TW201345017A - Composite powder for making electrode and electrochemical device using the same - Google Patents

Composite powder for making electrode and electrochemical device using the same Download PDF

Info

Publication number
TW201345017A
TW201345017A TW101113448A TW101113448A TW201345017A TW 201345017 A TW201345017 A TW 201345017A TW 101113448 A TW101113448 A TW 101113448A TW 101113448 A TW101113448 A TW 101113448A TW 201345017 A TW201345017 A TW 201345017A
Authority
TW
Taiwan
Prior art keywords
material particles
zno
composite powder
active material
particle diameter
Prior art date
Application number
TW101113448A
Other languages
Chinese (zh)
Inventor
Wen-Chun Chiu
Tung-Feng Lee
Original Assignee
Hirose Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirose Tech Co Ltd filed Critical Hirose Tech Co Ltd
Priority to TW101113448A priority Critical patent/TW201345017A/en
Publication of TW201345017A publication Critical patent/TW201345017A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Glass Compositions (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a composite powder for making an electrode, which includes: active material particles; and glass material particles, which are smaller than the active material particles in diameter and dispersed on the surface of the active material particles and have a glass transition temperature from 150 DEG C to 400 DEG C. The composite powder of the present invention can ensure the safety of electrochemical devices. In addition, the present invention further provides an electrochemical device using the above-mentioned composite powder.

Description

用於製作電極之複合粉體及使用其之電化學裝置Composite powder for making electrodes and electrochemical device using same

本發明係關於一種用於製作電極之複合粉體及使用其之電化學裝置,尤指一種可提高電池安全性之複合粉體及使用其之電化學裝置。The present invention relates to a composite powder for producing an electrode and an electrochemical device using the same, and more particularly to a composite powder which can improve battery safety and an electrochemical device using the same.

現今,隨著各式可攜式電子裝置之發展,以及對行動設備的需求增加,對於能量儲存技術及可攜式能源之關注也隨之增加。目前較廣為使用之可攜式能源為二次電池,其中由於鋰離子二次電池具有高能量密度、高電容密度、循環充放特性良好、無記憶效應等優點,故二次電池中又以鋰離子二次電池最為廣泛使用。Nowadays, with the development of various portable electronic devices and the increasing demand for mobile devices, the attention paid to energy storage technologies and portable energy sources has also increased. At present, the portable energy source widely used is a secondary battery, and since the lithium ion secondary battery has the advantages of high energy density, high capacitance density, good cycle charge and discharge characteristics, and no memory effect, the secondary battery is further Lithium ion secondary batteries are most widely used.

然而,鋰離子二次電池卻可能因電池異常高溫而有起火甚至爆炸等安全上之問題,其中電池內部短路往往是電池溫度劇烈上升之主因,而造成電池內部短路之原因包括電池受到外力衝撞破壞或者電池過度充電所造成的內部短路。若電池溫度持續上升而到達某一程度時,電池之正極材料會開始分解產生氧氣並劇烈放熱,使電池瞬間溫度急遽升高並有大量氣體噴出,進而導致電池有起火燃燒及爆炸等危險。However, lithium ion secondary batteries may have safety problems such as fire or even explosion due to abnormally high temperature of the battery. The internal short circuit of the battery is often the main cause of the sudden rise of the battery temperature, and the cause of the internal short circuit of the battery includes the battery being damaged by external force. Or an internal short circuit caused by overcharging the battery. If the battery temperature continues to rise and reaches a certain level, the positive electrode material of the battery will begin to decompose to generate oxygen and radiate heat violently, so that the instantaneous temperature of the battery rises sharply and a large amount of gas is ejected, which may cause the battery to ignite and explode.

為解決上述電池安全性問題,目前已有相關研究團隊提出一種STOBA(Self Terminated Oligomers with hyper-Branched Architecture)高分子電解質,其可於電池溫度上升時形成保護膜,以阻斷離子通道,終止電化學作用,避免電池發生熱失控(Thermal Runaway)現象,以提高電池安全性。然而,當將此類高分子電解質應用於大型電池時,因其無法即時於大面積電極板表面形成全面性的保護膜,故此類高分子電解質並無法有效解決大型化、高能化電池之安全性問題。In order to solve the above battery safety problem, a related research team has proposed a STOBA (Self Terminated Oligomers with hyper-Branched Architecture) polymer electrolyte, which can form a protective film when the battery temperature rises to block the ion channel and terminate the electrification. Learning to prevent the battery from thermal runaway (Thermal Runaway) phenomenon to improve battery safety. However, when such a polymer electrolyte is applied to a large-sized battery, since it cannot form a comprehensive protective film on the surface of a large-area electrode plate, such a polymer electrolyte cannot effectively solve the safety of a large-sized, high-energy battery. problem.

有鑑於此,目前亟需發展出一種可有效解決電池安全性問題之相關技術,以利二次電池於大型化、高能化之方向發展,使二次電池更能廣泛地應用於各種領域,如新能源汽車、大型儲能設備等。In view of this, there is an urgent need to develop a related technology that can effectively solve the problem of battery safety, so as to facilitate the development of secondary batteries in the direction of large-scale and high-energy, so that secondary batteries can be widely used in various fields, such as New energy vehicles, large energy storage equipment, etc.

本發明之目的係在提供一種用於製作電極之複合粉體,其可有效提高電池安全性,且具有製法簡單,製作成本低及有利於量產等優點。The object of the present invention is to provide a composite powder for forming an electrode, which can effectively improve battery safety, and has the advantages of simple preparation method, low production cost, and favorable mass production.

為達成上述目的,本發明提供一種用於製作電極之複合粉體,其包括:活性材料粒子;以及玻璃材料粒子,其粒徑小於活性材料粒子之粒徑,並分佈於活性材料粒子之表面,其中玻璃材料粒子之玻璃轉移溫度(Tg)範圍為150℃至400℃,例如本發明實施態樣中玻璃材料粒子之玻璃轉移溫度(Tg)範圍約為250℃至400℃。此外,玻璃材料粒子之玻璃軟化溫度(Td)範圍可約為250℃至500℃,例如本發明實施態樣中玻璃材料粒子之玻璃軟化溫度(Td)範圍約為300℃至450℃。In order to achieve the above object, the present invention provides a composite powder for forming an electrode, comprising: active material particles; and glass material particles having a particle diameter smaller than that of the active material particles and distributed on the surface of the active material particles, The glass transition temperature (Tg) of the glass material particles ranges from 150 ° C to 400 ° C. For example, the glass transition temperature (Tg) of the glass material particles in the embodiment of the present invention ranges from about 250 ° C to 400 ° C. Further, the glass softening temperature (Td) of the glass material particles may range from about 250 ° C to 500 ° C. For example, the glass softening temperature (Td) of the glass material particles in the embodiment of the present invention ranges from about 300 ° C to 450 ° C.

由於離子仍可穿透玻璃材料粒子間之空隙而到達活性材料進行電化學反應,故分佈於活性材料表面之玻璃材料並不會阻斷電化學反應。然而,當使用複合粉體製作電極之電池發生過熱反應時,遇熱之低溫玻璃材料粒子可自我反應產生收縮融合與連結,即時於活性材料粒子表面形成1至5 μm保護薄膜,達到阻斷離子流動並終止電化學反應之效果,以避免電池爆炸。據此,相較於上述STOBA技術,本發明之複合粉體即使應用於大電容量、大安時數之電池,仍可確保電池之安全性。Since the ions can still penetrate the gap between the glass material particles to reach the active material for electrochemical reaction, the glass material distributed on the surface of the active material does not block the electrochemical reaction. However, when the battery using the composite powder to make the electrode undergoes a superheat reaction, the hot-cold low-temperature glass material particles can self-react to produce shrinkage fusion and bonding, and immediately form a protective film of 1 to 5 μm on the surface of the active material particle to reach the blocking ion. Flow and stop the effect of the electrochemical reaction to avoid battery explosion. Accordingly, compared with the above STOBA technology, the composite powder of the present invention can ensure the safety of the battery even when applied to a battery having a large capacity and a large number of hours.

本發明之複合粉體可用於製作正電極,亦即,可將低溫玻璃材料粒子分佈於正極活性材料粒子之表面,以形成用於製作正電極之複合粉體。舉例說明,可使用上述複合粉體製作鋰離子二次電池之正電極,據此,該複合粉體可使用含鋰金屬複合氧化物作為活性材料,且該活性材料粒子亦可選擇性包含適量的導電材料,以提高電極材料的導電性。在此,含鋰金屬複合氧化物及導電材料並無特殊限制,其可為任何適用之含鋰金屬複合氧化物及導電材料。舉例說明,含鋰金屬複合氧化物可為磷酸鋰鐵(LiFePO4)、鋰鎳鈷錳氧化物(LiNiCoMnO2)、鋰錳氧化物(LiMnO2)、鋰鎳氧化物(LiNiO2)、鋰鈷氧化物(LiCoO2)、鋰鎳鈷鋁氧化物(LiNiCoAlO2)、鋰鎳鈷錳氧化物(LiNiMnO2)或鋰鎳鈷氧化物(LiNiCoO2)等,而導電材料可為一碳材。The composite powder of the present invention can be used for producing a positive electrode, that is, a low-temperature glass material particle can be distributed on the surface of the positive electrode active material particle to form a composite powder for producing a positive electrode. For example, the positive electrode of the lithium ion secondary battery can be fabricated by using the above composite powder, and accordingly, the composite powder can use a lithium-containing metal composite oxide as an active material, and the active material particles can also selectively contain an appropriate amount. Conductive material to improve the conductivity of the electrode material. Here, the lithium-containing metal composite oxide and the conductive material are not particularly limited, and may be any suitable lithium-containing metal composite oxide and a conductive material. For example, the lithium-containing metal composite oxide may be lithium iron phosphate (LiFePO 4 ), lithium nickel cobalt manganese oxide (LiNiCoMnO 2 ), lithium manganese oxide (LiMnO 2 ), lithium nickel oxide (LiNiO 2 ), lithium cobalt. oxide (LiCoO 2), lithium nickel cobalt aluminum oxide (LiNiCoAlO 2), lithium nickel cobalt manganese oxide (LiNiMnO 2) or lithium nickel cobalt oxide (LiNiCoO 2) and the like, and the conductive material may be a carbon material.

於本發明中,該玻璃材料粒子並無特殊限制,其可為任何玻璃轉移溫度範圍約150℃至400℃之玻璃材料粒子。舉例而言,該玻璃材料粒子可使用ZnO-P2O5-B2O3、ZnO-P2O5-Nb2O5、SnO-MgO-P2O5、SnO-MnO-P2O5、SnO-ZnO-P2O5、Bi2O3-ZnO-B2O3、Li2O-ZnO-SiO2、BaO-ZnO-B2O3、Li2O-Al2O3-SiO2、Tl2O3-V2O3-P2O5、V2O5-ZnO-BaO-TeO2、V2O5-ZnO-BaO-P2O5、V2O5-ZnO-BaO、PbO-B2O3、P2O5-Nb2O5-Al2O3-Bi2O3-B2O3、ZnO-P2O5-Nb2O3-Al2O3、PbO-B2O3-SiO2、Bi2O3-B2O3-SiO2、SiO2-P2O5-SnO、SiO2-P2O5-SnO-ZnO或其組合作為材料,但不限於此。較佳為,該玻璃材料粒子為具有導電性之玻璃材料粒子,如Li2O-Al2O3-SiO2、SnO-ZnO-P2O5等。據此,使用該複合粉體之電極可無需再添加額外的導電材料。In the present invention, the glass material particles are not particularly limited, and may be any glass material particles having a glass transition temperature ranging from about 150 ° C to 400 ° C. For example, the glass material particles may use ZnO-P 2 O 5 -B 2 O 3 , ZnO-P 2 O 5 -Nb 2 O 5 , SnO-MgO-P 2 O 5 , SnO-MnO-P 2 O 5 , SnO-ZnO-P 2 O 5 , Bi 2 O 3 -ZnO-B 2 O 3 , Li 2 O-ZnO-SiO 2 , BaO-ZnO-B 2 O 3 , Li 2 O-Al 2 O 3 - SiO 2 , Tl 2 O 3 -V 2 O 3 -P 2 O 5 , V 2 O 5 -ZnO-BaO-TeO 2 , V 2 O 5 -ZnO-BaO-P 2 O 5 , V 2 O 5 -ZnO -BaO, PbO-B 2 O 3 , P 2 O 5 -Nb 2 O 5 -Al 2 O 3 -Bi 2 O 3 -B 2 O 3 , ZnO-P 2 O 5 -Nb 2 O 3 -Al 2 O 3 , PbO-B 2 O 3 -SiO 2 , Bi 2 O 3 -B 2 O 3 -SiO 2 , SiO 2 -P 2 O 5 -SnO, SiO 2 -P 2 O 5 -SnO-ZnO or a combination thereof Materials, but are not limited to this. Preferably, the glass material particles are conductive glass material particles such as Li 2 O-Al 2 O 3 -SiO 2 , SnO-ZnO-P 2 O 5 or the like. Accordingly, the use of the electrode of the composite powder eliminates the need to add additional conductive material.

本發明之複合粉體平均粒徑(D50)可約為0.5 μm至50 μm且D90可約為1 μm至100 μm,其中玻璃材料粒子之平均粒徑(D50)可約為0.1 μm至20 μm且D90可約為0.2 μm至40μm,而活性材料粒子之平均粒徑(D50)可約為0.3 μm至30 μm且D90可約為0.6 μm至60 μm。例如,於本發明之實施態樣中,活性材料粒子之D50約為3 μm至10 μm,D90約為6 μm至22 μm;玻璃材料粒子之D50約為1 μm至2 μm,D90約為2 μm至4 μm;複合粉體之D50約為5 μm至12 μm,D90約為8 μm至26 μm。此外,玻璃材料粒子於活性材料粒子表面所形成之粒子層厚度較佳為1至5 μm,以免玻璃材料層過厚而影響離子穿透性。再者,活性材料粒子與玻璃材料粒子之重量比可約為10:1至25:1,例如本發明實施態樣中活性材料粒子與玻璃材料粒子之重量比約為10:1至20:1。The composite powder of the present invention may have an average particle diameter (D50) of about 0.5 μm to 50 μm and a D90 of about 1 μm to 100 μm, wherein the average particle diameter (D50) of the glass material particles may be about 0.1 μm to 20 μm. And D90 may be about 0.2 μm to 40 μm, and the average particle diameter (D50) of the active material particles may be about 0.3 μm to 30 μm and D90 may be about 0.6 μm to 60 μm. For example, in an embodiment of the present invention, the D50 of the active material particles is about 3 μm to 10 μm, and the D90 is about 6 μm to 22 μm; the D50 of the glass material particles is about 1 μm to 2 μm, and the D90 is about 2 Μm to 4 μm; the composite powder has a D50 of about 5 μm to 12 μm and a D90 of about 8 μm to 26 μm. Further, the thickness of the particle layer formed on the surface of the active material particles by the glass material particles is preferably from 1 to 5 μm so as to prevent the glass material layer from being too thick to affect the ion permeability. Furthermore, the weight ratio of the active material particles to the glass material particles may be about 10:1 to 25:1. For example, in the embodiment of the present invention, the weight ratio of the active material particles to the glass material particles is about 10:1 to 20:1. .

本發明之複合粉體可藉由將活性材料及玻璃材料混合後再進行乾燥步驟而製得。在此,可利用球磨機、珠磨機或其他可進行研磨分散之設備進行研磨攪拌,或者亦可使用高速攪拌機、乳化機、低速攪拌機等進行攪拌分散,以均勻混合活性材料與玻璃材料,俾使玻璃材料可均勻分散於活性材料表面。此外,乾燥步驟則可採用噴霧乾燥法,俾於乾燥粉體時得以同時控制複合粉體之粒徑分佈。據此,本發明之複合粉體具有製法簡單,製作成本低且適於大量製作之優點。The composite powder of the present invention can be obtained by mixing an active material and a glass material and then performing a drying step. Here, the ball mill, the bead mill, or other equipment capable of grinding and dispersing may be used for grinding and stirring, or a high-speed mixer, an emulsifier, a low-speed mixer, or the like may be used for stirring and dispersing to uniformly mix the active material and the glass material. The glass material can be uniformly dispersed on the surface of the active material. In addition, the drying step can be carried out by spray drying, and the particle size distribution of the composite powder can be controlled simultaneously while drying the powder. Accordingly, the composite powder of the present invention has the advantages of simple process, low production cost, and suitability for mass production.

於本發明中,該活性材料及玻璃材料之來源並無特殊限制,亦即,可使用任何已知方法所製得之活性材料及玻璃材料。舉例說明,可於室溫下對含磷酸前驅物、含鋰前驅物、金屬源及碳源進行研磨,隨後再藉由噴霧造粒製程製得粒狀混合物,最後再對粒狀混合物進行燒結,以製得表面包覆有碳材之多孔性磷酸鋰金屬鹽(如磷酸鋰鐵)活性材料。另外,玻璃材料則可藉由混合前趨物,接著進行熔融步驟,再倒入水中急冷形成玻璃屑後進行研磨而製得。In the present invention, the source of the active material and the glass material is not particularly limited, that is, the active material and the glass material obtained by any known method can be used. For example, the phosphoric acid-containing precursor, the lithium-containing precursor, the metal source, and the carbon source may be ground at room temperature, and then the granular mixture is prepared by a spray granulation process, and finally the granular mixture is sintered. A porous lithium metal phosphate (such as lithium iron phosphate) active material coated with a carbon material is prepared. In addition, the glass material can be obtained by mixing the precursor, followed by a melting step, and then pouring into water to quench to form glass cullet and then grinding.

本發明更提供一種使用上述複合粉體之電極,其包括:一電極基材(如金屬片或金屬網);以及一電極塗層,係塗佈該電極基材上,其中該電極塗層包括上述複合粉體,且可選擇性地添加適量的黏結劑或導電材料。The present invention further provides an electrode using the above composite powder, comprising: an electrode substrate (such as a metal sheet or a metal mesh); and an electrode coating coated on the electrode substrate, wherein the electrode coating comprises The above composite powder may optionally be added with an appropriate amount of a binder or a conductive material.

本發明亦提供上述電極之製備方法,其包括以下步驟:將包含上述複合粉體之電極漿料塗佈於一電極基材上;以及對該電極漿料進行乾燥,以於電極基材上形成電極塗層。在此,電極漿料可選擇性地添加適量的黏結劑或導電材料。The present invention also provides a method for preparing the above electrode, comprising the steps of: coating an electrode slurry comprising the above composite powder on an electrode substrate; and drying the electrode slurry to form on the electrode substrate Electrode coating. Here, the electrode slurry may optionally be added with an appropriate amount of a binder or a conductive material.

本發明另提供一種使用上述複合粉體之電化學裝置,其包括:一正電極;一負電極;一隔離膜,其隔開正電極及負電極;及一電解質,其形成正電極與負電極間之離子通道,其中正電極及負電極中之至少一者係使用包括活性材料粒子及玻璃材料粒子之複合粉體,玻璃材料粒子之粒徑小於活性材料粒子之粒徑,並分佈於活性材料粒子之表面,且玻璃材料粒子之玻璃轉移溫度範圍為150℃至400℃。在此,該電化學裝置可為鋰離子二次電池,而該複合粉體可用於正電極中,據此,該複合粉體中之活性材料可採用含鋰金屬複合氧化物。The present invention further provides an electrochemical device using the above composite powder, comprising: a positive electrode; a negative electrode; a separator separating the positive electrode and the negative electrode; and an electrolyte forming the positive electrode and the negative electrode The ion channel, wherein at least one of the positive electrode and the negative electrode uses a composite powder comprising active material particles and glass material particles, the particle diameter of the glass material particles is smaller than the particle diameter of the active material particles, and is distributed in the active material The surface of the particles, and the glass transition temperature of the glass material particles ranges from 150 ° C to 400 ° C. Here, the electrochemical device may be a lithium ion secondary battery, and the composite powder may be used in a positive electrode, whereby the active material in the composite powder may be a lithium-containing metal composite oxide.

綜上所述,本發明之複合粉體可於電池溫度上升時,藉由低溫玻璃材料遇熱之自我收縮融合與連結反應,於活性材料表面形成1至5 μm薄膜,達到阻斷離子流動並終止電化學反應之效果,以避免電池爆炸,進而有效提高電化學裝置(如鋰離子二次電池)之安全性。此外,本發明之複合粉體具有製程簡單、低製作成本且適於量產之優點,故具有相當的市場競爭力。In summary, the composite powder of the present invention can form a 1 to 5 μm film on the surface of the active material by the self-shrinking fusion and bonding reaction of the low temperature glass material when the temperature of the battery rises, thereby blocking the ion flow and The effect of the electrochemical reaction is terminated to avoid explosion of the battery, thereby effectively improving the safety of the electrochemical device (such as a lithium ion secondary battery). In addition, the composite powder of the present invention has the advantages of simple process, low production cost and suitable for mass production, and thus has considerable market competitiveness.

以下係藉由特定的具體製備例說明本發明之實施方式,熟習此技藝之人士可由本說明書所揭示之內容輕易地了解本發明之其他優點與功效。本發明亦可藉由其他不同的具體製備例加以施行或應用,本說明書中的各項細節亦可針對不同觀點與應用,在不悖離本創作之精神下進行各種修飾與變更。The embodiments of the present invention are described below by way of specific specific examples, and those skilled in the art can readily appreciate the other advantages and advantages of the present invention. The present invention may be embodied or applied in various other specific embodiments. The various details of the present invention can be applied to various aspects and applications, and various modifications and changes can be made without departing from the spirit of the invention.

製備例1Preparation Example 1

將正極活性材料LiFePO4與低溫玻璃材料SnO-P2O5-MgO(莫耳百分比:65% SnO+32.5% P2O5+2.5% MgO,Tg:335℃,Td:400℃)依10:1之重量比混合,在室溫下進行研磨攪拌或攪拌分散,以製得低溫玻璃材料均勻分散於正極活性材料表面之混合物。The positive active material LiFePO 4 and the low temperature glass material SnO-P 2 O 5 -MgO (% of mole: 65% SnO + 32.5% P 2 O 5 + 2.5% MgO, Tg: 335 ° C, Td: 400 ° C) according to 10 The weight ratio of 1 is mixed, and the mixture is stirred or stirred at room temperature to obtain a mixture in which the low-temperature glass material is uniformly dispersed on the surface of the positive electrode active material.

接著,利用噴霧乾燥法,將混合物快速乾燥,並控制粒徑分佈,以製得本發明製備例1之正極複合粉體(D50約5μm,D90約10μm),其中該正極複合粉體係由活性材料粒子(D50約4μm,D90約8μm)及低溫玻璃材料粒子(D50約1μm,D90約2μm)所組成,且低溫玻璃材料粒子係分佈於活性材料粒子之表面。Next, the mixture is rapidly dried by a spray drying method, and the particle size distribution is controlled to obtain a positive electrode composite powder of the preparation example 1 of the present invention (D50 of about 5 μm, D90 of about 10 μm), wherein the positive electrode composite powder system is composed of an active material. The particles (D50 of about 4 μm, D90 of about 8 μm) and low-temperature glass material particles (D50 of about 1 μm, D90 of about 2 μm) are composed, and the low-temperature glass material particles are distributed on the surface of the active material particles.

製備例2-5Preparation Example 2-5

本發明製備例2-5之製備方法與製備例1所述大致相同,惟不同處在於,本發明製備例2-5所採用之活性材料(組成份A)、低溫玻璃材料(組成份B)、重量比(A:B)、活性材料粒子粒徑(A粒徑)、玻璃材料粒子粒徑(B粒徑)及正極複合粉體粒徑(C粒徑)分別如下表1所示。The preparation method of Preparation Example 2-5 of the present invention is substantially the same as that described in Preparation Example 1, except that the active material (component A) and the low-temperature glass material (component B) used in Preparation Example 2-5 of the present invention are different. The weight ratio (A: B), the active material particle diameter (A particle diameter), the glass material particle diameter (B particle diameter), and the positive electrode composite powder particle diameter (C particle diameter) are shown in Table 1 below.

《表1》"Table 1"

製備例6-7Preparation 6-7

本發明製備例6-7之製備方法與製備例1所述大致相同,惟不同處在於,本發明製備例6-7所採用之活性材料(組成份A)、低溫玻璃材料(組成份B)、重量比(A:B)、活性材料粒子粒徑(A粒徑)、玻璃材料粒子粒徑(B粒徑)及正極複合粉體粒徑(C粒徑)分別如下表2所示。The preparation method of Preparation Examples 6-7 of the present invention is substantially the same as that described in Preparation Example 1, except that the active material (component A) and the low-temperature glass material (component B) used in Preparation Examples 6-7 of the present invention are different. The weight ratio (A: B), the active material particle diameter (A particle diameter), the glass material particle diameter (B particle diameter), and the positive electrode composite powder particle diameter (C particle diameter) are shown in Table 2 below.

製備例8-9Preparation Examples 8-9

本發明製備例8-9之製備方法與製備例1所述大致相同,惟不同處在於,本發明製備例8-9所採用之活性材料(組成份A)、低溫玻璃材料(組成份B)、重量比(A:B)、活性材料粒子粒徑(A粒徑)、玻璃材料粒子粒徑(B粒徑)及正極複合粉體粒徑(C粒徑)分別如下表3所示。The preparation method of Preparation Examples 8-9 of the present invention is substantially the same as that described in Preparation Example 1, except that the active material (component A) and the low-temperature glass material (component B) used in Preparation Examples 8-9 of the present invention are different. The weight ratio (A: B), the active material particle diameter (A particle diameter), the glass material particle diameter (B particle diameter), and the positive electrode composite powder particle diameter (C particle diameter) are shown in Table 3 below.

製備例10-13Preparation 10-13

本發明製備例10-13之製備方法與製備例1所述大致相同,惟不同處在於,本發明製備例10-13所採用之活性材料(組成份A)、低溫玻璃材料(組成份B)、重量比(A:B)、活性材料粒子粒徑(A粒徑)、玻璃材料粒子粒徑(B粒徑)及正極複合粉體粒徑(C粒徑)分別如下表4所示。The preparation method of Preparation Examples 10-13 of the present invention is substantially the same as that described in Preparation Example 1, except that the active material (component A) and the low-temperature glass material (component B) used in Preparation Examples 10-13 of the present invention are different. The weight ratio (A: B), the active material particle diameter (A particle diameter), the glass material particle diameter (B particle diameter), and the positive electrode composite powder particle diameter (C particle diameter) are shown in Table 4 below.

製備例14-24Preparation 14-24

本發明製備例14-24之製備方法與製備例1所述大致相同,惟不同處在於,本發明製備例14-24所採用之低溫玻璃材料分別為Tl2O3-V2O3-P2O5、V2O5-ZnO-BaO-TeO2、V2O5-ZnO-BaO-P2O5、V2O5-ZnO-BaO、PbO-B2O3、P2O5-Nb2O5-Al2O3-Bi2O3-B2O3、ZnO-P2O5-Nb2O3-Al2O3、PbO-B2O3-SiO2、Bi2O3-B2O3-SiO2、SiO2-P2O5-SnO、SiO2-P2O5-SnO-ZnO。The preparation method of Preparation Examples 14-24 of the present invention is substantially the same as that described in Preparation Example 1, except that the low temperature glass materials used in Preparation Examples 14-24 of the present invention are respectively Tl 2 O 3 -V 2 O 3 -P. 2 O 5 , V 2 O 5 -ZnO-BaO-TeO 2 , V 2 O 5 -ZnO-BaO-P 2 O 5 , V 2 O 5 -ZnO-BaO, PbO-B 2 O 3 , P 2 O 5 -Nb 2 O 5 -Al 2 O 3 -Bi 2 O 3 -B 2 O 3 , ZnO-P 2 O 5 -Nb 2 O 3 -Al 2 O 3 , PbO-B 2 O 3 -SiO 2 , Bi 2 O 3 -B 2 O 3 -SiO 2 , SiO 2 -P 2 O 5 -SnO, SiO 2 -P 2 O 5 -SnO-ZnO.

實施例Example

可直接使用製備例1至24中乾燥後之複合粉體製成正極,或者也可將乾燥後之複合粉體再進行100℃至150℃之加熱乾燥,使粉體含水率降至1000 ppm以下後再製成正電極,隨後再搭配適當的負電極、隔離膜及電解質,以組裝成鋰離子二次電池。由於電極及電池之製作方式是本領域具有通常知識者所熟知之技藝,故在此不再贅述。The composite powder obtained by drying in Preparation Examples 1 to 24 can be directly used to form a positive electrode, or the dried composite powder can be further dried by heating at 100 ° C to 150 ° C to reduce the water content of the powder to less than 1000 ppm. After that, a positive electrode is fabricated, and then a suitable negative electrode, separator, and electrolyte are used to assemble a lithium ion secondary battery. Since the electrodes and the battery are manufactured in a manner well known to those skilled in the art, they are not described herein.

請參見圖1,其係鋰離子二次電池之示意圖,其包括:殼體1;容置於殼體1中之電解質5;以及插置於電解質5中之正電極2、負電極3與隔離膜4,其中隔離膜4隔開正電極2及負電極3,而電解質5形成正電極2與負電極3間之鋰離子通道。1 is a schematic diagram of a lithium ion secondary battery, comprising: a housing 1; an electrolyte 5 housed in the housing 1; and a positive electrode 2, a negative electrode 3 interposed in the electrolyte 5, and isolated The membrane 4, wherein the separator 4 separates the positive electrode 2 and the negative electrode 3, and the electrolyte 5 forms a lithium ion channel between the positive electrode 2 and the negative electrode 3.

於本實施例之鋰離子二次電池中,正電極2係使用上述製備例1至24所製得之正極複合粉體,其包括活性材料粒子及分佈於活性材料粒子表面之低溫玻璃材料粒子。據此,當電池發生過熱反應時,遇熱之低溫玻璃材料便可自我反應產生收縮融合與連結,進而於活性材料表面形成1至5 μm薄膜,有效阻斷離子流動,終止電化學反應,避免電池爆炸,提高電池之安全性。In the lithium ion secondary battery of the present embodiment, the positive electrode 2 is a positive electrode composite powder obtained by the above Preparation Examples 1 to 24, which comprises active material particles and low-temperature glass material particles distributed on the surface of the active material particles. Accordingly, when the battery is overheated, the low temperature glass material in heat can self-react to produce shrinkage fusion and bonding, thereby forming a film of 1 to 5 μm on the surface of the active material, effectively blocking the ion flow, terminating the electrochemical reaction, and avoiding The battery explodes to improve the safety of the battery.

上述製備例僅係為了方便說明而舉例而已,本發明所主張之權利範圍自應以申請專利範圍所述為準,而非僅限於上述製備例。The above-mentioned preparation examples are only for the convenience of description, and the scope of the claims is based on the scope of the patent application, and is not limited to the above preparation examples.

1...殼體1. . . case

2...正電極2. . . Positive electrode

3...負電極3. . . Negative electrode

4...隔離膜4. . . Isolation film

5...電解質5. . . Electrolyte

圖1係本發明鋰離子二次電池之示意圖。BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic view of a lithium ion secondary battery of the present invention.

1...殼體1. . . case

2...正電極2. . . Positive electrode

3...負電極3. . . Negative electrode

4...隔離膜4. . . Isolation film

5...電解質5. . . Electrolyte

Claims (20)

一種用於製作電極之複合粉體,包括:活性材料粒子;以及玻璃材料粒子,其粒徑小於該活性材料粒子之粒徑,且分佈於該活性材料粒子之表面,其中該玻璃材料粒子之玻璃轉移溫度範圍為150℃至400℃。A composite powder for forming an electrode, comprising: active material particles; and glass material particles having a particle diameter smaller than a particle diameter of the active material particles and distributed on a surface of the active material particles, wherein the glass of the glass material particles The transfer temperature ranges from 150 ° C to 400 ° C. 如申請專利範圍第1項所述之複合粉體,其中,該玻璃材料粒子具有導電性。The composite powder according to claim 1, wherein the glass material particles are electrically conductive. 如申請專利範圍第1項所述之複合粉體,其中,該玻璃材料粒子係使用ZnO-P2O5-B2O3、ZnO-P2O5-Nb2O5、SnO-MgO-P2O5、SnO-MnO-P2O5、SnO-ZnO-P2O5、Bi2O3-ZnO-B2O3、Li2O-ZnO-SiO2、BaO-ZnO-B2O3、Li2O-Al2O3-SiO2、Tl2O3-V2O3-P2O5、V2O5-ZnO-BaO-TeO2、V2O5-ZnO-BaO-P2O5、V2O5-ZnO-BaO、PbO-B2O3、P2O5-Nb2O5-Al2O3-Bi2O3-B2O3、ZnO-P2O5-Nb2O3-Al2O3、PbO-B2O3-SiO2、Bi2O3-B2O3-SiO2、SiO2-P2O5-SnO、SiO2-P2O5-SnO-ZnO或其組合作為材料。The composite powder according to claim 1, wherein the glass material particles are ZnO-P 2 O 5 -B 2 O 3 , ZnO-P 2 O 5 -Nb 2 O 5 , SnO-MgO- P 2 O 5 , SnO-MnO-P 2 O 5 , SnO-ZnO-P 2 O 5 , Bi 2 O 3 -ZnO-B 2 O 3 , Li 2 O-ZnO-SiO 2 , BaO-ZnO-B 2 O 3 , Li 2 O-Al 2 O 3 -SiO 2 , Tl 2 O 3 -V 2 O 3 -P 2 O 5 , V 2 O 5 -ZnO-BaO-TeO 2 , V 2 O 5 -ZnO-BaO -P 2 O 5 , V 2 O 5 -ZnO-BaO, PbO-B 2 O 3 , P 2 O 5 -Nb 2 O 5 -Al 2 O 3 -Bi 2 O 3 -B 2 O 3 ,ZnO-P 2 O 5 -Nb 2 O 3 -Al 2 O 3 , PbO-B 2 O 3 -SiO 2 , Bi 2 O 3 -B 2 O 3 -SiO 2 , SiO 2 -P 2 O 5 -SnO, SiO 2 - P 2 O 5 -SnO-ZnO or a combination thereof is used as the material. 如申請專利範圍第1項所述之複合粉體,其平均粒徑(D50)為0.5 μm至50 μm。The composite powder according to claim 1, wherein the average particle diameter (D50) is from 0.5 μm to 50 μm. 如申請專利範圍第1項所述之複合粉體,其中,該玻璃材料粒子之平均粒徑(D50)為0.1 μm至20 μm。The composite powder according to claim 1, wherein the glass material particles have an average particle diameter (D50) of from 0.1 μm to 20 μm. 如申請專利範圍第1項所述之複合粉體,其中,該活性材料粒子之平均粒徑(D50)為0.3 μm至30 μm。The composite powder according to claim 1, wherein the active material particles have an average particle diameter (D50) of from 0.3 μm to 30 μm. 如申請專利範圍第1項所述之複合粉體,其中,該活性材料粒子與該玻璃材料粒子之重量比為10:1至25:1。The composite powder according to claim 1, wherein the weight ratio of the active material particles to the glass material particles is from 10:1 to 25:1. 如申請專利範圍第1項所述之複合粉體,其係用於鋰離子二次電池。The composite powder according to claim 1, which is used for a lithium ion secondary battery. 如申請專利範圍第1項所述之複合粉體,其中,該活性材料粒子為一正極活性材料粒子。The composite powder according to claim 1, wherein the active material particles are a positive electrode active material particle. 如申請專利範圍第9項所述之複合粉體,其中,該正極活性材料粒子係使用一含鋰金屬複合氧化物。The composite powder according to claim 9, wherein the positive electrode active material particles are a lithium-containing metal composite oxide. 一種電化學裝置,包括:一正電極;一負電極;一隔離膜,其隔開該正電極及該負電極;及一電解質,其形成該正電極與該負電極間之離子通道,其中該正電極及該負電極中之至少一者係使用包括活性材料粒子及玻璃材料粒子之複合粉體,該玻璃材料粒子之粒徑小於該活性材料粒子之粒徑,並分佈於該活性材料粒子之表面,且該玻璃材料粒子之玻璃轉移溫度範圍為150℃至400℃。An electrochemical device comprising: a positive electrode; a negative electrode; an isolating film separating the positive electrode and the negative electrode; and an electrolyte forming an ion channel between the positive electrode and the negative electrode, wherein At least one of the positive electrode and the negative electrode uses a composite powder comprising active material particles and glass material particles, the particle diameter of the glass material particles being smaller than the particle diameter of the active material particles, and distributed in the active material particles The surface, and the glass transition temperature of the glass material particles ranges from 150 ° C to 400 ° C. 如申請專利範圍第11項所述之電化學裝置,其中,該玻璃材料粒子具有導電性。The electrochemical device according to claim 11, wherein the glass material particles are electrically conductive. 如申請專利範圍第11項所述之電化學裝置,其中,該玻璃材料粒子係使用ZnO-P2O5-B2O3、ZnO-P2O5-Nb2O5、SnO-MgO-P2O5、SnO-MnO-P2O5、SnO-ZnO-P2O5、Bi2O3-ZnO-B2O3、Li2O-ZnO-SiO2、BaO-ZnO-B2O3、Li2O-Al2O3-SiO2、Tl2O3-V2O3-P2O5、V2O5-ZnO-BaO-TeO2、V2O5-ZnO-BaO-P2O5、V2O5-ZnO-BaO、PbO-B2O3、P2O5-Nb2O5-Al2O3-Bi2O3-B2O3、ZnO-P2O5-Nb2O3-Al2O3、PbO-B2O3-SiO2、Bi2O3-B2O3-SiO2、SiO2-P2O5-SnO、SiO2-P2O5-SnO-ZnO或其組合作為材料。The electrochemical device according to claim 11, wherein the glass material particles are ZnO-P 2 O 5 -B 2 O 3 , ZnO-P 2 O 5 -Nb 2 O 5 , SnO-MgO- P 2 O 5 , SnO-MnO-P 2 O 5 , SnO-ZnO-P 2 O 5 , Bi 2 O 3 -ZnO-B 2 O 3 , Li 2 O-ZnO-SiO 2 , BaO-ZnO-B 2 O 3 , Li 2 O-Al 2 O 3 -SiO 2 , Tl 2 O 3 -V 2 O 3 -P 2 O 5 , V 2 O 5 -ZnO-BaO-TeO 2 , V 2 O 5 -ZnO-BaO -P 2 O 5 , V 2 O 5 -ZnO-BaO, PbO-B 2 O 3 , P 2 O 5 -Nb 2 O 5 -Al 2 O 3 -Bi 2 O 3 -B 2 O 3 ,ZnO-P 2 O 5 -Nb 2 O 3 -Al 2 O 3 , PbO-B 2 O 3 -SiO 2 , Bi 2 O 3 -B 2 O 3 -SiO 2 , SiO 2 -P 2 O 5 -SnO, SiO 2 - P 2 O 5 -SnO-ZnO or a combination thereof is used as the material. 如申請專利範圍第11項所述之電化學裝置,其中,該電極複合粉體之平均粒徑(D50)為0.5 μm至50 μm。The electrochemical device according to claim 11, wherein the electrode composite powder has an average particle diameter (D50) of from 0.5 μm to 50 μm. 如申請專利範圍第11項所述之電化學裝置,其中,該玻璃材料粒子之平均粒徑(D50)為0.1 μm至20 μm。The electrochemical device according to claim 11, wherein the glass material particles have an average particle diameter (D50) of from 0.1 μm to 20 μm. 如申請專利範圍第11項所述之電化學裝置,其中,該活性材料粒子之平均粒徑(D50)為0.3 μm至30 μm。The electrochemical device according to claim 11, wherein the active material particles have an average particle diameter (D50) of from 0.3 μm to 30 μm. 如申請專利範圍第11項所述之電極材料,其中,該活性材料粒子與該玻璃材料粒子之重量比為10:1至25:1。The electrode material according to claim 11, wherein the weight ratio of the active material particles to the glass material particles is from 10:1 to 25:1. 如申請專利範圍第11項所述之電化學裝置,其係為鋰離子二次電池。The electrochemical device according to claim 11, which is a lithium ion secondary battery. 如申請專利範圍第11項所述之電極材料,其中,該正電極係使用包括該活性材料粒子及該玻璃材料粒子之該複合粉體。The electrode material according to claim 11, wherein the positive electrode is a composite powder comprising the active material particles and the glass material particles. 如申請專利範圍第19項所述之電極材料,其中,該活性材料粒子係使用一含鋰金屬複合氧化物。The electrode material according to claim 19, wherein the active material particles are a lithium-containing metal composite oxide.
TW101113448A 2012-04-16 2012-04-16 Composite powder for making electrode and electrochemical device using the same TW201345017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101113448A TW201345017A (en) 2012-04-16 2012-04-16 Composite powder for making electrode and electrochemical device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101113448A TW201345017A (en) 2012-04-16 2012-04-16 Composite powder for making electrode and electrochemical device using the same

Publications (1)

Publication Number Publication Date
TW201345017A true TW201345017A (en) 2013-11-01

Family

ID=49990343

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101113448A TW201345017A (en) 2012-04-16 2012-04-16 Composite powder for making electrode and electrochemical device using the same

Country Status (1)

Country Link
TW (1) TW201345017A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108448167A (en) * 2018-02-08 2018-08-24 福建猛狮新能源科技有限公司 A kind of composition polymer solid electrolyte and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108448167A (en) * 2018-02-08 2018-08-24 福建猛狮新能源科技有限公司 A kind of composition polymer solid electrolyte and preparation method thereof

Similar Documents

Publication Publication Date Title
EP3526844B1 (en) Cathode slurry for lithium ion battery
CN113540425B (en) Negative electrode material, and electrochemical device and electronic device comprising same
US20190051894A1 (en) Silicon Negative Material, Silicon Negative Material Preparation Method, Negative Electrode Plate, And Lithium-Ion Battery
TWI376828B (en) Electrolytic solution and lithium battery employing the same
CN107017388A (en) A kind of preparation method of composite positive pole for solid lithium ion battery
CN103296257B (en) Preparation method of modified lithium titanate negative material of lithium-ion battery
WO2014013837A1 (en) Active material particles for lithium ion secondary batteries, and lithium ion secondary battery using same
CN106299267B (en) A kind of preparation method of titanium phosphate lithium titanate cathode material
WO2017024719A1 (en) Preparation method for high capacity lithium-ion battery negative electrode material
CN103311514A (en) Preparation method of modified graphite negative material of lithium-ion battery
US20150249264A1 (en) Positive electrode material, all solid-state battery, and methods respectively for producing positive electrode material and all-solid state battery
US20150228966A1 (en) Positive electrode material, secondary battery, and methods respectively for producing positive electrode material and secondary battery
WO2016202167A1 (en) Lithium titanate negative-electrode slurry for lithium-ion batteries and preparation method therefor
WO2016202168A1 (en) Lithium-ion battery positive-electrode slurry and preparation method therefor
WO2017024897A1 (en) Preparation method for modified lithium-ion battery negative electrode material
WO2017024896A1 (en) Preparation method for metal-doped composite lithium titanate negative electrode material
CN103326010A (en) Process for preparing nano-silicon-doped composite-lithium-titanate anode materials
CN102800865A (en) Lithium battery with total solid ions for conducting power
US20210043963A1 (en) Method of manufacturing sulfide solid electrolyte and sulfide solid electrolyte manufactured thereby
WO2017024902A1 (en) Preparation method for modified lithium-ion battery lithium titanate negative electrode material
JP2014207157A (en) Positive electrode material for electricity storage device and method for producing the same
JP2008210686A (en) Non-aqueous electrolyte secondary battery and its manufacturing method
WO2016165390A1 (en) Preparation method for modified lithium titanate negative electrode material
JP7105086B2 (en) All-solid battery negative electrode and all-solid lithium secondary battery
TW201345017A (en) Composite powder for making electrode and electrochemical device using the same