塗覆,接著在N2中100℃下退火150 sec進行。為了獲得最佳性能,積體電路進一步在真空中(10-5 mbar)100℃下退火30 min。電學測量在真空中室溫下黑暗中進行。從測得的振盪頻率(fosc)使用τd=(1/2nfosc)計算出各環形振盪器的階段延遲時間(τd),其中n係反相階段的數目。電荷載子遷移率係使用PVP層的幾何電容(Ci)為10 nF/cm2從傳遞特徵計算的,如經阻抗測量測 定的。 The detailed production process is described elsewhere (see, for example, GH Gelinck et al., Nature Mater. 3 , 106 (2004)). Briefly, the circuit structure consists of a gold electrode, a connector, and a 300 nm polyvinylpyrrolidone (PVP) layer patterned to form vertical interconnects (vias). The source and drain electrodes are treated with pentafluorobenzenethiol solution (PFBT) prior to semiconductor deposition to improve charge injection and channel material crystallinity (see, for example, DJ Gundlach et al, Nature Mater. 7, 216 (2008)). The semiconductor blending process was carried out by spin coating followed by annealing at 100 ° C for 150 sec in N 2 . For best performance, the integrated circuit was further annealed in vacuum (10 -5 mbar) at 100 ° C for 30 min. Electrical measurements were carried out in the dark at room temperature in vacuo. The phase delay time (τ d ) of each ring oscillator is calculated from the measured oscillation frequency (f osc ) using τ d =(1/2nf osc ), where n is the number of inversion phases. The charge carrier mobility was calculated from the transfer characteristics using a geometric capacitance (C i ) of the PVP layer of 10 nF/cm 2 as determined by impedance measurement.

實例3.頂閘極底接觸型電晶體的製造 Example 3. Fabrication of a top gate bottom contact transistor

頂閘極底接觸型電晶體在玻璃基片上製備,藉由蒸發金源-漏電極(S-D)並使用自組裝的單層五氟苯硫醇(PFBT)作為功函數調節劑進行處理。電晶體通道的長度和寬度分別在20 μm-100 μm和0.5 mm-2.0 mm之間變化。該半導體由diF-TESADT和PTAA的共混物構成,具有或不具有摻雜劑分子。閘極介電質由一個900 nm厚的氟聚合物CYTOP層構成,其也直接旋塗到共混半導體上並在氮氣氣氛中100℃下退火5分鐘。然後使用蔭罩直接在CYTOP層上熱蒸發鋁形成柵電極。 A top gate bottom contact transistor was fabricated on a glass substrate by evaporation of a gold source-drain electrode (S-D) and using self-assembled monolayer pentafluorobenzene mercaptan (PFBT) as a work function modifier. The length and width of the transistor channel vary between 20 μm and 100 μm and between 0.5 mm and 2.0 mm, respectively. The semiconductor consists of a blend of diF-TESADT and PTAA with or without dopant molecules. The gate dielectric consists of a 900 nm thick fluoropolymer CYTOP layer which is also spin coated directly onto the blended semiconductor and annealed at 100 ° C for 5 minutes in a nitrogen atmosphere. The gate electrode is then thermally evaporated using a shadow mask directly on the CYTOP layer.

實例4裝置形態 Example 4 device form

使用偏振光顯微鏡(PLM)對所形成的複合膜的形態進行了研究。沒有觀察到任何複合膜中結晶區域中斷的跡象。對電晶體結構的摻雜的薄膜進行電學測量,顯示了裝置的電學特性在摻雜時顯著變化。例如使用不同量的MoTDT對薄膜進行摻雜時,發現電晶體的閾值電壓向正的閘極電壓(即接近零伏柵偏壓)移動,這係一比較希望的特性。後者的觀察最有可能表示隨著摻雜濃度的增加半導體/介電質界面的陷阱(trap)密度減少。 The morphology of the formed composite membrane was investigated using a polarizing microscope (PLM). No signs of disruption of the crystalline regions in any of the composite membranes were observed. Electrical measurements of the doped film of the transistor structure showed that the electrical properties of the device varied significantly during doping. For example, when a film is doped with a different amount of MoTDT, it is found that the threshold voltage of the transistor moves toward a positive gate voltage (i.e., near zero volt gate bias), which is a desirable characteristic. The latter observation is most likely to indicate a decrease in the trap density of the semiconductor/dielectric interface as the doping concentration increases.

實例5.確定費米能級的移動 Example 5. Determining the movement of the Fermi level

接下來,研究了隨摻雜濃度的增加對半導體共混膜的費米能級(EF)的移動的測量。其使用紫外光電子能譜(UPS)方法完成。得到的結果在圖1中再現,並沒有表現出任何傳統摻雜的強信號,即隨著MoTDT濃度的增加而費米能級發生移動。該等結果進一步量化列於表1中。 Next, the measurement of the shift of the Fermi level (EF) of the semiconductor blend film with increasing doping concentration was investigated. It is done using an ultraviolet photoelectron spectroscopy (UPS) method. The results obtained are reproduced in Figure 1 and do not exhibit any strong signal of conventional doping, i.e., the Fermi level shifts as the MoTDT concentration increases. These results are further quantified as listed in Table 1.

實例6.得到不同濃度MoTDT摻雜的diF-TESADT:PTAA共混電晶體的實測電學參數 Example 6. Obtaining the measured electrical parameters of different concentrations of MoTDT doped diF-TESADT: PTAA blended crystals

接下來,得到不同MoTDT摻雜濃度(1 wt%、0.5 wt%、0.1 wt%和0 wt%)的diF-TESADT:PTAA共混電晶體的電學參數。假設閘極幾何電容為1.2 nF/cm2得到了該等參數。這裡W和L分別是通道的寬度和長度,而μlin和μsat代表相同裝置求出的線性及飽和遷移率。正如表2中總結的,觀察到隨著MoTDT濃度的增加,甚至高達1 wt%的摻雜濃度,共混電晶體的閾值電壓(VT)降低,同時保持相對高的電洞遷移率。該等結果進一步在圖2中示出。 Next, electrical parameters of diF-TESADT:PTAA blended crystals with different MoTDT doping concentrations (1 wt%, 0.5 wt%, 0.1 wt%, and 0 wt%) were obtained. These parameters are obtained assuming a gate geometry capacitance of 1.2 nF/cm 2 . Where W and L are the width and length of the channel, respectively, and μ lin and μ sat represent the linear and saturated mobility found by the same device. As summarized in Table 2, it was observed that as the MoTDT concentration increased, even up to 1 wt% of the doping concentration, the threshold voltage (VT) of the blended transistor decreased while maintaining relatively high hole mobility. These results are further illustrated in Figure 2.

實例7.摻雜對陷阱失活溫度的影響 Example 7. Effect of doping on trap deactivation temperature

為了研究摻雜對陷阱失活的影響,進行了隨溫度變化的測量並求出電洞傳輸活化能。結果在圖3中示出並且表明摻雜和未摻雜裝置中的電洞傳輸機制似乎是不同的。具體地,未摻雜裝置的電洞輸送表現出兩種不同方式,一個在低溫(T<120 K)下觀察到,一個在較高溫度(T>120 K)下觀察到。在摻雜樣品的情況下,在整個溫度範圍內呈現單一的活化能並且樣品在所研究的整個溫度範圍內一直呈現高遷移率。 In order to study the effect of doping on trap deactivation, measurements with temperature were measured and the activation energy of the hole transport was determined. The results are shown in Figure 3 and show that the hole transport mechanisms in the doped and undoped devices appear to be different. Specifically, the hole transport of the undoped device exhibited two different modes, one observed at low temperatures (T < 120 K) and one observed at higher temperatures (T > 120 K). In the case of a doped sample, a single activation energy is exhibited over the entire temperature range and the sample exhibits high mobility throughout the temperature range studied.

實例8.包含與MoTDT的diF-TES ADT:PTAA共混物的裝置的影響 Example 8. Effect of a device comprising a blend of diF-TES ADT:PTAA with MoTDT

為了進一步研究MoTDT分子摻雜對diF-TES ADT:PTAA共混物的影響,製造了如前述實例中所描述的基於底閘極底接觸型OTFTs的7級環形振盪器。在這種情況下,使用和不使用摻雜劑,將共混半導體直接旋塗到電路基板上,然後在惰性氣氛(氮氣氣氛 )下進行電學表徵。有代表性的結果示於圖4,其中對於摻雜以及未摻雜薄膜基電路,7級環形振盪器的振盪頻率均作為所施加電壓的函數進行繪製。 To further investigate the effect of MoTDT molecular doping on the diF-TES ADT:PTAA blend, a 7-stage ring oscillator based on bottom gate contact type OTFTs as described in the previous examples was fabricated. In this case, the blended semiconductor is directly spin coated onto the circuit substrate with and without the dopant, and then in an inert atmosphere (nitrogen atmosphere). Electrical characterization. A representative result is shown in Figure 4, where for the doped and undoped film-based circuits, the oscillation frequency of the 7-stage ring oscillator is plotted as a function of the applied voltage.

圖1.示出了摻雜和未摻雜的共混薄膜(MoTDT diF-TES ADT:PTAA)的紫外光電子能譜的測量資料。在摻雜有MoTDT薄膜的能量學上未觀察到變化。 Figure 1. Measurement of UV photoelectron spectroscopy of doped and undoped blended films (MoTDT diF-TES ADT: PTAA). No change in the energetics of the doped MoTDT film was observed.

圖2.示出了摻雜有MoTDT的diF-TES ADT:PTAA共混薄膜的效果。 Figure 2. shows the effect of a diF-TES ADT:PTAA blend film doped with MoTDT.

圖3.示出了基於有機TFT(OTFT)的摻雜和未摻雜的共混物測量的飽和電洞遷移率的阿侖尼烏斯(Arrhenius)曲線圖。這表明在摻雜和未摻雜裝置中的電洞傳輸機制似乎是不同的。 Figure 3. Arrhenius plot showing saturated hole mobility measured based on organic TFT (OTFT) doped and undoped blends. This suggests that the hole transport mechanisms in the doped and undoped devices appear to be different.

圖4.示出了作為施加電壓的函數的振盪頻率,其從基於摻雜和未摻雜的diF-TES ADT:PTAA共混半導體的七級環形振盪器測得 Figure 4. shows the oscillation frequency as a function of applied voltage, measured from a seven-stage ring oscillator based on doped and undoped diF-TES ADT:PTAA blended semiconductors.

圖5.示出了用於構建反轉和環形振盪器電路的電晶體的示例圖。 Figure 5. shows an example diagram of a transistor for constructing a reverse and ring oscillator circuit.

Claims (65)

一種方法,包括:提供至少一種液體先質組合物,該先質組合物係藉由至少混合下列成分而形成:(i)至少一種適合形成有機多晶相的電洞或電子傳導有機材料,(ii)至少一種中性分子摻雜劑,及(iii)至少一種溶劑;從該液體先質組合物形成至少一種固體薄膜,其中該固體薄膜包括該至少一種有機多晶相,其包括晶界,並且其中該摻雜劑在晶界處富集。 A method comprising: providing at least one liquid precursor composition formed by mixing at least: (i) at least one hole or electron conducting organic material suitable for forming an organic polycrystalline phase, ( Ii) at least one neutral molecular dopant, and (iii) at least one solvent; forming at least one solid film from the liquid precursor composition, wherein the solid film comprises the at least one organic polycrystalline phase comprising a grain boundary, And wherein the dopant is concentrated at the grain boundary. 如申請專利範圍第1項之方法,其中該液體先質還包括適合形成一有機非晶相的至少一種電洞或電子傳導有機材料。 The method of claim 1, wherein the liquid precursor further comprises at least one hole or electron conducting organic material suitable for forming an organic amorphous phase. 如申請專利範圍第1項之方法,其中該摻雜劑係p-型摻雜劑。 The method of claim 1, wherein the dopant is a p-type dopant. 如申請專利範圍第1項之方法,其中該摻雜劑係一有機金屬錯合物。 The method of claim 1, wherein the dopant is an organometallic complex. 如申請專利範圍第1項之方法,其中該摻雜劑包括化學式(X)表示的錯合物: 其中M係Cr、Mo或W,並且R1-R6獨立地選自C1-C30氟化烷基、氰基、或隨意地經取代的芳基、雜芳基。 The method of claim 1, wherein the dopant comprises a complex represented by the chemical formula (X): Wherein M is Cr, Mo or W, and R 1 -R 6 are independently selected from C 1 -C 30 fluorinated alkyl, cyano, or optionally substituted aryl, heteroaryl. 如申請專利範圍第1項之方法,其中該摻雜劑係n-型摻雜劑。 The method of claim 1, wherein the dopant is an n-type dopant. 如申請專利範圍第1項之方法,其中該摻雜劑係n-型摻雜劑,其包括鹼金屬、過渡金屬、鑭系金屬或錒系金屬。 The method of claim 1, wherein the dopant is an n-type dopant comprising an alkali metal, a transition metal, a lanthanide metal or a lanthanide metal. 如申請專利範圍第1項之方法,其中適合形成有機結晶相的該至少一種電洞或電子傳導有機材料包括一電洞傳輸材料。 The method of claim 1, wherein the at least one hole or electron-conducting organic material suitable for forming an organic crystalline phase comprises a hole transporting material. 如申請專利範圍第1項之方法,其中適合形成有機結晶相的該至少一種電洞或電子傳導有機材料包括一電洞傳輸材料,該電洞傳輸材料包括含有兩個或更多個共軛的芳基或雜芳基環的一或多種有機化合物。 The method of claim 1, wherein the at least one hole or electron-conducting organic material suitable for forming an organic crystalline phase comprises a hole transporting material comprising two or more conjugated One or more organic compounds of an aryl or heteroaryl ring. 如申請專利範圍第1項之方法,其中適合形成至少一種有機多晶相的該至少一種電洞或電子傳導有機材料包括一電洞傳輸材料,該電洞傳輸材料包括含有兩個或更多個共軛的經取代芳基或雜芳基環以及一或多個矽基部分的一或多種有機化合物。 The method of claim 1, wherein the at least one hole or electron-conducting organic material suitable for forming the at least one organic polycrystalline phase comprises a hole transporting material comprising two or more A conjugated substituted aryl or heteroaryl ring and one or more organic compounds of one or more thiol moieties. 如申請專利範圍第1項之方法,其中適合形成有機多晶相的該至少一種電洞或電子傳導有機材料包括一化學式(II)或(IV)表示的電洞傳輸材料: 其中R’在每一種情況下是獨立地選自C1-C10烷基、隨意地經取代的芳基或雜芳基。 The method of claim 1, wherein the at least one hole or electron-conducting organic material suitable for forming the organic polycrystalline phase comprises a hole transporting material represented by the formula (II) or (IV): Wherein R 'at each occurrence is independently selected from C 1 -C 10 alkyl, optionally substituted aryl or heteroaryl group. 如申請專利範圍第2項之方法,其中適合形成有機非晶相的該至少一種電洞或電子傳導有機材料包括隨意地經取代的聚(芳基胺),聚(芳基胺)的聚合物骨架包含芳基部分。 The method of claim 2, wherein the at least one hole or electron-conducting organic material suitable for forming an organic amorphous phase comprises a randomly substituted poly(arylamine), poly(arylamine) polymer The backbone contains an aryl moiety. 如申請專利範圍第2項之方法,其中適合形成有機非晶相的該至少一種電洞或電子傳導有機材料包括一隨意地經取代的聚(三芳基胺)。 The method of claim 2, wherein the at least one hole or electron-conducting organic material suitable for forming an organic amorphous phase comprises a randomly substituted poly(triarylamine). 如申請專利範圍第2項之方法,其中適合形成非晶相的該至少一種電洞或電子傳導有機材料包括含有至少一種隨意地經取代的聚(三芳基胺)的共聚物。 The method of claim 2, wherein the at least one hole or electron-conducting organic material suitable for forming an amorphous phase comprises a copolymer comprising at least one randomly substituted poly(triarylamine). 如申請專利範圍第2項之方法,其中適合形成有機非晶相的該至少一種電洞或電子傳導有機材料包括化學式(IX)表示的一化合物: 其中Ra在每一種情況下是獨立地選自C1-C10烷基、隨意地經取代的芳基或雜芳基;k係從0到5的整數;n係10至1000。 The method of claim 2, wherein the at least one hole or electron-conducting organic material suitable for forming an organic amorphous phase comprises a compound represented by the formula (IX): Wherein R a is independently selected from C 1 -C 10 alkyl, optionally substituted aryl or heteroaryl in each case; k is an integer from 0 to 5; n is 10 to 1000. 如申請專利範圍第2項之方法,其中適合形成有機結晶相的該至少一種電洞或電子傳導有機材料具有的分子量為約1,000 g/莫耳或更小,而適合形成有機非晶相的該至少一種電洞或電子傳導有機材料具有的數目平均分子量為至少1000。 The method of claim 2, wherein the at least one hole or electron-conducting organic material suitable for forming an organic crystalline phase has a molecular weight of about 1,000 g/mole or less, and is suitable for forming an organic amorphous phase. The at least one hole or electron conducting organic material has a number average molecular weight of at least 1000. 如申請專利範圍第2項之方法,其中當除去溶劑時,該摻雜劑的存在量係為該組合物的從0.001重量%至2.0重量%,該組合物係由適合形成有機結晶相的該至少一種電洞或電子傳導有機材料,適合形成有機非晶相的該至少一種電洞或電子傳導有機材料和該至少一種摻雜劑所組成。 The method of claim 2, wherein when the solvent is removed, the dopant is present in an amount of from 0.001% by weight to 2.0% by weight of the composition, the composition being suitable for forming an organic crystalline phase. At least one hole or electron conducting organic material, the at least one hole or electron conducting organic material suitable for forming an organic amorphous phase and the at least one dopant. 如申請專利範圍第1項之方法,其中該液體先質組合物係在一基片上形成,其中該形成步驟包括噴墨塗覆或旋轉塗覆步驟。 The method of claim 1, wherein the liquid precursor composition is formed on a substrate, wherein the forming step comprises an inkjet coating or spin coating step. 如申請專利範圍第1項之方法,其中該至少一種溶劑係一有機溶劑。 The method of claim 1, wherein the at least one solvent is an organic solvent. 如申請專利範圍第1項之方法,其中該至少一種溶劑係選自四氫萘、氯苯、二氯苯、氯仿和THF。 The method of claim 1, wherein the at least one solvent is selected from the group consisting of tetrahydronaphthalene, chlorobenzene, dichlorobenzene, chloroform, and THF. 一種組合物,包括: 包含結晶區域和位於結晶區域之界面處的晶界的至少一種多晶有機半導體,以及至少一種中性分子摻雜劑,其中該摻雜劑在位於該等結晶區域之界面處的晶界富集。 A composition comprising: At least one polycrystalline organic semiconductor comprising a crystalline region and a grain boundary at an interface of the crystalline region, and at least one neutral molecular dopant, wherein the dopant is enriched at a grain boundary at an interface of the crystalline regions . 如申請專利範圍第21項之組合物,其中該多晶有機半導體係一種分子質量小於3000 Da的小分子。 The composition of claim 21, wherein the polycrystalline organic semiconductor is a small molecule having a molecular mass of less than 3000 Da. 如申請專利範圍第21項之組合物,另外包括非晶聚合物有機半導體。 The composition of claim 21, additionally comprising an amorphous polymer organic semiconductor. 如申請專利範圍第21項之組合物,另外包括一非晶聚合物非導電材料。 The composition of claim 21, further comprising an amorphous polymer non-conductive material. 如申請專利範圍第21項之組合物,其中該摻雜劑的存在濃度為該組合物的0.001重量%至2.0重量%。 The composition of claim 21, wherein the dopant is present in a concentration from 0.001% to 2.0% by weight of the composition. 如申請專利範圍第21項之組合物,其中該有機半導體具有至少0.5 cm2/V.s的電洞遷移率,且該至少一種摻雜劑係p-型摻雜劑。 The composition of claim 21, wherein the organic semiconductor has at least 0.5 cm 2 /V. The hole mobility of s, and the at least one dopant is a p-type dopant. 如申請專利範圍第21項之組合物,其中該至少一種摻雜劑係包括過渡金屬的p-型摻雜劑。 The composition of claim 21, wherein the at least one dopant comprises a p-type dopant of a transition metal. 如申請專利範圍第21項之組合物,其中該至少一種摻雜劑包括化學式(X)表示的錯合物: 其中M係Cr、Mo或W,並且R1-R4係獨立地選自C1-C30氟化烷基、氰基,或隨意地經取代的芳基、雜芳基。 The composition of claim 21, wherein the at least one dopant comprises a complex represented by the formula (X): Wherein M is Cr, Mo or W, and R 1 -R 4 are independently selected from C 1 -C 30 fluorinated alkyl, cyano, or optionally substituted aryl or heteroaryl. 如申請專利範圍第21項之組合物,其中該有機半導體具有至少0.5 cm2/V.s的電子遷移率,且該至少一種摻雜劑係n-型摻雜劑。 The composition of claim 21, wherein the organic semiconductor has at least 0.5 cm 2 /V. The electron mobility of s, and the at least one dopant is an n-type dopant. 如申請專利範圍第21項之組合物,其中該至少一種摻雜劑包括化學式(XVII)表示的N-DMBI衍生物: 其中R1,R2係獨立地選自烷基、芳基或雜芳基。 The composition of claim 21, wherein the at least one dopant comprises an N-DMBI derivative represented by the chemical formula (XVII): Wherein R 1 , R 2 are independently selected from alkyl, aryl or heteroaryl. 如申請專利範圍第21項之組合物,其中該至少一種摻雜劑包括化學式(XI-XIII)表示的過渡金屬夾心式錯合物: 其中,Mvii係錳或錸;Mviii係鐵、釕或鋨;Mix係銠或銥;每個Rcp和Rbz獨立地選自氫或隨意地經取代的C1-C12烷基基團或C1-C12苯基基團;x和x’均獨立地選自從1至5的整數;而且y和y”均獨立地選自從1-5的整數,並且y’係從1-6的整數。 The composition of claim 21, wherein the at least one dopant comprises a transition metal sandwich complex represented by the chemical formula (XI-XIII): Wherein M vii is manganese or ruthenium; M viii is iron, ruthenium or osmium; M ix is ruthenium or osmium; each R cp and R bz are independently selected from hydrogen or optionally substituted C 1 -C 12 alkyl a group or a C 1 -C 12 phenyl group; x and x' are each independently selected from an integer from 1 to 5; and y and y" are each independently selected from an integer from 1 to 5, and y' is from 1 An integer of -6. 如申請專利範圍第21項之組合物,其中該至少一種摻雜劑包括化學式(XIV-XVI)表示的過渡金屬夾心式錯合物: 其中,Mvii係錳或錸;Mviii係鐵、釕或鋨;Mix係銠或銥;每個Rcp、Rbz和Rd獨立地選自氫或隨意地經取代的C1-C12烷基基團或C1-C12苯基基團;x和x’均獨立地選自從1至5的整數;而且y和y”均獨立地選自從1-5的整數,並且y’係從1-6的整數。 The composition of claim 21, wherein the at least one dopant comprises a transition metal sandwich complex represented by the chemical formula (XIV-XVI): Wherein M vii is manganese or ruthenium; M viii is iron, ruthenium or osmium; M ix is ruthenium or osmium; each R cp , R bz and R d are independently selected from hydrogen or optionally substituted C 1 -C a 12 alkyl group or a C 1 -C 12 phenyl group; x and x' are each independently selected from an integer from 1 to 5; and y and y" are each independently selected from an integer from 1 to 5, and y' An integer from 1-6. 如申請專利範圍第21項之組合物,其中該至少一種多晶有機半導體包括一電洞傳輸材料,該電洞傳輸材料包括含有兩個或更多個共軛的芳基或雜芳基環的一或多種有機化合物。 The composition of claim 21, wherein the at least one polycrystalline organic semiconductor comprises a hole transporting material comprising two or more conjugated aryl or heteroaryl rings. One or more organic compounds. 如申請專利範圍第21項之組合物,其中該至少一種多晶有機半導體包括選自化學式(I)表示的隨意地經取代的低聚稠苯的一電洞傳輸材料: 其中R1-R10獨立地為H、烷基、氟烷基、烷氧基、芳基、雜芳基、鹵素、三烷基矽基乙炔基,並且n係0至10。 The composition of claim 21, wherein the at least one polycrystalline organic semiconductor comprises a hole transport material selected from the group consisting of randomly substituted oligomeric thick benzene represented by the formula (I): Wherein R 1 to R 10 are independently H, alkyl, fluoroalkyl, alkoxy, aryl, heteroaryl, halogen, trialkyldecylethynyl, and n is 0 to 10. 如申請專利範圍第21項之組合物,其中該至少一種多晶有機半導體包括化學式(II)表示的電洞傳輸材料: 其中R’在每一種情況下是獨立地選自C1-C10烷基、隨意地經取代的芳基或雜芳基。 The composition of claim 21, wherein the at least one polycrystalline organic semiconductor comprises a hole transport material represented by the chemical formula (II): Wherein R 'at each occurrence is independently selected from C 1 -C 10 alkyl, optionally substituted aryl or heteroaryl group. 如申請專利範圍第21項之組合物,其中該至少一種多晶有機半導體包括選自化學式(III)表示的隨意地經取代的低聚雜稠苯的電洞傳輸材料: 其中X獨立地為O、S、Se、NH;R1-R8獨立地為H、 烷基、氟烷基、烷氧基、芳基、雜芳基、三烷基矽基乙炔基、鹵素、芳基乙炔基、雜芳基乙炔基;並且n係0至10。 The composition of claim 21, wherein the at least one polycrystalline organic semiconductor comprises a hole transporting material selected from the group consisting of randomly substituted oligo-rich benzene represented by the formula (III): Wherein X is independently O, S, Se, NH; R 1 - R 8 are independently H, alkyl, fluoroalkyl, alkoxy, aryl, heteroaryl, trialkyldecylethynyl, halogen , arylethynyl, heteroarylethynyl; and n is 0 to 10. 如申請專利範圍第21項之組合物,其中該至少一種多晶有機半導體包括化學式(IV)表示的電洞傳輸材料: 其中R’在每一種情況下是獨立地選自C1-C10烷基、隨意地經取代的芳基或雜芳基。 The composition of claim 21, wherein the at least one polycrystalline organic semiconductor comprises a hole transport material represented by the chemical formula (IV): Wherein R 'at each occurrence is independently selected from C 1 -C 10 alkyl, optionally substituted aryl or heteroaryl group. 如申請專利範圍第21項之組合物,其中該至少一種多晶有機半導體包括選自化學式(V)表示的隨意地經取代的低聚雜稠苯的電洞傳輸材料: 其中X獨立地為O、S、Se、NH;R1-R8獨立地為H、烷基、氟烷基、烷氧基、芳基、雜芳基、三烷基矽基乙炔基、鹵素、芳基乙炔基、雜芳基乙炔基;並且n 和n’獨立地為0至5。 The composition of claim 21, wherein the at least one polycrystalline organic semiconductor comprises a hole transporting material selected from the group consisting of randomly substituted oligo-rich benzene represented by the formula (V): Wherein X is independently O, S, Se, NH; R 1 - R 8 are independently H, alkyl, fluoroalkyl, alkoxy, aryl, heteroaryl, trialkyldecylethynyl, halogen An arylethynyl group, a heteroarylethynyl group; and n and n' are independently from 0 to 5. 如申請專利範圍第21項之組合物,其中該至少一種多晶有機半導體包括選自化學式VI)表示的隨意地經取代的低聚稠苯稠合的噻吩並噻吩的電洞傳輸材料: 其中R1和R2獨立地選自H、烷基、氟烷基、芳基、雜芳基、三烷基矽基乙炔基、芳基乙炔基和雜芳基乙炔基;並且n和n’獨立地為0,1或2。 The composition of claim 21, wherein the at least one polycrystalline organic semiconductor comprises a hole transporting material selected from the group consisting of randomly substituted oligomeric fused benzene fused thienothiophenes represented by the formula VI): Wherein R 1 and R 2 are independently selected from the group consisting of H, alkyl, fluoroalkyl, aryl, heteroaryl, trialkyldecylethynyl, arylethynyl and heteroarylethynyl; and n and n' Independently 0, 1 or 2. 如申請專利範圍第21項之組合物,其中該至少一種多晶有機半導體包括一電子傳輸材料,該電子傳輸材料包括隨意地經取代的伸芳基。 The composition of claim 21, wherein the at least one polycrystalline organic semiconductor comprises an electron transporting material comprising an optionally substituted aryl group. 如申請專利範圍第21項之組合物,其中該至少一個多晶有機半導體包括選自化學式(VII)表示的苝二醯亞胺的電子傳輸材料: 其中R1和R2係獨立地選自一直鏈的、支鏈的、或環狀的烷基、芳基、雜芳基、烷基-芳基,或烷基-雜芳基之C1-C30有機基團,其隨意地經一或多個鹵素、氰基、烷基或烷氧基取代。 The composition of claim 21, wherein the at least one polycrystalline organic semiconductor comprises an electron transporting material selected from the group consisting of quinone diimine represented by the formula (VII): Wherein R 1 and R 2 are independently selected from the group consisting of a straight chain, a branched chain, or a cyclic alkyl group, an aryl group, a heteroaryl group, an alkyl-aryl group, or an alkyl-heteroaryl group C 1 - A C 30 organic group optionally substituted with one or more halogen, cyano, alkyl or alkoxy groups. 如申請專利範圍第21項之組合物,其中該至少一個多晶有機半導體包括選自化學式(VIII)表示的萘二醯亞胺的電子傳輸材料: 其中hAr係雜芳基;R1和R1’係獨立地選自一直鏈的、支鏈的、或環狀的烷基、芳基、雜芳基、烷基-芳基、或烷基-雜芳基之C1-C30有機基團,其隨意地經一或多個鹵素、氰基、烷基或烷氧基基團取代;R2、R3和R4獨立地選自氫、鹵素,或C1-C30有機基團,該有機基團獨立地選自氰基,直鏈的、支鏈的、或環狀的烷基、氟烷基、芳基、雜芳基、烷基-芳基、醯基-雜芳基和烷基-雜芳基基團(隨意地經一或多個氟、氰基、烷基、烷氧基基團取代)。 The composition of claim 21, wherein the at least one polycrystalline organic semiconductor comprises an electron transporting material selected from the group consisting of naphthalene diimine represented by the formula (VIII): Wherein hAr is heteroaryl; R 1 and R 1 ' are each independently selected from a straight chain, branched, or cyclic alkyl, aryl, heteroaryl, alkyl-aryl, or alkyl- a C 1 -C 30 organic group of a heteroaryl group optionally substituted with one or more halogen, cyano, alkyl or alkoxy groups; R 2 , R 3 and R 4 are independently selected from hydrogen, Halogen, or a C 1 -C 30 organic group, independently selected from cyano, straight-chain, branched, or cyclic alkyl, fluoroalkyl, aryl, heteroaryl, alkane A aryl-aryl, a fluorenyl-heteroaryl group and an alkyl-heteroaryl group (optionally substituted with one or more fluorine, cyano, alkyl, alkoxy groups). 如申請專利範圍第21項之組合物,另外包括選自聚合物的一非晶聚合物有機半導體,該聚合物的 主鏈包括隨意地經取代的芳基胺單元。 The composition of claim 21, further comprising an amorphous polymer organic semiconductor selected from the group consisting of polymers The backbone includes randomly substituted arylamine units. 如申請專利範圍第21項之組合物,另外包括選自聚合物的一非晶聚合物有機半導體,該聚合物的側鏈包括具有三芳基胺或咔唑的單元。 The composition of claim 21, further comprising an amorphous polymer organic semiconductor selected from the group consisting of a unit having a triarylamine or a carbazole. 如申請專利範圍第21項之組合物,另外包括一非晶聚合物有機半導體,其具有化學式(IX)表示的亞單元: 其中Ra在每一種情況下獨立地選自C1-C10烷基、隨意地經取代的芳基或雜芳基;k係從0到5的整數;n係10至1000。 The composition of claim 21, further comprising an amorphous polymer organic semiconductor having the subunit represented by the formula (IX): Wherein R a is independently selected in each case from C 1 -C 10 alkyl, optionally substituted aryl or heteroaryl; k is an integer from 0 to 5; n is from 10 to 1000. 如申請專利範圍第21項之組合物,另外包括至少一種選自隨意地經取代的聚(苯乙烯)、聚(α-甲基苯乙烯)和聚(乙烯基聯苯),或聚(甲基丙烯酸甲酯)中的非晶聚合物。 The composition of claim 21, further comprising at least one selected from the group consisting of randomly substituted poly(styrene), poly(α-methylstyrene) and poly(vinylbiphenyl), or poly(A) Amorphous polymer in methyl acrylate). 一種油墨,包含如申請專利範圍21項之組合物。 An ink comprising a composition as claimed in claim 21. 一種油墨,包含如申請專利範圍21項之組合物,其中該油墨係適合於旋轉塗覆或噴墨印刷。 An ink comprising a composition as claimed in claim 21, wherein the ink is suitable for spin coating or ink jet printing. 一種裝置,包含如申請專利範圍21項之組合物。 A device comprising a composition as claimed in claim 21. 一種裝置,其係一場效應電晶體,包含如申請專利範圍21項之組合物。 A device comprising a field effect transistor comprising a composition as claimed in claim 21 of the patent application. 一種場效應電晶體,包含如申請專利範圍21項之組合物,其中相比缺乏該摻雜劑的相同組合物,其閾值電壓降低至少50%。 A field effect transistor comprising a composition as claimed in claim 21 wherein the threshold voltage is reduced by at least 50% compared to the same composition lacking the dopant. 一種方法,包括:提供一油墨,該油墨係藉由至少混合下列成分而形成:(i)至少一種適合形成多晶相的有機半導體,(ii)至少一種中性分子摻雜劑,和(iii)至少一種溶劑;從該油墨形成至少一種固體薄膜,其中該固體薄膜包括該至少一種有機半導體多晶相,其包括晶界,並且其中該摻雜劑沒有均勻地分佈在整個固體薄膜。 A method comprising: providing an ink formed by at least mixing: (i) at least one organic semiconductor suitable for forming a polycrystalline phase, (ii) at least one neutral molecular dopant, and (iii) At least one solvent; forming at least one solid film from the ink, wherein the solid film comprises the at least one organic semiconductor polycrystalline phase comprising grain boundaries, and wherein the dopant is not uniformly distributed throughout the solid film. 52.如申請專利範圍第52項之方法,其中該油墨係藉由另外混合至少一種有機材料而形成,該有機材料係有機半導體多晶相的一聚合物黏合劑。 The method of claim 52, wherein the ink is formed by additionally mixing at least one organic material which is a polymer binder of the organic semiconductor polycrystalline phase. 如申請專利範圍第52項之方法,其中該摻雜劑係一有機金屬錯合物。 The method of claim 52, wherein the dopant is an organometallic complex. 如申請專利範圍第52項之方法,其中該摻雜劑係含有過渡金屬的p-型摻雜劑。 The method of claim 52, wherein the dopant is a p-type dopant comprising a transition metal. 如申請專利範圍第52項之方法,其中該摻雜劑包括化學式(X)表示的錯合物: 其中M係Cr、Mo或W,並且R1-R4係獨立地選自C1-C30氟化烷基、氰基,或隨意地經取代的芳基、雜芳基。 The method of claim 52, wherein the dopant comprises a complex represented by the chemical formula (X): Wherein M is Cr, Mo or W, and R 1 -R 4 are independently selected from C 1 -C 30 fluorinated alkyl, cyano, or optionally substituted aryl or heteroaryl. 如申請專利範圍第52項之方法,其中該摻雜劑係n-型摻雜劑。 The method of claim 52, wherein the dopant is an n-type dopant. 如申請專利範圍第52項之方法,其中該摻雜劑係n-型摻雜劑,其包括鹼金屬、過渡金屬、鑭系金屬或錒系金屬。 The method of claim 52, wherein the dopant is an n-type dopant comprising an alkali metal, a transition metal, a lanthanide metal or a lanthanide metal. 如申請專利範圍第52項之方法,其中適合形成有機結晶相的該至少一種電洞或電子傳導有機材料包括一電洞傳輸材料。 The method of claim 52, wherein the at least one hole or electron-conducting organic material suitable for forming an organic crystalline phase comprises a hole transporting material. 如申請專利範圍第52項之方法,其中適合形成有機結晶相的該至少一種電洞或電子傳導有機材料包括一電洞傳輸材料,該電洞傳輸材料包括含有兩個或更多個共軛的芳基或雜芳基環的一或多種有機化合物。 The method of claim 52, wherein the at least one hole or electron-conducting organic material suitable for forming an organic crystalline phase comprises a hole transporting material comprising two or more conjugated One or more organic compounds of an aryl or heteroaryl ring. 如申請專利範圍第52項之方法,其中適合形成至少一種有機多晶相的該至少一種電洞或電子傳導有機材料包括一電洞傳輸材料,該電洞傳輸材料包括含有兩個或更多個共軛的經取代芳基或雜芳基環以及一或更多個矽基部分的一或多種有機化合物。 The method of claim 52, wherein the at least one hole or electron conducting organic material suitable for forming the at least one organic polycrystalline phase comprises a hole transporting material comprising two or more A conjugated substituted aryl or heteroaryl ring and one or more organic compounds of one or more thiol moieties. 如申請專利範圍第52項之方法,其中適合形 成有機多晶相的該至少一種電洞或電子傳導有機材料包括化學式(II)或(IV)表示的電洞傳輸材料: 其中R’在每一種情況下是獨立地選自C1-C10烷基、隨意地經取代的芳基或雜芳基。 The method of claim 52, wherein the at least one hole or electron-conducting organic material suitable for forming an organic polycrystalline phase comprises a hole transporting material represented by the chemical formula (II) or (IV): Wherein R 'at each occurrence is independently selected from C 1 -C 10 alkyl, optionally substituted aryl or heteroaryl group. 如申請專利範圍第53項之方法,其中該至少一種有機材料(其為有機半導體多晶相的一聚合物黏合劑)包括適合形成有機非晶相的至少一種電洞或電子傳導有機材料,該有機非晶相包括隨意地經取代的聚(芳基胺),聚(芳基胺)的聚合物骨架包含芳基部分。 The method of claim 53, wherein the at least one organic material (which is a polymer binder of the organic semiconductor polycrystalline phase) comprises at least one hole or electron-conducting organic material suitable for forming an organic amorphous phase, The organic amorphous phase includes a randomly substituted poly(arylamine), and the polymer backbone of the poly(arylamine) contains an aryl moiety. 如申請專利範圍第52項之方法,其中該油墨係沈積在基片上形成的,其中該形成步驟包括噴墨塗覆或旋轉塗覆步驟。 The method of claim 52, wherein the ink is deposited on the substrate, wherein the forming step comprises an inkjet coating or spin coating step. 如申請專利範圍第52項之方法,其中該至少一種溶劑係一有機溶劑。 The method of claim 52, wherein the at least one solvent is an organic solvent. 如申請專利範圍第52項之方法,其中該至少一種溶劑係選自四氫萘、氯苯、二氯苯、氯仿和THF。 The method of claim 52, wherein the at least one solvent is selected from the group consisting of tetrahydronaphthalene, chlorobenzene, dichlorobenzene, chloroform, and THF.
TW101151078A 2011-12-30 2012-12-28 Unconventional chemical doping of organic semiconducting materials TW201348241A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201161582037P 2011-12-30 2011-12-30

Publications (1)

Publication Number Publication Date
TW201348241A true TW201348241A (en) 2013-12-01

Family

ID=47884411

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101151078A TW201348241A (en) 2011-12-30 2012-12-28 Unconventional chemical doping of organic semiconducting materials

Country Status (2)

Country Link
TW (1) TW201348241A (en)
WO (1) WO2013098648A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106409665A (en) * 2015-07-31 2017-02-15 剑桥显示技术有限公司 Method of doping an organic semiconuctor and doping composition
TWI609021B (en) * 2014-03-12 2017-12-21 Dic股份有限公司 Compounds and Organic Semiconductor Materials Containing the Same, Organic Semiconductor Inks and Organic Crystals

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201312609D0 (en) * 2013-07-15 2013-08-28 Cambridge Display Tech Ltd Method
KR101732522B1 (en) 2014-04-29 2017-05-24 사빅 글로벌 테크놀러지스 비.브이. Synthesis of new small molecules/oligomers with high conductivity and absorption for optoelectronic application
GB2527606A (en) * 2014-06-27 2015-12-30 Cambridge Display Tech Ltd Charge-transfer salt
WO2017021712A1 (en) * 2015-07-31 2017-02-09 Cambridge Display Technology Limited Charge transfer salt, electronic device and method of forming the same
GB2545499A (en) 2015-12-18 2017-06-21 Cambridge Display Tech Ltd Dopant, charge transfer salt and organic electronic device
CN109880065B (en) * 2019-02-26 2020-05-26 中国科学院化学研究所 Conjugated polymer containing trifluoromethyl as well as preparation method and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101148868B1 (en) * 2004-01-26 2012-05-29 노오쓰웨스턴 유니버시티 PERYLENE n-TYPE SEMICONDUCTORS AND RELATED DEVICES
DE102006054524B4 (en) 2006-11-20 2022-12-22 Novaled Gmbh Use of dithiolene transition metal complexes and selenium-analogous compounds as dopants
WO2011134959A1 (en) * 2010-04-27 2011-11-03 University Of Princeton Remote n-doping of organic thin film transistors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI609021B (en) * 2014-03-12 2017-12-21 Dic股份有限公司 Compounds and Organic Semiconductor Materials Containing the Same, Organic Semiconductor Inks and Organic Crystals
CN106409665A (en) * 2015-07-31 2017-02-15 剑桥显示技术有限公司 Method of doping an organic semiconuctor and doping composition
CN106409665B (en) * 2015-07-31 2022-02-18 剑桥显示技术有限公司 Method for doping organic semiconductor and doping composition

Also Published As

Publication number Publication date
WO2013098648A1 (en) 2013-07-04

Similar Documents

Publication Publication Date Title
TW201348241A (en) Unconventional chemical doping of organic semiconducting materials
Wen et al. Recent progress in n‐channel organic thin‐film transistors
Müller et al. Charge-transfer–solvent interaction predefines doping efficiency in p-doped P3HT films
TWI573799B (en) An organic semiconductor composition including a non-polymeric material having a polydispersity equal to one, at least one solvent, and a crystallization modifier, and an organic thin-film transistor using the same
US9159926B2 (en) Low contact resistance organic thin film transistors
TWI526489B (en) Semiconductor blend
US9203038B2 (en) Electronic device
WO2013064791A1 (en) Organic thin film transistors and method of making them
US20160035987A1 (en) Organic semiconducting blend
WO2011134959A1 (en) Remote n-doping of organic thin film transistors
KR102073763B1 (en) Organic insulating layer composition, method for forming organic insulating layrer, and organic thin film transistor including the organic insulating layer
US7468329B2 (en) Dedoping of organic semiconductors
US7309876B2 (en) Organic semiconductor having polymeric and nonpolymeric constituents
WO2013052153A1 (en) Blends of organic semiconductor compounds and electrically insulating amorphous polymers, methods and devices
Liu et al. Small molecule: polymer blends for n‐type organic thin film transistors via bar‐coating in air
Mieno et al. Self-assembly, physicochemical, and field-effect transistor properties of solution-crystallized organic semiconductors based on π-extended dithieno [3, 2-b: 2′, 3′-d] thiophenes
He et al. A chrysene-based liquid crystalline semiconductor for organic thin-film transistors
Yu et al. Functionalized soluble triethylsilylethynyl anthradithiophenes (TESADTs) for organic electronic devices
JP2009536251A (en) Pentacene polymers and their use in electronic devices
KR101735371B1 (en) Electrically conducting composites, methods of manufacture thereof and articles comprising the same
Nenon et al. Towards solution-processed ambipolar organic thin film transistors based on α, ω-hexyl-distyryl-bithiophene (DH-DS2T) and a fluorocarbon-substituted dicyanoperylene (PDIF-CN2)
TW201315753A (en) Blends of organic semiconductor compounds and electrically insulating amorphous polymers, methods and devices
KR20200089058A (en) Composition comprising water for bi-phasic dip-coating techniques and method for forming semiconducting polymer thin films using thereof
JP2011093827A (en) Novel compound, field-effect transistor, and solar cell