TW201347446A - Method and apparatus for singular value decomposition of a channel matrix - Google Patents

Method and apparatus for singular value decomposition of a channel matrix Download PDF

Info

Publication number
TW201347446A
TW201347446A TW102103832A TW102103832A TW201347446A TW 201347446 A TW201347446 A TW 201347446A TW 102103832 A TW102103832 A TW 102103832A TW 102103832 A TW102103832 A TW 102103832A TW 201347446 A TW201347446 A TW 201347446A
Authority
TW
Taiwan
Prior art keywords
matrix
circuit
channel
streams
ifft
Prior art date
Application number
TW102103832A
Other languages
Chinese (zh)
Inventor
Chang-Soo Koo
Robert Lind Olesen
Original Assignee
Interdigital Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interdigital Tech Corp filed Critical Interdigital Tech Corp
Publication of TW201347446A publication Critical patent/TW201347446A/en

Links

Landscapes

  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method and apparatus for decomposing a channel matrix in a wireless communication system are disclosed. A channel matrix H is generated for channels between transmit antennas and receive antennas. A Hermitian matrix A=H<SP>H</SP>H or A=HH<SP>H</SP> is created. A Jacobi process is cyclically performed on the matrix A to obtain Q and DA matrixes such that A=QDAQ<SP>H</SP>. DA is a diagonal matrix obtained by singular value decomposition (SVD) on the A matrix. In each Jacobi transformation, real part diagonalization is performed to annihilate real parts of off-diagonal elements of the matrix and imaginary part diagonalization is performed to annihilate imaginary parts of off-diagonal elements of the matrix after the real part diagonalization. U, V and DH matrixes of H matrix are then calculated from the Q and DA matrices. DH is a diagonal matrix comprising singular values of the H matrix.

Description

頻稻矩陣奇異值分解方法及裝置 Frequency rice matrix singular value decomposition method and device

本發明關於一種無線通信系統。更特定言之,本發明關於一種頻道矩陣奇異值分解(SVD)之方法及裝置。 The present invention relates to a wireless communication system. More specifically, the present invention relates to a method and apparatus for channel matrix singular value decomposition (SVD).

正交分頻多工(OFDM)是一種資料傳輸架構,其中資料被分割成多個較小串流且每一串流係利用一具備小於總可用傳輸頻寬之一頻寬的子載波傳輸。OFDM的效率取決於選擇相互正交的這些子載波。這些子載波在每一者載送全部使用者資料之一部分的同時不會相互干擾。 Orthogonal Frequency Division Multiplexing (OFDM) is a data transmission architecture in which data is partitioned into multiple smaller streams and each stream is transmitted using a subcarrier having a bandwidth less than one of the total available transmission bandwidth. The efficiency of OFDM depends on the selection of these subcarriers that are orthogonal to each other. These subcarriers do not interfere with each other while each carries a portion of all user data.

OFDM系統具有優於其他無線通信系統的好處。當使用者資料被分割成由不同子載波載送的串流時,每一子載波上的有效資料傳輸率會小得多。因此,符號持續時間會長得多。一大符號持續時間可容忍較大延遲程度。因此,其不會被多路徑嚴重影響。故OFDM符號可容忍沒有複雜接收器設計的延遲程度。然傳統無線系統需要複雜的頻道等化架構以對抗多路徑衰落。 OFDM systems have advantages over other wireless communication systems. When the user data is split into streams carried by different subcarriers, the effective data transmission rate on each subcarrier is much smaller. Therefore, the symbol duration will be much longer. A large symbol duration can tolerate a large degree of delay. Therefore, it will not be seriously affected by multipath. Therefore, OFDM symbols can tolerate the degree of delay without a complex receiver design. However, traditional wireless systems require complex channel equalization architectures to combat multipath fading.

OFDM之另一優點是發射器和接收器處之正交子載波的產生可為利用反快速傅立葉轉換(IFFT)及快速傅立葉轉換(FFT)引擎完成。由於IFFT和FFT施行方式已為人知,OFDM可被輕易地實施且不需要複雜的接收器。 Another advantage of OFDM is that the generation of orthogonal subcarriers at the transmitter and receiver can be accomplished using an inverse fast Fourier transform (IFFT) and fast Fourier transform (FFT) engine. Since IFFT and FFT implementations are well known, OFDM can be easily implemented without the need for complex receivers.

多輸入多輸出(MIMO)係指一種無線傳輸及接收架構,其中一發射器 和一接收器均使用一以上的天線。一MIMO系統從空間分集或空間多工處理獲益且改善訊噪比(SNR)並加大吞吐量。 Multiple Input Multiple Output (MIMO) refers to a wireless transmission and reception architecture in which a transmitter More than one antenna is used with one receiver. A MIMO system benefits from spatial diversity or spatial multiplexing processing and improves signal-to-noise ratio (SNR) and throughput.

一般而言,MIMO系統有兩種運作模式:一開環模式和一閉環模式。該閉環模式係在可向發射器提供頻道狀態資訊(CSI)之時使用,且該開環模式係在發射器處沒有CSI可用時使用。在閉環模式中,CSI被用來藉由在發射器處預編碼且在接收器處更進一步天線處理以分解並對角化頻道矩陣的方式創造出幾乎不相依的頻道。該CSI可藉由來自接收器之反饋或是經由利用頻道互易性在發射器處獲得。 In general, MIMO systems have two modes of operation: an open loop mode and a closed loop mode. The closed loop mode is used when channel state information (CSI) can be provided to the transmitter, and the open loop mode is used when no CSI is available at the transmitter. In closed loop mode, CSI is used to create a channel that is almost non-dependent by precoding at the transmitter and further antenna processing at the receiver to decompose and diagonalize the channel matrix. The CSI can be obtained at the transmitter by feedback from the receiver or by utilizing channel reciprocity.

一用於開環MIMO之最小均方誤差(MMSE)接收器必須計算用於資料解碼之權重向量且此等權重向量的收斂率很重要。相關係數矩陣之一直接向量逆轉換(DMI)技術會比一最小均方(LMS)或最大SNR程序更快收斂。但是,DMI程序之複雜度隨矩陣大小加大而呈指數性成長。一用於閉環MIMO之特徵波束成形接收器必須在頻道矩陣上執行SVD。SVD程序之複雜度亦隨頻道矩陣大小加大而呈指數性成長。 A minimum mean square error (MMSE) receiver for open-loop MIMO must calculate the weight vector for data decoding and the convergence rate of these weight vectors is important. One of the correlation coefficient matrices, the direct vector inverse transform (DMI) technique, converges faster than a least mean square (LMS) or maximum SNR program. However, the complexity of the DMI program grows exponentially as the size of the matrix increases. A eigenbeamforming receiver for closed loop MIMO must perform SVD on the channel matrix. The complexity of the SVD program also grows exponentially as the size of the channel matrix increases.

本發明關於一種用於分解一無線通信系統中之一頻道矩陣的方法及裝置。該無線通信系統包括一具有多個發射天線的發射器及一具有多個接收天線的接收器。就發射天線與接收天線間之頻道產生一頻道矩陣H。創造一Hermitian矩陣A=HHH或A=HHH。在矩陣A上循環地執行一Jacobi程序以獲得Q和DA矩陣致使A=QDAQH,其中DA是一藉由該矩陣A上之SVD獲得的對角矩陣。在每一Jacobi轉換中,執行實部對角化以消去該矩陣之非對角元素的實部,且在該實部對角化之後執行虛部對角化以消去該矩陣之 非對角元素的虛部。然後從該Q和DA矩陣算出H矩陣之U、V和DH矩陣,其中DH是一包含該矩陣H之奇異值的對角矩陣。 The present invention relates to a method and apparatus for decomposing a channel matrix in a wireless communication system. The wireless communication system includes a transmitter having a plurality of transmit antennas and a receiver having a plurality of receive antennas. A channel matrix H is generated for the channel between the transmitting antenna and the receiving antenna. Create a Hermitian matrix A = H H H or A = HH H . A Jacobi program is executed cyclically on matrix A to obtain a Q and D A matrix resulting in A = QD A Q H , where D A is a diagonal matrix obtained by SVD on the matrix A. In each Jacobi transformation, real diagonalization is performed to eliminate the real part of the non-diagonal elements of the matrix, and after the real part is diagonalized, imaginary diagonalization is performed to eliminate the off-diagonal elements of the matrix. The imaginary part. The U, V, and D H matrices of the H matrix are then computed from the Q and D A matrices, where D H is a diagonal matrix containing the singular values of the matrix H.

103、105、107、111、207、218‧‧‧資料串流 103, 105, 107, 111, 207, 218‧‧‧ data streams

217、215、DA、DH、Hermitian‧‧‧矩陣 217, 215, D A, D H , Hermitian ‧ matrix

114、202‧‧‧天線 114, 202‧‧‧ antenna

203‧‧‧訊號 203‧‧‧ Signal

209‧‧‧輸出 209‧‧‧ output

CP‧‧‧循環前綴 CP‧‧‧ cyclic prefix

FFT‧‧‧快速傅立葉轉換 FFT‧‧‧fast Fourier transform

HHH、HHH‧‧‧維度 H H H, HH H ‧‧‧ Dimensions

IFFT‧‧‧反快速傅立葉轉換 IFFT‧‧‧Anti-fast Fourier transform

Jacobi‧‧‧程序 Jacobi‧‧ program

MIMO‧‧‧多輸入多輸出 MIMO‧‧‧Multiple Input Multiple Output

OFDM‧‧‧正交分頻多工 OFDM‧‧ Orthogonal Frequency Division Multiplex

S/P‧‧‧多個串並 S/P‧‧‧Multiple serials

第1圖是一依據本發明利用SVD執行特徵波束成形之包含一發射器和一接收器的OFDM-MIMO系統的方塊圖。 1 is a block diagram of an OFDM-MIMO system including a transmitter and a receiver for performing eigenbeamforming using SVD in accordance with the present invention.

第2圖是一依據本發明在頻道矩陣H上執行一SVD之程序的流程圖。 Figure 2 is a flow diagram of a procedure for executing an SVD on the channel matrix H in accordance with the present invention.

本發明之特徵可被併入一積體電路(IC)內或被建構在一包含多重互連組件之電路內。 Features of the invention may be incorporated into an integrated circuit (IC) or constructed within a circuit that includes multiple interconnect components.

本發明提出頻道評估構件、一MMSE接收器中之頻道相關係數矩陣的直接逆轉換以及用於一特徵波束成形接收器的SVD。 The present invention proposes a channel evaluation component, a direct inverse transform of a channel correlation coefficient matrix in an MMSE receiver, and an SVD for a eigenbeamforming receiver.

第1圖是一依據本發明利用SVD實施特徵波束成形之包含一發射器100和一接收器200的OFDM-MIMO系統10的方塊圖。應理解到第1圖所示系統10僅為一實例而非限制,且本發明可應用於需要一利用SVD之矩陣分解的任何無線通信系統。發射器100包括一頻道編碼器102、一解多工器104、多個串並(S/P)轉換器106、一發射波束成形器108、多個IFFT單元110、循環前綴(CP)插入單元112及多個發射天線114。頻道編碼器102編碼輸入資料101且藉由解多工器104將已編碼資料串流103剖析成NT個資料串流105。NT是發射天線114的數量。在每一資料串流105上執行OFDM處理。藉由S/P轉換器106將每一資料串流105轉換成多個資料串流107。然後藉由發射波束成形器108處理資料串流107。發射波束成形器108用一從一頻道矩陣分解且由接收器200如箭頭220所示發送的V矩陣(詳見下 文)執行一發射預編碼作業。IFFT單元110將資料轉換成時域資料串流111且藉由每一CP插入單元112將一CP插入每一資料串流111內並且經由相應的發射天線114發出。 1 is a block diagram of an OFDM-MIMO system 10 including a transmitter 100 and a receiver 200 for performing eigenbeamforming using SVD in accordance with the present invention. It should be understood that the system 10 shown in Figure 1 is merely an example and not a limitation, and that the present invention is applicable to any wireless communication system that requires a matrix decomposition using SVD. The transmitter 100 includes a channel encoder 102, a demultiplexer 104, a plurality of serial-to-serial (S/P) converters 106, a transmit beamformer 108, a plurality of IFFT units 110, and a cyclic prefix (CP) insertion unit. 112 and a plurality of transmitting antennas 114. Channel encoder 102 encode input data 101 by the demultiplexer 104 and the coded data stream 103 parsed into N T data stream 105 a. N T is the number of transmit antennas 114. OFDM processing is performed on each data stream 105. Each data stream 105 is converted to a plurality of data streams 107 by an S/P converter 106. The data stream 107 is then processed by the transmit beamformer 108. Transmit beamformer 108 performs a transmit precoding operation with a V matrix (see below) that is decomposed from a channel matrix and transmitted by receiver 200 as indicated by arrow 220. The IFFT unit 110 converts the data into a time domain data stream 111 and inserts a CP into each data stream 111 by each CP insertion unit 112 and issues it via a corresponding transmit antenna 114.

接收器200包括多個接收天線202、CP去除單元204、FFT單元206、一接收波束成形器208、一多工器210、一頻道解碼器212、一頻道評估器214及一矩陣分解及頻道相關係數矩陣單元216。藉由CP去除單元204從已接收訊號203去除CP且藉由FFT單元206處理此訊號使其被轉換成頻域資料串流207。接收波束成形器208用由矩陣分解及頻道相關係數矩陣單元216產生之從頻道矩陣分解的U和D矩陣217處理頻域資料串流207。然後藉由多工器210多工處理接收波束成形器208之每一輸出209並藉由頻道解碼器212予以解碼,如此產生一已解碼資料串流218。頻道評估器214較佳從發射器100經由每一發射天線114發出的訓練序列產生一頻道矩陣215。矩陣分解及頻道相關係數矩陣單元216將該頻道矩陣分解成U、V和D矩陣且將V矩陣220送交發射器100並將U和D矩陣217送交接收器波束成形器208,詳見下文。 The receiver 200 includes a plurality of receiving antennas 202, a CP removing unit 204, an FFT unit 206, a receive beamformer 208, a multiplexer 210, a channel decoder 212, a channel evaluator 214, and a matrix decomposition and channel correlation. Coefficient matrix unit 216. The CP is removed from the received signal 203 by the CP removal unit 204 and processed by the FFT unit 206 to be converted into a frequency domain data stream 207. Receive beamformer 208 processes frequency domain data stream 207 with U and D matrices 217 decomposed from the channel matrix generated by matrix decomposition and channel correlation coefficient matrix unit 216. Each output 209 of the receive beamformer 208 is then multiplexed by the multiplexer 210 and decoded by the channel decoder 212, thus producing a decoded data stream 218. Channel estimator 214 preferably generates a channel matrix 215 from the training sequence transmitted by transmitter 100 via each transmit antenna 114. The matrix decomposition and channel correlation coefficient matrix unit 216 decomposes the channel matrix into U, V and D matrices and sends the V matrix 220 to the transmitter 100 and the U and D matrix 217 to the receiver beamformer 208, see below .

本發明利用Hermitian矩陣及虛部對角化的特性使DMI和SVD程序二者之複雜度降低。本發明大幅超越習知技藝降低複雜度,且為非對稱矩陣提供遠大於習知技藝所能提供之複雜度方面的好處。 The present invention utilizes the Hermitian matrix and the diagonalization of the imaginary part to reduce the complexity of both the DMI and SVD programs. The present invention substantially surpasses conventional techniques to reduce complexity and provides benefits for asymmetric matrices that are far greater than the complexity that conventional techniques can provide.

以下定義會被用在本發明整體中。 The following definitions will be used throughout the invention.

Nt是發射天線的數量。 Nt is the number of transmitting antennas.

Nr是接收天線的數量。 Nr is the number of receiving antennas.

s(i)是一子載波之第i個(Nt x 1)訓練向量。 s(i) is the ith (Nt x 1) training vector of a subcarrier.

v(i)是第i個(Nr x 1)接收噪訊向量,其中v(i)~Nc(0,1)。 v(i) is the ith (Nr x 1) received noise vector, where v(i)~Nc(0,1).

y(i)是一子載波之第i個(Nr x 1)已接收訓練向量。 y(i) is the ith (Nr x 1) received training vector of a subcarrier.

H是(Nr x Nt)MIMO頻道矩陣,其中hij代表第j個發射天線與第i個接收天線間的頻道複增益。 H is a (Nr x Nt) MIMO channel matrix, where h ij represents the channel complex gain between the jth transmit antenna and the ith receive antenna.

對應於訓練符號之已接收訊號如下: The received signals corresponding to the training symbols are as follows:

條件為T≧Nt MIMO訓練符號。ρ是一總SNR,其獨立於發射天線數量。 The condition is T≧Nt MIMO training symbol. ρ is a total SNR that is independent of the number of transmit antennas.

藉由針對一子載波表示Y=[y(1),y(2),…y(T)]、S=[s(1),s(2),…,s(T)]且V=[v(1),v(2),…v(T)],方程式(1)可被改寫如下: By representing Y=[y(1), y(2),...y(T)], S=[s(1), s(2),...,s(T)] for a subcarrier and V= [v(1), v(2), ...v(T)], equation (1) can be rewritten as follows:

對於一子載波之頻道矩陣H的最大概度估計由下式給出: The most approximate estimate of the channel matrix H for a subcarrier is given by:

其中上標H代表Hermitian轉置且S是一訓練符號序列。假設已發射訓練符號是單冪,E{|Si|2}=1。 Wherein the superscript H represents Hermitian transposition and S is a training symbol sequence. Assume that the transmitted training symbol is a single power, E{|S i | 2 }=1.

作為最大概度頻道評估之一替代方案,線性最小均方誤差(MMSE)頻道評估由下式給出: As an alternative to the most probable channel evaluation, the Linear Minimum Mean Square Error (MMSE) channel estimate is given by:

由於S為已知,SSH可被離線計算。若訓練符號序列S滿足SSH=T.INt,其中INt是Nt×Nt單位矩陣,則該訓練符號序列S是最佳的。舉例來說,依據IEEE 802.11規格中用於4天線之HT-LTF型樣,用於子載波編號(-26)的訓練符號序列 Since S is known, SS H can be calculated offline. If the training symbol sequence S satisfies SS H =T. I Nt , where I Nt is an Nt×Nt identity matrix, then the training symbol sequence S is optimal. For example, the training symbol sequence for the subcarrier number (-26) according to the IEEE 802.11 specification for the 4-antenna HT-LTF pattern.

一MIMO系統之輸入-輸出關係可被表示如下: The input-output relationship of a MIMO system can be expressed as follows:

其中s=[s1,s2,…sNt]T是Nt×1發射訊號向量且si隸屬於一有限星座,v=[v1,v2,…vNt]T是Nr×1接收白高斯噪訊向量。H是Nt×Nr MIMO頻道矩陣且hij代表第j個發射天線與第i個接收天線間的頻道複增益。然後以MMSE為基礎的資料解碼程序由下式給出: Where s=[s 1 ,s 2 ,...s Nt ] T is the Nt×1 transmitted signal vector and s i belongs to a finite constellation, v=[v 1 ,v 2 ,...v Nt ] T is Nr×1 reception White Gaussian noise vector. H is an Nt×Nr MIMO channel matrix and h ij represents a channel complex gain between the jth transmit antenna and the ith receive antenna. The MMSE-based data decoding procedure is then given by:

以下解釋一2×2矩陣之矩陣逆轉換程序。 The matrix inverse conversion procedure of a 2 x 2 matrix is explained below.

2×2 Hermitian矩陣R之逆轉換的直接計算。 Direct calculation of the inverse transformation of the 2×2 Hermitian matrix R.

方程式(6)中之一Hermitian矩陣R及其逆矩陣T被定義為。Hermitian矩陣R之對角元素(R11和R22)是實數且其非 對角元素(R12和R21)是共軛對稱的。逆矩陣T也是Hermitian。由於RT=I其中I是2×2單位矩陣,逆矩陣T係藉由展開左側且用I求等相應項獲得,如下所示: One of the equations (6) Hermitian matrix R and its inverse matrix T are defined as and . The diagonal elements of the Hermitian matrix R (R 11 and R 22 ) are real numbers and their non-diagonal elements (R 12 and R 21 ) are conjugate symmetric. The inverse matrix T is also Hermitian. Since RT=I where I is a 2×2 identity matrix, the inverse matrix T is obtained by expanding the left side and using I to find the corresponding terms, as shown below:

利用特徵值分解計算2×2 Hermitian矩陣R之逆矩陣。 The inverse matrix of the 2×2 Hermitian matrix R is calculated by eigenvalue decomposition.

方程式(6)中之一Hermitian矩陣R被定義如下:R=QDQH,其中Q是 么正的且D是對角的。 One of the equations (6) Hermitian matrix R is defined as follows: R = QDQ H , where Q is positive and D is diagonal.

其中D11和D22是R的特徵值。 Wherein D 11 and D 22 are characteristic values of R.

特徵值D11和D22是依下式計算: The eigenvalues D 11 and D 22 are calculated as follows:

從RQ=QD,展開左側及右側且求等相應項,得到以下方程式:R 11 Q 11+R 12 Q 21=Q 11 D 11 方程式(10) From RQ=QD, expand the left and right sides and find the corresponding terms to get the following equation: R 11 Q 11 + R 12 Q 21 = Q 11 D 11 Equation (10)

R 11 Q 12+R 12 Q 22=Q 12 D 22 方程式(11) R 11 Q 12 + R 12 Q 22 = Q 12 D 22 Equation (11)

從QHQ=I其中I是2×2單位矩陣,展開左側和右側且求等相應項,得到以下方程式: From Q H Q=I where I is a 2 × 2 unit matrix, expand the left and right sides and find the corresponding terms to get the following equation:

從方程式(10), From equation (10),

將方程式(18)代入方程式(14), Substituting equation (18) into equation (14),

將方程式(19)代入方程式(18),得到Q21。從方程式(13), Substituting equation (19) into equation (18) yields Q 21 . From equation (13),

將方程式(20)代入方程式(17), Substituting equation (20) into equation (17),

將方程式(21)代入方程式(20),得到Q22。然後藉由下式獲得逆矩陣:R-1=QD-1QH 方程式(22) Substituting equation (21) into equation (20) yields Q 22 . Then the inverse matrix is obtained by the following equation: R -1 = QD -1 Q H Equation (22)

以下說明利用SVD之特徵波束成形接收器,其示於第1圖。對於該特徵波束成形接收器,藉由SVD將用於一子載波之頻道矩陣H分解成二個波束成形么正矩陣(用於發射之U及用於接收之V)及一對角矩陣D。 A eigenbeamforming receiver using SVD will be described below, which is shown in Fig. 1. For the eigenbeamformed receiver, the channel matrix H for a subcarrier is decomposed into two beamformed positive matrices (U for transmission and V for reception) and a pair of angular matrices D by SVD.

H=UDVH 方程式(23) H=UDV H equation (23)

其中U和V是么正矩陣且D是一對角矩陣。UCnRxnR且VCnTxnT。對於發射符號向量s,執行如下所示發射預編碼:x=Vs 方程式(24) Where U and V are positive matrices and D is a pair of angular matrices. U C nRxnR and V C nTxnT . For the transmitted symbol vector s, the transmit precoding is performed as follows: x = Vs Equation (24)

已接收訊號變成如下:y=HVs+n 方程式(25) The received signal becomes as follows: y=HVs+n Equation (25)

其中n是導入該頻道中之噪訊。接收器藉由利用一匹配濾波器如下所示完成分解:VHHH=VHVDHUH=DHUH 方程式(26) Where n is the noise introduced into the channel. The receiver completes the decomposition by using a matched filter as follows: V H H H = V H VD H U H = D H U H Equation (26)

在常態化特徵波束之頻道增益後,發射符號的估計變成如下: After normalizing the channel gain of the eigenbeam, the estimate of the transmitted symbol becomes as follows:

s被偵測而不需要執行MMSE型偵測器之連續干擾抵消。DHD是一由H跨對角線之特徵值構成的對角矩陣。U是HHH之特徵值的一矩陣,V是HHH之特徵值的一矩陣且D是H之奇異值(HHH之特徵值之平方根)的一對角矩陣。 s is detected without the need for continuous interference cancellation by the MMSE type detector. D H D is a diagonal matrix composed of eigenvalues of H across the diagonal. U is a matrix of eigenvalues of HH H , V is a matrix of eigenvalues of H H H and D is a pair of angular matrices of singular values of H (the square root of the eigenvalues of HH H ).

一用於N×M頻道矩陣在N>2且M>2條件下的SVD程序。 An SVD program for an N x M channel matrix with N > 2 and M > 2.

以下SVD計算(方程式(28)至(52))係以循環Jacobi程序利用Givens旋轉為基礎。以下說明雙邊Jacobi程序。 The following SVD calculations (equations (28) through (52)) are based on the use of Givens rotation in a cyclic Jacobi program. The following describes the bilateral Jacobi program.

步驟1:將複資料轉換成實資料。 Step 1: Convert the complex data into real data.

給出如下之A 2×2複矩陣: Give the following A 2 × 2 complex matrix:

步驟1-1:如下將aii轉換成一正實數b11:若(a11等於1)則 Step 1-1: Convert a ii to a positive real number b 11 as follows: (a 11 equals 1)

否則 otherwise

其中among them .

步驟1-2:三角化。然後藉由乘上一如下所示轉換矩陣CSTriangle使矩陣B轉換成三角矩陣W: 若(aij或aji等於零且ajj等於零)則 Step 1-2: Triangulation. The matrix B is then converted to a triangular matrix W by multiplying a conversion matrix CSTriangle as follows: if (a ij or a ji is equal to zero and a jj is equal to zero)

W=(CSTriangle)(B)=B 方程式(32) W =( CSTriangle )( B )= B equation (32)

否則 otherwise

其中餘弦參數c是實數,s是複數且c 2+|s|2=1 Where cosine parameter c is a real number, s is a complex number and c 2 +| s | 2 =1

步驟1-3:相位抵消。為了使三角矩陣W之元素轉換成實數,如下所示以轉換矩陣prePhC和postPhC乘以矩陣W:若(aij和ajj等於零且aji不等於零)則 Step 1-3: Phase cancellation. In order to convert the elements of the triangular matrix W into real numbers, the transformation matrix prePhC and postPhC are multiplied by the matrix W as follows: if (a ij and a jj are equal to zero and a ji is not equal to zero)

否則若(aij不等於零)則 Otherwise if (a ij is not equal to zero) then

其中β=arg(w ij )且γ=arg(w jj ),亦即,且若(ajj等於零) Where β = arg( w ij ) and γ = arg( w jj ), ie And if (a jj is equal to zero)

否則 otherwise

否則 otherwise

步驟2:對稱化-若矩陣realW不是對稱矩陣則施用一對稱化旋轉。若矩陣realW是對稱的則略過此步驟。 Step 2: Symmetry - If the matrix realW is not a symmetric matrix then apply a symmetric rotation. Skip this step if the matrix realW is symmetrical.

若(aji等於零且ajj等於零)則 If (a ji is equal to zero and a jj is equal to zero)

否則 otherwise

其中sji=sij且c2+s2=1。 Where s ji = s ij and c 2 + s 2 =1.

藉由展開左側且求等各項, By expanding the left side and waiting for everything,

步驟3:對角化-施用一對角化旋轉以消去矩陣symW(或realW)中之非對角元素。 Step 3: Diagonalization - Apply a pair of angular rotations to eliminate the off-diagonal elements in the matrix symW (or realW).

若(aij等於零且ajj等於零)則 If (a ij is equal to zero and a jj is equal to zero)

否則 otherwise

其中c2+s2=1。 Where c 2 + s 2 =1.

藉由展開左側且求等相應非對角項, By expanding the left side and waiting for the corresponding off-diagonal terms,

步驟4:旋轉矩陣之融合以產生U和V矩陣。U和V矩陣依下述方式獲得:A=UDV H 方程式(50) Step 4: Rotate the matrices of the matrix to produce U and V matrices. The U and V matrices are obtained as follows: A = UDV H equation (50)

U=[k(diagM) H (symM) H (prePhC)(CSTriangle)] H 方程式(51) U =[ k ( diagM ) H ( symM ) H ( prePhC )( CSTriangle )] H equation (51)

V=(postPhC)(diagM) 方程式(52) V =( postPhC )( diagM ) Equation (52)

對於一M×M方形矩陣之循環廣義Jacobi程序。 A cyclic generalized Jacobi program for a M x M square matrix.

為了消去A之非對角元素(亦即(i,j)及(j,i)元素),將上文所述程序依某種固定次序以總計m=M(M-1)/2個不同指數對施用於M×M矩陣A。此一m轉換之序列被稱為一掃掠(sweep)。一掃掠之構造可為以列循環或以行循 環。在任一例中,會在每一掃掠後獲得一新矩陣A,以其計算j≠1條件下 的。若off(A)≦δ,則計算停止。δ是一相依於計算準確 度的小數字。否則計算被重複進行。 In order to eliminate the non-diagonal elements of A (ie (i, j) and (j, i) elements), the above procedure is in a fixed order with a total of m = M (M - 1) / 2 different The index pair is applied to the M x M matrix A. This sequence of one-m conversion is referred to as a sweep. A sweep configuration can be cycled in columns or in rows. In either case, a new matrix A is obtained after each sweep to calculate the condition under j≠1 . If off(A) ≦ δ, the calculation stops. δ is a small number that depends on the accuracy of the calculation. Otherwise the calculation is repeated.

對於一N×M長方矩陣之循環廣義Jacobi程序。 A cyclic generalized Jacobi program for an N x M rectangular matrix.

若矩陣A之維度N大於M,則藉由對A添加(N-M)行的零來產生一方形矩陣。增廣的方形矩陣B=|A 0|。然後將上文所述程序施用於B。 If the dimension N of the matrix A is greater than M, a square matrix is generated by adding zeros to the (N-M) rows of A. The augmented square matrix B=|A 0|. The procedure described above was then applied to B.

藉由下式獲得原始資料矩陣A之期望因子分解:U T AV=diag(λ 1,λ 2,...,λ M ) 方程式(54) The expected factorization of the original data matrix A is obtained by the following equation: U T AV = diag ( λ 1 , λ 2 ,..., λ M ) Equation (54)

若矩陣A之維度M大於N,則藉由如下所示對A添加(M-N)列的零來產生一方形矩陣: If the dimension M of the matrix A is greater than N, a square matrix is generated by adding zeros to the (MN) column to A as follows:

然後將上文所述程序施用於B。 The procedure described above was then applied to B.

藉由下式獲得原始資料矩陣A之期望因子分解:U T AV=diag(λ 1,λ 2,...,λ N ) 方程式(57) The expected factorization of the original data matrix A is obtained by the following equation: U T AV = diag ( λ 1 , λ 2 ,..., λ N ) Equation (57)

以下參照第2圖解釋依據本發明之SVD程序。第2圖是一依據本發明之SVD程序的流程圖。本發明提出一種執行一SVD程序的方法。產生多個發射天線與多個接收天線間之一頻道矩陣H(步驟202)。就所得Nr×Nt頻道矩陣H創造出一Hermitian矩陣A(步驟204)。矩陣A被產生為在Nr≧ Nt條件下A=HHH且在Nr<Nt條件下A=HHH。然後對M×M矩陣A循環地施用雙邊Jacobi程序以獲得Q和DA矩陣致使A=QDAQH、其中M=min(Nr,Nt),這將在下文解釋(步驟206)。DA是一藉由矩陣A之SVD獲得的包含矩陣H之特徵值的對角矩陣。由於矩陣A是Hermitian且對稱,故不再需要習知技藝之對稱化步驟且程序大幅簡化。一旦算出A之SVD,從Q矩陣和DA矩陣計算H矩陣之U矩陣、V矩陣和DH矩陣(H=UDHVH)(步驟208)。 The SVD program according to the present invention will be explained below with reference to Fig. 2. Figure 2 is a flow chart of an SVD program in accordance with the present invention. The present invention proposes a method of executing an SVD program. A channel matrix H between the plurality of transmit antennas and the plurality of receive antennas is generated (step 202). A Hermitian matrix A is created for the resulting Nr x Nt channel matrix H (step 204). Matrix A is produced as A = H H H under Nr ≧ Nt and A = HH H under Nr < Nt conditions. The bilateral Jacobi program is then cyclically applied to the M x M matrix A to obtain a Q and D A matrix resulting in A = QD A Q H , where M = min(Nr, Nt), which will be explained below (step 206). D A is a diagonal matrix containing the eigenvalues of the matrix H obtained by the SVD of the matrix A. Since the matrix A is Hermitian and symmetrical, the symmetry steps of the prior art are no longer needed and the procedure is greatly simplified. Once the SVD of A is calculated, the U matrix, the V matrix, and the D H matrix (H = UD H V H ) of the H matrix are calculated from the Q matrix and the D A matrix (step 208).

以下解釋在A矩陣上執行SVD的步驟206。如下所示從矩陣A定義一2×2 Hermitian矩陣symW: The step 206 of performing SVD on the A matrix is explained below. Define a 2×2 Hermitian matrix symW from matrix A as follows:

其中aii、aij、aji、ajj、bij及bji是實數且aij=aji且bij=bji。矩陣symW係如習知技藝方法就每一Jacobi轉換從矩陣A產生。 Where a ii , a ij , a ji , a jj , b ij and b ji are real numbers and a ij = a ji and b ij = b ji . The matrix symW is generated from the matrix A for each Jacobi transformation as in the prior art method.

在矩陣symW上執行實部對角化。如下所示藉由以轉換矩陣(diagRM)T和diagRM乘上矩陣symW的方式消去矩陣symW之非對角元素的實部: Real part diagonalization is performed on the matrix symW. The real part of the off-diagonal element of the matrix symW is eliminated by multiplying the matrix symW by the transformation matrix (diagRM) T and diagRM as follows:

其中rii和rjj是實數,bij=bji且c2+s2=1。 Where r ii and r jj are real numbers, b ij =b ji and c 2 +s 2 =1.

藉由展開左側並求等相應非對角實項,得到以下方程式。 The following equation is obtained by expanding the left side and waiting for the corresponding non-diagonal real terms.

其中t 2=2ζt-1=0。 Where t 2 = 2 ζ t -1 = 0.

方程式(61);或 Equation (61); or

然後執行虛部對角化。如下所示藉由以轉換矩陣(diagIM)T和diagIM乘上實部對角化所得矩陣的方式消去非對角元素的虛部: 其中c、s、rii、rjj、bij、bji、dii和djj是實數,bij=bji且c2+s2=1。 Then perform imaginary diagonalization. The imaginary part of the off-diagonal element is eliminated by multiplying the matrix of the diagonals of the real part by the transformation matrix (diagIM) T and diagIM as follows: Wherein c, s, r ii , r jj , b ij , b ji , d ii and d jj are real numbers, b ij =b ji and c 2 +s 2 =1.

藉由展開左側並求等相應非對角項,得到以下方程式。 y=cs(γ ii -γ jj )+(1-2c 2)b ij 方程式(68) The following equation is obtained by expanding the left side and waiting for the corresponding off-diagonal terms. y = cs ( γ ii - γ jj ) + (1-2 c 2 ) b ij equation (68)

若y>門檻值(例如=0.0001),則 方程式(70)。 If y> threshold value (for example, = 0.0001), then Equation (70).

該門檻值是某個小機器相依數。 The threshold is a small machine dependent number.

然後如下所示結合用於實部三角化及虛部三角化的轉換矩陣以計算U和V矩陣:A=UD A V H 方程式(71) The transformation matrices for real triangulation and imaginary triangulation are then combined to calculate the U and V matrices as follows: A = UD A V H equation (71)

U=[(diagIM) H (diagRM) H ] H 方程式(72) U =[( diagIM ) H ( diagRM ) H ] H equation (72)

V=(diagRM)(diagIM) 方程式(73) V = ( diagRM )( diagIM ) Equation (73)

為了消去A之非對角元素(亦即(i,j)及(j,i)元素),將上述程序依某種固定次序以總計m=M(M-1)/2個不同指數對施用於M×M矩陣A,其中M=min(Nr,Nt)。在每一步驟後獲得一新矩陣A,以其計算j≠1條件下的 。若off(A)≦δ其中δ是某個小機器相依數字,則計算停 止。否則計算被重複進行。 In order to eliminate the non-diagonal elements of A (i.e., (i, j) and (j, i) elements), the above procedure is applied in a fixed order with a total of m = M (M - 1) / 2 different index pairs. In M × M matrix A, where M = min (Nr, Nt). After each step, a new matrix A is obtained, which is calculated under the condition of j≠1 . If off(A) ≦ δ where δ is a small machine dependent number, the calculation stops. Otherwise the calculation is repeated.

一旦矩陣A之SVD完成,在步驟208如下所示從Q矩陣和DA矩陣計算H矩陣之U矩陣、V矩陣和DH矩陣:從方程式(72)和(73),U=V且A矩陣可被寫成:A=QDAQH。當Nr≧Nt,由於Q等於V,在H=UDHVH且DA=QHAQ=QHHHHQ=QHVDHUHUDHVHQ=DHUHUDH=DHDH條件下,DA=DHDH(亦即DH=sqrt(DA))。然後如下所示得到U、V和DH矩陣:U=HV(DH)-1其中V=Q且DH=sqrt(DA)。 Once the SVD of matrix A is complete, the U matrix, V matrix, and D H matrix of the H matrix are calculated from the Q matrix and the D A matrix as follows: From equations (72) and (73), U = V and A matrix. Can be written as: A = QD A Q H . When Nr≧Nt, since Q is equal to V, at H=UD H V H and D A =Q H AQ=Q H H H HQ=Q H VD H U H UD H V H Q=D H U H UD H = Under the condition of D H D H , D A = D H D H (that is, D H =sqrt(D A )). The U, V and D H matrices are then obtained as follows: U = HV(D H ) -1 where V = Q and D H = sqrt(D A ).

當Nr>Nt,由於Q等於V,在H=UDHVH且DA=QHAQ=QHHHHQ=QHUDHVHVDHUHQ=DHVHVDH=DHDH條件下,DA=DHDH(亦 即DH=sqrt(DA))。然後如下所示得到U、V和DH矩陣:V=HHU(DH)-1其中U=Q且DH=sqrt(DA)。 When Nr>Nt, since Q is equal to V, at H=UD H V H and D A =Q H AQ=Q H HH H Q=Q H UD H V H VD H U H Q=D H V H VD H = Under the condition of D H D H , D A = D H D H (that is, D H =sqrt(D A )). The U, V and D H matrices are then obtained as follows: V = H H U(D H ) -1 where U = Q and D H = sqrt(D A ).

雖然已在較佳實施例中就特定組合說明本發明之特徵和元素,每一特徵或元素得被單獨使用(不具備較佳實施例之其他特徵和元素)或是以有或沒有本發明其他特徵和元素之多樣組合使用。 Although the features and elements of the present invention have been described in terms of specific combinations in the preferred embodiments, each feature or element may be used alone (without other features and elements of the preferred embodiments) or with or without the invention. A combination of features and elements.

DA、DH、Hermitian‧‧‧矩陣 D A, D H, Hermitian‧‧ matrix

HHH、HHH‧‧‧維度 H H H, HH H ‧‧‧ Dimensions

Jacobi‧‧‧程序 Jacobi‧‧ program

Claims (4)

積體電路的方法,包括:配置以對資料進行頻道編碼的電路;配置以將該所頻道編碼資料分割成第一複數串流的電路;配置以藉由該傳輸器將該第一複數串流映射到第二複數串流的電路,其中該第二複數串流中的每一個是關聯於一相應發射天線;配置以針對該第二複數串流的每一個執行一反快速傅立葉轉換(IFFT)而產生複數IFFT串流的電路,該複數IFFT串流的每一個具有複數子載波;配置以將一循環前綴插入該複數IFFT串流的每一個的電路;配置以使用一相應發射天線而傳輸有所插入循環前綴之該複數IFFT串流的電路,該相應發射天線使用波束成形權重,該波束成形權重使用奇異值分解(SVD)而導出,其中該SVD使用兩單位矩陣與一奇異值對角矩陣而分解一頻道響應矩陣。 A method of integrating a circuit, comprising: a circuit configured to channel encode a data; a circuit configured to divide the channel encoded data into a first plurality of streams; configured to stream the first plurality of streams by the transmitter a circuit mapped to a second complex stream, wherein each of the second plurality of streams is associated with a respective transmit antenna; configured to perform an inverse fast Fourier transform (IFFT) for each of the second plurality of streams And a circuit for generating a complex IFFT stream, each of the complex IFFT streams having a plurality of subcarriers; a circuit configured to insert a cyclic prefix into each of the plurality of IFFT streams; configured to transmit using a corresponding transmit antenna a circuit for inserting the complex IFFT stream of the cyclic prefix, the corresponding transmit antenna using beamforming weights, the beamforming weights being derived using singular value decomposition (SVD), wherein the SVD uses a two-unit matrix and a singular value diagonal matrix The channel response matrix is decomposed. 如申請專利範圍第1項所述的積體電路,其中該波束成形權重是在該IFFT之前被施用到該第二複數串流。 The integrated circuit of claim 1, wherein the beamforming weight is applied to the second plurality of streams before the IFFT. 一種積體電路,該積體電路包括:配置從一所接收訊號去除一循環前綴(CP)的電路;配置以將該所接收訊號轉換成複數頻域資料串流的電路;配置以U與D矩陣而處理該複數頻域資料串流的電路,該U與D矩陣是分解自一頻道矩陣;以及配置以多工與解碼該所處理複數頻域資料串流而產生一所解碼資料串流的電路。 An integrated circuit comprising: a circuit configured to remove a cyclic prefix (CP) from a received signal; a circuit configured to convert the received signal into a complex frequency domain data stream; configured with U and D Processing a circuit of the complex frequency domain data stream, the U and D matrix being decomposed from a channel matrix; and configuring multiplexing and decoding the processed complex frequency domain data stream to generate a decoded data stream Circuit. 如申請專利範圍第3項所述的積電路,更包括:配置以從訓練序列而產生一頻道矩陣的電路,該訓練序列藉由一傳輸器而通過一天線傳輸;以及配置以將該頻道矩陣分解成U、V、與D矩陣並將該V矩陣發送到該傳輸器,及將該U與D矩陣發送到一接收波束成形器的電路。 The circuit as described in claim 3, further comprising: circuitry configured to generate a channel matrix from the training sequence, the training sequence being transmitted through an antenna by a transmitter; and configured to matrix the channel Decomposed into U, V, and D matrices and sent to the transmitter, and the U and D matrices are sent to a receive beamformer circuit.
TW102103832A 2005-04-01 2006-03-30 Method and apparatus for singular value decomposition of a channel matrix TW201347446A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US66732605P 2005-04-01 2005-04-01

Publications (1)

Publication Number Publication Date
TW201347446A true TW201347446A (en) 2013-11-16

Family

ID=44826566

Family Applications (4)

Application Number Title Priority Date Filing Date
TW102103832A TW201347446A (en) 2005-04-01 2006-03-30 Method and apparatus for singular value decomposition of a channel matrix
TW95111340A TWI305981B (en) 2005-04-01 2006-03-30 Method and apparatus for singular value decomposition of a channel matrix
TW095137440A TW200733602A (en) 2005-04-01 2006-03-30 Method and apparatus for singular value decomposition of a channel matrix
TW98112414A TW201006154A (en) 2005-04-01 2006-03-30 Method and apparatus for singular value decomposition of a channel matrix

Family Applications After (3)

Application Number Title Priority Date Filing Date
TW95111340A TWI305981B (en) 2005-04-01 2006-03-30 Method and apparatus for singular value decomposition of a channel matrix
TW095137440A TW200733602A (en) 2005-04-01 2006-03-30 Method and apparatus for singular value decomposition of a channel matrix
TW98112414A TW201006154A (en) 2005-04-01 2006-03-30 Method and apparatus for singular value decomposition of a channel matrix

Country Status (1)

Country Link
TW (4) TW201347446A (en)

Also Published As

Publication number Publication date
TW200642329A (en) 2006-12-01
TW201006154A (en) 2010-02-01
TW200733602A (en) 2007-09-01
TWI305981B (en) 2009-02-01

Similar Documents

Publication Publication Date Title
KR100950245B1 (en) Method and apparatus for singular value decomposition of a channel matrix
US7991065B2 (en) Efficient computation of spatial filter matrices for steering transmit diversity in a MIMO communication system
JP4532412B2 (en) Eigenvector derivation for spatial processing in MIMO communication systems
CA2649566C (en) Reduced complexity beam-steered mimo ofdm system
JP5432316B2 (en) Single carrier frequency division multiple access system based on MIMO beamforming
JP5738581B2 (en) Multi-user MIMO transmission method and base station in wireless communication system
JP5666581B2 (en) Precoding method for transmitter of MU-MIMO communication system
JP5133007B2 (en) Transmitting apparatus and beamforming matrix generation method
JP2010527562A (en) Method and apparatus for feedback in closed loop transmission
WO2015188385A1 (en) Method for hybrid analog and digital precoding for use in large-scale mimo system
JP2009505554A (en) Channel estimation method and training signal generation method for channel estimation in MIMO-OFDM system
Hassan et al. Polynomial GSVD beamforming for two-user frequency-selective MIMO channels
EP3484063B1 (en) Pre-coding steering matrix for mu-mimo communication systems
TW201347446A (en) Method and apparatus for singular value decomposition of a channel matrix
Lin et al. Implementation of the SVD-based precoding sub-system for the compressed beamforming weights feedback in IEEE 802.11 n/ac WLAN
Ding et al. MIMO LMMSE transceiver design with imperfect CSI at both ends
Iloki et al. Feedback of the channel information for transmit beamforming in WLAN
JP5318534B2 (en) Reception device and signal processing method