TW201342930A - Moving-image encoding device, method, program, transmitter, transmission method and program, and moving-image decoding device, method, program, receiver, method and program - Google Patents

Moving-image encoding device, method, program, transmitter, transmission method and program, and moving-image decoding device, method, program, receiver, method and program Download PDF

Info

Publication number
TW201342930A
TW201342930A TW101140307A TW101140307A TW201342930A TW 201342930 A TW201342930 A TW 201342930A TW 101140307 A TW101140307 A TW 101140307A TW 101140307 A TW101140307 A TW 101140307A TW 201342930 A TW201342930 A TW 201342930A
Authority
TW
Taiwan
Prior art keywords
motion information
prediction
candidate
block
prediction block
Prior art date
Application number
TW101140307A
Other languages
Chinese (zh)
Inventor
Hideki Takehara
Shigeru Fukushima
Original Assignee
Jvc Kenwood Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012239268A external-priority patent/JP2013118626A/en
Priority claimed from JP2012239269A external-priority patent/JP2013118627A/en
Application filed by Jvc Kenwood Corp filed Critical Jvc Kenwood Corp
Publication of TW201342930A publication Critical patent/TW201342930A/en

Links

Landscapes

  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

To realize motion compensation prediction highly efficiently without transmitting an encoded vector. ; SOLUTION: In generating a candidate list, a connection motion information candidate list generating unit 140 selects an encoded prediction block whose motion information including information on a motion vector and information on a reference image is effective from among plural prediction blocks adjacent to a prediction block to be encoded and makes the motion information of the selected encoded prediction block as a selection candidate, and does not make as the selection candidate the motion information of the specific prediction block in the plural prediction blocks adjacent to the prediction block to be encoded on the basis of a division type of the prediction block to be encoded and a position in the encoded block of the prediction block to be encoded. A connection motion information selecting unit 141 determines motion information used for motion compensation prediction of the prediction block to be encoded from the candidate list. A code string generating unit 104 encodes information for specifying the determined motion information in the candidate list.

Description

動態影像編碼裝置、動態影像編碼方法、動態影像編碼程式、送訊裝置、送訊方法及送訊程式、以及動態影像解碼裝置、動態影像解碼方法、動態影像解碼程式、收訊裝置、收訊方法及收訊程式 Motion picture coding device, motion picture coding method, motion picture coding program, transmission device, transmission method and transmission program, and motion picture decoding device, motion picture decoding method, motion picture decoding program, receiving device, and receiving method And receiving program

本發明係有關於利用運動補償預測的動態影像編碼及解碼技術,尤其是有關於,將運動補償預測中所利用的運動資訊予以編碼及解碼的動態影像編碼及解碼技術。 The present invention relates to a motion picture coding and decoding technique using motion compensation prediction, and more particularly to a motion picture coding and decoding technique for encoding and decoding motion information used in motion compensation prediction.

在一般的動態影像壓縮編碼中,會利用運動補償預測。運動補償預測,係將對象影像分割成細小的區塊,將已解碼之影像當作參照影像,基於運動向量所示的運動量,將從對象影像之處理對象區塊移動至參照影像之參照區塊的位置的訊號,當作預測訊號而加以生成的技術。運動補償預測係有,利用1條運動向量而單預測地進行者,和利用2條運動向量而雙預測地進行者。 In general dynamic image compression coding, motion compensation prediction is utilized. The motion compensation prediction divides the target image into small blocks, and uses the decoded image as a reference image to move from the processing target block of the target image to the reference block of the reference image based on the motion amount indicated by the motion vector. The signal of the position is generated as a predictive signal. The motion compensation prediction is performed by one prediction using one motion vector and by two predictions using two motion vectors.

關於運動向量,係將處理對象區塊所相鄰之已編碼區塊的運動向量當作預測運動向量(亦簡稱為「預測向量」,求出處理對象區塊之運動向量與預測向量的差分,藉由差分向量當作編碼向量而予以傳輸,以提升壓縮效率。 Regarding the motion vector, the motion vector of the coded block adjacent to the processing target block is regarded as a prediction motion vector (also referred to as a "prediction vector", and the difference between the motion vector and the prediction vector of the processing target block is obtained. It is transmitted by using a difference vector as an encoding vector to improve compression efficiency.

在MPEG-4 AVC/H.264(以下簡稱MPEG-4AVC)這類動態影像壓縮編碼中,藉由把進行運動補償預測的區塊尺寸切割成細緻且多樣化,就可進行高精度的運動補償預測。另一方面,縮小區塊尺寸,會造成編碼向量的編碼量變大之問題。 In motion picture compression coding such as MPEG-4 AVC/H.264 (hereinafter referred to as MPEG-4 AVC), high-precision motion compensation can be performed by cutting the block size for motion compensation prediction into detailed and diversified. prediction. On the other hand, reducing the block size causes a problem that the code amount of the code vector becomes large.

於是,在MPEG-4AVC中,著眼於時間方向的運動的連續性,將與處理對象區塊位於同一位置的參照影像之區塊所擁有的運動向量,當作處理對象區塊之運動向量來利用,而不傳輸編碼向量即實現運動補償預測的運動補償預測,是採用此種時間直接運動補償預測。 Therefore, in MPEG-4 AVC, focusing on the continuity of the motion in the time direction, the motion vector owned by the block of the reference image located at the same position as the processing target block is used as the motion vector of the processing target block. The motion compensation prediction that realizes motion compensation prediction without transmitting the coding vector is the direct motion compensation prediction using such time.

又,在專利文獻1中係揭露,著眼於空間方向的運動的連續性,將處理對象區塊所相鄰之已處理區塊所擁有的運動向量,當作處理對象區塊之運動向量來利用,而不傳輸編碼向量即實現運動補償預測的方法。 Further, in Patent Document 1, it is disclosed that, considering the continuity of the motion in the spatial direction, the motion vector possessed by the processed block adjacent to the processing target block is used as the motion vector of the processing target block. A method of implementing motion compensation prediction without transmitting a coding vector.

[先前技術文獻] [Previous Technical Literature] [專利文獻] [Patent Literature]

[專利文獻1]日本特開平10-276439號公報 [Patent Document 1] Japanese Patent Laid-Open No. Hei 10-276439

在專利文獻1所記載的方法中,當進行運動補償預測的區塊尺寸是可變時係以最小的區塊尺寸為基準,適用於如MPEG-AVC那樣事前定義多樣區塊尺寸這類動態影像壓縮編碼時,會有無法直接適用之課題。 In the method described in Patent Document 1, when the block size for performing motion compensation prediction is variable, based on the smallest block size, it is suitable for a motion picture such as MPEG-AVC that defines a plurality of block sizes in advance. When compression coding, there is a problem that cannot be directly applied.

本發明係有鑑於此種狀況而研發,其目的在於提供一種,不傳輸編碼向量即可高效率地實現運動補償預測的動態影像編碼及解碼技術。 The present invention has been developed in view of such circumstances, and an object thereof is to provide a motion picture encoding and decoding technique capable of efficiently performing motion compensation prediction without transmitting an encoding vector.

為了解決上記課題,本發明的某個樣態的動態影像編碼裝置,係屬於基於分割類型而將編碼區塊分割成1或複 數個預測區塊而進行運動補償預測以將動態影像進行編碼的動態影像編碼裝置,其特徵為,具備:候補導出部(140),係從編碼對象之預測區塊所相鄰的複數預測區塊中,選擇出包含運動向量之資訊與參照影像之資訊的運動資訊係為有效的已編碼之預測區塊,將前記選擇之已編碼之預測區塊的運動資訊,視為選擇候補;和無效化部(140),係基於前記編碼對象之預測區塊的分割類型與前記編碼對象之預測區塊在前記編碼區塊內之位置,將前記編碼對象之預測區塊所相鄰之複數預測區塊內的特定之預測區塊的運動資訊,不視為前記選擇候補;和候補清單生成部(140),係生成含有前記選擇候補的候補清單;和追加部(140),係將具有預先訂定之所定運動向量的運動資訊,視為新的選擇候補而加入至前記候補清單;和決定部(141),係從前記候補清單中,決定出前記編碼對象之預測區塊的運動補償預測時所使用的運動資訊;和編碼部(104),係將用來在前記候補清單中特定出前記已被決定之運動資訊所需的資訊,予以編碼。 In order to solve the above problem, a dynamic image coding apparatus according to a certain aspect of the present invention belongs to dividing a coding block into 1 or a complex based on a division type. A motion picture coding apparatus that performs motion compensation prediction by a plurality of prediction blocks to encode a motion picture, and includes a candidate derivation unit (140) that is a complex prediction area adjacent to a prediction block to be coded. In the block, the motion information including the information of the motion vector and the information of the reference image is selected as a valid coded prediction block, and the motion information of the coded prediction block selected by the pre-record is regarded as a selection candidate; The unit (140) is based on the division type of the prediction block of the pre-coded object and the position of the prediction block of the pre-coded object in the pre-coded block, and the complex prediction area adjacent to the prediction block of the pre-coded object The motion information of the specific prediction block in the block is not regarded as a pre-selection candidate; the candidate list generation unit (140) generates a candidate list including the pre-selection candidate; and the additional unit (140), which has a predetermined order The motion information of the predetermined motion vector is added to the pre-recorded candidate list as a new selection candidate; and the decision unit (141) determines the pre-record from the pre-recorded candidate list. The motion information used in the motion compensation prediction of the prediction block of the coding target; and the coding unit (104) is used to encode the information required to specify the motion information that has been determined in the pre-recorded candidate list.

本發明的另一樣態,係亦為動態影像編碼裝置。該裝置係屬於基於分割類型而將編碼區塊分割成1或複數個預測區塊而進行運動補償預測的動態影像編碼裝置,其特徵為,具備:結合運動資訊候補清單生成部(140),係將編碼對象之預測區塊所相鄰的已編碼之複數相鄰區塊之運動資訊,視為利用於編碼對象之預測區塊所需的結合運動資訊候補,追加至結合運動資訊候補清單,生成前記結合 運動資訊候補清單;和結合運動資訊候補排序部(162、168),係基於前記編碼對象之預測區塊的分割類型與前記編碼對象之預測區塊在前記編碼區塊內之位置,選擇出前記結合運動資訊候補清單中所含之特定之結合運動資訊候補,變更前記特定之結合運動資訊候補在前記結合運動資訊候補清單內之位置;和結合運動資訊選擇部(141),係從前記結合運動資訊候補清單中選擇出1個結合運動資訊候補,視為前記編碼對象之預測區塊的運動資訊;和編碼部(104),係將用來在前記結合運動資訊候補清單中特定出前記已被選擇之結合運動資訊候補所需的索引,予以編碼。 Another aspect of the invention is also a motion picture encoding device. The apparatus is a motion picture coding apparatus that performs motion compensation prediction by dividing a coding block into one or a plurality of prediction blocks based on a division type, and is characterized in that it includes a combined motion information candidate list generation unit (140). The motion information of the encoded complex adjacent blocks adjacent to the prediction block of the coding target is regarded as the combined motion information candidate required for the prediction block of the coding target, and is added to the combined motion information candidate list to generate Combination of foreword The motion information candidate list; and the combined motion information candidate ranking unit (162, 168) select a pre-record based on the segmentation type of the prediction block of the pre-coded object and the position of the prediction block of the pre-coded object in the pre-coded block. In combination with the specific combined motion information candidate included in the motion information candidate list, the combination of the specific combined motion information candidate in the pre-recording combined with the position in the motion information candidate list; and the combined sports information selection unit (141) are combined with the movement from the foregoing. In the information candidate list, one combined motion information candidate is selected, which is regarded as the motion information of the prediction block of the pre-recorded object; and the coding unit (104) is used to specify the pre-record in the pre-recorded combined motion information candidate list. The index required to combine the motion information candidates is selected and encoded.

本發明的另一其他樣態,係為動態影像編碼方法。此方法係屬於基於分割類型而將編碼區塊分割成1或複數個預測區塊而進行運動補償預測以將動態影像進行編碼的動態影像編碼方法,其特徵為,具備:候補導出步驟,係從編碼對象之預測區塊所相鄰的複數預測區塊中,選擇出包含運動向量之資訊與參照影像之資訊的運動資訊係為有效的已編碼之預測區塊,將前記選擇之已編碼之預測區塊的運動資訊,視為選擇候補;和無效化步驟,係基於前記編碼對象之預測區塊的分割類型與前記編碼對象之預測區塊在前記編碼區塊內之位置,將前記編碼對象之預測區塊所相鄰之複數預測區塊內的特定之預測區塊的運動資訊,不視為前記選擇候補;和候補清單生成步驟,係生成含有前記選擇候補的候補清單;和追加步驟,係將具有預先訂定 之所定運動向量的運動資訊,視為新的選擇候補而加入至前記候補清單;和決定步驟,係從前記候補清單中,決定出前記編碼對象之預測區塊的運動補償預測時所使用的運動資訊;和編碼步驟,係將用來在前記候補清單中特定出前記已被決定之運動資訊所需的資訊,予以編碼。 Another aspect of the present invention is a motion picture coding method. The method belongs to a motion picture coding method for performing motion compensation prediction to encode a motion picture by dividing a coding block into one or a plurality of prediction blocks based on a division type, and is characterized in that: a candidate extraction step is performed In the complex prediction block adjacent to the prediction block of the coding object, the motion information including the information of the motion vector and the information of the reference image is selected as a valid coded prediction block, and the encoded prediction of the pre-selection is selected. The motion information of the block is regarded as a selection candidate; and the invalidation step is based on the division type of the prediction block of the pre-coded object and the position of the prediction block of the pre-coded object in the pre-coded block, and the pre-coded object is The motion information of the specific prediction block in the complex prediction block adjacent to the prediction block is not regarded as a pre-selection candidate; and the candidate list generation step is to generate a candidate list including the pre-selection candidate; and an additional step Will have a pre-defined The motion information of the determined motion vector is added to the pre-recorded candidate list as a new selection candidate; and the decision step is to determine the motion used in the motion compensation prediction of the prediction block of the pre-coded object from the pre-recorded candidate list. The information; and coding steps are used to encode the information required to prioritize the motion information that has been determined in the predecessor list.

本發明的另一其他樣態,係為送訊裝置。該裝置係具備:封包處理部,係將編碼串流予以封包化而獲得編碼資料,該編碼串流係藉由,基於分割類型而將編碼區塊分割成1或複數個預測區塊而進行運動補償預測以將動態影像進行編碼的動態影像編碼方法所編碼而成者;和送訊部,係將已被封包化之前記編碼資料,予以發送。前記動態影像編碼方法係具備:候補導出步驟,係從編碼對象之預測區塊所相鄰的複數預測區塊中,選擇出包含運動向量之資訊與參照影像之資訊的運動資訊係為有效的已編碼之預測區塊,將前記選擇之已編碼之預測區塊的運動資訊,視為選擇候補;和無效化步驟,係基於前記編碼對象之預測區塊的分割類型與前記編碼對象之預測區塊在前記編碼區塊內之位置,將前記編碼對象之預測區塊所相鄰之複數預測區塊內的特定之預測區塊的運動資訊,不視為前記選擇候補;和候補清單生成步驟,係生成含有前記選擇候補的候補清單;和追加步驟,係將具有預先訂定之所定運動向量的運動資訊,視為新的選擇候補而加入至前記候補清單;和決定步驟,係從前記候補清單中,決定出前記編碼對象之預測區塊的運動補償預測時所使用的運動資訊;和編碼 步驟,係將用來在前記候補清單中特定出前記已被決定之運動資訊所需的資訊,予以編碼。 Still another aspect of the present invention is a transmitting device. The apparatus includes a packet processing unit that encapsulates a coded stream to obtain coded data by dividing the coded block into one or a plurality of prediction blocks based on the type of division and performing motion. The compensation prediction is encoded by a motion picture coding method for encoding a motion picture; and the transmission unit transmits the coded data before being encapsulated. The pre-recorded video encoding method has a candidate derivation step of selecting a motion information including information of a motion vector and information of a reference image from a plurality of prediction blocks adjacent to a prediction block to be encoded. The coded prediction block is regarded as a selection candidate by the motion information of the coded prediction block selected by the foregoing; and the invalidation step is based on the segmentation type of the prediction block of the preamble coding object and the prediction block of the preamble coding object. In the position in the pre-coded block, the motion information of the specific prediction block in the complex prediction block adjacent to the prediction block of the pre-coded object is not regarded as a pre-selection candidate; and the candidate list generation step is Generating a candidate list including a pre-selection candidate; and adding a step of adding the motion information having the predetermined motion vector as a new selection candidate to the pre-recorded candidate list; and determining the step from the pre-recorded candidate list Determining the motion information used in the motion compensation prediction of the prediction block of the preamble encoding object; and encoding The step is to encode the information required to specify the motion information that has been determined in the pre-recorded candidate list.

本發明的另一其他樣態,係為送訊方法。該方法係具備:封包處理步驟,係將編碼串流予以封包化而獲得編碼資料,該編碼串流係藉由,基於分割類型而將編碼區塊分割成1或複數個預測區塊而進行運動補償預測以將動態影像進行編碼的動態影像編碼方法所編碼而成者;和送訊步驟,係將已被封包化之前記編碼資料,予以發送。前記動態影像編碼方法係具備:候補導出步驟,係從編碼對象之預測區塊所相鄰的複數預測區塊中,選擇出包含運動向量之資訊與參照影像之資訊的運動資訊係為有效的已編碼之預測區塊,將前記選擇之已編碼之預測區塊的運動資訊,視為選擇候補;和無效化步驟,係基於前記編碼對象之預測區塊的分割類型與前記編碼對象之預測區塊在前記編碼區塊內之位置,將前記編碼對象之預測區塊所相鄰之複數預測區塊內的特定之預測區塊的運動資訊,不視為前記選擇候補;和候補清單生成步驟,係生成含有前記選擇候補的候補清單;和追加步驟,係將具有預先訂定之所定運動向量的運動資訊,視為新的選擇候補而加入至前記候補清單;和決定步驟,係從前記候補清單中,決定出前記編碼對象之預測區塊的運動補償預測時所使用的運動資訊;和編碼步驟,係將用來在前記候補清單中特定出前記已被決定之運動資訊所需的資訊,予以編碼。 Another aspect of the present invention is a method of transmitting. The method includes: a packet processing step of packetizing a coded stream to obtain coded data, wherein the coded stream is divided into one or a plurality of prediction blocks based on a segmentation type to perform motion The compensation prediction is encoded by a motion picture coding method for encoding a motion picture; and the transmission step is to transmit the coded data before being encapsulated. The pre-recorded video encoding method has a candidate derivation step of selecting a motion information including information of a motion vector and information of a reference image from a plurality of prediction blocks adjacent to a prediction block to be encoded. The coded prediction block is regarded as a selection candidate by the motion information of the coded prediction block selected by the foregoing; and the invalidation step is based on the segmentation type of the prediction block of the preamble coding object and the prediction block of the preamble coding object. In the position in the pre-coded block, the motion information of the specific prediction block in the complex prediction block adjacent to the prediction block of the pre-coded object is not regarded as a pre-selection candidate; and the candidate list generation step is Generating a candidate list including a pre-selection candidate; and adding a step of adding the motion information having the predetermined motion vector as a new selection candidate to the pre-recorded candidate list; and determining the step from the pre-recorded candidate list Determining the motion information used in the motion compensation prediction of the prediction block of the preamble encoding object; and the encoding step, The former will be used to record the information required record has been decided before the candidate list of the specific motion information to be encoded.

本發明的某個樣態的動態影像解碼裝置,係屬於基於 分割類型而將解碼區塊分割成1或複數個預測區塊而進行運動補償預測,將動態影像之編碼串流予以解碼的動態影像解碼裝置,其特徵為,具備:候補導出部(230),係從解碼對象之預測區塊所相鄰的複數預測區塊中,選擇出包含運動向量之資訊與參照影像之資訊的運動資訊係為有效的已解碼之預測區塊,將前記選擇之已解碼之預測區塊的運動資訊,視為選擇候補;和無效化部(230),係基於前記解碼對象之預測區塊的分割類型與前記解碼對象之預測區塊在前記解碼區塊內之位置,將前記解碼對象之預測區塊所相鄰之複數預測區塊內的特定之預測區塊的運動資訊,不視為前記選擇候補;和候補清單生成部(230),係生成含有前記選擇候補的候補清單;和追加部(230),係將具有預先訂定之所定運動向量的運動資訊,視為新的選擇候補而加入至前記候補清單;和編碼列解析部(201),係將表示在前記候補清單內之位置的資訊,予以解碼;和選擇部(231),係基於已解碼之前記表示位置之資訊,從前記候補清單中選擇出前記解碼對象之預測區塊的運動補償預測時所使用的運動資訊。 A dynamic image decoding device of a certain aspect of the present invention is based on A motion picture decoding device that divides a decoding block into one or a plurality of prediction blocks and performs motion compensation prediction, and decodes the encoded stream of the motion picture, and includes a candidate derivation unit (230). Selecting, from the complex prediction block adjacent to the prediction block of the decoding target, the motion information including the information of the motion vector and the information of the reference image is a valid decoded prediction block, and the previously selected decoding is decoded. The motion information of the prediction block is regarded as a selection candidate; and the invalidation unit (230) is based on the division type of the prediction block of the pre-decoded object and the position of the prediction block of the pre-decoded object in the pre-decode block. The motion information of the specific prediction block in the complex prediction block adjacent to the prediction block of the pre-decode target is not regarded as a pre-selection candidate; and the candidate list generation unit (230) generates a candidate with a pre-selection candidate. a candidate list; and an additional unit (230) that adds the motion information having the predetermined motion vector as a new selection candidate to the predecessor list; and The code string analysis unit (201) decodes the information indicating the position in the predecessor list, and the selection unit (231) selects the pre-record from the pre-record list based on the information indicating the position before decoding. The motion information used in the motion compensation prediction of the prediction block of the decoding object.

本發明的另一樣態,係亦為動態影像解碼裝置。該裝置係屬於基於分割類型而將解碼區塊分割成1或複數個預測區塊而進行運動補償預測的動態影像解碼裝置,其特徵為,具備:解碼部(201),係從用來在結合運動資訊候補清單中特定出結合運動資訊候補所需的索引所被編碼而成的編碼列,解碼出前記索引;和結合運動資訊候補清單 生成部(230),係將解碼對象之預測區塊所相鄰的已解碼之複數相鄰區塊之運動資訊,視為利用於解碼對象之預測區塊所需的結合運動資訊候補,追加至結合運動資訊候補清單,生成前記結合運動資訊候補清單;和結合運動資訊候補排序部(162、168),係基於前記解碼對象之預測區塊的分割類型與前記解碼對象之預測區塊在前記解碼區塊內之位置,選擇出前記結合運動資訊候補清單中所含之特定之結合運動資訊候補,變更前記特定之結合運動資訊候補在前記結合運動資訊候補清單內之位置;和結合運動資訊選擇部(231),係根據前記索引而從前記結合運動資訊候補清單中選擇出1個結合運動資訊候補,視為前記解碼對象之預測區塊的運動資訊。 Another aspect of the present invention is also a motion picture decoding device. The apparatus is a motion picture decoding apparatus that performs motion compensation prediction by dividing a decoding block into one or a plurality of prediction blocks based on a division type, and is characterized in that it includes a decoding unit (201) for combining a coding column in which a sequence required for combining motion information candidates is encoded in a motion information candidate list, and a pre-recorded index is decoded; and a motion information candidate list is combined The generating unit (230) is configured to add the motion information of the decoded complex adjacent blocks adjacent to the prediction block to be decoded to the combined motion information candidate required for the prediction block to be decoded, and to add Combining the motion information candidate list, generating a pre-recorded motion information candidate list; and combining the motion information candidate sorting unit (162, 168), based on the segmentation type of the prediction block of the pre-decoded object and the prediction block of the pre-decoded object in the pre-decoding The location within the block is selected from the combination of the specific combined motion information candidates included in the motion information candidate list, and the specific combined motion information candidate in the pre-recording combined with the position in the motion information candidate list; and the combined motion information selection unit (231), based on the pre-recorded index, one combined motion information candidate is selected from the pre-combined motion information candidate list, and is regarded as motion information of the prediction block of the pre-recording target.

本發明的另一其他樣態,係為動態影像解碼方法。此方法係屬於基於分割類型而將解碼區塊分割成1或複數個預測區塊而進行運動補償預測,將動態影像之編碼串流予以解碼的動態影像解碼方法,其特徵為,具備:候補導出步驟,係從解碼對象之預測區塊所相鄰的複數預測區塊中,選擇出包含運動向量之資訊與參照影像之資訊的運動資訊係為有效的已解碼之預測區塊,將前記選擇之已解碼之預測區塊的運動資訊,視為選擇候補;和無效化步驟,係基於前記解碼對象之預測區塊的分割類型與前記解碼對象之預測區塊在前記解碼區塊內之位置,將前記解碼對象之預測區塊所相鄰之複數預測區塊內的特定之預測區塊的運動資訊,不視為前記選擇候補;和候補清單生成步驟, 係生成含有前記選擇候補的候補清單;和追加步驟,係將具有預先訂定之所定運動向量的運動資訊,視為新的選擇候補而加入至前記候補清單;和編碼列解析步驟,係將表示在前記候補清單內之位置的資訊,予以解碼;和選擇步驟,係基於已解碼之前記表示位置之資訊,從前記候補清單中選擇出前記解碼對象之預測區塊的運動補償預測時所使用的運動資訊。 Another aspect of the present invention is a motion picture decoding method. The method belongs to a dynamic image decoding method for performing motion compensation prediction by dividing a decoding block into one or a plurality of prediction blocks based on a division type, and decoding the encoded stream of the motion image, and is characterized in that: The step of selecting, from the complex prediction block adjacent to the prediction block of the decoding target, the motion information including the information of the motion vector and the information of the reference image is a valid decoded prediction block, and selecting the pre-recording block The motion information of the decoded prediction block is regarded as a selection candidate; and the invalidation step is based on the division type of the prediction block of the pre-decoded object and the position of the prediction block of the pre-decoded object in the pre-decode block. The motion information of the specific prediction block in the complex prediction block adjacent to the prediction block of the pre-decoded object is not regarded as a pre-selection candidate; and the candidate list generation step, a candidate list including a pre-selection candidate; and an appending step of adding a motion information having a predetermined motion vector as a new selection candidate to the pre-pick list; and a coding column parsing step, The information of the position in the candidate list is decoded, and the selection step is based on the information of the position indicated before decoding, and the motion used in the motion compensation prediction of the prediction block of the pre-decoded object is selected from the pre-recorded list. News.

本發明的另一其他樣態,係為收訊裝置。該裝置係屬於在所接收到的動態影像的編碼串流中,將解碼區塊分割成1或複數個預測區塊而進行運動補償預測以進行解碼處理的收訊裝置,其特徵為,具備:收訊部,係將基於分割類型而將編碼區塊分割成1或複數個預測區塊而進行運動補償預測所編碼而成的動態影像的編碼串流所被封包化而成的編碼資料,予以接收;和復原部,係將已被接收到的前記編碼資料進行封包處理,以復原出原本的編碼串流;和候補導出部(230),係從解碼對象之預測區塊所相鄰的複數預測區塊中,選擇出包含運動向量之資訊與參照影像之資訊的運動資訊係為有效的已解碼之預測區塊,將前記選擇之已解碼之預測區塊的運動資訊,視為選擇候補;和無效化部(230),係基於前記解碼對象之預測區塊的分割類型與前記解碼對象之預測區塊在前記解碼區塊內之位置,將前記解碼對象之預測區塊所相鄰之複數預測區塊內的特定之預測區塊的運動資訊,不視為前記選擇候補;和候補清單生成部(230),係生成含有前記選擇候補的 候補清單;和追加部(230),係將具有預先訂定之所定運動向量的運動資訊,視為新的選擇候補而加入至前記候補清單;和編碼列解析部(201),係從已被復原之編碼串流,解碼出表示在前記候補清單內之位置的資訊;和選擇部(231),係基於已解碼之前記表示位置之資訊,從前記候補清單中選擇出前記解碼對象之預測區塊的運動補償預測時所使用的運動資訊。 Another aspect of the invention is a receiving device. The device belongs to a receiving device that divides a decoding block into one or a plurality of prediction blocks and performs motion compensation prediction for decoding processing in the encoded stream of the received moving image, and is characterized in that: The receiving unit is a coded data obtained by packetizing a coded stream of a moving image encoded by motion compensation prediction by dividing a coded block into one or a plurality of prediction blocks based on a division type. And a restoring unit that performs packet processing on the received preamble encoded data to restore the original encoded stream; and the candidate deriving unit (230) is a plural number adjacent to the predicted block of the decoding target In the prediction block, the motion information including the information of the motion vector and the information of the reference image is selected as a valid decoded prediction block, and the motion information of the decoded prediction block selected by the pre-record is regarded as a selection candidate; And the invalidation unit (230), based on the division type of the prediction block of the pre-decoded object and the position of the prediction block of the pre-decoded object in the pre-decode block, the pre-decode pair Motion prediction information of a plurality of prediction blocks within a particular block of the prediction block adjacent thereto, is not considered before selecting candidate referred to; and the candidate list generating unit (230), comprising prior to generating a note based candidate selection a candidate list; and an additional unit (230) that adds motion information having a predetermined motion vector as a new selection candidate to the predecessor list; and the code column analysis unit (201) is restored The encoded stream decodes the information indicating the position in the pre-recorded list; and the selecting unit (231) selects the predicted block of the pre-decoded object from the pre-recorded list based on the information indicating the position before decoding. The motion information used in the motion compensation prediction.

本發明的另一其他樣態,係為收訊方法。該方法係屬於在所接收到的動態影像的編碼串流中,將解碼區塊分割成1或複數個預測區塊而進行運動補償預測以進行解碼處理的收訊方法,其特徵為,具備:收訊步驟,係將基於分割類型而將編碼區塊分割成1或複數個預測區塊而進行運動補償預測所編碼而成的動態影像的編碼串流所被封包化而成的編碼資料,予以接收;和復原步驟,係將已被接收到的前記編碼資料進行封包處理,以復原出原本的編碼串流;和候補導出步驟,係從解碼對象之預測區塊所相鄰的複數預測區塊中,選擇出包含運動向量之資訊與參照影像之資訊的運動資訊係為有效的已解碼之預測區塊,將前記選擇之已解碼之預測區塊的運動資訊,視為選擇候補;和無效化步驟,係基於前記解碼對象之預測區塊的分割類型與前記解碼對象之預測區塊在前記解碼區塊內之位置,將前記解碼對象之預測區塊所相鄰之複數預測區塊內的特定之預測區塊的運動資訊,不視為前記選擇候補;和候補清單生成步驟,係生成含有前記選擇候補的候補清單;和追 加步驟,係將具有預先訂定之所定運動向量的運動資訊,視為新的選擇候補而加入至前記候補清單;和編碼列解析步驟,係從已被復原之編碼串流,解碼出表示在前記候補清單內之位置的資訊;和選擇步驟,係基於已解碼之前記表示位置之資訊,從前記候補清單中選擇出前記解碼對象之預測區塊的運動補償預測時所使用的運動資訊。 Another aspect of the present invention is a receiving method. The method belongs to a receiving method for dividing a decoding block into one or a plurality of prediction blocks and performing motion compensation prediction for decoding processing in the encoded stream of the received moving image, and is characterized in that: The receiving step is to encode the encoded stream of the moving image encoded by the motion compensation prediction by dividing the coding block into one or a plurality of prediction blocks based on the division type, and And the recovering step is: performing packet processing on the received pre-coded data to recover the original encoded stream; and the candidate deriving step is from the complex predictive block adjacent to the predicted block of the decoding target The motion information including the information of the motion vector and the information of the reference image is selected as a valid decoded prediction block, and the motion information of the decoded prediction block selected by the pre-record is regarded as a selection candidate; and invalidation The step is to decode the preamble based on the partition type of the prediction block of the pre-decoded object and the position of the prediction block of the pre-decoded object in the pre-decode block. Motion prediction information such as the prediction block within a particular block of a plurality of the adjacent prediction block is not considered before selecting candidate referred to; and a candidate list generating step of generating a candidate list containing system prior to remember to select candidate; and recovery In the adding step, the motion information having the predetermined motion vector specified in advance is added to the pre-recorded candidate list as a new selection candidate; and the coding column analysis step is performed from the reconstructed encoded stream, and the decoded representation is recorded in the pre-recorded The information of the position in the candidate list; and the selecting step is to select the motion information used in the motion compensation prediction of the prediction block of the pre-decoded object from the previous candidate list based on the information indicating the position before decoding.

此外,即使將以上構成要素之任意組合、本發明之表現,在方法、裝置、系統、記錄媒體、電腦程式等之間做轉換而成者,對本發明的樣態而言皆為有效。 Further, even if any combination of the above constituent elements and the expression of the present invention are converted between a method, an apparatus, a system, a recording medium, a computer program, etc., it is effective for the aspect of the present invention.

若依據本發明,則可不傳輸編碼向量即可高效率地實現運動補償預測。 According to the present invention, motion compensation prediction can be efficiently performed without transmitting an encoding vector.

首先說明作為本發明的實施形態之前提的技術。 First, the technique proposed as an embodiment of the present invention will be described.

目前,以MPEG(Moving Picture Experts Group)等之編碼方式為依據的裝置及系統,已經普及。在此種編碼方式中,是將時間軸上連續的複數影像,以數位訊號的資訊的方式來對待。此時,為了高效率的資訊播送、傳輸或積存等目的,將影像分割成複數區塊而利用時間方向之冗長性的運動補償預測、及利用空間方向之冗長性的離散餘弦轉換等,會使用這類正交轉換而進行壓縮編碼。 At present, devices and systems based on encoding methods such as MPEG (Moving Picture Experts Group) have become widespread. In this type of coding, a continuous plurality of images on the time axis are treated as information of digital signals. In this case, for the purpose of efficient information transmission, transmission, or accumulation, the video is divided into complex blocks, and the motion compensation prediction using the verbosity of the time direction and the discrete cosine transform using the redundancy of the spatial direction are used. This type of orthogonal conversion is compression-encoded.

在2003年,由國際標準化機構(ISO)與國際電氣標準會議(IEC)之聯合技術委員會(ISO/IEC),和國際電氣通訊聯合電氣通訊標準化部門(ITU-T)的共同作業, 一種稱作MPEG-4 AVC/H.264的編碼方式(在ISO/IEC中稱作14496-10、在ITU-T中編號為H.264之規格號碼。以下稱之為MPEG-4AVC)係被制定成為國際標準。在MPEG-4AVC中,基本上是將處理對象區塊的複數相鄰區塊之運動向量的中央值,當作預測向量。當預測區塊尺寸並非正方形時且處理對象區塊的特定之相鄰區塊的參照索引與處理對象區塊的參照索引一致時,則將該特定之相鄰區塊的運動向量,當作預測向量。 In 2003, the Joint Technical Committee (ISO/IEC) of the International Organization for Standardization (ISO) and the International Conference on Electrical Standards (IEC), and the International Telecommunications Standardization Sector (ITU-T), An encoding method called MPEG-4 AVC/H.264 (referred to as 14496-10 in ISO/IEC, and a standard number numbered H.264 in ITU-T. Hereinafter referred to as MPEG-4 AVC) is Formulated to become an international standard. In MPEG-4 AVC, basically, the median value of the motion vector of the complex adjacent block of the processing target block is regarded as a prediction vector. When the prediction block size is not a square and the reference index of the specific adjacent block of the processing target block coincides with the reference index of the processing target block, the motion vector of the specific adjacent block is regarded as a prediction. vector.

目前,由國際標準化機構(ISO)與國際電氣標準會議(IEC)之聯合技術委員會(ISO/IEC),和國際電氣通訊聯合電氣通訊標準化部門(ITU-T)的共同作業,一種稱作HEVC的編碼方式的標準化,正在研討中。 Currently, the Joint Technical Committee (ISO/IEC) of the International Organization for Standardization (ISO) and the International Conference on Electrical Standards (IEC), and the International Telecommunications Standardization Sector (ITU-T), a joint operation, called HEVC The standardization of coding methods is under discussion.

在HEVC的標準化中係研討了,將複數相鄰區塊與已解碼之另一影像的區塊當作候補區塊群,從這些候補區塊群中選擇出1個候補區塊,將已被選擇之候補區塊的資訊予以編碼及解碼的合併模式。 In the standardization of HEVC, it is studied that a plurality of adjacent blocks and a block of another decoded image are regarded as candidate block groups, and one candidate block is selected from the candidate block groups, and The merge mode in which the information of the candidate block is selected for encoding and decoding.

[實施形態1] [Embodiment 1] (編碼區塊) (code block)

在本實施形態中,係已被輸入之影像訊號係被分割成最大編碼區塊單位,將已被分割之最大編碼區塊,以逐線掃描順序進行處理。編碼區塊係呈現階層構造,考慮編碼效率等而依序均等地做4分割,藉此而可變成更小的編碼區塊。此外,已被4分割之編碼區塊,係以曲折掃描 (Zig Zag Scan)順序而被編碼。無法變得更小的編碼區塊,稱作最小編碼區塊。編碼區塊係為編碼的單位,最大編碼區塊若分割數為0時也是視為編碼區塊。在本實施形態中,係假設最大編碼區塊為64像素×64像素,最小編碼區塊為8像素×8像素。 In the present embodiment, the image signal that has been input is divided into maximum coding block units, and the largest coded block that has been divided is processed in a line-by-line scanning order. The coding block exhibits a hierarchical structure, and is equally divided into four in order to consider coding efficiency and the like, thereby becoming a smaller coding block. In addition, the coded block that has been divided by 4 is scanned by zigzag. (Zig Zag Scan) is encoded in order. It is impossible to become a smaller coding block, called a minimum coding block. The coding block is a coding unit, and the maximum coding block is also regarded as a coding block if the number of divisions is zero. In the present embodiment, it is assumed that the maximum coding block is 64 pixels × 64 pixels, and the minimum coding block is 8 pixels × 8 pixels.

圖1(a)、(b)係編碼區塊的說明圖。在圖1(a)的例子中,編碼區塊係被分割成10個。CU0、CU1及CU9係為32像素×32像素的編碼區塊,CU2、CU3及CU8係為16像素×16像素的編碼區塊,還有CU4、CU5、CU6及CU7係為8像素×8像素的編碼區塊。在圖1(b)的例子中,編碼區塊係被分割成1個。 1(a) and 1(b) are explanatory diagrams of coding blocks. In the example of Fig. 1(a), the coding block is divided into ten. CU0, CU1 and CU9 are 32-pixel×32-pixel coding blocks, CU2, CU3 and CU8 are 16-pixel×16-pixel coding blocks, and CU4, CU5, CU6 and CU7 are 8 pixels×8 pixels. Encoding block. In the example of Fig. 1(b), the coding block is divided into one.

(預測區塊) (predicted block)

在本實施形態中,編碼區塊係還會再被分割成預測區塊。編碼區塊係藉由預測區塊尺寸類型(亦稱作「分割類型」)而被分割成1個以上的預測區塊。圖2(a)~(d)係預測區塊尺寸類型的說明圖。圖2(a)係表示未分割編碼區塊的2N×2N,圖2(b)係表示水平2分割的2N×N,圖2(c)係表示垂直2分割的N×2N,及圖2(d)係表示水平與垂直4分割的N×N。2N×2N係由1個預測區塊0所成,2N×N和N×2N係由2個的預測區塊0和預測區塊1所成,N×N係由4個的預測區塊0、預測區塊1、預測區塊2、預測區塊3所成。 In this embodiment, the coding block is further divided into prediction blocks. The coding block is divided into one or more prediction blocks by predicting the block size type (also referred to as "segmentation type"). 2(a) to (d) are explanatory diagrams of predicted block size types. 2(a) shows 2N×2N of the undivided coded block, FIG. 2(b) shows 2N×N of horizontal 2 division, and FIG. 2(c) shows N×2N of vertical 2 division, and FIG. 2 (d) is N x N which is divided into horizontal and vertical divisions. 2N×2N is formed by one prediction block 0, 2N×N and N×2N are formed by two prediction blocks 0 and prediction block 1, and N×N is composed of four prediction blocks. , prediction block 1, prediction block 2, prediction block 3 are formed.

圖3係編碼區塊的分割數和預測區塊尺寸類型所致之 預測區塊尺寸的說明圖。本實施形態中的預測區塊尺寸,係存在有從CU分割數為0且預測區塊尺寸類型為2N×2N的64像素×64像素,到CU分割數為3且預測區塊尺寸類型N×N的4像素×4像素為止的13種預測區塊尺寸。 Figure 3 is the result of the number of divisions of the coding block and the type of the prediction block size. An explanatory diagram of the predicted block size. In the prediction block size in this embodiment, there are 64 pixels × 64 pixels whose number of divisions from the CU is 0 and the prediction block size type is 2N × 2N, and the number of CU divisions is 3 and the prediction block size type N × 13 prediction block sizes up to 4 pixels × 4 pixels of N.

在本實施形態中,雖然假設最大編碼區塊為64像素×64像素,最小編碼區塊為8像素×8像素,但不限定於此一組合。又,雖然將預測區塊的分割模態示於圖2(a)~(d),但只要有被分割成1個以上的組合即可,並非限定於此。 In the present embodiment, although the maximum coding block is assumed to be 64 pixels × 64 pixels, and the minimum coding block is 8 pixels × 8 pixels, it is not limited to this combination. In addition, although the division mode of the prediction block is shown in FIGS. 2(a) to 2(d), it is not limited thereto as long as it is divided into one or more combinations.

(預測編碼模式) (predictive coding mode)

在本實施形態中,係可將運動補償預測或編碼向量數,對預測區塊之每一區塊來做切換。此處,關於把運動補償預測與編碼向量數建立關連而成的預測編碼模式之一例,使用圖4來簡單說明。圖4係預測編碼模式的說明圖。 In this embodiment, the motion compensation prediction or the number of coding vectors can be switched for each block of the prediction block. Here, an example of a predictive coding mode in which the motion compensation prediction is associated with the number of coding vectors is briefly described using FIG. 4 is an explanatory diagram of a prediction encoding mode.

圖4所示的預測編碼模式中,係有:運動補償預測之預測方向為單預測(L0預測)且編碼向量數為1的PredL0、運動補償預測之預測方向為單預測(L1預測)且編碼向量數為1的PredL1、運動補償預測之預測方向為雙預測(BI預測)且編碼向量數為2的PredBI、及運動補償預測之預測方向為單預測(L0預測/L1預測)或雙預測(BI預測)且編碼向量數為0的合併模式(MERGE)。又,還有不實施運動補償預測的預測編碼模 式亦即畫面內模式(Intra)。此處,PredL0、PredL1、及PredBI係為預測向量模式。 In the prediction coding mode shown in FIG. 4, the prediction direction of the motion compensation prediction is single prediction (L0 prediction) and the number of coding vectors is 1 for PredL0, and the prediction direction for motion compensation prediction is single prediction (L1 prediction) and coding. PredL1 with vector number 1 and prediction direction for motion compensation prediction are double prediction (BI prediction) and PredBI with coding vector number 2, and the prediction direction of motion compensation prediction is single prediction (L0 prediction/L1 prediction) or double prediction ( BI prediction) and the merge mode (MERGE) where the number of coding vectors is zero. Also, there is a predictive coding mode that does not implement motion compensation prediction. The mode is also the intra mode (Intra). Here, PredL0, PredL1, and PredBI are prediction vector modes.

在合併模式中,預測方向係可能是L0預測/L1預測/BI預測之任一者,但這是因為,合併模式的預測方向是直接繼承從候補區塊群所選擇出來之候補區塊的預測方向,或是從已解碼之資訊所導出的緣故。又,在合併模式下,編碼向量係不被編碼。這是因為,合併模式的編碼向量是直接繼承從候補區塊群所選擇出來之候補區塊的運動向量,或是從已解碼之資訊所導出的緣故。 In the merge mode, the prediction direction may be any of L0 prediction/L1 prediction/BI prediction, but this is because the prediction direction of the merge mode is the direct inheritance of the prediction of the candidate block selected from the candidate block group. Direction, or the reason derived from the decoded information. Also, in the merge mode, the code vector is not encoded. This is because the coding vector of the merge mode directly inherits the motion vector of the candidate block selected from the candidate block group or is derived from the decoded information.

(參照索引) (reference index)

在本實施形態中,為了提升運動補償預測之精度,在運動補償預測時,可從複數參照影像之中,選擇出最佳的參照影像。因此,將運動補償預測時所利用之參照影像,當作參照影像索引,而連同編碼向量一起編碼。運動補償預測時所被利用的參照影像索引,係為0以上之數值。若運動補償預測是單預測,則參照索引係被利用1個,若運動補償預測是雙預測,則會利用2個參照索引(圖4)。 In the present embodiment, in order to improve the accuracy of the motion compensation prediction, an optimum reference image can be selected from the plurality of reference images during motion compensation prediction. Therefore, the reference image used in the motion compensation prediction is taken as a reference image index and encoded together with the code vector. The reference image index used for motion compensation prediction is a value of 0 or more. If the motion compensation prediction is a single prediction, one reference index is used, and if the motion compensation prediction is double prediction, two reference indices are used (Fig. 4).

在合併模式下,參照索引係不被編碼。這是因為,合併模式的參照索引是直接繼承從候補區塊群所選擇出來之候補區塊的參照索引,或是從已解碼之資訊所導出的緣故。 In merge mode, the reference index is not encoded. This is because the reference index of the merge mode directly inherits the reference index of the candidate block selected from the candidate block group or is derived from the decoded information.

(參照索引清單) (refer to the index list)

在本實施形態中,將運動補償預測時所能利用之複數參照影像,事先登錄在參照索引清單內,藉由參照索引來表示已被登錄在參照索引清單內的參照影像,就可確定參照影像而在運動補償預測時進行利用。在參照索引清單中,係有參照索引清單L0和參照索引清單L1。當運動補償預測是單預測時,則會利用使用了參照索引清單L0之中之參照影像的L0預測、或使用了參照索引清單L1之中之參照影像的L1預測之任一者。雙預測時係利用,利用了將參照索引清單L0和參照索引清單L1這2者的BI預測。各參照索引清單中所能登錄的參照影像的最大數,係為16。 In the present embodiment, the reference video that can be used in the motion compensation prediction is registered in the reference index list in advance, and the reference image that has been registered in the reference index list is indicated by the reference index, and the reference image can be determined. It is used in the prediction of motion compensation. In the reference index list, there is a reference index list L0 and a reference index list L1. When the motion compensation prediction is a single prediction, either the L0 prediction using the reference image in the reference index list L0 or the L1 prediction using the reference image in the reference index list L1 is used. The double prediction time is utilized, and the BI prediction of the reference index list L0 and the reference index list L1 is utilized. The maximum number of reference images that can be registered in each reference index list is 16.

(合併索引) (consolidated index)

在本實施形態中,若為合併模式,則將處理對象影像內的複數相鄰區塊及已編碼之另一影像內的與處理對象區塊位於同一位置之周邊的區塊,當作候補區塊群,從候補區塊群之中,選擇出具有最佳預測編碼模式、運動向量、及參照索引的候補區塊,將用來表示已選擇之候補區塊的合併索引,予以編碼及解碼。只有在合併模式時,才會利用1個合併索引(圖4)。合併索引的最大數(亦稱作合併候補最大數)係為5,合併索引係為0至4的整數。此處,雖然將合併索引的最大數設成5,但只要2以上即可,並非限定於此。 In the present embodiment, in the merge mode, the plurality of adjacent blocks in the image to be processed and the blocks in the other image that are encoded in the same position as the processing target block are regarded as candidate regions. The block group selects a candidate block having the best prediction coding mode, motion vector, and reference index from among the candidate block groups, and uses the combined index of the selected candidate block to encode and decode. Only one merge index is used in the merge mode (Figure 4). The maximum number of merged indexes (also known as the maximum number of merge candidates) is 5, and the combined index is an integer from 0 to 4. Here, although the maximum number of merged indexes is set to 5, it is only required to be 2 or more, and is not limited thereto.

以後,將合併索引之對象的候補區塊的運動資訊,稱 作結合運動資訊候補,將結合運動資訊候補的集合體稱作結合運動資訊候補清單。以下,所謂運動資訊係包含有預測方向、運動向量、及參照索引。 In the future, the motion information of the candidate block of the object to be merged will be called The combined motion information candidate is referred to as a combined motion information candidate list. Hereinafter, the motion information includes a prediction direction, a motion vector, and a reference index.

此外,關於合併索引與編碼列之關係,使用圖來說明。圖5係合併索引與編碼列之關係的說明圖。合併索引為0時的編碼列係為'0',合併索引為1時的編碼列係為'10',合併索引為2時的編碼列係為'110',合併索引為3時的編碼列係為'1110',合併索引為4時的編碼列係為'11110',合併索引越大則編碼列設定得越長。因此,藉由對選擇率高的候補區塊分配較小的合併索引,就可提升編碼效率。 In addition, the relationship between the merge index and the code column is illustrated using a graph. Figure 5 is an explanatory diagram of the relationship between a merged index and a coded column. The coded column with the merge index of 0 is '0', the coded column with the merge index of 1 is '10', the coded column with the merge index of 2 is '110', and the coded column with the merge index of 3 The code column is '1110', and the code column when the merge index is 4 is '11110'. The larger the merge index, the longer the code column is set. Therefore, coding efficiency can be improved by assigning a smaller merge index to candidate blocks with a high selectivity.

(預測向量索引) (predictive vector index)

在本實施形態中,為了提升預測向量之精度,將複數相鄰區塊及已編碼之另一影像的與處理對象區塊位於同一位置之周邊的區塊,當作候補區塊群,從候補區塊群選擇出具有最佳運動向量來作為預測向量的候補區塊,將用來表示已選擇之候補區塊的預測向量索引,予以編碼及解碼。若運動補償預測是單預測,則預測向量索引係被利用1個,若運動補償預測是雙預測,則會利用2個預測向量索引(圖4)。預測向量索引的最大數(亦稱作預測向量候補最大數)係為2,預測向量索引係為0或1之整數。此處,雖然將預測向量候補最大數設成2,但只要2以上即可,並非限定於此。 In the present embodiment, in order to improve the accuracy of the prediction vector, a plurality of adjacent blocks and another block of the encoded other image located at the same position as the processing target block are regarded as candidate block groups, and candidates are candidates. The block group selects the candidate block having the best motion vector as the prediction vector, and uses the prediction vector index used to represent the selected candidate block to be encoded and decoded. If the motion compensation prediction is a single prediction, the prediction vector index is used one. If the motion compensation prediction is bi-prediction, two prediction vector indexes are used (Fig. 4). The maximum number of prediction vector indices (also referred to as the maximum number of prediction vector candidates) is 2, and the prediction vector index is an integer of 0 or 1. Here, although the maximum number of prediction vector candidates is set to 2, it is only required to be 2 or more, and is not limited thereto.

以後,將預測向量索引之對象的候補區塊的運動向量稱作預測向量候補,將預測向量候補的集合體稱作預測向量候補清單。 Hereinafter, the motion vector of the candidate block of the target of the prediction vector index is referred to as a prediction vector candidate, and the aggregate of the prediction vector candidates is referred to as a prediction vector candidate list.

(語法) (grammar)

關於本實施形態所述之預測區塊之語法之一例,使用圖6來說明。預測區塊是否為畫面內還是畫面間,是由上位的編碼區塊所指定,圖6係圖示了預測區塊為畫面間時的預測區塊之語法。又,關於預測區塊尺寸類型也是由編碼區塊所指定。 An example of the syntax of the prediction block described in the present embodiment will be described with reference to FIG. 6. Whether the prediction block is intra-picture or inter-picture is specified by the upper coding block, and FIG. 6 illustrates the syntax of the prediction block when the prediction block is between pictures. Also, the prediction block size type is also specified by the coding block.

在預測區塊(圖6的PU)中係配置有:合併旗標(merge_flag)、合併索引(merge_idx)、畫面間預測類型(inter_pred_type)、L0預測的參照索引(ref_idx_l0)、L0預測的差分向量(mvd_l0[0]、mvd_l0[1])、L0預測的預測向量索引(mvp_idx_l0)、L1預測的參照索引(ref_idx_l1)、L1預測的差分向量(mvd_l1[0]、mvd_l1[1])、及L1預測的預測向量索引(mvp_idx_l1)。差分向量的[0]係表示水平成分,[1]係表示垂直成分。 In the prediction block (PU of FIG. 6), a merge flag (merge_flag), a merge index (merge_idx), an inter-picture prediction type (inter_pred_type), a L0 prediction reference index (ref_idx_l0), and a L0 predicted difference vector are configured. (mvd_l0[0], mvd_l0[1]), L0 predicted prediction vector index (mvp_idx_l0), L1 predicted reference index (ref_idx_l1), L1 predicted difference vector (mvd_l1[0], mvd_l1[1]), and L1 The predicted prediction vector index (mvp_idx_l1). The [0] of the difference vector represents a horizontal component, and [1] represents a vertical component.

此處,inter_pred_type係表示運動補償預測之預測方向(亦稱作畫面間預測類型),係有Pred_L0(L0預測的單預測)、Pred_L1(L1預測的單預測)及Pred_BI(BI預測的雙預測)這3種類。當inter_pred_type是Pred_L0或Pred_BI時,係被設置有關於L0預測之資訊,當 inter_pred_type是Pred_L1或Pred_BI時,係被設置有關於L1預測之資訊。 Here, inter_pred_type indicates the prediction direction of motion compensation prediction (also called inter-picture prediction type), which is Pred_L0 (single prediction of L0 prediction), Pred_L1 (single prediction of L1 prediction), and Pred_BI (bi prediction of BI prediction). These 3 categories. When inter_pred_type is Pred_L0 or Pred_BI, it is set with information about L0 prediction. When inter_pred_type is Pred_L1 or Pred_BI, information about L1 prediction is set.

此外,雖然將本實施形態所述之預測區塊之語法設定成如圖6所示,但並非限定於此。 Further, although the syntax of the prediction block described in the present embodiment is set as shown in FIG. 6, it is not limited thereto.

以下,連同圖式來說明本發明的理想實施形態所述之動態影像編碼裝置、動態影像編碼方法及動態影像編碼程式、以及動態影像解碼裝置、動態影像解碼方法及動態影像解碼程式之細節。此外,圖式的說明中,對同一要素係賦予同一符號,並省略重複說明。 The details of the motion picture coding apparatus, the motion picture coding method, the motion picture coding program, and the motion picture decoding apparatus, the motion picture decoding method, and the motion picture decoding program according to the preferred embodiment of the present invention will be described below with reference to the drawings. In the description of the drawings, the same reference numerals will be given to the same elements, and overlapping description will be omitted.

(動態影像編碼裝置100之構成) (Configuration of Motion Picture Coding Apparatus 100)

圖7係圖示本實施形態1所述的動態影像編碼裝置100之構成。動態影像編碼裝置100係為將動態影像訊號,以實施運動補償預測之預測區塊單位來進行編碼的裝置。編碼區塊的分割、預測區塊尺寸類型的決定、預測區塊尺寸與預測區塊在編碼區塊內之位置(預測區塊的位置資訊)的決定、預測編碼模式是否為畫面內的決定,係由未圖示的上位編碼控制部所決定,在實施形態1中係針對預測編碼模式不是畫面內的情形加以說明。又,實施形態1中是針對對應於雙預測的B圖像來說明,但針對不是對應於雙預測的P圖像,係只要省略L1預測即可。 FIG. 7 is a view showing the configuration of the motion picture coding apparatus 100 according to the first embodiment. The motion picture coding apparatus 100 is a apparatus for coding a motion picture signal by performing prediction unit blocks of motion compensation prediction. The division of the coding block, the determination of the prediction block size type, the prediction of the block size, the determination of the position of the prediction block in the coding block (the position information of the prediction block), and whether the prediction coding mode is a decision within the picture, This is determined by a higher-level coding control unit (not shown). In the first embodiment, the case where the prediction coding mode is not in the picture will be described. Further, in the first embodiment, the B image corresponding to the bi-prediction is described. However, for the P image that is not corresponding to the bi-prediction, the L1 prediction may be omitted.

動態影像編碼裝置100,係由具備CPU(Central Processing Unit)、畫格記憶體、硬碟等的資訊處理裝置等硬體所實現。動態影像編碼裝置100,係藉由上記的構 成要素的作動,而實現以下說明的機能性構成要素。此外,關於處理對象之預測區塊的位置資訊、預測區塊尺寸及運動補償預測之預測方向,係在動態影像編碼裝置100內被共用,而未圖示。 The motion image coding device 100 is realized by a hardware such as an information processing device including a CPU (Central Processing Unit), a frame memory, and a hard disk. The motion picture coding apparatus 100 is constructed by the above Actuate the elements to achieve the functional components described below. Further, the position information of the prediction block to be processed, the prediction block size, and the prediction direction of the motion compensation prediction are shared in the motion picture coding apparatus 100, and are not shown.

實施形態1的動態影像編碼裝置100係含有:預測區塊影像取得部101、減算部102、預測誤差編碼部103、編碼列生成部104、預測誤差解碼部105、運動補償部106、加算部107、運動向量偵測部108、運動資訊生成部109、畫格記憶體110、及運動資訊記憶體111。 The motion picture coding apparatus 100 according to the first embodiment includes a prediction block video acquisition unit 101, a subtraction unit 102, a prediction error coding unit 103, a code sequence generation unit 104, a prediction error decoding unit 105, a motion compensation unit 106, and an addition unit 107. The motion vector detecting unit 108, the motion information generating unit 109, the frame memory 110, and the motion information memory 111.

(動態影像編碼裝置100的機能與動作) (Function and action of motion picture coding device 100)

以下,說明各部的機能與動作。預測區塊影像取得部101,係基於預測區塊的位置資訊與預測區塊尺寸,從端子10所供給的影像訊號,取得處理對象之預測區塊的影像訊號,將預測區塊的影像訊號,供給至減算部102、運動向量偵測部108及運動資訊生成部109。 Hereinafter, the functions and operations of the respective units will be described. The prediction block image acquisition unit 101 acquires the video signal of the prediction block to be processed from the video signal supplied from the terminal 10 based on the position information of the prediction block and the prediction block size, and predicts the video signal of the block. It is supplied to the subtraction unit 102, the motion vector detecting unit 108, and the motion information generating unit 109.

運動向量偵測部108,係從預測區塊影像取得部101所供給之影像訊號及內部所記憶之相當於複數參照影像之影像訊號,偵測出L0預測與L1預測各自的運動向量與表示參照影像之參照影像索引。將該當L0預測和L1預測的運動向量、及該當L0預測和L1預測的參照索引,供給至運動資訊生成部109。此處,雖然運動向量偵測部108係利用內部所記憶的相當於複數參照影像的影像訊號來作為參照影像,但亦可利用畫格記憶體110中所記憶的參照影 像。 The motion vector detecting unit 108 detects the motion vector and the reference vector of the L0 prediction and the L1 prediction from the video signal supplied from the prediction block image acquisition unit 101 and the video signal corresponding to the complex reference image stored therein. The reference image index of the image. The motion vector of the L0 prediction and the L1 prediction, and the reference index of the L0 prediction and the L1 prediction are supplied to the motion information generating unit 109. Here, although the motion vector detecting unit 108 uses the image signal corresponding to the plurality of reference images stored therein as the reference image, the reference image stored in the frame memory 110 may be used. image.

一般的運動向量之偵測方法,係針對從與對象影像之影像訊號同一位置起移動了所定之移動量的參照影像的預測訊號而算出誤差評價值,將誤差評價值為最小的移動量,當作運動向量。若參照影像為複數時,則針對各參照影像偵測出運動向量,將誤差評價值呈最小的參照影像予以選擇。作為誤差評價值,係可利用表示絕對差分和的SAD(Sum of Absolute Difference)或表示平方誤差平均的MSE(Mean Square Error)等。又,亦可將運動向量編碼量加算至誤差評價值來評估。 The general motion vector detection method is to calculate an error evaluation value for a prediction signal of a reference image that has been moved by a predetermined amount of movement from the same position as the image signal of the target image, and to minimize the error evaluation value. Make a motion vector. When the reference image is a complex number, a motion vector is detected for each reference image, and the reference image having the smallest error evaluation value is selected. As the error evaluation value, an SAD (Sum of Absolute Difference) indicating an absolute difference sum or an MSE (Mean Square Error) indicating a squared error average or the like can be used. Alternatively, the motion vector coding amount may be added to the error evaluation value for evaluation.

運動資訊生成部109,係根據運動向量偵測部108所供給之L0預測與L1預測之運動向量及L0預測與L1預測之參照索引、運動資訊記憶體111所供給之候補區塊群、參照索引所示的畫格記憶體110內的參照影像、及預測區塊影像取得部101所供給的影像訊號,來決定預測編碼模式。 The motion information generating unit 109 is a reference index based on the L0 prediction and the L1 prediction and the L0 prediction and L1 prediction referenced by the motion vector detecting unit 108, and the candidate block group and the reference index supplied from the motion information memory 111. The reference video in the illustrated tile memory 110 and the video signal supplied from the predicted tile image acquisition unit 101 determine the prediction coding mode.

基於已被決定之預測編碼模式,而將合併旗標、合併索引、運動補償預測之預測方向、L0預測與L1預測的參照索引、L0預測與L1預測的差分向量及L0預測與L1預測的預測向量索引,因應需要而供給至編碼列生成部104。將運動補償預測之預測方向、L0預測與L1預測的參照索引、及L0預測和L1預測的運動向量,供給至運動補償部106及運動資訊記憶體111。至於運動資訊生成部109之細節,將於後述。 Based on the predicted prediction coding mode, the combined flag, the combined index, the prediction direction of the motion compensation prediction, the reference index of the L0 prediction and the L1 prediction, the difference vector of the L0 prediction and the L1 prediction, and the prediction of the L0 prediction and the L1 prediction The vector index is supplied to the code column generating unit 104 as needed. The prediction direction of the motion compensation prediction, the reference index of the L0 prediction and the L1 prediction, and the motion vector of the L0 prediction and the L1 prediction are supplied to the motion compensation unit 106 and the motion information memory 111. The details of the motion information generating unit 109 will be described later.

運動補償部106,係若運動資訊生成部109所供給之運動補償預測之預測方向是LN預測,則將運動資訊生成部109所供給之LN預測之參照索引所示的畫格記憶體110內的參照影像,基於運動資訊生成部109所供給之LN預測之運動向量,進行運動補償,生成LN預測之預測訊號。N係為0或1。此處,若運動補償預測之預測方向是雙預測,則L0預測與L1預測之預測訊號的平均值就成為預測訊號。此外,亦可將L0預測與L1預測之預測訊號予以加權。運動補償部106,係將該當預測訊號,供給至減算部102。 When the prediction direction of the motion compensation prediction supplied from the motion information generating unit 109 is the LN prediction, the motion compensation unit 106 sets the intra-frame memory 110 indicated by the reference index of the LN prediction supplied from the motion information generating unit 109. The reference image is subjected to motion compensation based on the motion vector of the LN prediction supplied from the motion information generating unit 109, and a prediction signal of the LN prediction is generated. The N system is 0 or 1. Here, if the prediction direction of the motion compensation prediction is bi-prediction, the average value of the prediction signals of the L0 prediction and the L1 prediction becomes a prediction signal. In addition, the L0 prediction and the prediction signal of the L1 prediction can also be weighted. The motion compensation unit 106 supplies the prediction signal to the subtraction unit 102.

減算部102,係將預測區塊影像取得部101所供給之影像訊號與運動補償部106所供給之預測訊號,進行減算,以算出預測誤差訊號,將該當預測誤差訊號供給至預測誤差編碼部103。 The subtraction unit 102 subtracts the video signal supplied from the predicted block video acquisition unit 101 and the prediction signal supplied from the motion compensation unit 106 to calculate a prediction error signal, and supplies the prediction error signal to the prediction error coding unit 103. .

預測誤差編碼部103,係對於減算部102所供給的預測誤差訊號,進行正交轉換或量化等之處理以生成預測誤差編碼資料,將該當預測誤差編碼資料供給至編碼列生成部104及預測誤差解碼部105。 The prediction error coding unit 103 performs processing such as orthogonal conversion or quantization on the prediction error signal supplied from the subtraction unit 102 to generate prediction error coded data, and supplies the prediction error coded data to the code column generation unit 104 and the prediction error. Decoding unit 105.

編碼列生成部104,係將預測誤差編碼部103所供給之預測誤差編碼資料、以及運動資訊生成部109所供給之合併旗標、合併索引、運動補償預測之預測方向(畫面間預測類型)、L0預測與L1預測的參照索引、L0預測與L1預測的差分向量及L0預測與L1預測的預測向量索引,按照圖6所示之語法的順序來進行熵編碼以生成編碼 列,將該當編碼列供給至端子11。熵編碼係藉由包含算術編碼或霍夫曼編碼等之可變長度編碼的方法來實施。 The coded column generation unit 104 is a prediction error coded data supplied from the prediction error coding unit 103, and a prediction direction (inter-picture prediction type) of the combined flag, the combined index, and the motion compensation prediction supplied from the motion information generation unit 109, The L0 prediction and the reference index of the L1 prediction, the difference vector of the L0 prediction and the L1 prediction, and the prediction vector index of the L0 prediction and the L1 prediction are entropy encoded in the order of the syntax shown in FIG. 6 to generate the coding. The column supplies the code column to the terminal 11. Entropy coding is implemented by a method including variable length coding such as arithmetic coding or Huffman coding.

預測誤差解碼部105,係對於預測誤差編碼部103所供給之預測誤差編碼資料,進行逆量化或逆正交轉換等之處理以生成預測誤差訊號,將該當預測誤差訊號供給至加算部107。加算部107,係將預測誤差解碼部105所供給之預測誤差訊號、和運動補償部106所供給之預測訊號,進行加算,以生成解碼影像訊號,將該當解碼影像訊號供給至畫格記憶體110。 The prediction error decoding unit 105 performs processing such as inverse quantization or inverse orthogonal conversion on the prediction error coded data supplied from the prediction error coding unit 103 to generate a prediction error signal, and supplies the prediction error signal to the addition unit 107. The adding unit 107 adds the prediction error signal supplied from the prediction error decoding unit 105 and the prediction signal supplied from the motion compensation unit 106 to generate a decoded video signal, and supplies the decoded video signal to the frame memory 110. .

畫格記憶體110係將加算部107所供給之解碼影像訊號,加以記憶。又,針對影像全體之解碼已經完成的解碼影像,係視為參照影像,而記憶1以上之所定影像數。畫格記憶體110,係將所記憶之參照影像訊號,供給至運動補償部106及運動資訊生成部109。記憶參照影像的記憶領域,係以FIFO(First In First Out)方式而被控制。 The frame memory 110 stores the decoded video signal supplied from the adding unit 107. Further, the decoded image in which the decoding of the entire image has been completed is regarded as a reference image, and the number of predetermined images of one or more is memorized. The frame memory 110 supplies the stored reference image signal to the motion compensation unit 106 and the motion information generating unit 109. The memory area of the memory reference image is controlled by the FIFO (First In First Out) method.

運動資訊記憶體111,係將運動資訊生成部109所供給之運動資訊,以最小預測區塊尺寸單位,記憶所定之影像數。將處理對象之預測區塊的相鄰區塊之運動資訊,視為空間候補區塊群。 The motion information memory 111 stores the motion information supplied from the motion information generating unit 109 in a minimum prediction block size unit and memorizes the predetermined number of images. The motion information of the adjacent blocks of the prediction block of the processing object is regarded as a space candidate block group.

又,運動資訊記憶體111,係將與處理對象之預測區塊位於同一位置的ColPic上的區塊和其周邊區塊的運動資訊,視為時間候補區塊群。運動資訊記憶體111,係將空間候補區塊群與時間候補區塊群當作候補區塊群而供給至運動資訊生成部109。運動資訊記憶體111,係與畫格 記憶體110同步,以FIFO(First In First Out)方式而被控制。 Further, the motion information memory 111 regards the motion information of the block on the ColPic and the peripheral block at the same position as the prediction block of the processing target as the time candidate block group. The motion information memory 111 supplies the space candidate block group and the time candidate block group to the motion information generating unit 109 as a candidate block group. Sports information memory 111, system and frame The memory 110 is synchronized and controlled in a FIFO (First In First Out) manner.

此處,所謂ColPic,係指有別於處理對象之預測區塊的另一已解碼之影像,且在畫格記憶體110中當成參照影像而被記憶。在實施形態1中,ColPic係為處理對象影像的前一個已解碼之參照影像。此外,雖然在實施形態1中,ColPic係設為處理對象影像的前一個已解碼之參照影像,但只要是已解碼之影像即可,例如,亦可為顯示順序上前一個參照影像或顯示順序上後一個參照影像,亦可在編碼串流中做指定。 Here, the term "ColPic" refers to another decoded image that is different from the prediction block of the processing target, and is stored as a reference image in the frame memory 110. In the first embodiment, the ColPic is the previous decoded reference image of the processing target image. Further, in the first embodiment, the ColPic system is the previous decoded reference image of the processing target image, but may be the decoded image, for example, the previous reference image or the display order in the display order. The last reference image can also be specified in the encoded stream.

此處,說明運動資訊記憶體111中的運動資訊之管理方法。運動資訊係以最小預測區塊單位而被記憶在各記憶區域中。各記憶區域中係至少記憶著:預測方向、L0預測的運動向量、L0預測的參照索引、L1預測的運動向量、及L1預測的參照索引。 Here, a method of managing motion information in the motion information memory 111 will be described. The motion information is memorized in each memory area in units of minimum prediction blocks. At least the prediction direction, the motion vector of the L0 prediction, the reference index of the L0 prediction, the motion vector of the L1 prediction, and the reference index of the L1 prediction are stored in each memory area.

此外,若預測編碼模式是畫面內模式,則作為L0預測與L1預測之運動向量是記憶著(0,0),作為L0預測與L1預測之參照索引是記憶著「-1」。以後,運動向量(H、V)係為,H是表示水平成分、V是表示垂直成分。此外,參照索引的「-1」係為只要是能夠判定其為不實施運動補償預測之模式,則可為任意之值。此後的說明中,單純表現為區塊的時候,若沒有特別聲明,則是代表最小的預測區塊單位。又,即使在領域外之區塊的情況下,也是和畫面內模式同樣地,作為L0預測與L1預測之運動向 量是記憶著(0,0),作為L0預測與L1預測之參照索引是記憶著「-1」。若LX方向(X為0或1)為有效則LX方向的參照索引係為0以上,若LX方向為無效(非有效)則LX方向的參照索引係為「-1」。此外,所謂領域外,係表示一般而言處理對象之預測區塊所隸屬之圖像之外的領域或切片之外的領域。 Further, when the prediction coding mode is the intra-picture mode, the motion vector as the L0 prediction and the L1 prediction is stored (0, 0), and the reference index as the L0 prediction and the L1 prediction is "-1". Hereinafter, the motion vector (H, V) is such that H is a horizontal component and V is a vertical component. Further, the "-1" of the reference index may be any value as long as it can be determined that the motion compensation prediction is not performed. In the following description, when it is simply expressed as a block, if it is not specifically stated, it represents the smallest prediction block unit. Moreover, even in the case of a block outside the field, the motion direction of the L0 prediction and the L1 prediction is the same as the intra-picture mode. The quantity is memorized (0,0), and the reference index of the L0 prediction and the L1 prediction is "-1". When the LX direction (X is 0 or 1) is valid, the reference index in the LX direction is 0 or more, and if the LX direction is invalid (not valid), the reference index in the LX direction is "-1". Further, the term "outside the field" refers to a field other than the image to which the prediction block of the object is to be processed or a field other than the slice.

(運動資訊生成部109之構成) (Configuration of the motion information generating unit 109)

接著說明運動資訊生成部109的詳細構成。圖8係圖示運動資訊生成部109之構成。運動資訊生成部109係含有:預測向量模式決定部120、合併模式決定部121及預測編碼模式決定部122。端子12係連接至運動資訊記憶體111,端子13係連接至運動向量偵測部108,端子14係連接至畫格記憶體110,端子15係連接至預測區塊影像取得部101,端子16係連接至編碼列生成部104,端子50係連接至運動補償部106,及端子51係連接至運動資訊記憶體111。 Next, the detailed configuration of the motion information generating unit 109 will be described. FIG. 8 is a diagram showing the configuration of the motion information generating unit 109. The motion information generating unit 109 includes a prediction vector mode determining unit 120, a merge mode determining unit 121, and a predictive encoding mode determining unit 122. The terminal 12 is connected to the motion information memory 111, the terminal 13 is connected to the motion vector detecting unit 108, the terminal 14 is connected to the frame memory 110, the terminal 15 is connected to the predicted block image obtaining unit 101, and the terminal 16 is connected. The terminal 50 is connected to the code column generating unit 104, the terminal 50 is connected to the motion compensating unit 106, and the terminal 51 is connected to the motion information memory 111.

(運動資訊生成部109的機能與動作) (Function and action of the motion information generating unit 109)

以下,說明各部的機能與動作。預測向量模式決定部120,係根據端子12所供給之候補區塊群、端子13所供給之L0預測與L1預測之運動向量及L0預測與L1預測之參照索引、端子14所供給之參照索引所示之參照影像、及端子15所供給之影像訊號,來決定畫面間預測類 型,依照畫面間預測類型,選擇L0預測與L1預測之預測向量索引而算出L0預測與L1預測之差分向量,並且算出預測誤差,算出位元率失真評價值。然後,將基於該當畫面間預測類型的運動資訊、差分向量、預測向量索引、及位元率失真評價值,供給至預測編碼模式決定部122。 Hereinafter, the functions and operations of the respective units will be described. The prediction vector mode determination unit 120 is based on the candidate vector group supplied from the terminal 12, the L0 prediction and the L1 prediction motion vector supplied by the terminal 13, the reference index of the L0 prediction and the L1 prediction, and the reference index supplied from the terminal 14. The reference image and the image signal supplied from the terminal 15 are used to determine the inter-picture prediction class. For the type, the difference vector between the L0 prediction and the L1 prediction is calculated by selecting the prediction vector index of the L0 prediction and the L1 prediction, and the prediction error is calculated, and the bit rate distortion evaluation value is calculated. Then, the motion information, the difference vector, the prediction vector index, and the bit rate distortion evaluation value based on the inter-picture prediction type are supplied to the predictive coding mode determining unit 122.

合併模式決定部121,係根據端子12所供給之候補區塊群、端子14所供給之參照影像、及端子15所供給之影像訊號,來生成結合運動資訊候補清單,從該當結合運動資訊候補清單之中選擇出1個結合運動資訊候補並決定合併索引,算出位元率失真評價值。然後,將該當結合運動資訊候補之運動資訊、該當合併索引及該當位元率失真評價值,供給至預測編碼模式決定部122。合併模式決定部121的細節,將於後述。 The merge mode determining unit 121 generates a combined motion information candidate list based on the candidate block group supplied from the terminal 12, the reference image supplied from the terminal 14, and the video signal supplied from the terminal 15, and the combined motion information candidate list is selected from the combined motion information candidate list. Among them, one combined motion information candidate is selected and the combined index is determined, and the bit rate distortion evaluation value is calculated. Then, the motion information combined with the motion information candidate, the combined index, and the bit rate distortion evaluation value are supplied to the predictive coding mode determining unit 122. Details of the merge mode determining unit 121 will be described later.

預測編碼模式決定部122,係將預測向量模式決定部120所供給之位元率失真評價值、和合併模式決定部121所供給之位元率失真評價值,進行比較,然後決定合併旗標。 The prediction coding mode determination unit 122 compares the bit rate distortion evaluation value supplied from the prediction vector mode determination unit 120 with the bit rate distortion evaluation value supplied from the merge mode determination unit 121, and then determines the merge flag.

若預測向量模式位元率失真評價值未滿合併模式位元率失真評價值,則將合併旗標設定成「0」。預測編碼模式決定部122,係將該當合併旗標、預測向量模式決定部120所供給之畫面間預測類型、參照索引、差分向量和預測向量索引,供給至端子16,將預測向量模式決定部120所供給之運動資訊,供給至端子50及端子51。 If the prediction vector mode bit rate distortion evaluation value is less than the merge mode bit rate distortion evaluation value, the merge flag is set to "0". The prediction coding mode determining unit 122 supplies the inter-picture prediction type, the reference index, the difference vector, and the prediction vector index supplied from the merge flag and prediction vector mode determining unit 120 to the terminal 16, and the prediction vector mode determining unit 120 The supplied motion information is supplied to the terminal 50 and the terminal 51.

若合併模式位元率失真評價值是預測向量模式位元率 失真評價值以下,則將合併旗標設定成「1」。預測編碼模式決定部122,係將該當合併旗標及合併模式決定部121所供給之合併索引,供給至端子16,將合併模式決定部121所供給之運動資訊,供給至端子50及端子51。此外,位元率失真評價值的具體算出方法係不是本發明的重點因此省略詳細說明,但從預測誤差與編碼量算出每一編碼量的預測誤差量,位元率失真評價值係為越小則帶有越高編碼效率之特性的評價值。因此,藉由選擇位元率失真評價值較小的預測編碼模式,就可提升編碼效率。 If the merge mode bit rate distortion evaluation value is the prediction vector mode bit rate Below the distortion evaluation value, the merge flag is set to "1". The prediction encoding mode determining unit 122 supplies the combined index supplied from the merge flag and the merge mode determining unit 121 to the terminal 16, and supplies the motion information supplied from the merge mode determining unit 121 to the terminal 50 and the terminal 51. In addition, the specific calculation method of the bit rate distortion evaluation value is not the focus of the present invention, and thus detailed description is omitted. However, the prediction error amount for each code amount is calculated from the prediction error and the code amount, and the bit rate distortion evaluation value is smaller. Then, the evaluation value with the characteristics of higher coding efficiency. Therefore, by selecting a predictive coding mode with a small bit rate distortion evaluation value, the coding efficiency can be improved.

(合併模式決定部121之構成) (Configuration of the merge mode determining unit 121)

接著說明合併模式決定部121的詳細構成。圖9係用來說明合併模式決定部121之構成的圖。合併模式決定部121係含有:結合運動資訊候補清單生成部140及結合運動資訊選擇部141。結合運動資訊候補清單生成部140,係將在實施形態1所述之動態影像編碼裝置100所生成之編碼列加以解碼的動態影像解碼裝置200中也被同樣設置,在動態影像編碼裝置100與動態影像解碼裝置200中生成同一結合運動資訊清單。 Next, the detailed configuration of the merge mode determining unit 121 will be described. FIG. 9 is a diagram for explaining the configuration of the merge mode determining unit 121. The merge mode determination unit 121 includes a combined motion information candidate list generation unit 140 and a combined motion information selection unit 141. The motion information candidate list generating unit 140 is also provided similarly to the motion picture decoding device 200 that decodes the code sequence generated by the motion picture coding device 100 according to the first embodiment, and the motion picture coding apparatus 100 and the dynamic picture coding apparatus 100 The same combined motion information list is generated in the video decoding device 200.

(合併模式決定部121的機能與動作) (Function and action of the merge mode determining unit 121)

以下,說明各部的機能與動作。結合運動資訊候補清單生成部140,係根據端子12所供給之候補區塊群而生成含有合併候補最大數之結合運動資訊候補的結合運動資訊 候補清單,將該當結合運動資訊候補清單,供給至結合運動資訊選擇部141。關於結合運動資訊候補清單生成部140之詳細構成,將於後述。 Hereinafter, the functions and operations of the respective units will be described. The combined motion information candidate list generating unit 140 generates combined motion information including combined motion information candidates having the maximum number of combined candidates based on the candidate block group supplied from the terminal 12. The candidate list is supplied to the combined exercise information selection unit 141 in conjunction with the exercise information candidate list. The detailed configuration of the combined motion information candidate list generating unit 140 will be described later.

結合運動資訊選擇部141,係從結合運動資訊候補清單生成部140所供給之結合運動資訊候補清單之中,選擇出最佳的結合運動資訊候補,決定表示已被選擇之結合運動資訊候補的資訊亦即合併索引,將該當合併索引供給至端子17。 The combined motion information selection unit 141 selects the best combined motion information candidate from the combined motion information candidate list supplied from the combined motion information candidate list generating unit 140, and determines the information indicating the combined combined motion information candidate. That is, the index is merged, and the merge index is supplied to the terminal 17.

此處,說明最佳之結合運動資訊候補的選擇方法。根據基於結合運動資訊候補之預測方向、運動向量及參照索引而進行運動補償預測所得之由端子14所供給之參照影像、和端子15所供給之影像訊號,來算出預測誤差量。合併索引的編碼量、和該當預測誤差量而算出位元率失真評價值,位元率失真評價值呈最小之結合運動資訊候補,會被當成最佳結合運動資訊候補而選擇。 Here, the selection method of the optimal combined motion information candidate will be described. The prediction error amount is calculated based on the reference image supplied from the terminal 14 and the video signal supplied from the terminal 15 obtained by the motion compensation prediction based on the prediction direction, the motion vector, and the reference index of the motion information candidate. The combination of the coding amount of the combined index and the prediction error amount to calculate the bit rate distortion evaluation value, and the bit rate distortion evaluation value which is the smallest combined motion information candidate is selected as the best combined motion information candidate.

(被供給至結合運動資訊候補清單生成部140的候補區塊群) (Supply block group supplied to the combined motion information candidate list generating unit 140)

接著,關於被供給至結合運動資訊候補清單生成部140的候補區塊群,使用圖10和圖11來說明。在候補區塊群中係含有空間候補區塊群與時間候補區塊群。 Next, the candidate block group supplied to the combined motion information candidate list generating unit 140 will be described with reference to FIGS. 10 and 11 . The candidate block group includes a space candidate block group and a time candidate block group.

圖10係圖示了,處理對象之預測區塊尺寸為16像素×16像素時的處理對象之預測區塊的相鄰區塊。在實施形態1中,作為空間候補區塊群係假設為圖10所示的區塊 A1、區塊C、區塊D、區塊B1及區塊E這5個區塊。雖然此處是將空間候補區塊群假設為區塊A1、區塊C、區塊D、區塊B1及區塊E這5個區塊,但空間候補區塊群係只要是相鄰於處理對象之預測區塊的至少1個以上的已處理之區塊即可,並非限定於此。例如,區塊A1、區塊A2、區塊A3、區塊A4、區塊B1、區塊B2、區塊B3、區塊B4、區塊C、區塊D及區塊E全部都可以當成空間候補區塊。 FIG. 10 is a diagram showing adjacent blocks of a prediction block of a processing target when a prediction block size of a processing object is 16 pixels×16 pixels. In the first embodiment, the space candidate block group is assumed to be the block shown in FIG. A block of block A1, block C, block D, block B1 and block E. Although the space candidate block group is assumed to be five blocks of block A1, block C, block D, block B1, and block E, the space candidate block group is adjacent to the processing. At least one or more processed blocks of the prediction block of the object may be used, and are not limited thereto. For example, block A1, block A2, block A3, block A4, block B1, block B2, block B3, block B4, block C, block D, and block E can all be considered as spaces. Alternate block.

接著,關於時間候補區塊群,使用圖11來說明。圖11係圖示了,處理對象之預測區塊尺寸為16像素×16像素時的與處理對象之預測區塊位於同一位置的ColPic上的預測區塊內的區塊和其周邊區塊。在實施形態1中,作為時間候補區塊群係假設為圖11所示的區塊H與區塊I6這2個區塊。雖然此處是將時間候補區塊群假設為ColPic上的區塊H及區塊I6這2個區塊,但時間候補區塊群係只要是有別於處理對象之預測區塊的另一已解碼影像上的至少1個以上之區塊即可,並非限定於此。例如,亦可只有區塊H。以後,將區塊A4表示成區塊A,將區塊B4表示成區塊B,將區塊I6表示成區塊I,將區塊H和區塊I6之區塊,表示成時間區塊。 Next, the time candidate block group will be described using FIG. 11 is a block diagram showing a block in a prediction block on a ColPic located at the same position as a prediction block of a processing target when the prediction block size of the processing object is 16 pixels×16 pixels, and a peripheral block thereof. In the first embodiment, the time candidate block group is assumed to be two blocks of the block H and the block I6 shown in FIG. Although the time candidate block group is assumed to be the two blocks of the block H and the block I6 on the ColPic, the time candidate block group is only another one that is different from the predicted block of the processing target. It is sufficient to decode at least one or more blocks on the image, and is not limited thereto. For example, there may be only block H. Thereafter, block A4 is represented as block A, block B4 is represented as block B, block I6 is represented as block I, and block H and block I6 are represented as time blocks.

(結合運動資訊候補清單生成部140之構成) (Combination of the motion information candidate list generating unit 140)

接著說明,結合運動資訊候補清單生成部140的詳細構成。圖12係結合運動資訊候補清單生成部140之構成 的說明圖。端子19係連接至結合運動資訊選擇部141。結合運動資訊候補清單生成部140係含有:空間結合運動資訊候補生成部160、時間結合運動資訊候補生成部161、隱性結合運動資訊候補排序部162、冗長結合運動資訊候補刪除部163、第1結合運動資訊候補補充部164、及第2結合運動資訊候補補充部165。 Next, the detailed configuration of the motion information candidate list generating unit 140 will be described. FIG. 12 is a combination of the motion information candidate list generating unit 140. Illustration of the diagram. The terminal 19 is connected to the combined motion information selection section 141. The combined motion information candidate list generating unit 140 includes a spatial combined motion information candidate generating unit 160, a temporal combined motion information candidate generating unit 161, an implicit combined motion information candidate sorting unit 162, a redundant combined motion information candidate deleting unit 163, and a first The motion information candidate supplementing unit 164 and the second combined motion information candidate complementing unit 165 are combined.

(結合運動資訊候補清單生成部140的機能與動作) (Combination of functions and actions of the motion information candidate list generating unit 140)

以下,說明各部的機能與動作。圖13係結合運動資訊候補清單生成部140之動作的說明用流程圖。首先,結合運動資訊候補清單生成部140,係將結合運動資訊候補清單予以初期化(S100)。已被初期化之結合運動資訊候補清單中係不存在有結合運動資訊候補。 Hereinafter, the functions and operations of the respective units will be described. FIG. 13 is a flowchart for explaining the operation of the combined motion information candidate list generating unit 140. First, the combined motion information candidate list generating unit 140 initializes the combined motion information candidate list (S100). There is no combined motion information candidate in the list of combined sports information candidates that has been initialized.

接著,空間結合運動資訊候補生成部160,係根據端子12所供給之候補區塊群而生成空間結合運動資訊候補然後追加至結合運動資訊候補清單(S101),將該當結合運動資訊候補清單和候補區塊群,供給至時間結合運動資訊候補生成部161。空間結合運動資訊候補生成部160的詳細動作,將於後述。 Next, the spatial combined motion information candidate generation unit 160 generates a spatial combined motion information candidate based on the candidate block group supplied from the terminal 12, and adds it to the combined motion information candidate list (S101), and combines the motion information candidate list and the candidate. The block group is supplied to the time combined motion information candidate generation unit 161. The detailed operation of the space combined motion information candidate generation unit 160 will be described later.

接著,時間結合運動資訊候補生成部161,係根據空間結合運動資訊候補生成部160所供給之候補區塊群來生成時間結合運動資訊候補然後追加至空間結合運動資訊候補生成部160所供給之結合運動資訊候補清單(S102),將該當結合運動資訊候補清單,供給至隱性結合運動資訊 候補排序部162。時間結合運動資訊候補生成部161的詳細動作,將於後述。 Then, the time-integrated motion information candidate generation unit 161 generates a time-combined motion information candidate based on the candidate block group supplied from the space-combined motion information candidate generation unit 160, and adds the combination to the space-combined motion information candidate generation unit 160. a motion information candidate list (S102), which is combined with the motion information candidate list to the implicit combined motion information The candidate sorting unit 162. The detailed operation of the time combined motion information candidate generation unit 161 will be described later.

接著,隱性結合運動資訊候補排序部162,係針對時間結合運動資訊候補生成部161所供給之結合運動資訊候補清單中所登錄的隱性結合運動資訊候補,變更結合運動資訊候補清單內的順序(S103),將該當結合運動資訊候補清單,供給至冗長結合運動資訊候補刪除部163。隱性結合運動資訊候補排序部162的詳細動作,將於後述。又,關於隱性結合運動資訊候補之細節,也將於後述。 Then, the implicit combined motion information candidate ranking unit 162 changes the order in the combined motion information candidate list for the implicit combined motion information candidate registered in the combined motion information candidate list supplied from the time combined motion information candidate generating unit 161. (S103), the combined motion information candidate list is supplied to the redundant combined motion information candidate deletion unit 163. The detailed operation of the implicit combined motion information candidate ranking unit 162 will be described later. Further, the details of the implicit combined motion information candidate will be described later.

接著,冗長結合運動資訊候補刪除部163,係檢查隱性結合運動資訊候補排序部162所供給之結合運動資訊候補清單中所被登錄的結合運動資訊候補,若有同一運動資訊的結合運動資訊候補是複數存在時,則留下1個結合運動資訊候補而刪除其他結合運動資訊候補(S104),將該當結合運動資訊候補清單,供給至第1結合運動資訊候補補充部164。因此,該當結合運動資訊候補清單中所被登錄的結合運動資訊候補,係為全部都是不同的結合運動資訊候補。 Then, the redundant combined motion information candidate deleting unit 163 checks the combined motion information candidate registered in the combined motion information candidate list supplied from the implicit combined motion information candidate sorting unit 162, and the combined motion information candidate having the same motion information. When there is a plurality of combined motion information candidates, the other combined motion information candidates are deleted (S104), and the combined motion information candidate list is supplied to the first combined motion information candidate supplementing unit 164. Therefore, the combined motion information candidates registered in the combined motion information candidate list are all combined motion information candidates.

接著,第1結合運動資訊候補補充部164,係根據冗長結合運動資訊候補刪除部163所供給之結合運動資訊候補清單中所被登錄的結合運動資訊候補來生成第1補充結合運動資訊候補然後追加至結合運動資訊候補清單(S105),將該當結合運動資訊候補清單,供給至第2結合運動資訊候補補充部165。第1結合運動資訊候補補充 部164的詳細動作,將於後述。 Then, the first combined motion information candidate supplementing unit 164 generates the first supplementary combined motion information candidate based on the combined motion information candidate registered in the combined motion information candidate list supplied from the redundant combined motion information candidate deleting unit 163, and then adds the first supplementary combined motion information candidate. In the combined motion information candidate list (S105), the combined motion information candidate list is supplied to the second combined motion information candidate complementing unit 165. The first combined sports information candidate supplement The detailed operation of the unit 164 will be described later.

接著,第2結合運動資訊候補補充部165,係生成不依存於第1結合運動資訊候補補充部164所供給之結合運動資訊候補清單的第2補充結合運動資訊候補,然後追加至第1結合運動資訊候補補充部164所供給之結合運動資訊候補清單(S106),將該當結合運動資訊候補清單供給至端子19。第2結合運動資訊候補補充部165的詳細動作,將於後述。 Then, the second combined motion information candidate supplementing unit 165 generates a second supplementary combined motion information candidate that does not depend on the combined motion information candidate list supplied from the first combined motion information candidate supplementing unit 164, and then adds the first combined motion information candidate to the first combined motion. The combined motion information candidate list supplied by the information candidate supplementing unit 164 (S106) supplies the combined motion information candidate list to the terminal 19. The detailed operation of the second combined motion information candidate supplementing unit 165 will be described later.

(空間結合運動資訊候補生成部160的詳細動作) (Detailed operation of the space combined motion information candidate generation unit 160)

接著說明空間結合運動資訊候補生成部160的詳細動作。圖14係空間結合運動資訊候補生成部160之動作的說明用流程圖。空間結合運動資訊候補生成部160,係按照候補區塊群之空間候補區塊群中所含之候補區塊亦即區塊A、區塊B、區塊C、區塊E、區塊D之順序,重複進行以下處理(S110至S114)。 Next, the detailed operation of the space combined motion information candidate generation unit 160 will be described. FIG. 14 is a flowchart for explaining the operation of the space combined motion information candidate generating unit 160. The spatial combined motion information candidate generating unit 160 is a candidate block included in the space candidate block group of the candidate block group, that is, block A, block B, block C, block E, and block D. In the order, the following processing is repeated (S110 to S114).

首先,檢查候補區塊是否有效(S111)。所謂候補區塊是有效,係為候補區塊的L0預測與L1預測之參照索引的至少一方是0以上。若候補區塊是有效(S111之Y),則將候補區塊之運動資訊,當作空間結合運動資訊候補而追加至結合運動資訊候補清單(S112)。若候補區塊並非有效(S111的N),則略過步驟S112與步驟S113而檢查下個候補區塊(S114)。接在步驟S112之後,檢查結合運動資訊候補清單中所被追加之空間結合運動資訊候補的 數目是否為空間結合運動資訊候補最大數(S113)。此處,假設空間結合運動資訊候補最大數為4。若結合運動資訊候補清單中所被追加之空間結合運動資訊候補的數目不是空間結合運動資訊候補最大數(S113的N),則檢查下個候補區塊(S114)。若結合運動資訊候補清單中所被追加之空間結合運動資訊候補的數目是空間結合運動資訊候補最大數(S113的Y),則結束處理。 First, it is checked whether the candidate block is valid (S111). The candidate block is valid, and at least one of the L0 prediction and the L1 prediction reference index of the candidate block is 0 or more. If the candidate block is valid (Y of S111), the motion information of the candidate block is added to the combined motion information candidate list as a space combined with the motion information candidate (S112). If the candidate block is not valid (N of S111), the next candidate block is checked by skipping steps S112 and S113 (S114). After step S112, the space combined with the motion information candidate added in the combined motion information candidate list is checked. Whether the number is the maximum number of spatial combined motion information candidates (S113). Here, it is assumed that the maximum number of spatial combined motion information candidates is four. If the number of spatial combined motion information candidates added to the combined motion information candidate list is not the maximum number of spatial combined motion information candidates (N of S113), the next candidate block is checked (S114). When the number of spatial combined motion information candidates added to the combined motion information candidate list is the maximum number of spatial combined motion information candidates (Y of S113), the processing ends.

此處,雖然是為了使得與處理對象區塊之接線較長的一般認為與處理對象區塊之相關性較高的區塊A與區塊B,能被優先登錄至結合運動資訊候補清單,而將處理的順序,設計成區塊A、區塊B、區塊C、區塊E、區塊D,但只要能夠以相關性較高之順序來把結合運動資訊候補登錄至結合運動資訊候補清單即可,並非限定於此。又,雖然將空間結合運動資訊候補最大數設成4,但空間結合運動資訊候補最大數係只要是1以上且為空間候補區塊群中所含之候補區塊數以下即可,並非限定於此。 Here, in order to make the block A and the block B which are generally considered to have a high correlation with the processing target block, the connection to the processing target block can be preferentially registered to the combined motion information candidate list. The order of processing is designed as block A, block B, block C, block E, block D, but as long as the combined motion information candidates can be registered to the combined motion information candidate list in a higher correlation order. Yes, it is not limited to this. In addition, the maximum number of spatial combined motion information candidates is set to four, but the maximum number of spatial combined motion information candidates is not less than 1 or more and is equal to or less than the number of candidate blocks included in the spatial candidate block group. this.

(時間結合運動資訊候補生成部161的詳細動作) (Detailed operation of the time combined motion information candidate generation unit 161)

接著說明時間結合運動資訊候補生成部161的詳細動作。圖15係時間結合運動資訊候補生成部161之動作的說明用流程圖。針對L0預測與L1預測的各預測方向LX,重複進行以下處理(S120至S127)。此處,X係為0或1。又,候補區塊群的時間候補區塊群中所含之候補區塊亦即區塊H、區塊I之順序,重複進行以下處理 (S121至S126)。 Next, the detailed operation of the time combined motion information candidate generation unit 161 will be described. FIG. 15 is a flowchart for explaining the operation of the time combined motion information candidate generation unit 161. The following processing is repeated for each prediction direction LX of the L0 prediction and the L1 prediction (S120 to S127). Here, the X system is 0 or 1. Moreover, the order of the candidate block included in the time candidate block group of the candidate block group, that is, the block H and the block I, is repeatedly processed as follows. (S121 to S126).

時間結合運動資訊候補生成部161,係檢查候補區塊的LN預測是否有效(S122)。此處,N係為0或1。此處N係和X相同。所謂候補區塊的LN預測是有效,係為候補區塊的LN預測之參照索引是0以上。若候補區塊的LN預測是有效(S122之Y),則將候補區塊的LN預測之運動向量,當作基準運動向量(S123)。若候補區塊的LN預測並非有效(S122的N),則略過步驟S123至步驟S126而檢查下個候補區塊(S126)。 The time combined motion information candidate generation unit 161 checks whether or not the LN prediction of the candidate block is valid (S122). Here, the N system is 0 or 1. Here N is the same as X. The LN prediction of the candidate block is valid, and the reference index of the LN prediction of the candidate block is 0 or more. If the LN prediction of the candidate block is valid (Y of S122), the motion vector of the LN prediction of the candidate block is taken as the reference motion vector (S123). If the LN prediction of the candidate block is not valid (N of S122), the next candidate block is checked by skipping steps S123 to S126 (S126).

接在步驟S123之後,決定時間結合運動資訊候補的LX預測之參照影像(S124)。此處,時間結合運動資訊候補的LX預測之參照影像,係空間候補區塊群中所含之候補區塊的作為LX預測之參照影像被利用最多的參照影像。接著,將基準運動向量進行比例縮放使得處理對象影像與時間結合運動資訊候補的LX預測之參照影像的距離相符,而算出比例縮放向量,將該當比例縮放向量當作時間結合運動資訊候補的LX預測之運動向量(S125),處理下個預測方向(S127)。此處,關於比例縮放向量的算出式,係和MPEG-4AVC中的時間直接運動補償預測的比例縮放向量的算出式相同。在針對L0預測與L1預測結束處理的步驟S127之後,檢查時間結合運動資訊候補的L0預測與L1預測之至少一方的預測是否有效(S128)。所謂時間結合運動資訊候補的LN預測是有效,係為時間結合運動資訊候補的LN預測之參照影像是已經決定的意 思。若時間結合運動資訊候補的L0預測與L1預測之至少一方的預測是有效(S128的Y),則決定時間結合運動資訊候補的畫面間預測類型,將該當時間結合運動資訊候補,追加至結合運動資訊候補清單(S129)。此處,畫面間預測類型的決定,係若只有L0預測有效,則將時間結合運動資訊候補的畫面間預測類型設成Pred_L0,若只有L1預測有效,則將時間結合運動資訊候補的畫面間預測類型設成Pred_L1,若L0預測與L1預測雙方都有效,則將時間結合運動資訊候補的畫面間預測類型設成Pred_BI。 After the step S123, the LX predicted reference image of the motion information candidate is determined (S124). Here, the reference image of the LX prediction of the temporal combined motion information candidate is the reference video that is used most as the reference image of the LX prediction in the candidate block included in the spatial candidate block group. Then, the reference motion vector is scaled so that the processing target image matches the distance of the LX predicted reference image of the time combined with the motion information candidate, and the scaling vector is calculated, and the scaling vector is regarded as the LX prediction of the time combined motion information candidate. The motion vector (S125) processes the next prediction direction (S127). Here, the calculation formula of the scaling vector is the same as the calculation formula of the scaling vector of the temporal direct motion compensation prediction in MPEG-4 AVC. After step S127 for the L0 prediction and L1 prediction end processing, it is checked whether or not the prediction of at least one of the L0 prediction and the L1 prediction of the time combined motion information candidate is valid (S128). The LN prediction of the time-integrated motion information candidate is valid, and the reference image of the LN prediction that is time-combined with the motion information candidate is determined. think. When the prediction of at least one of the L0 prediction and the L1 prediction of the time-integrated motion information candidate is valid (Y of S128), the inter-screen prediction type of the time-integrated motion information candidate is determined, and the time-integrated motion information candidate is added to the combined motion. Information candidate list (S129). Here, the determination of the inter-picture prediction type is such that if only the L0 prediction is valid, the inter-picture prediction type of the temporal combined motion information candidate is set to Pred_L0, and if only the L1 prediction is valid, the inter-picture prediction of the temporal combined motion information candidate is performed. The type is set to Pred_L1, and if both the L0 prediction and the L1 prediction are valid, the inter-picture prediction type of the time combined with the motion information candidate is set to Pred_BI.

此處,雖然令N係和X相同,但N亦可和X不同,並非限定於此。又,雖然假設時間結合運動資訊候補的LX預測之參照影像,係為空間候補區塊群中所含之候補區塊的作為LX預測之參照影像被利用最多的參照影像,但並非限定於此,亦可決定成參照索引0的參照影像等。又,雖然畫面間預測類型設成Pred_L0、Pred_L1、Pred_BI之任一者,但亦可僅為Pred_BI,並非限定於此。 Here, although the N system and the X are the same, N may be different from X, and is not limited thereto. In addition, although the reference video of the LX prediction of the temporal information combined with the motion information candidate is the reference video that is the most used reference image for the LX prediction in the candidate block included in the spatial candidate block group, the present invention is not limited thereto. It is also possible to determine a reference image or the like which is referred to as index 0. Further, although the inter-picture prediction type is set to any of Pred_L0, Pred_L1, and Pred_BI, it may be only Pred_BI, and is not limited thereto.

(隱性結合運動資訊候補排序部162的詳細動作) (Detailed action of the implicit combined motion information candidate sorting unit 162)

接著,說明隱性結合運動資訊候補排序部162的詳細動作。圖16係隱性結合運動資訊候補排序部162之動作的說明用流程圖。首先,檢查候補區塊A是否為隱性結合運動資訊候補(S140)。關於隱性結合運動資訊候補的細節,將於後述。若候補區塊A是隱性結合運動資訊候補 (S140的Y),則將隱性結合運動資訊候補亦即候補區塊A所相當之結合運動資訊候補,移動至結合運動資訊候補清單的最末尾(S141),結束處理。若候補區塊A不是隱性結合運動資訊候補(S140的N),則檢查候補區塊B是否為隱性結合運動資訊候補(S142)。若候補區塊B是隱性結合運動資訊候補(S142的Y),則將隱性結合運動資訊候補亦即候補區塊B所相當之結合運動資訊候補,移動至結合運動資訊候補清單的最末尾(S143)。若候補區塊B不是隱性結合運動資訊候補(S142的N),則結束處理。 Next, the detailed operation of the implicit combined motion information candidate ranking unit 162 will be described. FIG. 16 is a flowchart for explaining the operation of the implicit combined motion information candidate sorting unit 162. First, it is checked whether the candidate block A is a recessive combined motion information candidate (S140). The details of the implicit combined motion information candidate will be described later. If candidate block A is an implicit combined motion information candidate (Y of S140), the combined motion information candidate corresponding to the candidate block A, which is the implicit combined motion information candidate, is moved to the end of the combined motion information candidate list (S141), and the processing ends. If the candidate block A is not a recessive combined motion information candidate (N of S140), it is checked whether the candidate block B is a recessive combined motion information candidate (S142). If the candidate block B is a recessive combined motion information candidate (Y of S142), the implicit combined motion information candidate, that is, the combined motion information candidate corresponding to the candidate block B, is moved to the end of the combined motion information candidate list. (S143). If the candidate block B is not a recessive combined motion information candidate (N of S142), the processing ends.

(關於隱性結合運動資訊候補) (About implicit combined sports information candidates)

以下說明隱性結合運動資訊候補。圖17(a)至(d)係用來說明隱性結合運動資訊候補的圖。編碼區塊,上面已經說明過可以分割成1或2或4個預測區塊。圖17係表示編碼區塊為16×16的例子。藉由將編碼區塊分割成多數預測區塊,可使涉及編碼區塊的預測誤差最小化,但是另一方面,圖6所示的涉及預測區塊的語法的負荷,會隨預測區塊的個數而增加。因此,針對運動資訊為相同且預測誤差為相同的複數預測區塊,係總結成1個預測區塊,抑制預測區塊的分割數,就可提升編碼效率。 The following describes the implicit combined motion information candidates. 17(a) to (d) are diagrams for explaining implicit binding motion information candidates. The coding block, which has been described above, can be divided into 1 or 2 or 4 prediction blocks. Fig. 17 is a diagram showing an example in which the coding block is 16 × 16. The prediction error involving the coding block can be minimized by dividing the coding block into a plurality of prediction blocks, but on the other hand, the load of the syntax related to the prediction block shown in FIG. 6 will follow the prediction block. Increase in number. Therefore, for a complex prediction block whose motion information is the same and the prediction error is the same, it is summarized into one prediction block, and the number of divisions of the prediction block is suppressed, so that the coding efficiency can be improved.

圖17(a)係用來說明候補區塊A是隱性結合運動資訊候補之例1的圖。圖示了編碼區塊係為合併模式,且預測區塊尺寸類型係為N×2N而被編碼時的預測區塊1的空 間結合運動資訊候補的位置。此處,若預測區塊0的運動資訊與預測區塊1的運動資訊是相同,則將預測區塊0與預測區塊1總結成2N×2N來進行編碼,藉此可減少涉及預測區塊的語法之負荷,可提升編碼效率。亦即,當預測區塊尺寸類型是N×2N且處理對象區塊是預測區塊1的情況下,設成2N×2N而被編碼時的候補區塊所相當之候補區塊A被選擇成為結合運動資訊候補的可能性係較低。因此,當預測區塊尺寸類型是N×2N且處理對象區塊是預測區塊1的情況下,將候補區塊A當作隱性結合運動資訊候補。 Fig. 17 (a) is a diagram for explaining an example 1 in which the candidate block A is a recessive combined motion information candidate. It is shown that the coding block is in the merge mode, and the prediction block size type is N×2N and is encoded when the prediction block 1 is empty. The position of the motion information candidate. Here, if the motion information of the prediction block 0 is the same as the motion information of the prediction block 1, the prediction block 0 and the prediction block 1 are summarized into 2N×2N for encoding, thereby reducing the prediction block involved. The grammatical load can improve coding efficiency. In other words, when the prediction block size type is N×2N and the processing target block is the prediction block 1, the candidate block A corresponding to the candidate block when 2N×2N is encoded is selected as The possibility of combining sports information candidates is lower. Therefore, when the prediction block size type is N×2N and the processing target block is the prediction block 1, the candidate block A is regarded as a recessive combined motion information candidate.

圖17(b)係用來說明候補區塊A是隱性結合運動資訊候補之例2的圖。圖示了編碼區塊係為合併模式,且預測區塊尺寸類型係為N×N而被編碼時的預測區塊3的空間結合運動資訊候補的位置。此處,若預測區塊0的運動資訊與預測區塊1的運動資訊是相同、且預測區塊2的運動資訊與預測區塊3的運動資訊是相同,則將預測區塊0與預測區塊1總結,而且還將預測區塊2與預測區塊3總結成2N×N來進行編碼,藉此就可減少涉及預測區塊的語法之負荷,可提升編碼效率。因此,預測區塊尺寸類型為N×N且預測區塊0的運動資訊與預測區塊1的運動資訊為相同且為預測區塊3的情況下,則將候補區塊A當作隱性結合運動資訊候補。 Fig. 17 (b) is a diagram for explaining an example 2 in which the candidate block A is a recessive combined motion information candidate. The position where the coding block is the merge mode and the prediction block size type is N×N and the space of the prediction block 3 is combined with the motion information candidate is illustrated. Here, if the motion information of the prediction block 0 is the same as the motion information of the prediction block 1, and the motion information of the prediction block 2 is the same as the motion information of the prediction block 3, the prediction block 0 and the prediction area will be predicted. Block 1 is summarized, and the prediction block 2 and the prediction block 3 are also summarized into 2N×N for encoding, whereby the load of the syntax involving the prediction block can be reduced, and the coding efficiency can be improved. Therefore, if the prediction block size type is N×N and the motion information of the prediction block 0 is the same as the motion information of the prediction block 1 and is the prediction block 3, the candidate block A is regarded as implicit combination. Sports information candidates.

圖17(c)係用來說明候補區塊B是隱性結合運動資訊候補之例1的圖。係圖示了,編碼區塊為合併模式,且 預測區塊尺寸類型係設成2N×N來進行編碼的樣子。此處,若預測區塊0的運動資訊與預測區塊1的運動資訊是相同,則將預測區塊0與預測區塊1總結成2N×2N來進行編碼,藉此可減少涉及預測區塊的語法之負荷,可提升編碼效率。因此,當預測區塊尺寸類型是2N×N且處理對象區塊是預測區塊1的情況下,將候補區塊B當作隱性結合運動資訊候補。 Fig. 17 (c) is a diagram for explaining an example 1 in which the candidate block B is a recessive combined motion information candidate. It is shown that the coding block is in merge mode, and The prediction block size type is set to 2N×N for encoding. Here, if the motion information of the prediction block 0 is the same as the motion information of the prediction block 1, the prediction block 0 and the prediction block 1 are summarized into 2N×2N for encoding, thereby reducing the prediction block involved. The grammatical load can improve coding efficiency. Therefore, when the prediction block size type is 2N×N and the processing target block is the prediction block 1, the candidate block B is regarded as a recessive combined motion information candidate.

圖17(d)係用來說明候補區塊B是隱性結合運動資訊候補之例2的圖。圖示了編碼區塊係為合併模式,且預測區塊尺寸類型係為N×N而被編碼時的預測區塊3的空間結合運動資訊候補的位置。此處,預測區塊0的運動資訊與預測區塊2的運動資訊是相同且預測區塊1的運動資訊與預測區塊3的運動資訊是相同,則將預測區塊0與預測區塊2總結,而且還將預測區塊1與預測區塊3總結成N×2N來進行編碼,藉此可減少涉及預測區塊的語法之負荷,可提升編碼效率。因此,預測區塊尺寸類型為N×N且預測區塊0的運動資訊與預測區塊2的運動資訊為相同且為預測區塊3的情況下,則將候補區塊B當作隱性結合運動資訊候補。 Fig. 17 (d) is a diagram for explaining an example 2 in which the candidate block B is a recessive combined motion information candidate. The position where the coding block is the merge mode and the prediction block size type is N×N and the space of the prediction block 3 is combined with the motion information candidate is illustrated. Here, the motion information of the prediction block 0 is the same as the motion information of the prediction block 2, and the motion information of the prediction block 1 is the same as the motion information of the prediction block 3, and the prediction block 0 and the prediction block 2 are In summary, the prediction block 1 and the prediction block 3 are also summarized into N×2N for encoding, thereby reducing the load of the syntax involving the prediction block and improving the coding efficiency. Therefore, if the prediction block size type is N×N and the motion information of the prediction block 0 is the same as the motion information of the prediction block 2 and is the prediction block 3, the candidate block B is regarded as a recessive combination. Sports information candidates.

如此,隱性結合運動資訊候補排序部162,係基於編碼對象之預測區塊的分割類型與編碼對象之預測區塊在編碼區塊內之位置,以比編碼對象之預測區塊的尺寸還大之尺寸的預測區塊來進行運動補償預測,係可將編碼效率之觀點上較為適切的結合運動資訊候補,選擇來作為隱性結 合運動資訊候補。如以上,所謂隱性結合運動資訊候補,係為當被結合成更大預測區塊尺寸的情況下,編碼效率有被提升的結合運動資訊候補。 In this way, the implicit combined motion information candidate ranking unit 162 is based on the partition type of the prediction block of the encoding target and the position of the prediction block of the encoding target in the encoding block, which is larger than the size of the prediction block of the encoding target. The prediction block of the size is used for motion compensation prediction, and the combination of motion information candidates can be selected as a recessive knot from the viewpoint of coding efficiency. Sports information candidate. As described above, the implicit combined motion information candidate is a combined motion information candidate in which the coding efficiency is improved when combined into a larger prediction block size.

圖18係用來說明隱性結合運動資訊候補之判定處理的流程圖。 Fig. 18 is a flowchart for explaining the process of determining the implicit combined motion information candidate.

首先,檢查預測區塊尺寸類型是否為2N×2N(S150)。若預測區塊尺寸類型是2N×2N(S150的Y),則結束處理。若預測區塊尺寸類型不是2N×2N(S150的N),則檢查預測區塊尺寸類型(S151)。若預測區塊尺寸類型為N×2N(S151的N×2N),則檢查是否為預測區塊1(S152)。若預測區塊尺寸類型為2N×N(S151的2N×N),則檢查是否為預測區塊1(S154)。若預測區塊尺寸類型為N×N(S151的N×N),則檢查是否為預測區塊3(S156)。若預測區塊尺寸類型是N×2N,且為預測區塊1(S152的Y),則將區塊A當作隱性結合運動資訊候補(S153)。若預測區塊尺寸類型是N×2N,且並非預測區塊1(S152的N),則結束處理。若預測區塊尺寸類型是2N×N,且為預測區塊1(S154的Y),則將區塊B當作隱性結合運動資訊候補(S155)。若預測區塊尺寸類型是2N×N,且並非預測區塊1(S154的N),則結束處理。 First, it is checked whether the predicted block size type is 2N × 2N (S150). If the predicted block size type is 2N × 2N (Y of S150), the processing is ended. If the predicted block size type is not 2N × 2N (N of S150), the predicted block size type is checked (S151). If the prediction block size type is N × 2N (N × 2N of S151), it is checked whether it is prediction block 1 (S152). If the prediction block size type is 2N×N (2N×N of S151), it is checked whether it is the prediction block 1 (S154). If the prediction block size type is N × N (N × N of S151), it is checked whether it is the prediction block 3 (S156). If the predicted block size type is N × 2N and is predicted block 1 (Y of S152), block A is regarded as a recessive combined motion information candidate (S153). If the predicted block size type is N × 2N and is not predicted block 1 (N of S152), the processing is ended. If the predicted block size type is 2N×N and is predicted block 1 (Y of S154), block B is regarded as a recessive combined motion information candidate (S155). If the predicted block size type is 2N×N and is not predicted block 1 (N of S154), the processing is ended.

若預測區塊尺寸類型是N×N,且為預測區塊3(S156的Y),則檢查預測區塊0與預測區塊2是否相同(S157)。若預測區塊尺寸類型是N×N,且並非預測區塊3(S156的N),則結束處理。若預測區塊0與預測區塊 2的運動資訊相同(S157的Y),則將區塊A當作隱性結合運動資訊候補(S158)。若預測區塊0與預測區塊2的運動資訊並非相同(S157的N),則檢查預測區塊0與預測區塊1的運動資訊是否相同(S159)。若預測區塊0與預測區塊1的運動資訊相同(S159的Y),則將區塊B當作隱性結合運動資訊候補(S160)。若預測區塊0與預測區塊1的運動資訊並非相同(S159的N),則結束處理。 If the predicted block size type is N×N and is predicted block 3 (Y of S156), it is checked whether the predicted block 0 and the predicted block 2 are identical (S157). If the predicted block size type is N×N and is not predicted block 3 (N of S156), the processing ends. If prediction block 0 and prediction block If the motion information of 2 is the same (Y of S157), the block A is regarded as a recessive combined motion information candidate (S158). If the motion information of the prediction block 0 and the prediction block 2 are not the same (N of S157), it is checked whether the motion information of the prediction block 0 and the prediction block 1 are the same (S159). If the motion information of the prediction block 0 and the prediction block 1 are the same (Y of S159), the block B is regarded as a recessive combined motion information candidate (S160). If the motion information of the prediction block 0 and the prediction block 1 are not the same (N of S159), the processing ends.

圖18係隱性結合運動資訊候補之判定處理的一例,只要能夠至少使用編碼區塊往預測區塊之分割數和預測區塊在編碼區塊內之位置之雙方或任一方來判定隱性結合運動資訊候補即可,並非限定於此。 18 is an example of the determination process of the implicit combined motion information candidate, as long as at least two or one of the number of divisions of the coding block to the prediction block and the position of the prediction block in the coding block can be used to determine the implicit combination. The sports information candidate can be used, and is not limited to this.

例如,為了簡化預測區塊類型是N×N時的條件判定,亦可省略預測區塊0與預測區塊1的運動資訊同一性判定(步驟S159)或預測區塊0與預測區塊2(步驟S157)的運動資訊同一性判定,在預測區塊3上係可總是將區塊A與B視為隱性結合運動資訊候補。然後,亦可在預測區塊1上係總是將區塊A視為隱性結合運動資訊候補,在預測區塊2上係總是將區塊B視為隱性結合運動資訊候補。 For example, in order to simplify the conditional decision when the prediction block type is N×N, the motion information identity determination of the prediction block 0 and the prediction block 1 may be omitted (step S159) or the prediction block 0 and the prediction block 2 ( The motion information identity determination of step S157), in the prediction block 3, always considers blocks A and B as implicit combined motion information candidates. Then, block A can always be regarded as a recessive combined motion information candidate in prediction block 1, and block B is always regarded as a recessive combined motion information candidate in prediction block 2.

又,作為簡化預測區塊類型是N×N時的條件判定的另一手法,亦可當預測區塊類型是N×N時,不進行隱性結合運動資訊候補的排序。這就變成,基於編碼區塊往預測區塊之分割數,來進行隱性結合運動資訊候補的排序之 控制。 Further, as another method of simplifying the conditional determination when the prediction block type is N × N, when the prediction block type is N × N, the ordering of the implicit combined motion information candidates may not be performed. This becomes, based on the number of divisions of the coding block to the prediction block, the ordering of the implicit combined motion information candidates is performed. control.

一般而言,候補區塊A或候補區塊B,係相較於其他區塊是選擇率相對較高的結合運動資訊候補,因此被分配了編碼長度較短的合併索引。可是,如上記,候補區塊A或候補區塊B是該當於隱性結合運動資訊候補之條件時,由於被結合成比候補區塊A或候補區塊B還大的預測區塊,編碼效率較為良好,因此被選擇來作為結合運動資訊候補的可能性較低。因此,在隱性結合運動資訊候補排序部162中,令隱性結合運動資訊候補移動至結合運動資訊候補清單的最末尾,藉由對選擇率相對較高之隱性結合運動資訊候補以外的候補區塊,分配編碼長度較短的合併索引,藉此就可提升編碼效率。 In general, the candidate block A or the candidate block B is a combined motion information candidate having a relatively high selection rate compared to other blocks, and thus is assigned a merged index having a shorter coding length. However, as described above, the candidate block A or the candidate block B is a prediction block which is larger than the candidate block A or the candidate block B when the condition is implicitly combined with the motion information candidate, and the coding efficiency is high. It is better, so it is less likely to be selected as a candidate for combining sports information. Therefore, in the implicit combined motion information candidate sorting unit 162, the implicit combined motion information candidate is moved to the end of the combined motion information candidate list, and candidates other than the recessive combined motion information candidate having a relatively high selection rate are selected. The block allocates a merged index with a short code length, thereby improving coding efficiency.

(第1結合運動資訊候補補充部164的詳細動作) (Detailed operation of the first combined motion information candidate supplementing unit 164)

接著說明第1結合運動資訊候補補充部164的詳細動作。圖19係第1結合運動資訊候補補充部164之動作的說明用流程圖。首先,根據冗長結合運動資訊候補刪除部163所供給之結合運動資訊候補清單中所被登錄的結合運動資訊候補之數目(NumCandList)與合併候補最大數(MaxNumMergeCand),將生成第1補充結合運動資訊候補的最大數MaxNumGenCand,由式1予以算出(S170)。 Next, the detailed operation of the first combined motion information candidate supplementing unit 164 will be described. FIG. 19 is a flowchart for explaining the operation of the first combined motion information candidate supplementing unit 164. First, the first supplementary combined motion information is generated based on the number of combined motion information candidates (NumCandList) and the maximum number of combined candidates (MaxNumMergeCand) registered in the combined motion information candidate list supplied from the redundant combined motion information candidate deleting unit 163. The maximum number of candidates, MaxNumGenCand, is calculated by Equation 1 (S170).

MaxNumGenCand=MaxNumMergeCand-NumCandList;(NumCandList>0) MaxNumGenCand=0;(NumCamdList==0) 式1 MaxNumGenCand=MaxNumMergeCand-NumCandList;(NumCandList>0) MaxNumGenCand=0;(NumCamdList==0) Equation 1

接著,檢查MaxNumGenCand是否大於0(S171)。若MaxNumGenCand並非大於0(S171的N),則結束處理。若MaxNumGenCand大於0(S171的Y),則進行以下處理。首先,決定組合檢查次數loopTimes。loopTimes係設定成NumCandList×NumCandList。但是,loopTimes超過8時則loopTimes係限制成8(S172)。此處,loopTimes係為0至7的整數。重複進行以下的處理loopTimes次(S172至S180)。決定結合運動資訊候補M與結合運動資訊候補N之組合(S173)。此處,說明組合檢查次數和結合運動資訊候補M與結合運動資訊候補N之關係。圖43係用來說明組合檢查次數和結合運動資訊候補M與結合運動資訊候補N之關係的圖。如圖43所示,M與N係不同值,M與N的合計值是被設定成由小而大之順序。檢查是否為結合運動資訊候補M的L0預測為有效且結合運動資訊候補N的L1預測為有效(S174)。若結合運動資訊候補M的L0預測為有效且結合運動資訊候補N的L1預測為有效(S174的N),則檢查結合運動資訊候補M的L0預測之參照影像和運動向量,是否和結合運動資訊候補N的L1預測之參照影像和運動向量不同(S175)。若並非結合運動資訊候補M的L0預測為有效且結合運動資訊候補N的L1預測為有效(S174的N),則處理下個組合。若結合運動資訊候補M的L0預測之參照影像與結合運動資訊候補N的L1預測之參照影像不同(S175的Y),則將結合運動資訊候補M 的L0預測之運動向量與參照影像與結合運動資訊候補N的L1預測之運動向量與參照影像進行組合,生成畫面間預測類型為Pred_BI的雙結合運動資訊候補(S176)。此處,作為第1補充結合運動資訊候補,將某結合運動資訊候補的L0預測與和其不同之結合運動資訊候補的L1預測之運動資訊加以組合而生成雙結合運動資訊。若結合運動資訊候補M的L0預測之參照影像與結合運動資訊候補N的L1預測之參照影像相同(S175的N),則處理下個組合。接在步驟S176之後,檢查雙結合運動資訊候補是否存在於結合運動資訊候補清單中(S177)。若雙結合運動資訊候補不存在於結合運動資訊候補清單中(S177的Y),則將雙結合運動資訊候補追加至結合運動資訊候補清單(S178)。若雙結合運動資訊候補存在於結合運動資訊候補清單中(S177的N),則略過步驟S178。皆在步驟S177或步驟S178之後,檢查已生成之雙結合運動資訊的數目是否為MaxNumGenCand(S179)。若已被生成之雙結合運動資訊的數目是MaxNumGenCand(S179的Y),則結束處理。若已被生成之雙結合運動資訊的數目不是MaxNumGenCand(S179的N),則處理下個組合。 Next, it is checked whether MaxNumGenCand is greater than 0 (S171). If MaxNumGenCand is not greater than 0 (N of S171), the process ends. If MaxNumGenCand is greater than 0 (Y of S171), the following processing is performed. First, decide the number of combined check loopTimes. The loopTimes is set to NumCandList×NumCandList. However, when loopTimes exceeds 8, the loopTimes is limited to 8 (S172). Here, loopTimes is an integer from 0 to 7. The following processing loopTimes is repeated (S172 to S180). A combination of the motion information candidate M and the combined motion information candidate N is determined (S173). Here, the relationship between the number of combined inspections and the combined motion information candidate M and the combined motion information candidate N will be described. Fig. 43 is a view for explaining the relationship between the number of combined inspections and the combined motion information candidate M and the combined motion information candidate N. As shown in Fig. 43, M and N are different values, and the total values of M and N are set to be small and large. It is checked whether or not the L0 prediction combined with the motion information candidate M is valid and the L1 prediction combined with the motion information candidate N is valid (S174). If the L0 prediction combined with the motion information candidate M is valid and the L1 prediction combined with the motion information candidate N is valid (N of S174), check whether the reference image and the motion vector of the L0 prediction combined with the motion information candidate M are combined with the motion information. The reference image of the L1 prediction of the candidate N is different from the motion vector (S175). If the L0 prediction that is not combined with the motion information candidate M is valid and the L1 prediction combined with the motion information candidate N is valid (N of S174), the next combination is processed. If the reference image of the L0 prediction combined with the motion information candidate M is different from the reference image of the L1 prediction combined with the motion information candidate N (Y of S175), the motion information candidate M will be combined. The L0 predicted motion vector and the reference image and the L1 predicted motion vector combined with the motion information candidate N are combined with the reference image to generate a double combined motion information candidate of the inter prediction type Pred_BI (S176). Here, as the first supplementary combined motion information candidate, the L0 prediction of the combined motion information candidate and the L1 predicted motion information of the combined motion information candidate are combined to generate the double combined motion information. If the reference image of the L0 prediction combined with the motion information candidate M is the same as the reference image of the L1 prediction combined with the motion information candidate N (N of S175), the next combination is processed. After step S176, it is checked whether the double combined motion information candidate exists in the combined motion information candidate list (S177). If the double combined motion information candidate does not exist in the combined motion information candidate list (Y of S177), the double combined motion information candidate is added to the combined motion information candidate list (S178). If the double combined motion information candidate exists in the combined motion information candidate list (N of S177), step S178 is skipped. After step S177 or step S178, it is checked whether the number of generated double combined motion information is MaxNumGenCand (S179). If the number of double combined motion information that has been generated is MaxNumGenCand (Y of S179), the processing ends. If the number of double combined motion information that has been generated is not MaxNumGenCand (N of S179), the next combination is processed.

此處,雖然是將第1補充結合運動資訊候補設計成,將已被登錄至結合運動資訊候補清單中的某一結合運動資訊候補的L0預測之運動向量與參照影像,與另一結合運動資訊候補的L1預測之運動向量與參照影像進行組合,成為運動補償預測之方向為雙向的雙結合運動資訊候補, 但並非限定於此。例如,亦可為對已被登錄至結合運動資訊候補清單中的某一結合運動資訊候補的L0預測之運動向量與L1預測之運動向量加上+1等偏置值而成的運動補償預測之方向為雙向的結合運動資訊候補、對已被登錄至結合運動資訊候補清單中的某一結合運動資訊候補的L0預測之運動向量或L1預測之運動向量加上+1等偏置值而成的運動補償預測之方向為單向的結合運動資訊候補,亦可將它們做任意組合。 Here, the first supplementary combined motion information candidate is designed such that the L0 predicted motion vector and the reference image that have been registered to one of the combined motion information candidates in the combined motion information candidate list are combined with the other reference motion information. The candidate L1 predicted motion vector is combined with the reference image to become a bi-joined motion information candidate in the direction of motion compensation prediction. However, it is not limited to this. For example, it may be a motion compensation prediction that adds a +1 offset value to the L0 predicted motion vector and the L1 predicted motion vector that have been registered to a certain combined motion information candidate in the combined motion information candidate list. The direction is a bidirectional combined motion information candidate, and the motion vector of the L0 prediction or the motion vector of the L1 prediction that has been registered to a combined motion information candidate in the combined motion information candidate list is added with an offset value of +1. The direction of motion compensation prediction is a one-way combined motion information candidate, and they can be combined in any combination.

此處,第1補充結合運動資訊候補,係當已被登錄在結合運動資訊候補清單中的結合運動資訊候補的運動資訊和處理對象的運動資訊候補之運動有微妙的偏差時,將已被登錄在結合運動資訊候補清單中的結合運動資訊候補的運動資訊予以修正而生成有效的結合運動資訊候補,藉此就可提高編碼效率。 Here, the first supplementary combined motion information candidate is registered when the motion information of the combined motion information candidate registered in the combined motion information candidate list and the motion information candidate motion of the processing target are subtly deviated. The motion information combined with the motion information candidate in the motion information candidate list is corrected to generate an effective combined motion information candidate, thereby improving coding efficiency.

如以上所述,即使被選擇來作為結合運動資訊候補之可能性較低的隱性結合運動資訊候補的運動資訊,仍有L0預測或L1預測之任一方是與處理對象區塊之運動資訊相同的情況,或處理對象區塊之運動資訊是與隱性結合運動資訊候補之運動資訊有微小偏差的可能性。因此,不要刪除隱性結合運動資訊候補的運動資訊,而是令隱性結合運動資訊候補的運動資訊與其他結合運動資訊候補之運動資訊做組合,或修正隱性結合運動資訊候補的運動資訊等等,以生成選擇率比隱性結合運動資訊候補相對較高的第1補充結合運動資訊候補,藉此就可提高編碼效率。尤其 是,在利用雙結合運動資訊候補時係至少需要2個結合運動資訊候補,因此當隱性結合運動資訊候補以外的結合運動資訊候補是在結合運動資訊候補清單中僅被登錄1個的情況下,則不要刪除隱性結合運動資訊候補的運動資訊,而是令隱性結合運動資訊候補的運動資訊與其他結合運動資訊候補之運動資訊做組合,藉此就可提高編碼效率。又,生成雙結合運動資訊候補所需的結合運動資訊候補M與結合運動資訊候補N之組合,是設定成M與N之合計值由小而大之順序,藉此,就能藉由隱性結合運動資訊候補以外的結合運動資訊候補彼此之組合來生成雙結合運動資訊候補。 As described above, even if the motion information selected as the implicit combined motion information candidate having a low probability of combining the motion information candidates is selected, either the L0 prediction or the L1 prediction is the same as the motion information of the processing target block. The situation, or the motion information of the processing target block, may be slightly different from the motion information of the implicit combined motion information candidate. Therefore, instead of deleting the sports information of the implicit combined motion information candidate, the motion information of the implicit combined motion information candidate is combined with other sports information combined with the motion information candidate, or the motion information of the implicit combined motion information candidate is corrected. For example, the first supplementary combined motion information candidate having a relatively higher selection rate than the implicit combined motion information candidate is generated, whereby the coding efficiency can be improved. especially In the case of using the double combined motion information candidate, at least two combined motion information candidates are required. Therefore, when the combined motion information candidate other than the implicit combined motion information candidate is registered in the combined motion information candidate list, only one is registered. In addition, the motion information of the implicit combined motion information candidate is not deleted, but the motion information of the implicit combined motion information candidate is combined with other motion information combined with the motion information candidate, thereby improving the coding efficiency. Further, the combination of the combined motion information candidate M and the combined motion information candidate N required to generate the double combined motion information candidate is set so that the total value of M and N is small and large, whereby the recessive property can be used. The combined motion information candidates other than the motion information candidates are combined with each other to generate a dual combined motion information candidate.

(第2結合運動資訊候補補充部165的詳細動作) (Detailed operation of the second combined motion information candidate supplementing unit 165)

接著說明第2結合運動資訊候補補充部165的詳細動作。圖20係第2結合運動資訊候補補充部165之動作的說明用流程圖。首先,根據第1結合運動資訊候補補充部164所供給之結合運動資訊候補清單中所被登錄的結合運動資訊候補之數目(NumCandList)與合併候補最大數(MaxNumMergeCand),將生成第2補充結合運動資訊候補的最大數MaxNumGenCand,由式2予以算出(S190)。 Next, the detailed operation of the second combined motion information candidate complementing unit 165 will be described. FIG. 20 is a flowchart for explaining the operation of the second combined motion information candidate complementing unit 165. First, based on the number of combined motion information candidates (NumCandList) and the maximum number of merge candidates (MaxNumMergeCand) registered in the combined motion information candidate list supplied from the first combined motion information candidate supplementing unit 164, a second supplementary combined motion is generated. The maximum number of information candidates, MaxNumGenCand, is calculated by Equation 2 (S190).

MaxNumGenCand=MaxNumMergeCand-NumCandList;(NumCandList>0) MaxNumGenCand=2;(NumCandList==0) 式2 MaxNumGenCand=MaxNumMergeCand-NumCandList;(NumCandList>0) MaxNumGenCand=2;(NumCandList==0) Equation 2

接著,將以下的處理,針對i重複進行 MaxNumGenCand次(S191至S195)。此處,i係為0至MaxNumGenCand-1的整數。生成L0預測之運動向量為(0,0)、參照索引為i,且L1預測之運動向量為(0,0)、參照索引為i的畫面間預測類型為Pred_BI的第2補充結合運動資訊候補(S192)。檢查第2補充結合運動資訊候補是否存在於結合運動資訊候補清單中(S193)。若第2補充結合運動資訊候補不存在於結合運動資訊候補清單中(S193的Y),則將第2補充結合運動資訊候補追加至結合運動資訊候補清單(S194)。若第2補充結合運動資訊候補存在於結合運動資訊候補清單中(S193的N),則針對下個i進行處理(S195)。 Next, the following processing is repeated for i MaxNumGenCand times (S191 to S195). Here, i is an integer of 0 to MaxNumGenCand-1. The second complementary combined motion information candidate that generates the motion vector of the L0 prediction is (0, 0), the reference index is i, and the motion vector of the L1 prediction is (0, 0), and the inter prediction type of the reference index is i is Pred_BI. (S192). It is checked whether the second supplementary combined motion information candidate exists in the combined motion information candidate list (S193). When the second supplementary combined motion information candidate does not exist in the combined exercise information candidate list (Y in S193), the second supplementary combined exercise information candidate is added to the combined exercise information candidate list (S194). When the second supplementary combined motion information candidate exists in the combined motion information candidate list (N in S193), processing is performed for the next i (S195).

此處,將第2補充結合運動資訊候補設成,L0預測之運動向量為(0,0)、參照索引為i,且L1預測之運動向量為(0,0)、參照索引為i的畫面間預測類型為Pred_BI的結合運動資訊候補。這是因為,在一般的動態影像中,L0預測之運動向量與L1預測之運動向量為(0,0)的結合運動資訊候補的發生頻率在統計上較高的緣故。不依存於已被登錄在結合運動資訊候補清單中的結合運動資訊候補的運動資訊,只要是統計上利用頻率較高的結合運動資訊候補即可,並非限定於此。例如,L0預測或L1預測之運動向量係亦可分別是(0,0)以外的向量值,亦可設定成L0預測與L1預測的參照索引不同。又,亦可將第2補充結合運動資訊候補,設定成已編碼之影像或已編碼之影像之一部分的發生頻率較高的運動資訊。 Here, the second supplementary combined motion information candidate is set such that the motion vector of the L0 prediction is (0, 0), the reference index is i, and the motion vector of the L1 prediction is (0, 0), and the reference index is i. The combined prediction type is Pred_BI combined motion information candidate. This is because, in a general motion picture, the frequency of occurrence of the combined motion information candidate of the L0 predicted motion vector and the L1 predicted motion vector of (0, 0) is statistically higher. The motion information that does not depend on the combined motion information candidate that has been registered in the combined motion information candidate list is not limited thereto as long as it is a combined motion information candidate having a high statistical frequency. For example, the motion vector system of the L0 prediction or the L1 prediction may also be a vector value other than (0, 0), or may be set such that the L0 prediction is different from the reference index of the L1 prediction. Further, the second supplementary combined motion information candidate may be set as the motion information having a higher frequency of occurrence of the encoded image or one of the encoded images.

此處,藉由設定不依存於被當成第2補充結合運動資訊候補而登錄在結合運動資訊候補清單中之結合運動資訊候補的結合運動資訊候補,當已被登錄在結合運動資訊候補清單中的結合運動資訊候補為0個時,就可利用合併模式,可提升編碼效率。又,當已被登錄在結合運動資訊候補清單中的結合運動資訊候補的運動資訊和處理對象的運動資訊候補之運動有所不同的情況下,對結合運動資訊候補清單追加統計上利用頻率較高之新的結合運動資訊候補來擴展選擇幅度,藉此就可提升編碼效率。 Here, by setting the combined motion information candidate that is not registered in the combined motion information candidate in the combined motion information candidate list, which is regarded as the second supplementary combined motion information candidate, has been registered in the combined motion information candidate list. When the combined motion information candidate is 0, the merge mode can be utilized to improve the coding efficiency. Further, when the motion information of the combined motion information candidate registered in the combined motion information candidate list and the motion information candidate motion of the processing target are different, the combined use of the combined motion information candidate list is relatively high. The new combination of motion information candidates to expand the selection range, thereby improving coding efficiency.

(動態影像解碼裝置200之構成) (Configuration of Motion Picture Decoding Device 200)

接著,說明實施形態1的動態影像解碼裝置。圖21係實施形態1所述之動態影像解碼裝置200之構成的圖示。動態影像解碼裝置200,係為將動態影像編碼裝置100所編碼之編碼列予以解碼以生成再生影像的裝置。 Next, a motion picture decoding device according to the first embodiment will be described. Fig. 21 is a diagram showing the configuration of a video decoding device 200 according to the first embodiment. The motion picture decoding device 200 is a device that decodes a code sequence encoded by the motion picture coding device 100 to generate a reproduced picture.

動態影像解碼裝置200,係由具備CPU(Central Processing Unit)、畫格記憶體、硬碟等的資訊處理裝置等硬體所實現。動態影像解碼裝置200,係藉由上記的構成要素的作動,而實現以下說明的機能性構成要素。編碼區塊的分割、預測區塊尺寸類型的決定、預測區塊尺寸與預測區塊在編碼區塊內之位置(預測區塊的位置資訊)的決定、預測編碼模式是否為畫面內的決定,係由未圖示的上位之控制部所決定,此處係針對預測編碼模式不是畫面內的情形加以說明。此外,關於解碼對象之預測區塊的位 置資訊、預測區塊尺寸,係在動態影像解碼裝置200內被共用,而未圖示。 The motion picture decoding device 200 is realized by a hardware such as an information processing device including a CPU (Central Processing Unit), a frame memory, and a hard disk. The motion picture decoding device 200 realizes the functional components described below by the operation of the above-described constituent elements. The division of the coding block, the determination of the prediction block size type, the prediction of the block size, the determination of the position of the prediction block in the coding block (the position information of the prediction block), and whether the prediction coding mode is a decision within the picture, This is determined by a higher-level control unit (not shown). Here, the case where the prediction encoding mode is not in the screen will be described. In addition, the bits of the prediction block of the decoding object The information and the prediction block size are shared by the motion picture decoding device 200, and are not shown.

實施形態1的動態影像解碼裝置200係具備:編碼列解析部201、預測誤差解碼部202、加算部203、運動資訊再生部204、運動補償部205、畫格記憶體206及運動資訊記憶體207。 The motion picture decoding device 200 according to the first embodiment includes a code line analysis unit 201, a prediction error decoding unit 202, an addition unit 203, a motion information reproduction unit 204, a motion compensation unit 205, a frame memory 206, and a motion information memory 207. .

(動態影像解碼裝置200之動作) (Operation of Motion Picture Decoding Device 200)

以下,說明各部的機能與動作。編碼列解析部201,係將端子30所供給之編碼列予以解析而將預測誤差編碼資料、合併旗標、合併索引、運動補償預測之預測方向(畫面間預測類型)、參照索引、差分向量、及預測向量索引,依照語法而進行熵解碼。熵解碼係藉由包含算術編碼或霍夫曼編碼等之可變長度編碼的方法來實施。然後,將該當預測誤差編碼資料供給至預測誤差解碼部202,將該當合併旗標、該當合併索引、該當畫面間預測類型、該當參照索引、該當差分向量、及該當預測向量索引,供給至運動資訊再生部204。 Hereinafter, the functions and operations of the respective units will be described. The coded column analysis unit 201 analyzes the coded column supplied from the terminal 30, and predicts the error coded data, the merged flag, the merged index, and the motion compensation prediction (inter-picture prediction type), the reference index, and the difference vector. And predictive vector index, entropy decoding according to the syntax. Entropy decoding is implemented by a method including variable length coding such as arithmetic coding or Huffman coding. Then, the prediction error coded data is supplied to the prediction error decoding unit 202, and the integration flag, the merging index, the inter-picture prediction type, the reference reference index, the difference vector, and the prediction vector index are supplied to the motion information. Reproduction unit 204.

運動資訊再生部204,係根據編碼列解析部201所供給之合併旗標、合併索引、畫面間預測類型、參照索引、差分向量、及預測向量索引,和運動資訊記憶體207所供給之候補區塊群,而再生出運動資訊,將該當運動資訊供給至運動補償部205及運動資訊記憶體207。運動資訊再生部204之詳細構成,將於後述。 The motion information reproducing unit 204 is based on the merge flag, the merge index, the inter-picture prediction type, the reference index, the difference vector, and the prediction vector index supplied from the code column analyzing unit 201, and the candidate region supplied from the motion information memory 207. The block group reproduces the motion information, and supplies the motion information to the motion compensation unit 205 and the motion information memory 207. The detailed configuration of the motion information reproducing unit 204 will be described later.

運動補償部205,係基於運動資訊再生部204所供給之運動資訊,將畫格記憶體206內的參照索引所示的參照影像,基於運動向量進行運動補償,以生成預測訊號。若預測方向為雙預測,則將L0預測與L1預測之預測訊號進行平均後的訊號加以生成來作為預測訊號,將該當預測訊號供給至加算部203。 The motion compensating unit 205 performs motion compensation based on the motion vector based on the motion information supplied from the motion information reproducing unit 204, based on the motion index vector, to generate a prediction signal. When the prediction direction is bi-predicted, the signal obtained by averaging the L0 prediction and the prediction signal of the L1 prediction is generated as a prediction signal, and the prediction signal is supplied to the addition unit 203.

預測誤差解碼部202,係對於編碼列解析部201所供給之預測誤差編碼資料,進行逆量化或逆正交轉換等之處理以生成預測誤差訊號,將該當預測誤差訊號供給至加算部203。 The prediction error decoding unit 202 performs processing such as inverse quantization or inverse orthogonal conversion on the prediction error coded data supplied from the code column analysis unit 201 to generate a prediction error signal, and supplies the prediction error signal to the addition unit 203.

加算部203,係將預測誤差解碼部202所供給之預測誤差訊號、和運動補償部205所供給之預測訊號,進行加算,以生成解碼影像訊號,將該當解碼影像訊號供給至畫格記憶體206及端子31。 The adding unit 203 adds the prediction error signal supplied from the prediction error decoding unit 202 and the prediction signal supplied from the motion compensation unit 205 to generate a decoded video signal, and supplies the decoded video signal to the frame memory 206. And terminal 31.

畫格記憶體206及運動資訊記憶體207,係具有和動態影像編碼裝置100的畫格記憶體110及運動資訊記憶體111相同之機能。畫格記憶體206係將加算部203所供給之解碼影像訊號,加以記憶。運動資訊記憶體207,係將運動資訊再生部204所供給之運動資訊,以最小預測區塊尺寸單位,加以記憶。 The frame memory 206 and the motion information memory 207 have the same functions as the frame memory 110 and the motion information memory 111 of the motion picture coding apparatus 100. The frame memory 206 stores the decoded video signal supplied from the adding unit 203. The motion information memory 207 stores the motion information supplied from the motion information reproducing unit 204 in units of minimum prediction block sizes.

(運動資訊再生部204之詳細構成) (Detailed configuration of the motion information reproducing unit 204)

接著說明運動資訊再生部204的詳細構成。圖22係圖示運動資訊再生部204之構成。運動資訊再生部204係 含有:編碼模式判定部210、運動向量再生部211及結合運動資訊再生部212。端子32係連接至編碼列解析部201,端子33係連接至運動資訊記憶體207,端子34係連接至運動補償部205,端子36係連接至運動資訊記憶體207。 Next, the detailed configuration of the motion information reproducing unit 204 will be described. FIG. 22 shows the configuration of the motion information reproducing unit 204. Sports information regeneration department 204 The coding mode determination unit 210, the motion vector reproduction unit 211, and the combined motion information reproduction unit 212 are included. The terminal 32 is connected to the code column analysis unit 201, the terminal 33 is connected to the motion information memory 207, the terminal 34 is connected to the motion compensation unit 205, and the terminal 36 is connected to the motion information memory 207.

(運動資訊再生部204的詳細動作) (Detailed operation of the motion information reproducing unit 204)

以下,說明各部的機能與動作。編碼模式判定部210,係判定編碼列解析部201所供給之合併旗標係為「0」還是「1」。若合併旗標為「0」,則將編碼列解析部201所供給之畫面間預測類型、參照索引、差分向量、及預測向量索引,供給至運動向量再生部211。若合併旗標為「1」,則將編碼列解析部201所供給之合併索引,供給至結合運動資訊再生部212。 Hereinafter, the functions and operations of the respective units will be described. The coding mode determination unit 210 determines whether the merge flag system supplied from the code column analysis unit 201 is "0" or "1". When the merge flag is "0", the inter-picture prediction type, the reference index, the difference vector, and the prediction vector index supplied from the code column analysis unit 201 are supplied to the motion vector reproduction unit 211. When the merge flag is "1", the merge index supplied from the code column analysis unit 201 is supplied to the combined motion information reproducing unit 212.

運動向量再生部211,係根據編碼模式判定部210所供給之畫面間預測類型、參照索引、差分向量、及預測向量索引,和端子33所供給之候補區塊群,再生出運動向量而生成運動資訊,供給至端子34及端子36。 The motion vector reproduction unit 211 generates motion by reproducing a motion vector based on the inter prediction type, the reference index, the difference vector, and the prediction vector index supplied from the coding mode determination unit 210, and the candidate block group supplied from the terminal 33. Information is supplied to terminal 34 and terminal 36.

結合運動資訊再生部212,係根據編碼模式判定部210所供給之合併索引、端子33所供給之候補區塊群,再生出運動資訊並供給至端子34及端子36。 The combined motion information reproducing unit 212 reproduces motion information based on the merge index supplied from the encoding mode determining unit 210 and the candidate block group supplied from the terminal 33, and supplies the motion information to the terminal 34 and the terminal 36.

(結合運動資訊再生部212的詳細構成) (Detailed configuration of the combined motion information reproducing unit 212)

接著說明結合運動資訊再生部212的詳細構成。圖23 係圖示結合運動資訊再生部212之構成。結合運動資訊再生部212,係含有結合運動資訊候補清單生成部230及結合運動資訊選擇部231。端子35係連接至編碼模式判定部210。 Next, the detailed configuration of the combined motion information reproducing unit 212 will be described. Figure 23 The configuration is combined with the configuration of the motion information reproducing unit 212. The combined motion information reproducing unit 212 includes a combined motion information candidate list generating unit 230 and a combined motion information selecting unit 231. The terminal 35 is connected to the encoding mode determination unit 210.

(結合運動資訊再生部212的詳細動作) (Detailed operation of the combined motion information reproducing unit 212)

以下,說明各部的機能與動作。結合運動資訊候補清單生成部230係具有和動態影像編碼裝置100之結合運動資訊候補清單生成部140相同的機能,藉由和動態影像編碼裝置100的結合運動資訊候補清單生成部140相同的動作而生成結合運動資訊候補清單,將該當結合運動資訊候補清單,供給至結合運動資訊選擇部231。 Hereinafter, the functions and operations of the respective units will be described. The combined motion information candidate list generating unit 230 has the same function as the combined motion information candidate list generating unit 140 of the video encoding device 100, and is operated in the same manner as the combined motion information candidate list generating unit 140 of the video encoding device 100. The combined motion information candidate list is generated, and the combined motion information candidate list is supplied to the combined motion information selection unit 231.

結合運動資訊選擇部231,係從結合運動資訊候補清單生成部230所供給之結合運動資訊候補清單之中,選擇出端子35所供給之合併索引所表示的結合運動資訊候補而決定結合運動資訊,將該當結合運動資訊的運動資訊,供給至端子34及端子36。 The combined motion information selection unit 231 determines the combined motion information from the combined motion information candidate indicated by the merge index supplied from the terminal 35 from the combined motion information candidate list supplied from the combined motion information candidate list generating unit 230. The motion information combined with the motion information is supplied to the terminal 34 and the terminal 36.

(效果說明) (effect description)

說明本發明的實施形態1的動態影像編碼裝置及動態影像解碼裝置所致之效果。圖24係本發明的實施形態1所致之效果的說明圖。圖24係表示候補區塊A為隱性結合運動資訊候補時的結合運動資訊候補之排序所致之效果。此處,假設在結合運動資訊候補清單中係登錄有:合 併索引0(候補區塊A)、合併索引1(候補區塊B)、合併索引2(候補區塊C)、合併索引3(候補區塊E)、合併索引4(候補區塊T)。嚴謹來說,在排序前後,合併索引的選擇機率會有所變動,但此處為了簡化說明而假設在排序前後合併索引的選擇機率沒有變動來進行說明。這在之後的效果說明例子中也是同樣如此。假設候補區塊A、候補區塊B、候補區塊C、候補區塊E、候補區塊T的選擇機率,分別是2%、60%、14%、12%、12%。此時,排序前的合併索引的編碼長度的期望值係為2.6位元(式3)。另一方面,排序後的合併索引的編碼長度的期望值係為1.8位元(式4)。因此,排序後的合併索引的編碼長度的期望值係短了0.8位元,可知編碼效率有提升。 The effects of the motion picture coding apparatus and the motion picture decoding apparatus according to the first embodiment of the present invention will be described. Fig. 24 is an explanatory view showing an effect of the first embodiment of the present invention. Fig. 24 is a diagram showing the effect of the ordering of the combined motion information candidates when the candidate block A is implicitly combined with the motion information candidate. Here, it is assumed that there is a registration in the combined motion information candidate list: And index 0 (candidate block A), merge index 1 (candidate block B), merge index 2 (candidate block C), merge index 3 (candidate block E), merge index 4 (candidate block T). Strictly speaking, the probability of selection of merged indexes will change before and after sorting, but here to simplify the explanation, it is assumed that the probability of selection of merged indexes before and after sorting has not changed. This is also the case in the example of the effect description that follows. It is assumed that the selection probability of the candidate block A, the candidate block B, the candidate block C, the candidate block E, and the candidate block T is 2%, 60%, 14%, 12%, and 12%, respectively. At this time, the expected value of the code length of the merge index before sorting is 2.6 bits (Expression 3). On the other hand, the expected value of the code length of the sorted merge index is 1.8 bits (Equation 4). Therefore, the expected value of the coded length of the sorted merge index is 0.8 bits shorter, and it is known that the coding efficiency is improved.

0.02x1+0.6x2+0.14x3+0.12x4+0.12x4=2.6 式3 0.02x1+0.6x2+0.14x3+0.12x4+0.12x4=2.6 Equation 3

0.6x1+0.14x2+0.12x3+0.12x4+0.02x4=1.8 式4 0.6x1+0.14x2+0.12x3+0.12x4+0.02x4=1.8 Equation 4

如以上所述,令隱性結合運動資訊候補移動至結合運動資訊候補清單的最末尾,藉由對選擇率相對較高之隱性結合運動資訊候補以外的候補區塊,分配編碼長度較短的合併索引,藉此就可提升編碼效率。 As described above, the implicit combined motion information candidate is moved to the end of the combined motion information candidate list, and the candidate coding block other than the recessive combined motion information candidate having a relatively high selection rate is allocated with a shorter coding length. Combine indexes to improve coding efficiency.

(實施形態1的變形例1) (Modification 1 of Embodiment 1)

實施形態1的結合運動資訊候補清單生成部140之構成係如圖12所示,但亦可不將隱性結合運動資訊候補排序部162放在時間結合運動資訊候補生成部161之後,而是設置在空間結合運動資訊候補生成部160之後。 The configuration of the combined motion information candidate list generating unit 140 of the first embodiment is as shown in FIG. 12, but the recessive combined motion information candidate sorting unit 162 may not be placed after the time combined motion information candidate generating unit 161, but may be set in the The space is combined with the motion information candidate generation unit 160.

此情況下,在結合運動資訊候補清單中,雖然無法將隱性結合運動資訊候補登錄在比時間結合運動資訊候補還要後面,但亦可構成為隱性結合運動資訊候補的排序處理是在空間結合運動資訊候補生成部160內完成,因此可提高空間結合運動資訊候補生成部160與時間結合運動資訊候補生成部161的獨立性,可使電路設計或軟體設計變得容易。 In this case, in the combined motion information candidate list, although the implicit combined motion information candidate cannot be registered after the time combined with the motion information candidate, the sorting process of the implicit combined motion information candidate may be configured in the space. Since the combination is completed in the motion information candidate generation unit 160, the independence of the space combined motion information candidate generation unit 160 and the time combined motion information candidate generation unit 161 can be improved, and the circuit design or the software design can be facilitated.

(實施形態1的變形例2) (Modification 2 of Embodiment 1)

實施形態1的隱性結合運動資訊候補排序部162之動作係為圖16,但亦可將步驟S141與步驟S143變更如下而變成與實施形態1的變形例1相同之結果。 The operation of the recessive combined motion information candidate ranking unit 162 of the first embodiment is shown in Fig. 16, but the steps S141 and S143 may be changed as follows to become the same result as the first modification of the first embodiment.

令隱性結合運動資訊候補亦即相當於候補區塊A的結合運動資訊候補,移動至結合運動資訊候補清單的時間結合運動資訊候補的前一個或若時間結合運動資訊候補不存在時則移動至最末尾(S141)。令隱性結合運動資訊候補亦即相當於候補區塊B的結合運動資訊候補,移動至結合運動資訊候補清單的時間結合運動資訊候補的前一個或若時間結合運動資訊候補不存在時則移動至最末尾(S143)。 The implicit combined motion information candidate is equivalent to the combined motion information candidate of the candidate block A, and moved to the time combined with the motion information candidate list in combination with the previous one of the motion information candidates or if the time combined with the motion information candidate does not exist, then moved to The last (S141). The implicit combined motion information candidate is equivalent to the combined motion information candidate of the candidate block B, and moved to the time combined with the motion information candidate list in combination with the previous one of the motion information candidates or if the time combined with the motion information candidate does not exist, then moved to The last (S143).

(實施形態1的變形例3) (Modification 3 of Embodiment 1)

實施形態1的結合運動資訊候補清單生成部140之構成係如圖12所示,但第1結合運動資訊候補補充部164 和第2結合運動資訊候補補充部165係亦可其中一方或雙方都刪除。 The configuration of the combined motion information candidate list generating unit 140 of the first embodiment is as shown in FIG. 12, but the first combined motion information candidate supplementing unit 164 is provided. The second combined motion information candidate supplementing unit 165 may be deleted by either or both of them.

[實施形態2] [Embodiment 2]

以下,說明實施形態2。和實施形態1係結合運動資訊候補清單生成部140之構成與動作有所不同。圖25係實施形態2的結合運動資訊候補清單生成部140之構成的說明圖。和圖12的實施形態1的結合運動資訊候補清單生成部140之構成係為,隱性結合運動資訊候補排序部162不是在時間結合運動資訊候補生成部161之後,而是設置在第1結合運動資訊候補補充部164之後,這點有所不同。 Hereinafter, the second embodiment will be described. The configuration and operation of the combined motion information candidate list generating unit 140 differs from that of the first embodiment. Fig. 25 is an explanatory diagram showing the configuration of the combined motion information candidate list generating unit 140 of the second embodiment. The combined motion information candidate list generating unit 140 of the first embodiment of FIG. 12 is configured such that the recessive combined motion information candidate sorting unit 162 is disposed after the time combined with the motion information candidate generating unit 161, but is provided in the first combined motion. This is different after the information candidate supplementation unit 164.

圖26係實施形態2的結合運動資訊候補清單生成部140之動作的說明圖。和圖13的實施形態1的結合運動資訊候補清單生成部140之動作係為,步驟S103不是在步驟S102之後,而是設置在步驟S105之後,這點有所不同。 Fig. 26 is an explanatory diagram showing the operation of the combined motion information candidate list generating unit 140 of the second embodiment. The operation of the combined motion information candidate list generating unit 140 according to the first embodiment of FIG. 13 is such that step S103 is not after step S102 but is set after step S105.

第1補充結合運動資訊候補係可利用選擇機率比隱性結合運動資訊候補相對較高(信賴度較高)之結合運動資訊候補來生成,因此選擇機率比起一般的隱性結合運動資訊候補係相對較高。因此,藉由對第1補充結合運動資訊候補分配編碼長度比隱性結合運動資訊候補還短的合併索引,就可提升編碼效率。 The first supplemental combined with the motion information candidate system can be generated by using the combined motion information candidate with a relatively high probability of selection of the motion information candidates (the reliability is higher), so the probability of selection is compared with the general recessive combined motion information candidate system. Relatively high. Therefore, the coding efficiency can be improved by assigning a combined index whose coding length is shorter than the implicit combined motion information candidate to the first supplementary combined motion information candidate.

(效果說明) (effect description)

說明本發明的實施形態2的動態影像編碼裝置及動態影像解碼裝置所致之效果。圖27係本發明的實施形態2所致之效果的說明圖。此處,假設在候補區塊群之中僅候補區塊A與候補區塊B為有效,候補區塊A與候補區塊B的運動補償預測之方向係皆為雙向。又,假設在結合運動資訊候補清單中係登錄有:候補區塊A與候補區塊B、2個雙結合運動資訊候補BD0與BD1、1個第2補充結合運動資訊候補AD。假設合併索引0(候補區塊A)、合併索引1(候補區塊B)、合併索引2(雙結合運動資訊候補BD0)、合併索引3(雙結合運動資訊候補BD1)、合併索引4(第2補充結合運動資訊候補AD)的選擇機率分別為4%、70%、12%、12%、2%。雖然省略計算式,但在實施形態2中,排序前的合併索引的編碼長度的期望值係為2.36位元。另一方面,排序後的合併索引的編碼長度的期望值係為1.54位元。因此,排序後的合併索引的編碼長度的期望值係短了0.82位元,可知編碼效率有提升。 The effects of the motion picture coding device and the motion picture decoding device according to the second embodiment of the present invention will be described. Fig. 27 is an explanatory view showing an effect of the second embodiment of the present invention. Here, it is assumed that only the candidate block A and the candidate block B are valid among the candidate block groups, and the direction of the motion compensation prediction of the candidate block A and the candidate block B are both bidirectional. Further, it is assumed that the combined motion information candidate list is registered with the candidate block A and the candidate block B, the two double combined motion information candidates BD0 and BD1, and one second supplementary combined motion information candidate AD. Assume that merge index 0 (candidate block A), merge index 1 (candidate block B), merge index 2 (double combined motion information candidate BD0), merge index 3 (double combined motion information candidate BD1), merge index 4 (first 2 The combined chances of supplementing sports information candidate AD) are 4%, 70%, 12%, 12%, and 2%, respectively. Although the calculation formula is omitted, in the second embodiment, the expected value of the code length of the merge index before sorting is 2.36 bits. On the other hand, the expected value of the coded length of the sorted merge index is 1.54 bits. Therefore, the expected value of the coded length of the sorted merge index is 0.82 bits shorter, and it is known that the coding efficiency is improved.

(實施形態2的變形例) (Modification of Embodiment 2)

實施形態2的結合運動資訊候補清單生成部140之構成係如圖25所示,但亦可不將隱性結合運動資訊候補排序部162放在第1結合運動資訊候補補充部164之後,而是設置在第2結合運動資訊候補補充部165之後。 The configuration of the combined motion information candidate list generating unit 140 of the second embodiment is as shown in FIG. 25, but the recessive combined motion information candidate sorting unit 162 may not be placed after the first combined motion information candidate complementing unit 164, but may be set. After the second combined motion information candidate complementing unit 165.

此情況下,像是第2補充結合運動資訊候補是利用已編碼之影像或已編碼之影像之一部分中發生頻率較高之運動資訊而被設定的情形,若第2補充結合運動資訊候補的選擇機率比隱性結合運動資訊候補的選擇機率相對較高,則藉由對第2補充結合運動資訊候補分配編碼長度比隱性結合運動資訊候補還短的合併索引,就可提升編碼效率。 In this case, the second supplementary combined motion information candidate is set by using the encoded image or the motion information having a higher frequency in one of the encoded images, and the second supplementary combined motion information candidate is selected. The probability of selection is relatively higher than that of the implicitly combined motion information candidate, and the coding efficiency can be improved by assigning a combined index whose coding length is shorter than the implicit combined motion information candidate for the second supplementary combined motion information candidate.

[實施形態3] [Embodiment 3]

以下,說明實施形態3。和實施形態1係結合運動資訊候補清單生成部140之構成與動作、及空間結合運動資訊候補生成部160之動作,有所不同。 Hereinafter, the third embodiment will be described. The configuration and operation of the combined motion information candidate list generating unit 140 and the operation of the spatial combined motion information candidate generating unit 160 differ from those of the first embodiment.

首先說明,結合運動資訊候補清單生成部140的構成。圖28係實施形態3的結合運動資訊候補清單生成部140之構成的說明圖。和圖12的實施形態1的結合運動資訊候補清單生成部140係為,取代了隱性結合運動資訊候補排序部162改為設置隱性結合運動資訊候補追加部166,這點有所不同。 First, the configuration of the motion information candidate list generating unit 140 will be described. Fig. 28 is an explanatory diagram showing the configuration of the combined motion information candidate list generating unit 140 of the third embodiment. The combined motion information candidate list generating unit 140 of the first embodiment of FIG. 12 is different from the implicit combined motion information candidate sorting unit 162 instead of the implicit combined motion information candidate adding unit 166.

接著說明,結合運動資訊候補清單生成部140的動作。圖29係實施形態3的結合運動資訊候補清單生成部140之動作的說明圖。和圖13的實施形態1的結合運動資訊候補清單生成部140之動作係為,取代了步驟S103改為設置步驟S107,這點有所不同。以下,針對實施形態3的結合運動資訊候補清單生成部140之動作與實施形態1的不同點,加以說明。 Next, the operation of the motion information candidate list generating unit 140 will be described. Fig. 29 is an explanatory diagram showing the operation of the combined motion information candidate list generating unit 140 of the third embodiment. The operation of the combined motion information candidate list generating unit 140 of the first embodiment of Fig. 13 is different from the step S107 instead of the step S107. Hereinafter, the operation of the combined motion information candidate list generating unit 140 according to the third embodiment will be described as a difference from the first embodiment.

隱性結合運動資訊候補追加部166,係對時間結合運動資訊候補生成部161所供給之結合運動資訊候補清單,追加隱性結合運動資訊候補(S107),將該當結合運動資訊候補清單,供給至冗長結合運動資訊候補刪除部163。 The implicit combined motion information candidate adding unit 166 adds the implicit combined motion information candidate to the combined motion information candidate list supplied from the time combined motion information candidate generating unit 161 (S107), and supplies the combined motion information candidate list to the combined motion information candidate list. The lengthy combined motion information candidate deletion unit 163.

接著說明,空間結合運動資訊候補生成部160的動作。圖30係實施形態3的空間結合運動資訊候補生成部160之動作的說明圖。和圖14的實施形態1的空間結合運動資訊候補生成部160之動作係為,追加了步驟S115和步驟S116,這點有所不同。以下,針對實施形態3的空間結合運動資訊候補生成部160之動作與實施形態1的不同點,加以說明。 Next, the operation of the space combined motion information candidate generation unit 160 will be described. Fig. 30 is an explanatory diagram showing the operation of the space combined motion information candidate generation unit 160 of the third embodiment. The operation of the space-combined motion information candidate generation unit 160 of the first embodiment of FIG. 14 is different in that steps S115 and S116 are added. Hereinafter, the operation of the spatial combined motion information candidate generation unit 160 of the third embodiment will be described as a difference from the first embodiment.

首先,將記憶著隱性結合運動資訊候補的暫時記憶體,予以初期化。若候補區塊是有效(S111之Y),則檢查候補區塊是否為隱性結合運動資訊候補(S115)。此處,隱性結合運動資訊候補的判定處理係為圖18,但亦可設計成簡易的處理。若候補區塊是隱性結合運動資訊候補(S115的Y),則將候補區塊當成隱性結合運動資訊候補而記憶至暫時記憶體(S116),檢查下個候補區塊(S114)。若候補區塊不是隱性結合運動資訊候補(S115的N),則將候補區塊之運動資訊當作空間結合運動資訊候補而追加至結合運動資訊候補清單中(S112)。此外,假設暫時記憶體是在空間結合運動資訊候補生成部160內被共用。 First, the temporary memory that memorizes the implicit combination of motion information candidates is initialized. If the candidate block is valid (Y of S111), it is checked whether the candidate block is a recessive combined motion information candidate (S115). Here, the determination process of the implicit combined motion information candidate is shown in FIG. 18, but it may be designed as a simple process. If the candidate block is a recessive combined motion information candidate (Y of S115), the candidate block is stored as a recessive combined motion information candidate and stored in the temporary memory (S116), and the next candidate block is checked (S114). If the candidate block is not a recessive combined motion information candidate (N of S115), the motion information of the candidate block is added to the combined motion information candidate list as a spatial combined motion information candidate (S112). Further, it is assumed that the temporary memory is shared by the spatial combined motion information candidate generating unit 160.

接著說明,隱性結合運動資訊候補追加部166的動 作。圖31係隱性結合運動資訊候補追加部166之動作的說明圖。首先,檢查暫時記憶體中是否記憶著隱性結合運動資訊候補(S200)。若有記憶著隱性結合運動資訊候補(S200的Y),則檢查結合運動資訊候補清單中所被登錄之空間結合運動資訊候補的數目是否小於空間結合運動資訊候補最大數(S201)。若沒有記憶著隱性結合運動資訊候補(S200的N),則結束處理。若結合運動資訊候補清單中所被登錄之空間結合運動資訊候補的數目是小於合併候補最大數(S201的Y),則對結合運動資訊候補清單的最末尾,追加隱性結合運動資訊候補(S202),結束處理。若結合運動資訊候補清單中所被登錄之空間結合運動資訊候補的數目沒有小於空間結合運動資訊候補最大數(S201的N),則結束處理。 Next, the movement of the implicit combined motion information candidate adding unit 166 will be described. Work. FIG. 31 is an explanatory diagram of the operation of the implicit combined motion information candidate adding unit 166. First, it is checked whether or not the implicit combined motion information candidate is memorized in the temporary memory (S200). If the implicit combined motion information candidate is stored (Y of S200), it is checked whether the number of spatial combined motion information candidates registered in the combined motion information candidate list is smaller than the maximum number of spatial combined motion information candidates (S201). If the implicit combined motion information candidate is not remembered (N of S200), the processing ends. If the number of spatial combined motion information candidates registered in the combined motion information candidate list is smaller than the combined candidate maximum number (Y of S201), the implicit combined motion information candidate is added to the end of the combined motion information candidate list (S202). ), end processing. If the number of spatial combined motion information candidates registered in the combined motion information candidate list is not smaller than the maximum number of spatial combined motion information candidates (N of S201), the processing ends.

在實施形態3中,若相較於空間結合運動資訊候補最大數而為空間候補區塊之數目比較大,且所有空間候補區塊是有效時,則可取代掉隱性結合運動資訊候補而改為利用空間候補區塊(本實施形態中係為候補區塊D)。因此,藉由不是利用選擇率比隱性結合運動資訊候補相對較高之隱性結合運動資訊候補而是利用其他空間候補區塊,就可提升編碼效率。 In the third embodiment, if the number of spatial candidate blocks is larger than the maximum number of spatial combined motion information candidates, and all the space candidate blocks are valid, the recessive combined motion information candidates can be replaced instead of In order to utilize the space candidate block (in the present embodiment, it is the candidate block D). Therefore, the coding efficiency can be improved by using other spatial candidate blocks instead of using the implicit combination of the motion information candidates with the selectivity ratio and the recessive combined motion information candidates.

(效果說明) (effect description)

說明本發明的實施形態3的動態影像編碼裝置及動態影像解碼裝置所致之效果。圖32係本發明的實施形態3 所致之效果的說明圖。此處,假設候補區塊A、候補區塊B、候補區塊C、候補區塊E、候補區塊D、候補區塊T係全部有效,並假設與說明實施形態1之效果的圖24相同條件為前提。因此,排序前的合併索引的編碼長度的期望值係為2.6位元。另一方面,雖然省略計算式,但實施形態3的隱性結合運動資訊候補追加部166的處理後的合併索引的編碼長度的期望值係為1.9位元。因此,排序後的合併索引的編碼長度的期望值係短了0.7位元,可知編碼效率有提升。 The effects of the motion picture coding apparatus and the motion picture decoding apparatus according to the third embodiment of the present invention will be described. Figure 32 is a third embodiment of the present invention An explanatory diagram of the effect caused. Here, it is assumed that the candidate block A, the candidate block B, the candidate block C, the candidate block E, the candidate block D, and the candidate block T are all valid, and are assumed to be the same as Fig. 24 for explaining the effect of the first embodiment. The conditions are preconditions. Therefore, the expected value of the code length of the merged index before sorting is 2.6 bits. On the other hand, although the calculation formula is omitted, the expected value of the code length of the merge index after the process of the implicit combined motion information candidate addition unit 166 of the third embodiment is 1.9 bits. Therefore, the expected value of the coded length of the sorted merged index is 0.7 bits shorter, and it is known that the coding efficiency is improved.

(實施形態3的變形例) (Modification of Embodiment 3)

實施形態3的結合運動資訊候補清單生成部140之構成係如圖28所示,但亦可將隱性結合運動資訊候補追加部166,不是放在時間結合運動資訊候補生成部161之後,而是如實施形態2那樣,設置在第1結合運動資訊候補補充部164之後、或第2結合運動資訊候補補充部165之後。 The configuration of the combined motion information candidate list generating unit 140 of the third embodiment is as shown in FIG. 28, but the recessive combined motion information candidate adding unit 166 may be placed after the time combined motion information candidate generating unit 161, instead of As in the second embodiment, it is provided after the first combined motion information candidate supplementing unit 164 or after the second combined motion information candidate complementing unit 165.

[實施形態4] [Embodiment 4]

以下,說明實施形態4。和實施形態1係結合運動資訊候補清單生成部140之構成與動作有所不同。 Hereinafter, the fourth embodiment will be described. The configuration and operation of the combined motion information candidate list generating unit 140 differs from that of the first embodiment.

首先說明,結合運動資訊候補清單生成部140的構成。圖33係實施形態4的結合運動資訊候補清單生成部140之構成的說明圖。和圖12的實施形態1的結合運動資 訊候補清單生成部140係為,隱性結合運動資訊候補刪除部167是被追加在第1結合運動資訊候補補充部164之後,這點有所不同。 First, the configuration of the motion information candidate list generating unit 140 will be described. Fig. 33 is an explanatory diagram showing the configuration of the combined motion information candidate list generating unit 140 of the fourth embodiment. Combined with the movement of the first embodiment of Fig. 12 The queuing list generating unit 140 is different in that the implicit combined motion information candidate deleting unit 167 is added to the first combined motion information candidate complementing unit 164.

接著說明,結合運動資訊候補清單生成部140的動作。圖34係實施形態4的結合運動資訊候補清單生成部140之動作的說明圖。和圖13的實施形態1的結合運動資訊候補清單生成部140之動作係為,接在步驟S105之後,設置有隱性結合運動資訊候補刪除部167會從結合運動資訊候補清單中刪除隱性結合運動資訊候補的步驟(S108),這點有所不同。 Next, the operation of the motion information candidate list generating unit 140 will be described. Fig. 34 is an explanatory diagram showing the operation of the combined motion information candidate list generating unit 140 of the fourth embodiment. The operation of the combined motion information candidate list generating unit 140 of the first embodiment of FIG. 13 is such that after the step S105, the implicit combined motion information candidate deleting unit 167 deletes the implicit combination from the combined motion information candidate list. This is different in the step of the motion information candidate (S108).

接著說明,隱性結合運動資訊候補刪除部167的動作。圖35係隱性結合運動資訊候補刪除部167之動作的說明圖。針對第1結合運動資訊候補補充部164所供給之結合運動資訊候補清單中所被登錄的結合運動資訊候補之數目(NumCandList)份的結合運動資訊候補M,重複進行以下處理(S210至S213)。此處,M係為0至NumCandList-1的整數。檢查候補區塊M是否為隱性結合運動資訊(S211)。若候補區塊M是隱性結合運動資訊(S211的Y),則從結合運動資訊候補清單中刪除隱性結合運動資訊候補(S212),結束處理。若候補區塊M不是隱性結合運動資訊(S211的N),則處理下個結合運動資訊候補(S213)。 Next, the operation of the implicitly combined motion information candidate deletion unit 167 will be described. FIG. 35 is an explanatory diagram of the operation of the implicit combined motion information candidate deletion unit 167. The following processing is repeated for the combined motion information candidate M of the number of combined motion information candidates (NumCandList) registered in the combined motion information candidate list supplied from the first combined motion information candidate complementing unit 164 (S210 to S213). Here, M is an integer of 0 to NumCandList-1. It is checked whether the candidate block M is implicitly combined with motion information (S211). If the candidate block M is the implicit combined motion information (Y of S211), the implicit combined motion information candidate is deleted from the combined motion information candidate list (S212), and the processing ends. If the candidate block M is not implicitly combined with motion information (N of S211), the next combined motion information candidate is processed (S213).

(效果說明) (effect description)

說明本發明的實施形態4的動態影像編碼裝置及動態影像解碼裝置所致之效果。像是第2補充結合運動資訊候補是利用已編碼之影像或已編碼之影像之一部分中發生頻率較高之運動資訊而被設定的情形,若第2補充結合運動資訊候補的選擇機率比隱性結合運動資訊候補的選擇機率相對較高,則從結合運動資訊候補清單中刪除隱性結合運動資訊候補,對結合運動資訊候補清單追加第2補充結合運動資訊候補,藉此,結合運動資訊選擇部141就可從不含隱性結合運動資訊候補的結合運動資訊候補清單中,選擇出最佳結合運動資訊候補,可提升編碼效率。此外,此處雖然是從結合運動資訊候補清單中刪除隱性結合運動資訊候補,但亦可將隱性結合運動資訊候補設成無效而使得結合運動資訊選擇部141中不會選擇隱性結合運動資訊候補。亦即,只要對隱性結合運動資訊候補以外的結合運動資訊候補分配合併索引即可。 The effects of the motion picture coding apparatus and the motion picture decoding apparatus according to the fourth embodiment of the present invention will be described. For example, the second supplemental combined motion information candidate is set by using the encoded image or the motion information with a higher frequency occurring in one of the encoded images. If the second supplementary combined motion information candidate is more selective than the recessive When the probability of selecting the motion information candidate is relatively high, the implicit combined motion information candidate is deleted from the combined motion information candidate list, and the second supplementary combined motion information candidate is added to the combined motion information candidate list, thereby combining the motion information selection unit. 141, the best combined motion information candidate can be selected from the combined motion information candidate list without the implicit combined motion information candidate, which can improve the coding efficiency. In addition, although the implicit combined motion information candidate is deleted from the combined motion information candidate list, the implicit combined motion information candidate may be set to be invalid, so that the combined motion information selecting unit 141 does not select the implicit combined motion. Information candidate. In other words, it is sufficient to assign a combined index to the combined motion information candidates other than the implicit combined motion information candidates.

(實施形態4的變形例) (Modification of Embodiment 4)

實施形態4的隱性結合運動資訊候補刪除部167之動作係如圖35所示般地將已被登錄在結合運動資訊候補清單中的隱性結合運動資訊候補單純地予以刪除,但藉由判定隱性結合運動資訊候補亦即預測區塊的結合運動資訊是否為重複結合運動資訊候補,也可決定是否刪除已被登錄在結合運動資訊候補清單中的隱性結合運動資訊候補。 As shown in FIG. 35, the implicit combined motion information candidate deletion unit 167 of the fourth embodiment simply deletes the implicit combined motion information candidate registered in the combined motion information candidate list, but by determining The implicit combined motion information candidate, that is, whether the combined motion information of the predicted block is a repeated combined motion information candidate, may also determine whether to delete the implicit combined motion information candidate that has been registered in the combined motion information candidate list.

以下說明伴隨重複結合運動資訊候補之判定的實施形 態4的擴充例。圖36係實施形態4的變形例中的隱性結合運動資訊候補刪除部167之動作的說明圖。與圖35的不同點在於,追加了步驟S213。檢查含有隱性結合運動資訊候補的預測區塊的結合運動資訊,是否為重複結合運動資訊候補(步驟S213)。若含有隱性結合運動資訊候補的預測區塊的結合運動資訊候補是重複結合運動資訊候補(步驟S213的Y),則從結合運動資訊候補清單中刪除隱性結合運動資訊候補(S212),結束處理。若含有隱性結合運動資訊候補的預測區塊的結合運動資訊不是重複結合運動資訊候補(步驟S213的N),則結束處理。 The following describes the implementation form of the determination of the repeated combined motion information candidate. An extension of state 4. Fig. 36 is an explanatory diagram showing the operation of the recessive combined motion information candidate deletion unit 167 in the modification of the fourth embodiment. The difference from FIG. 35 is that step S213 is added. It is checked whether the combined motion information of the prediction block including the implicit combined motion information candidate is a repeated combined motion information candidate (step S213). If the combined motion information candidate of the prediction block including the implicit combined motion information candidate is the repeated combined motion information candidate (Y in step S213), the implicit combined motion information candidate is deleted from the combined motion information candidate list (S212), and the process ends. deal with. If the combined motion information of the prediction block including the implicit combined motion information candidate is not the repeated combined motion information candidate (N of step S213), the processing ends.

接著說明重複結合運動資訊候補。圖37係用來說明重複結合運動資訊候補的圖。圖37係表示編碼區塊為16×16的例子。圖37(a)係為預測區塊尺寸類型是N×2N時的重複結合運動資訊候補的說明圖,圖示了預測區塊尺寸類型為N×2N時的預測區塊1的隱性結合運動資訊候補亦即預測區塊0的空間結合運動資訊候補亦即候補區塊A、候補區塊B、候補區塊C、候補區塊D、及候補區塊E。圖37(b)係圖示了預測區塊尺寸類型是2N×2N之預測區塊0時的空間結合運動資訊候補亦即候補區塊A、候補區塊B、候補區塊C、候補區塊D、及候補區塊E。在圖37(a)和圖37(b)中,可看出候補區塊A、候補區塊D、及候補區塊E的位置係為重複。這些在某預測區塊尺寸類型下與較大預測區塊尺寸類型之候補區塊的位置發生重複的候補區塊,稱作重複結合運動資訊候補。 Next, the repeated combined motion information candidates will be described. Figure 37 is a diagram for explaining the repeated combined motion information candidates. Fig. 37 is a diagram showing an example in which the coding block is 16 × 16. 37(a) is an explanatory diagram of the repeated combined motion information candidate when the prediction block size type is N×2N, and illustrates the implicit combined motion of the prediction block 1 when the prediction block size type is N×2N. The information candidate, that is, the spatial combined motion information candidate of the prediction block 0, that is, the candidate block A, the candidate block B, the candidate block C, the candidate block D, and the candidate block E. 37(b) is a diagram showing spatial combined motion information candidates when the prediction block size type is 2N×2N prediction block 0, that is, candidate block A, candidate block B, candidate block C, and candidate block. D, and candidate block E. In FIGS. 37(a) and 37(b), it can be seen that the positions of the candidate block A, the candidate block D, and the candidate block E are repeated. These candidate blocks that overlap with the positions of the candidate blocks of the larger prediction block size type under a certain prediction block size type are called repeated combined motion information candidates.

此處,在預測區塊尺寸類型為N×2N時的預測區塊1的隱性結合運動資訊候補亦即預測區塊0中,當這些重複結合運動資訊候補是被選擇來作為結合運動資訊候補時,在預測區塊1上選擇重複結合運動資訊候補,係等價於設成2N×2N而選擇了重複結合運動資訊候補的情形,因此必定伴隨著編碼效率的降低。另一方面,在預測區塊尺寸類型為N×2N時的預測區塊1的隱性結合運動資訊候補亦即預測區塊0中,當這些非重複結合運動資訊候補的候補區塊B或候補區塊C是被選擇來作為結合運動資訊候補時,由於並非被當成2N×2N而選擇,因此在預測區塊1上藉由選擇候補區塊B或候補區塊C,編碼效率係有可能提升。圖37(c)係預測區塊尺寸類型是2N×N之預測區塊0時的重複結合運動資訊候補是候補區塊B、候補區塊C、及候補區塊D的圖示。圖37(d)係預測區塊尺寸類型是N×N之預測區塊2時的重複結合運動資訊候補是候補區塊A、候補區塊D、及候補區塊E的圖示。圖37(e)係預測區塊尺寸類型是N×N之預測區塊1時的重複結合運動資訊候補是候補區塊B、候補區塊C、及候補區塊D的圖示。 Here, in the prediction block 0 of the prediction block 1 when the prediction block size type is N×2N, that is, in the prediction block 0, when these repeated combined motion information candidates are selected as the combined motion information candidates In the case where the repeated combined motion information candidate is selected on the prediction block 1, it is equivalent to the case where the repeated combined motion information candidate is selected to be 2N×2N, and thus the coding efficiency is necessarily reduced. On the other hand, in the implicit combined motion information candidate of the prediction block 1 when the prediction block size type is N×2N, that is, in the prediction block 0, when these non-repetitive combined motion information candidates are candidate blocks B or candidates When the block C is selected as the combined motion information candidate, since it is not selected as 2N×2N, the coding efficiency may be improved by selecting the candidate block B or the candidate block C in the prediction block 1. . 37(c) is a diagram showing the repeated combined motion information candidates when the prediction block size type is 2N×N prediction block 0 is the candidate block B, the candidate block C, and the candidate block D. 37(d) is a diagram showing the repeated combined motion information candidates when the prediction block size type is the N×N prediction block 2, which is the candidate block A, the candidate block D, and the candidate block E. 37(e) is a diagram showing the repeated combined motion information candidates when the prediction block size type is N×N prediction block 1 is the candidate block B, the candidate block C, and the candidate block D.

如以上所述,藉由判定隱性結合運動資訊候補亦即預測區塊的結合運動資訊是否為重複結合運動資訊候補,決定是否刪除已被登錄在結合運動資訊候補清單中的隱性結合運動資訊候補,藉此可提升編碼效率。 As described above, by determining whether the implicit combined motion information candidate, that is, the combined motion information of the predicted block is a repeated combined motion information candidate, whether to delete the implicit combined motion information that has been registered in the combined motion information candidate list is determined. Alternate, which can improve coding efficiency.

(實施形態4的變形例2) (Modification 2 of Embodiment 4)

實施形態4的結合運動資訊候補清單生成部140係如圖33所示般地適用於實施形態1,但同樣地可適用於實施形態2或實施形態3。在對實施形態2做適用時,在第1結合運動資訊候補補充部164之後,會存在有隱性結合運動資訊候補排序部162與隱性結合運動資訊候補刪除部167。此處,無論先以隱性結合運動資訊候補排序部162來排序隱性結合運動資訊候補,然後以隱性結合運動資訊候補刪除部167刪除隱性結合運動資訊候補也好,還是先以隱性結合運動資訊候補刪除部167刪除隱性結合運動資訊候補,然後以隱性結合運動資訊候補排序部162來排序隱性結合運動資訊候補也好,都可獲得相同效果,因此亦可省略以隱性結合運動資訊候補排序部162來排序隱性結合運動資訊候補,僅以隱性結合運動資訊候補刪除部167來刪除隱性結合運動資訊候補。 The combined motion information candidate list generating unit 140 of the fourth embodiment is applied to the first embodiment as shown in FIG. 33, but is similarly applicable to the second embodiment or the third embodiment. When the first combined motion information candidate complementing unit 164 is applied, the recessive combined motion information candidate sorting unit 162 and the recessive combined motion information candidate deleting unit 167 are present. Here, the implicit combined motion information candidate is sorted by the implicit combined motion information candidate sorting unit 162, and then the implicit combined motion information candidate deleting unit 167 deletes the implicit combined motion information candidate, or is implicit. The combined motion information candidate deletion unit 167 deletes the implicit combined motion information candidate, and then the implicit combined motion information candidate sorting unit 162 sorts the implicit combined motion information candidates to obtain the same effect, and thus may be omitted. The implicit combined motion information candidate is sorted in conjunction with the motion information candidate sorting unit 162, and only the implicit combined motion information candidate deleting unit 167 deletes the implicit combined motion information candidate.

[實施形態5] [Embodiment 5]

以下,說明實施形態5。和實施形態1係結合運動資訊候補清單生成部140之構成與動作有所不同。 Hereinafter, Embodiment 5 will be described. The configuration and operation of the combined motion information candidate list generating unit 140 differs from that of the first embodiment.

首先說明,結合運動資訊候補清單生成部140的構成。圖38係實施形態5的結合運動資訊候補清單生成部140之構成的說明圖。和圖12的實施形態1的結合運動資訊候補清單生成部140之構成係為,取代了隱性結合運動資訊候補排序部162改為設置顯性結合運動資訊候補排序 部168,這點有所不同。 First, the configuration of the motion information candidate list generating unit 140 will be described. 38 is an explanatory diagram showing the configuration of the combined motion information candidate list generating unit 140 of the fifth embodiment. The combined motion information candidate list generating unit 140 of the first embodiment of FIG. 12 is configured to replace the recessive combined motion information candidate sorting unit 162 with the explicit combined motion information candidate sorting. Part 168, this is different.

接著說明,結合運動資訊候補清單生成部140的動作。圖39係實施形態5的結合運動資訊候補清單生成部140之動作的說明圖。和圖13的實施形態1的結合運動資訊候補清單生成部140之動作係為,步驟S103是被置換成如下的步驟S109,這點有所不同。 Next, the operation of the motion information candidate list generating unit 140 will be described. Fig. 39 is an explanatory diagram showing the operation of the combined motion information candidate list generating unit 140 of the fifth embodiment. The operation of the combined motion information candidate list generating unit 140 of the first embodiment of Fig. 13 is that the step S103 is replaced with the following step S109, which is different.

顯性結合運動資訊候補排序部168,係變更順序以使得時間結合運動資訊候補生成部161所供給之結合運動資訊候補清單中所登錄的顯性結合運動資訊候補會變成在結合運動資訊候補清單之開頭(S109)。 The explicit combined motion information candidate ranking unit 168 is changed in such a manner that the explicit combined motion information candidate registered in the combined motion information candidate list supplied by the time combined motion information candidate generating unit 161 becomes a combined motion information candidate list. Start (S109).

接著,說明顯性結合運動資訊候補排序部168的動作。圖40係顯性結合運動資訊候補排序部168之動作的說明圖。首先,檢查預測區塊尺寸類型是否為2N×N(S220)。若預測區塊尺寸類型為2N×N(S220的Y),則檢查是否為預測區塊0(S221)。若預測區塊尺寸類型不是2N×N(S220的N),則結束處理。若為預測區塊0(S221的Y),則將候補區塊B之運動資訊當作顯性結合運動資訊候補而令其移動至結合運動資訊候補清單的開頭。檢查是否為預測區塊0(S221)。若非預測區塊0(S221的N),則結束處理。 Next, the operation of the explicit combined motion information candidate ranking unit 168 will be described. FIG. 40 is an explanatory diagram of the operation of the explicit combined motion information candidate sorting unit 168. First, it is checked whether the predicted block size type is 2N × N (S220). If the prediction block size type is 2N×N (Y of S220), it is checked whether it is the prediction block 0 (S221). If the predicted block size type is not 2N×N (N of S220), the processing ends. If it is the prediction block 0 (Y of S221), the motion information of the candidate block B is regarded as a dominant combined motion information candidate and moved to the beginning of the combined motion information candidate list. Check if it is predicted block 0 (S221). If block 0 is not predicted (N of S221), the process ends.

說明令顯性結合運動資訊候補移動至結合運動資訊候補清單之開頭的效果。圖41係用來說明顯性結合運動資訊候補的圖,假設檢查候補區塊B係為顯性結合運動資訊候補的例子。圖41係表示編碼區塊為16×16、且預測區塊 尺寸類型為2N×N的空間結合運動資訊候補區塊之位置。此處,候補區塊B與候補區塊A的預測區塊尺寸皆為4×4時,與預測區塊0的接線(相接的邊的部分)係在預測區塊A與預測區塊B中等長。另一方面,候補區塊B是預測區塊尺寸16×16的預測區塊B’之一部分,且候補區塊A是預測區塊尺寸16×16的預測區塊A’之一部分的情況下,與預測區塊0的接線(相接的邊的部分)係預測區塊B'的比預測區塊A’的長,預測區塊0與候補區塊B之相關性係比預測區塊0與候補區塊A之相關性還高。此外,若預測區塊尺寸類型是2N×N且是預測區塊0時,則由於候補區塊B位於編碼區塊外,因此無法成為隱性結合運動資訊候補。 Explain that the explicit combined motion information candidate is moved to the beginning of the combined motion information candidate list. Fig. 41 is a diagram for clearly combining motion information candidates, and it is assumed that the candidate candidate block B is an example of explicit combined motion information candidates. Figure 41 shows that the coding block is 16 × 16 and the prediction block The space of size type 2N×N is combined with the position of the motion information candidate block. Here, when the prediction block sizes of the candidate block B and the candidate block A are both 4×4, the connection with the prediction block 0 (the portion of the adjacent side) is between the prediction block A and the prediction block B. Medium long. On the other hand, the candidate block B is a part of the prediction block B' of the prediction block size 16×16, and the candidate block A is a part of the prediction block A′ of the prediction block size 16×16, The connection with the prediction block 0 (the portion of the edge that is connected) is longer than the prediction block A' of the prediction block B', and the correlation between the prediction block 0 and the candidate block B is compared with the prediction block 0 and The correlation of candidate block A is also high. In addition, if the prediction block size type is 2N×N and is the prediction block 0, since the candidate block B is located outside the coding block, it cannot be a recessive combined motion information candidate.

如此,顯性結合運動資訊候補排序部168,係基於編碼對象之預測區塊的預測區塊尺寸類型(分割類型)與編碼對象之預測區塊在編碼區塊內之位置,將與編碼對象之預測區塊銜接之邊的部分比其他候補還長的相鄰區塊的結合運動資訊候補,選擇成為顯性結合運動資訊候補。 In this way, the explicit combined motion information candidate ranking unit 168 is based on the prediction block size type (segment type) of the prediction block of the encoding target and the position of the prediction block of the encoding target in the encoding block, and the encoding object The combined motion information candidate of the adjacent block whose prediction block is connected is longer than the other candidate, and is selected as the dominant combined motion information candidate.

如以上所述,基於預測區塊尺寸類型與預測區塊之位置,使與預測區塊之接線較長的候補區塊,被當成顯性結合運動資訊候補而移動至結合運動資訊候補清單的開頭,藉由對其分配編碼長度較短之合併索引,就可提升編碼效率。 As described above, based on the predicted block size type and the position of the predicted block, the candidate block having a longer connection with the predicted block is moved to the beginning of the combined motion information candidate list as a dominant combined motion information candidate. By assigning a combined index with a shorter encoding length, the encoding efficiency can be improved.

(效果說明) (effect description)

說明本發明的實施形態5的動態影像編碼裝置及動態影像解碼裝置所致之效果。圖42係本發明的實施形態5所致之效果的說明圖。此處,假設在結合運動資訊候補清單中係被登錄有:候補區塊A、候補區塊B、候補區塊C、候補區塊E、及候補區塊T。假設合併索引0(候補區塊A)、合併索引1(候補區塊B)、合併索引2(候補區塊C)、合併索引3(候補區塊E)、合併索引4(候補區塊T)的選擇機率分別為25%、35%、14%、12%、12%。此時,雖然省略計算式,但排序前的合併索引的編碼長度的期望值係為2.33位元。另一方面,實施形態5的顯性結合運動資訊候補之排序後的合併索引的編碼長度的期望值係為2.23位元。因此,排序後的合併索引的編碼長度的期望值係短了0.1位元,可知編碼效率有提升。 The effects of the motion picture coding apparatus and the motion picture decoding apparatus according to the fifth embodiment of the present invention will be described. Fig. 42 is an explanatory view showing an effect of the fifth embodiment of the present invention. Here, it is assumed that the candidate block A, the candidate block B, the candidate block C, the candidate block E, and the candidate block T are registered in the combined motion information candidate list. Assume that merge index 0 (candidate block A), merge index 1 (candidate block B), merge index 2 (candidate block C), merge index 3 (candidate block E), merge index 4 (wait block T) The selection probability is 25%, 35%, 14%, 12%, 12%. At this time, although the calculation formula is omitted, the expected value of the code length of the merge index before sorting is 2.33 bits. On the other hand, the expected value of the code length of the merged index after the sorting of the explicit combined motion information candidates of the fifth embodiment is 2.23 bits. Therefore, the expected value of the coded length of the sorted merged index is shorter by 0.1 bits, and it is known that the coding efficiency is improved.

以上所述的實施形態的動態影像編碼裝置所輸出的動態影像的編碼串流,係為了可隨著實施形態中所使用之編碼方法來進行解碼,而具有特定的資料格式,對應於動態影像編碼裝置的動態影像解碼裝置係可將此特定資料格式的編碼串流加以解碼。 The coded stream of the video stream output by the motion picture coding apparatus according to the embodiment described above has a specific data format corresponding to the motion picture coding in order to be decoded in accordance with the coding method used in the embodiment. The dynamic video decoding device of the device can decode the encoded stream of this particular data format.

動態影像編碼裝置與動態影像解碼裝置之間為了收授編碼串流,而使用有線或無線網路的情況下,可將編碼串流轉換成適合於通訊路之傳輸形態的資料形式來進行傳輸。此情況下,會設置有:將動態影像編碼裝置所輸出之編碼串流轉換成適合於通訊路之傳輸形態之資料形式的編碼資料然後發送至網路的動態影像送訊裝置、和從網路接 收編碼資料並復原成編碼串流而供給至動態影像解碼裝置的動態影像收訊裝置。 When a video or wireless network is used between the motion picture coding apparatus and the motion picture decoding apparatus to receive the code stream, the code stream can be converted into a data format suitable for the transmission mode of the communication path. In this case, a dynamic image transmitting device that converts the encoded stream outputted by the motion image encoding device into encoded data suitable for the transmission form of the communication path and then transmits it to the network, and the slave network are provided. Connect The encoded image data is recovered and converted into a coded stream and supplied to the motion picture receiving device of the motion picture decoding device.

動態影像送訊裝置,係含有:將動態影像編碼裝置所輸出之編碼串流予以緩衝的記憶體、將編碼串流予以封包化的封包處理部、將已被封包化的編碼資料透過網路而進行發送的送訊部。動態影像收訊裝置,係含有:將已被封包化的編碼資料透過網路而進行接收的收訊部、將已被接收之編碼資料予以緩衝的記憶體、將編碼資料進行封包處理而生成編碼串流並提供給動態影像解碼裝置的封包處理部。 The motion picture transmitting device includes a memory that buffers a coded stream output by the motion picture coding device, a packet processing unit that encapsulates the coded stream, and transmits the encapsulated coded data through the network. The transmitting unit that sends the message. The motion picture receiving device includes a receiving unit that receives the encoded encoded data through the network, a memory that buffers the received encoded data, and encodes the encoded data to generate a code. The stream is streamed and supplied to a packet processing unit of the motion picture decoding device.

以上的關於編碼及解碼之處理,係可用硬體而以傳輸、積存、收訊裝置的方式來加以實現,當然,也可藉由記憶在ROM(唯讀記憶體)或快閃記憶體等中的韌體、或電腦等之軟體來加以實現。亦可將該韌體程式、軟體程式記錄至電腦等可讀取之記錄媒體來加以提供,或可透過有線或無線網路從伺服器來提供,也可用地表波或衛星數位播送的資料播送方式來提供之。 The above processing for encoding and decoding can be implemented by means of hardware, transmission, accumulation, and receiving device. Of course, it can also be stored in ROM (read only memory) or flash memory. The firmware, or software such as a computer, is implemented. The firmware program and software program can also be recorded on a readable recording medium such as a computer, or can be provided from a server through a wired or wireless network, or can be broadcast by means of a surface wave or satellite digital broadcast. Come and provide it.

以上係依據實施形態來說明了本發明。實施形態係為例示,這些各構成要素或各處理程序之組合中還有各種可能的變形例,而這些變形例也都屬於本發明之範圍,而能被當業者所理解。 The present invention has been described above based on the embodiments. The embodiments are exemplified, and there are various possible modifications in the combinations of these constituent elements or processing programs, and these modifications are also within the scope of the invention and can be understood by the practitioner.

[產業上利用之可能性] [Possibility of industrial use]

本發明係可利用於,將運動補償預測中所利用之運動 資訊予以編碼的動態影像編碼技術。 The invention can be utilized to exercise the motion compensation prediction Dynamic image coding technology for encoding information.

100‧‧‧動態影像編碼裝置 100‧‧‧Dynamic image coding device

101‧‧‧預測區塊影像取得部 101‧‧‧Predicted Block Image Acquisition Department

102‧‧‧減算部 102‧‧‧Reduction Department

103‧‧‧預測誤差編碼部 103‧‧‧Predictive Error Coding Section

104‧‧‧編碼列生成部 104‧‧‧Code Column Generation Department

105‧‧‧預測誤差解碼部 105‧‧‧Predictive Error Decoding Unit

106‧‧‧運動補償部 106‧‧‧Sports Compensation Department

107‧‧‧加算部 107‧‧‧Additional Department

108‧‧‧運動向量偵測部 108‧‧‧Sport Vector Detection Department

109‧‧‧運動資訊生成部 109‧‧‧Sports Information Generation Department

110‧‧‧畫格記憶體 110‧‧‧Characteristic memory

111‧‧‧運動資訊記憶體 111‧‧‧Sports information memory

120‧‧‧預測向量模式決定部 120‧‧‧Predictive Vector Mode Decision Department

121‧‧‧合併模式決定部 121‧‧‧Combined Mode Decision Department

122‧‧‧預測編碼模式決定部 122‧‧‧Predictive coding mode decision

130‧‧‧預測向量候補清單生成部 130‧‧‧ Forecast vector candidate list generation unit

131‧‧‧預測向量決定部 131‧‧‧ Forecast Vector Decision Department

140‧‧‧結合運動資訊候補清單生成部 140‧‧‧Combined sports information candidate list generation unit

141‧‧‧結合運動資訊選擇部 141‧‧‧Combined with the Sports Information Selection Department

160‧‧‧空間結合運動資訊候補生成部 160‧‧‧ Space combined with sports information candidate generation

161‧‧‧時間結合運動資訊候補生成部 161‧‧‧Time combined with sports information candidate generation department

162‧‧‧隱性結合運動資訊候補排序部 162‧‧‧Recessive combined sports information waiting list

163‧‧‧冗長結合運動資訊候補刪除部 163‧‧‧ lengthy combined with the Sports Information Alternate Removal Department

164‧‧‧第1結合運動資訊候補補充部 164‧‧‧1st combined sports information candidate supplement

165‧‧‧第2結合運動資訊候補補充部 165‧‧‧2nd Combined Sports Information Supplementary Supplement

166‧‧‧隱性結合運動資訊候補追加部 166‧‧‧Invisible combined sports information candidate additional department

167‧‧‧隱性結合運動資訊候補刪除部 167‧‧‧Invisible combined sports information candidate deletion department

168‧‧‧顯性結合運動資訊候補排序部 168‧‧‧ Explicit combined motion information candidate ranking

200‧‧‧動態影像解碼裝置 200‧‧‧Dynamic image decoding device

201‧‧‧編碼列解析部 201‧‧‧Code Column Analysis Department

202‧‧‧預測誤差解碼部 202‧‧‧Predictive Error Decoding Department

203‧‧‧加算部 203‧‧‧Additional Department

204‧‧‧運動資訊再生部 204‧‧‧Sports Information Recycling Department

205‧‧‧運動補償部 205‧‧‧Sports Compensation Department

206‧‧‧畫格記憶體 206‧‧‧Characteristic memory

207‧‧‧運動資訊記憶體 207‧‧‧Sports information memory

210‧‧‧編碼模式判定部 210‧‧‧Code Mode Judgment Department

211‧‧‧運動向量再生部 211‧‧‧Sports Vector Reproduction Department

212‧‧‧結合運動資訊再生部 212‧‧‧Combined with the Ministry of Sports Information Regeneration

230‧‧‧結合運動資訊候補清單生成部 230‧‧‧Combined sports information candidate list generation unit

231‧‧‧結合運動資訊選擇部 231‧‧‧Combined with the Sports Information Selection Department

[圖1]圖1(a)、(b)係編碼區塊的說明圖。 Fig. 1 (a) and (b) are explanatory views of coding blocks.

[圖2]圖2(a)~(d)係預測區塊尺寸類型的說明圖。 [Fig. 2] Fig. 2 (a) to (d) are explanatory diagrams of prediction block size types.

[圖3]預測區塊尺寸類型的說明圖。 [Fig. 3] An explanatory diagram of a prediction block size type.

[圖4]預測編碼模式的說明圖。 FIG. 4 is an explanatory diagram of a prediction encoding mode.

[圖5]合併索引與編碼列之關係的說明圖。 [Fig. 5] An explanatory diagram of a relationship between a merged index and a coded column.

[圖6]預測區塊的語法之一例的說明圖。 [Fig. 6] An explanatory diagram of an example of a syntax of a prediction block.

[圖7]實施形態1所述之動態影像編碼裝置之構成的圖示。 Fig. 7 is a view showing the configuration of a motion picture coding apparatus according to the first embodiment.

[圖8]圖7的運動資訊生成部之構成的圖示。 FIG. 8 is a view showing a configuration of a motion information generating unit of FIG. 7. FIG.

[圖9]圖8的合併模式決定部之構成的說明圖。 FIG. 9 is an explanatory diagram of a configuration of a merge mode determining unit of FIG. 8. FIG.

[圖10]處理對象之預測區塊尺寸為16像素×16像素時的處理對象之預測區塊的相鄰區塊的圖示。 FIG. 10 is a diagram showing adjacent blocks of a prediction block of a processing target when the prediction block size of the processing target is 16 pixels×16 pixels.

[圖11]處理對象之預測區塊尺寸為16像素×16像素時的與處理對象之預測區塊位於同一位置的ColPic上的預測區塊內的區塊和其周邊區塊的圖示。 [Fig. 11] A block diagram of a block in a prediction block on a ColPic located at the same position as a prediction block of a processing target when the prediction block size of the processing target is 16 pixels × 16 pixels, and a peripheral block thereof.

[圖12]圖9的結合運動資訊候補清單生成部之構成的說明圖。 FIG. 12 is an explanatory diagram of a configuration of a combined motion information candidate list generating unit of FIG. 9. FIG.

[圖13]圖9的結合運動資訊候補清單生成部之動作的流程圖。 FIG. 13 is a flowchart of the operation of the combined motion information candidate list generating unit of FIG. 9.

[圖14]圖12的空間結合運動資訊候補生成部之動作 的說明用流程圖。 [Fig. 14] The action of the spatial combined motion information candidate generation unit of Fig. 12 The description uses a flow chart.

[圖15]圖12的時間結合運動資訊候補生成部之動作的說明用流程圖。 FIG. 15 is a flowchart for explaining the operation of the time combined motion information candidate generating unit of FIG.

[圖16]圖12的隱性結合運動資訊候補排序部之動作的說明用流程圖。 FIG. 16 is a flow chart for explaining the operation of the recessive combined motion information candidate sorting unit of FIG.

[圖17]圖17(a)至(d)係隱性結合運動資訊候補的說明圖。 [Fig. 17] Fig. 17 (a) to (d) are explanatory diagrams of implicit combined motion information candidates.

[圖18]隱性結合運動資訊候補之判定處理的說明用流程圖。 FIG. 18 is a flowchart for explaining the determination process of the implicit combined motion information candidate.

[圖19]圖12的第1結合運動資訊候補補充部之動作的流程圖。 FIG. 19 is a flowchart showing the operation of the first combined motion information candidate supplementing unit of FIG.

[圖20]圖12的第2結合運動資訊候補補充部之動作的流程圖。 FIG. 20 is a flowchart showing the operation of the second combined motion information candidate supplementing unit of FIG.

[圖21]實施形態1所述之動態影像解碼裝置之構成的圖示。 Fig. 21 is a diagram showing the configuration of a video decoding device according to the first embodiment.

[圖22]圖21的運動資訊再生部之構成的圖示。 Fig. 22 is a diagram showing the configuration of a motion information reproducing unit of Fig. 21;

[圖23]圖22的結合運動資訊再生部之構成的圖示。 Fig. 23 is a view showing the configuration of a combined motion information reproducing unit of Fig. 22;

[圖24]實施形態1所致之效果的說明圖。 Fig. 24 is an explanatory diagram showing an effect of the first embodiment.

[圖25]實施形態2的結合運動資訊候補清單生成部之構成的說明圖。 [Fig. 25] Fig. 25 is an explanatory diagram showing a configuration of a combined motion information candidate list generating unit in the second embodiment.

[圖26]實施形態2的結合運動資訊候補清單生成部之動作的說明圖。 FIG. 26 is an explanatory diagram of an operation of the combined motion information candidate list generating unit in the second embodiment.

[圖27]實施形態2所致之效果的說明圖。 Fig. 27 is an explanatory diagram showing an effect of the second embodiment.

[圖28]實施形態3的結合運動資訊候補清單生成部之 構成的說明圖。 28] The combined motion information candidate list generating unit of the third embodiment An explanatory diagram of the composition.

[圖29]實施形態3的結合運動資訊候補清單生成部之動作的說明圖。 FIG. 29 is an explanatory diagram of an operation of the combined motion information candidate list generating unit in the third embodiment.

[圖30]實施形態3的空間結合運動資訊候補生成部之動作的說明圖。 FIG. 30 is an explanatory diagram of an operation of the space combined motion information candidate generation unit in the third embodiment.

[圖31]圖28的隱性結合運動資訊候補追加部之動作的說明圖。 FIG. 31 is an explanatory diagram of an operation of the recessive combined motion information candidate adding unit of FIG. 28.

[圖32]實施形態3所致之效果的說明圖。 Fig. 32 is an explanatory diagram showing an effect of the third embodiment.

[圖33]實施形態4的結合運動資訊候補清單生成部之構成的說明圖。 [Fig. 33] An explanatory diagram of a configuration of a combined motion information candidate list generating unit in the fourth embodiment.

[圖34]實施形態4的結合運動資訊候補清單生成部之動作的說明圖。 [Fig. 34] An explanatory diagram of the operation of the combined motion information candidate list generating unit in the fourth embodiment.

[圖35]圖33的隱性結合運動資訊候補刪除部之動作的說明圖。 FIG. 35 is an explanatory diagram of an operation of the recessive combined motion information candidate deletion unit of FIG. 33.

[圖36]實施形態4的變形例中的隱性結合運動資訊候補刪除部之動作的說明圖。 FIG. 36 is an explanatory diagram of an operation of the recessive combined motion information candidate deletion unit in the modification of the fourth embodiment.

[圖37]重複結合運動資訊候補的說明圖。 [Fig. 37] An explanatory diagram of the repeated combined motion information candidate.

[圖38]實施形態5的結合運動資訊候補清單生成部之構成的說明圖。 FIG. 38 is an explanatory diagram showing a configuration of a combined motion information candidate list generating unit in the fifth embodiment.

[圖39]實施形態5的結合運動資訊候補清單生成部之動作的說明圖。 FIG. 39 is an explanatory diagram of an operation of the combined motion information candidate list generating unit in the fifth embodiment.

[圖40]圖38的顯性結合運動資訊候補排序部之動作的說明圖。 40 is an explanatory diagram of an operation of the explicit combined motion information candidate sorting unit of FIG. 38.

[圖41]顯性結合運動資訊候補的說明圖。 [Fig. 41] An explanatory diagram of a dominant combined motion information candidate.

[圖42]實施形態5所致之效果的說明圖。 Fig. 42 is an explanatory diagram showing an effect of the fifth embodiment.

[圖43]組合檢查次數和結合運動資訊候補M與結合運動資訊候補N之關係的說明圖。 [Fig. 43] An explanatory diagram of the relationship between the number of combined inspections and the combined motion information candidate M and the combined motion information candidate N.

12,14,15,17‧‧‧端子 12,14,15,17‧‧‧terminal

121‧‧‧合併模式決定部 121‧‧‧Combined Mode Decision Department

140‧‧‧結合運動資訊候補清單生成部 140‧‧‧Combined sports information candidate list generation unit

141‧‧‧結合運動資訊選擇部 141‧‧‧Combined with the Sports Information Selection Department

Claims (14)

一種動態影像編碼裝置,係屬於基於分割類型而將編碼區塊分割成1或複數個預測區塊而進行運動補償預測以將動態影像進行編碼的動態影像編碼裝置,其特徵為,具備:候補導出部,係從編碼對象之預測區塊所相鄰的複數預測區塊中,選擇出包含運動向量之資訊與參照影像之資訊的運動資訊係為有效的已編碼之預測區塊,將前記選擇之已編碼之預測區塊的運動資訊,視為選擇候補;和無效化部,係基於前記編碼對象之預測區塊的分割類型與前記編碼對象之預測區塊在前記編碼區塊內之位置,將前記編碼對象之預測區塊所相鄰之複數預測區塊內的特定之預測區塊的運動資訊,不視為前記選擇候補;和候補清單生成部,係生成含有前記選擇候補的候補清單;和追加部,係將具有預先訂定之所定運動向量的運動資訊,視為新的選擇候補而加入至前記候補清單;和決定部,係從前記候補清單中,決定出使用於前記編碼對象之預測區塊的運動補償預測中的運動資訊;和編碼部,係將用來在前記候補清單中特定出前記已被決定之運動資訊所需的資訊,予以編碼。 A motion picture coding apparatus is a motion picture coding apparatus that divides a coding block into one or a plurality of prediction blocks and performs motion compensation prediction to encode a motion picture based on a division type, and is characterized in that: The part is selected from the complex prediction block adjacent to the prediction block of the coding target, and the motion information including the information of the motion vector and the information of the reference image is selected as a valid coded prediction block, and the pre-recording is selected. The motion information of the encoded prediction block is regarded as a selection candidate; and the invalidation unit is based on the division type of the prediction block of the pre-coded object and the position of the prediction block of the pre-coded object in the pre-coded block. The motion information of the specific prediction block in the complex prediction block adjacent to the prediction block of the pre-coded object is not regarded as a pre-selection candidate; and the candidate list generation unit generates a candidate list including the pre-selection candidate; The additional unit adds the motion information having the predetermined motion vector as a new selection candidate to the pre-record candidate. The list and the decision unit determine the motion information used in the motion compensation prediction of the prediction block of the preamble encoding object from the pre-recorded candidate list; and the coding unit is used to specify the pre-record in the pre-recorded candidate list. The information required for the determined sports information is encoded. 一種動態影像編碼裝置,係屬於基於分割類型而將編碼區塊分割成1或複數個預測區塊而進行運動補償預測的動態影像編碼裝置,其特徵為,具備: 結合運動資訊候補清單生成部,係將編碼對象之預測區塊所相鄰的已編碼之複數相鄰區塊之運動資訊,視為利用於編碼對象之預測區塊所需的結合運動資訊候補,追加至結合運動資訊候補清單,生成前記結合運動資訊候補清單;和結合運動資訊候補排序部,係基於前記編碼對象之預測區塊的分割類型與前記編碼對象之預測區塊在前記編碼區塊內之位置,選擇出前記結合運動資訊候補清單中所含之特定之結合運動資訊候補,變更前記特定之結合運動資訊候補在前記結合運動資訊候補清單內之位置;和結合運動資訊選擇部,係從前記結合運動資訊候補清單中選擇出1個結合運動資訊候補,視為前記編碼對象之預測區塊的運動資訊;和編碼部,係將用來在前記結合運動資訊候補清單中特定出前記已被選擇之結合運動資訊候補所需的索引,予以編碼。 A motion picture coding apparatus is a motion picture coding apparatus that performs motion compensation prediction by dividing a coding block into one or a plurality of prediction blocks based on a division type, and is characterized in that: The motion information candidate list generating unit is configured to regard the motion information of the encoded plural adjacent blocks adjacent to the prediction block of the encoding target as the combined motion information candidate required for the prediction block of the encoding target. Adding to the combined motion information candidate list, generating a pre-recorded motion information candidate list; and combining the motion information candidate sorting unit, the segmentation type based on the prediction block of the pre-coded object and the prediction block of the pre-coded object in the pre-coded block At the position, the specific combined motion information candidate included in the exercise information candidate list is selected, and the combined combined motion information candidate in the pre-recording is combined with the position in the motion information candidate list; and the combined sports information selection unit is The pre-recording combined with the motion information candidate list selects one combined motion information candidate, which is regarded as the motion information of the prediction block of the pre-recorded coding object; and the coding department, which is used to specify the pre-record in the pre-recorded combined motion information candidate list. The index required to combine the motion information candidates is selected and encoded. 一種動態影像編碼方法,係屬於基於分割類型而將編碼區塊分割成1或複數個預測區塊而進行運動補償預測以將動態影像進行編碼的動態影像編碼方法,其特徵為,具備:候補導出步驟,係從編碼對象之預測區塊所相鄰的複數預測區塊中,選擇出包含運動向量之資訊與參照影像之資訊的運動資訊係為有效的已編碼之預測區塊,將前記選擇之已編碼之預測區塊的運動資訊,視為選擇候補;和 無效化步驟,係基於前記編碼對象之預測區塊的分割類型與前記編碼對象之預測區塊在前記編碼區塊內之位置,將前記編碼對象之預測區塊所相鄰之複數預測區塊內的特定之預測區塊的運動資訊,不視為前記選擇候補;和候補清單生成步驟,係生成含有前記選擇候補的候補清單;和追加步驟,係將具有預先訂定之所定運動向量的運動資訊,視為新的選擇候補而加入至前記候補清單;和決定步驟,係從前記候補清單中,決定出使用於前記編碼對象之預測區塊的運動補償預測中的運動資訊;和編碼步驟,係將用來在前記候補清單中特定出前記已被決定之運動資訊所需的資訊,予以編碼。 A motion picture coding method belongs to a motion picture coding method for performing motion compensation prediction to encode a motion picture by dividing a coding block into one or a plurality of prediction blocks based on a segmentation type, and is characterized in that: Step: selecting, from the complex prediction block adjacent to the prediction block of the coding object, the motion information including the information of the motion vector and the information of the reference image as a valid coded prediction block, and selecting the pre-recorded block The motion information of the encoded prediction block is regarded as a candidate for selection; and The invalidation step is based on the division type of the prediction block of the pre-coded object and the position of the prediction block of the pre-coded object in the pre-coded block, and the complex prediction block adjacent to the prediction block of the pre-coded object The motion information of the specific prediction block is not regarded as the pre-selection candidate; and the candidate list generation step is to generate a candidate list including the pre-selection candidate; and the appending step is to perform the motion information of the predetermined motion vector. The new selection candidate is added to the predecessor list; and the decision step determines the motion information in the motion compensation prediction of the prediction block used in the preamble encoding object from the predecessor list; and the encoding step is The information required to specify the motion information that has been determined in the pre-recorded list is encoded. 一種動態影像編碼程式,係屬於基於分割類型而將編碼區塊分割成1或複數個預測區塊而進行運動補償預測以將動態影像進行編碼的動態影像編碼程式,其特徵為,令電腦執行:候補導出步驟,係從編碼對象之預測區塊所相鄰的複數預測區塊中,選擇出包含運動向量之資訊與參照影像之資訊的運動資訊係為有效的已編碼之預測區塊,將前記選擇之已編碼之預測區塊的運動資訊,視為選擇候補;和無效化步驟,係基於前記編碼對象之預測區塊的分割類型與前記編碼對象之預測區塊在前記編碼區塊內之位置,將前記編碼對象之預測區塊所相鄰之複數預測區塊內的特定之預測區塊的運動資訊,不視為前記選擇候補;和 候補清單生成步驟,係生成含有前記選擇候補的候補清單;和追加步驟,係將具有預先訂定之所定運動向量的運動資訊,視為新的選擇候補而加入至前記候補清單;和決定步驟,係從前記候補清單中,決定出使用於前記編碼對象之預測區塊的運動補償預測中的運動資訊;和編碼步驟,係將用來在前記候補清單中特定出前記已被決定之運動資訊所需的資訊,予以編碼。 A motion picture coding program belongs to a motion picture coding program for dividing a coding block into one or a plurality of prediction blocks based on a segmentation type and performing motion compensation prediction to encode a motion picture, wherein the computer performs: The candidate derivation step selects, from the complex prediction block adjacent to the prediction block of the coding target, the motion information including the information of the motion vector and the information of the reference image as a valid coded prediction block, and the pre-record Selecting the motion information of the encoded prediction block is regarded as a selection candidate; and the invalidation step is based on the division type of the prediction block of the pre-coded object and the position of the prediction block of the pre-coded object in the pre-coded block And the motion information of the specific prediction block in the complex prediction block adjacent to the prediction block of the pre-coded object is not regarded as a pre-selection candidate; and The candidate list generating step generates a candidate list including the pre-selection candidates; and an adding step of adding the motion information having the predetermined predetermined motion vector to the pre-recorded candidate list as the new selection candidate; and the determining step From the candidate list, the motion information in the motion compensation prediction of the prediction block used in the preamble coding object is determined; and the coding step is used to specify the motion information that has been determined in the pre-recorded candidate list. Information, to be encoded. 一種送訊裝置,其特徵為,具備:封包處理部,係將編碼串流予以封包化而獲得編碼資料,該編碼串流係藉由,基於分割類型而將編碼區塊分割成1或複數個預測區塊而進行運動補償預測以將動態影像進行編碼的動態影像編碼方法所編碼而成者;和送訊部,係將已被封包化之前記編碼資料,予以發送;前記動態影像編碼方法係具備:候補導出步驟,係從編碼對象之預測區塊所相鄰的複數預測區塊中,選擇出包含運動向量之資訊與參照影像之資訊的運動資訊係為有效的已編碼之預測區塊,將前記選擇之已編碼之預測區塊的運動資訊,視為選擇候補;和無效化步驟,係基於前記編碼對象之預測區塊的分割類型與前記編碼對象之預測區塊在前記編碼區塊內之位置,將前記編碼對象之預測區塊所相鄰之複數預測區塊內 的特定之預測區塊的運動資訊,不視為前記選擇候補;和候補清單生成步驟,係生成含有前記選擇候補的候補清單;和追加步驟,係將具有預先訂定之所定運動向量的運動資訊,視為新的選擇候補而加入至前記候補清單;和決定步驟,係從前記候補清單中,決定出使用於前記編碼對象之預測區塊的運動補償預測中的運動資訊;和編碼步驟,係將用來在前記候補清單中特定出前記已被決定之運動資訊所需的資訊,予以編碼。 A transmitting apparatus comprising: a packet processing unit that encapsulates a coded stream to obtain coded data, wherein the coded stream is divided into one or a plurality of code blocks based on a split type The motion picture coding method for predicting the block and performing motion compensation prediction to encode the motion picture is encoded; and the transmission unit is to transmit the coded data before being encapsulated; the pre-recorded motion picture coding method is The method includes: a candidate derivation step of selecting, from the complex prediction block adjacent to the prediction block of the coding target, the motion information including the information of the motion vector and the information of the reference image as a valid coded prediction block, The motion information of the coded prediction block selected by the pre-recording is regarded as a selection candidate; and the invalidation step is based on the segmentation type of the prediction block of the pre-coded object and the prediction block of the pre-coded object in the pre-coded block Position, in the complex prediction block adjacent to the prediction block of the pre-coded object The motion information of the specific prediction block is not regarded as the pre-selection candidate; and the candidate list generation step is to generate a candidate list including the pre-selection candidate; and the appending step is to perform the motion information of the predetermined motion vector. The new selection candidate is added to the predecessor list; and the decision step determines the motion information in the motion compensation prediction of the prediction block used in the preamble encoding object from the predecessor list; and the encoding step is The information required to specify the motion information that has been determined in the pre-recorded list is encoded. 一種送訊方法,其特徵為,具備:封包處理步驟,係將編碼串流予以封包化而獲得編碼資料,該編碼串流係藉由,基於分割類型而將編碼區塊分割成1或複數個預測區塊而進行運動補償預測以將動態影像進行編碼的動態影像編碼方法所編碼而成者;和送訊步驟,係將已被封包化之前記編碼資料,予以發送;前記動態影像編碼方法係具備:候補導出步驟,係從編碼對象之預測區塊所相鄰的複數預測區塊中,選擇出包含運動向量之資訊與參照影像之資訊的運動資訊係為有效的已編碼之預測區塊,將前記選擇之已編碼之預測區塊的運動資訊,視為選擇候補;和無效化步驟,係基於前記編碼對象之預測區塊的分割類型與前記編碼對象之預測區塊在前記編碼區塊內之位 置,將前記編碼對象之預測區塊所相鄰之複數預測區塊內的特定之預測區塊的運動資訊,不視為前記選擇候補;和候補清單生成步驟,係生成含有前記選擇候補的候補清單;和追加步驟,係將具有預先訂定之所定運動向量的運動資訊,視為新的選擇候補而加入至前記候補清單;和決定步驟,係從前記候補清單中,決定出使用於前記編碼對象之預測區塊的運動補償預測中的運動資訊;和編碼步驟,係將用來在前記候補清單中特定出前記已被決定之運動資訊所需的資訊,予以編碼。 A method for transmitting a packet, comprising: a packet processing step of packetizing a coded stream to obtain coded data, wherein the coded stream is divided into one or plural numbers based on a segmentation type a motion picture prediction method for predicting a block to perform motion compensation prediction to encode a motion picture; and a transmission step of transmitting a coded data before being packetized; a pre-recorded motion picture coding method The method includes: a candidate derivation step of selecting, from the complex prediction block adjacent to the prediction block of the coding target, the motion information including the information of the motion vector and the information of the reference image as a valid coded prediction block, The motion information of the coded prediction block selected by the pre-recording is regarded as a selection candidate; and the invalidation step is based on the segmentation type of the prediction block of the pre-coded object and the prediction block of the pre-coded object in the pre-coded block Position The motion information of the specific prediction block in the complex prediction block adjacent to the prediction block of the pre-coded object is not regarded as a pre-selection candidate; and the candidate list generation step is to generate a candidate including the pre-selection candidate a list; and an appending step of adding a motion information having a predetermined motion vector as a new selection candidate to the predecessor list; and a determining step of determining a pre-coding object from the pre-recorded list The motion information in the motion compensated prediction of the prediction block; and the encoding step is used to encode the information required to specify the motion information that has been determined in the pre-recorded candidate list. 一種送訊程式,其特徵為,令電腦執行:封包處理步驟,係將編碼串流予以封包化而獲得編碼資料,該編碼串流係藉由,基於分割類型而將編碼區塊分割成1或複數個預測區塊而進行運動補償預測以將動態影像進行編碼的動態影像編碼方法所編碼而成者;和送訊步驟,係將已被封包化之前記編碼資料,予以發送;前記動態影像編碼方法係具備:候補導出步驟,係從編碼對象之預測區塊所相鄰的複數預測區塊中,選擇出包含運動向量之資訊與參照影像之資訊的運動資訊係為有效的已編碼之預測區塊,將前記選擇之已編碼之預測區塊的運動資訊,視為選擇候補;和無效化步驟,係基於前記編碼對象之預測區塊的分割類型與前記編碼對象之預測區塊在前記編碼區塊內之位 置,將前記編碼對象之預測區塊所相鄰之複數預測區塊內的特定之預測區塊的運動資訊,不視為前記選擇候補;和候補清單生成步驟,係生成含有前記選擇候補的候補清單;和追加步驟,係將具有預先訂定之所定運動向量的運動資訊,視為新的選擇候補而加入至前記候補清單;和決定步驟,係從前記候補清單中,決定出使用於前記編碼對象之預測區塊的運動補償預測中的運動資訊;和編碼步驟,係將用來在前記候補清單中特定出前記已被決定之運動資訊所需的資訊,予以編碼。 A sending program, characterized in that the computer executes: a packet processing step of packetizing a coded stream to obtain coded data, wherein the coded stream is divided into 1 or 1 based on the type of segmentation a plurality of prediction blocks for performing motion compensation prediction to encode a motion picture coding method for encoding a motion picture; and a transmission step of transmitting a coded data before being packetized; pre-recording motion picture coding The method has a candidate derivation step of selecting a motion prediction information including information of a motion vector and information of a reference image from a complex prediction block adjacent to a prediction block of the coding target as a valid coded prediction region. Block, the motion information of the coded prediction block selected by the pre-record is regarded as a selection candidate; and the invalidation step is based on the segmentation type of the prediction block of the pre-coded object and the prediction block of the pre-coded object in the pre-coded area Position within the block The motion information of the specific prediction block in the complex prediction block adjacent to the prediction block of the pre-coded object is not regarded as a pre-selection candidate; and the candidate list generation step is to generate a candidate including the pre-selection candidate a list; and an appending step of adding a motion information having a predetermined motion vector as a new selection candidate to the predecessor list; and a determining step of determining a pre-coding object from the pre-recorded list The motion information in the motion compensated prediction of the prediction block; and the encoding step is used to encode the information required to specify the motion information that has been determined in the pre-recorded candidate list. 一種動態影像解碼裝置,係屬於基於分割類型而將解碼區塊分割成1或複數個預測區塊而進行運動補償預測,將動態影像之編碼串流予以解碼的動態影像解碼裝置,其特徵為,具備:候補導出部,係從解碼對象之預測區塊所相鄰的複數預測區塊中,選擇出包含運動向量之資訊與參照影像之資訊的運動資訊係為有效的已解碼之預測區塊,將前記選擇之已解碼之預測區塊的運動資訊,視為選擇候補;和無效化部,係基於前記解碼對象之預測區塊的分割類型與前記解碼對象之預測區塊在前記解碼區塊內之位置,將前記解碼對象之預測區塊所相鄰之複數預測區塊內的特定之預測區塊的運動資訊,不視為前記選擇候補;和候補清單生成部,係生成含有前記選擇候補的候補清單;和 追加部,係將具有預先訂定之所定運動向量的運動資訊,視為新的選擇候補而加入至前記候補清單;和編碼列解析部,係將表示在前記候補清單內之位置的資訊,予以解碼;和選擇部,係基於已解碼之前記表示位置之資訊,從前記候補清單中選擇出,使用於前記解碼對象之預測區塊的運動補償預測中的運動資訊。 A motion picture decoding apparatus belongs to a motion picture decoding apparatus that performs motion compensation prediction by dividing a decoding block into one or a plurality of prediction blocks based on a division type, and decoding a coded stream of a motion picture, wherein The candidate derivation unit selects, from the complex prediction block adjacent to the prediction block to be decoded, the motion information including the information of the motion vector and the information of the reference image as valid decoded prediction blocks. The motion information of the decoded prediction block selected as the pre-selection is regarded as a selection candidate; and the invalidation unit is based on the segmentation type of the prediction block of the pre-decoded object and the prediction block of the pre-decoded object in the pre-decode block The position information is not regarded as a pre-selection candidate for the motion information of the specific prediction block in the complex prediction block adjacent to the prediction block of the pre-decoded object; and the candidate list generation unit generates the candidate with the pre-selection candidate Waiting list; and The additional unit adds the motion information having the predetermined motion vector as a new selection candidate to the predecessor list, and the code column analysis unit decodes the information indicating the position in the predecessor list. And the selection unit selects, based on the information indicating the position before decoding, the motion information used in the motion compensation prediction of the prediction block of the pre-recording target from the previous candidate list. 一種動態影像解碼裝置,係屬於基於分割類型而將解碼區塊分割成1或複數個預測區塊而進行運動補償預測的動態影像解碼裝置,其特徵為,具備:解碼部,係從用來在結合運動資訊候補清單中特定出結合運動資訊候補所需的索引所被編碼而成的編碼列,解碼出前記索引;和結合運動資訊候補清單生成部,係將解碼對象之預測區塊所相鄰的已解碼之複數相鄰區塊之運動資訊,視為利用於解碼對象之預測區塊所需的結合運動資訊候補,追加至結合運動資訊候補清單,生成前記結合運動資訊候補清單;和結合運動資訊候補排序部,係基於前記解碼對象之預測區塊的分割類型與前記解碼對象之預測區塊在前記解碼區塊內之位置,選擇出前記結合運動資訊候補清單中所含之特定之結合運動資訊候補,變更前記特定之結合運動資訊候補在前記結合運動資訊候補清單內之位置;和結合運動資訊選擇部,係根據前記索引而從前記結合 運動資訊候補清單中選擇出1個結合運動資訊候補,視為前記解碼對象之預測區塊的運動資訊。 A motion picture decoding apparatus is a motion picture decoding apparatus that performs motion compensation prediction by dividing a decoding block into one or a plurality of prediction blocks based on a division type, and is characterized in that: a decoding unit is used for Combining the coded column in which the index required for combining the motion information candidate is specified in the motion information candidate list, the preamble index is decoded; and the combined motion information candidate list generating unit is adjacent to the prediction block of the decoding target. The motion information of the decoded plurality of adjacent blocks is regarded as a combined motion information candidate required for the prediction block of the decoding object, added to the combined motion information candidate list, and generates a pre-recorded motion information candidate list; and combined motion The information candidate sorting unit selects a specific combined motion included in the pre-recorded motion information candidate list based on the segmentation type of the prediction block of the pre-decoded object and the position of the prediction block of the pre-decoded object in the pre-decode block. Information candidate, change before the specific combination of sports information candidates in the foreword combined with sports information candidates The location within the list; and the combined sports information selection department, based on the pre-recorded index One combined motion information candidate is selected in the motion information candidate list, and is regarded as motion information of the prediction block of the pre-recorded decoding target. 一種動態影像解碼方法,係屬於基於分割類型而將解碼區塊分割成1或複數個預測區塊而進行運動補償預測,將動態影像之編碼串流予以解碼的動態影像解碼方法,其特徵為,具備:候補導出步驟,係從解碼對象之預測區塊所相鄰的複數預測區塊中,選擇出包含運動向量之資訊與參照影像之資訊的運動資訊係為有效的已解碼之預測區塊,將前記選擇之已解碼之預測區塊的運動資訊,視為選擇候補;和無效化步驟,係基於前記解碼對象之預測區塊的分割類型與前記解碼對象之預測區塊在前記解碼區塊內之位置,將前記解碼對象之預測區塊所相鄰之複數預測區塊內的特定之預測區塊的運動資訊,不視為前記選擇候補;和候補清單生成步驟,係生成含有前記選擇候補的候補清單;和追加步驟,係將具有預先訂定之所定運動向量的運動資訊,視為新的選擇候補而加入至前記候補清單;和編碼列解析步驟,係將表示在前記候補清單內之位置的資訊,予以解碼;和選擇步驟,係基於已解碼之前記表示位置之資訊,從前記候補清單中選擇出,使用於前記解碼對象之預測區塊的運動補償預測中的運動資訊。 A dynamic image decoding method is a dynamic image decoding method for decoding a coded stream of a moving image by dividing a decoded block into one or a plurality of prediction blocks based on a segmentation type, and performing motion compensation prediction. The method includes: a candidate derivation step of selecting, from the complex prediction block adjacent to the prediction block of the decoding target, the motion information including the information of the motion vector and the information of the reference image as valid decoded prediction blocks, The motion information of the decoded prediction block selected as the pre-selection is regarded as a selection candidate; and the invalidation step is based on the segmentation type of the prediction block of the pre-decoded object and the prediction block of the pre-decoded object in the pre-decode block The position information of the specific prediction block in the complex prediction block adjacent to the prediction block of the pre-decoded object is not regarded as a pre-selection candidate; and the candidate list generation step generates a candidate with a pre-selection candidate a candidate list; and an additional step of treating the motion information having the predetermined motion vector as a new selection Complementing and adding to the predecessor list; and the coding column parsing step, decoding the information indicating the position in the predecessor list; and selecting the step based on the information indicating the position before decoding, from the predecessor list The motion information used in the motion compensation prediction of the prediction block of the pre-recorded decoding object is selected. 一種動態影像解碼程式,係屬於基於分割類型而 將解碼區塊分割成1或複數個預測區塊而進行運動補償預測,將動態影像之編碼串流予以解碼的動態影像解碼程式,其特徵為,令電腦執行:候補導出步驟,係從解碼對象之預測區塊所相鄰的複數預測區塊中,選擇出包含運動向量之資訊與參照影像之資訊的運動資訊係為有效的已解碼之預測區塊,將前記選擇之已解碼之預測區塊的運動資訊,視為選擇候補;和無效化步驟,係基於前記解碼對象之預測區塊的分割類型與前記解碼對象之預測區塊在前記解碼區塊內之位置,將前記解碼對象之預測區塊所相鄰之複數預測區塊內的特定之預測區塊的運動資訊,不視為前記選擇候補;和候補清單生成步驟,係生成含有前記選擇候補的候補清單;和追加步驟,係將具有預先訂定之所定運動向量的運動資訊,視為新的選擇候補而加入至前記候補清單;和編碼列解析步驟,係將表示在前記候補清單內之位置的資訊,予以解碼;和選擇步驟,係基於已解碼之前記表示位置之資訊,從前記候補清單中選擇出,使用於前記解碼對象之預測區塊的運動補償預測中的運動資訊。 A dynamic image decoding program belongs to a type based on segmentation A motion picture decoding program that divides a decoding block into one or a plurality of prediction blocks to perform motion compensation prediction, and decodes the encoded stream of the motion picture, and is characterized in that the computer executes: the candidate extraction step is performed from the decoding target In the complex prediction block adjacent to the prediction block, the motion information including the information of the motion vector and the information of the reference image is selected as a valid decoded prediction block, and the decoded prediction block selected in the foregoing is selected. The motion information is regarded as a selection candidate; and the invalidation step is based on the division type of the prediction block of the pre-decoded object and the position of the prediction block of the pre-decoded object in the pre-decode block, and the prediction area of the pre-decoded object The motion information of the specific prediction block in the complex prediction block adjacent to the block is not regarded as a pre-selection candidate; and the candidate list generation step is to generate a candidate list including the pre-selection candidate; and an additional step, the system will have The motion information of the predetermined motion vector set in advance is regarded as a new selection candidate and added to the predecessor list; and the code column analysis The step of decoding the information indicating the position in the pre-recorded list; and the selecting step is based on the information indicating the position before decoding, and is selected from the pre-recorded list, and is used for the prediction block of the pre-decoded object. The motion information in the motion compensation prediction. 一種收訊裝置,係屬於在所接收到的動態影像的編碼串流中,將解碼區塊分割成1或複數個預測區塊而進行運動補償預測以進行解碼處理的收訊裝置,其特徵為,具備: 收訊部,係將基於分割類型而將編碼區塊分割成1或複數個預測區塊而進行運動補償預測所編碼而成的動態影像的編碼串流所被封包化而成的編碼資料,予以接收;和復原部,係將已被接收到的前記編碼資料進行封包處理,以復原出原本的編碼串流;和候補導出部,係從解碼對象之預測區塊所相鄰的複數預測區塊中,選擇出包含運動向量之資訊與參照影像之資訊的運動資訊係為有效的已解碼之預測區塊,將前記選擇之已解碼之預測區塊的運動資訊,視為選擇候補;和無效化部,係基於前記解碼對象之預測區塊的分割類型與前記解碼對象之預測區塊在前記解碼區塊內之位置,將前記解碼對象之預測區塊所相鄰之複數預測區塊內的特定之預測區塊的運動資訊,不視為前記選擇候補;和候補清單生成部,係生成含有前記選擇候補的候補清單;和追加部,係將具有預先訂定之所定運動向量的運動資訊,視為新的選擇候補而加入至前記候補清單;和編碼列解析部,係從已被復原之編碼串流,解碼出表示在前記候補清單內之位置的資訊;和選擇部,係基於已解碼之前記表示位置之資訊,從前記候補清單中選擇出,使用於前記解碼對象之預測區塊的運動補償預測中的運動資訊。 A receiving device belongs to a receiving device that divides a decoding block into one or a plurality of prediction blocks and performs motion compensation prediction for decoding processing in the encoded stream of the received moving image. ,have: The receiving unit is a coded data obtained by packetizing a coded stream of a moving image encoded by motion compensation prediction by dividing a coded block into one or a plurality of prediction blocks based on a division type. And a restoring unit that performs packet processing on the received preamble encoded data to restore the original encoded stream; and the candidate deriving unit is a complex predictive block adjacent to the predicted block of the decoding target The motion information including the information of the motion vector and the information of the reference image is selected as a valid decoded prediction block, and the motion information of the decoded prediction block selected by the pre-record is regarded as a selection candidate; and invalidation The part is based on the partition type of the prediction block of the pre-decoded object and the position of the prediction block of the pre-decoded object in the pre-decode block, and the specific prediction block adjacent to the prediction block of the pre-decoded object The motion information of the prediction block is not regarded as a pre-selection candidate; and the candidate list generation unit generates a candidate list including the pre-selection candidate; and an additional unit The motion information having the predetermined motion vector specified in advance is added to the pre-recorded list as a new selection candidate; and the coded column analysis unit decodes the encoded stream from the restored list in the pre-recorded candidate list. The information of the position; and the selection unit selects, based on the information indicating the position before decoding, the motion information used in the motion compensation prediction of the prediction block of the pre-decoded object from the previous candidate list. 一種收訊方法,係屬於在所接收到的動態影像的編碼串流中,將解碼區塊分割成1或複數個預測區塊而進 行運動補償預測以進行解碼處理的收訊方法,其特徵為,具備:收訊步驟,係將基於分割類型而將編碼區塊分割成1或複數個預測區塊而進行運動補償預測所編碼而成的動態影像的編碼串流所被封包化而成的編碼資料,予以接收;和復原步驟,係將已被接收到的前記編碼資料進行封包處理,以復原出原本的編碼串流;和候補導出步驟,係從解碼對象之預測區塊所相鄰的複數預測區塊中,選擇出包含運動向量之資訊與參照影像之資訊的運動資訊係為有效的已解碼之預測區塊,將前記選擇之已解碼之預測區塊的運動資訊,視為選擇候補;和無效化步驟,係基於前記解碼對象之預測區塊的分割類型與前記解碼對象之預測區塊在前記解碼區塊內之位置,將前記解碼對象之預測區塊所相鄰之複數預測區塊內的特定之預測區塊的運動資訊,不視為前記選擇候補;和候補清單生成步驟,係生成含有前記選擇候補的候補清單;和追加步驟,係將具有預先訂定之所定運動向量的運動資訊,視為新的選擇候補而加入至前記候補清單;和編碼列解析步驟,係從已被復原之編碼串流,解碼出表示在前記候補清單內之位置的資訊;和選擇步驟,係基於已解碼之前記表示位置之資訊,從前記候補清單中選擇出,使用於前記解碼對象之預測區塊 的運動補償預測中的運動資訊。 A receiving method belongs to a coded stream of a received moving image, and the decoding block is divided into one or a plurality of prediction blocks. A receiving method for performing motion decoding prediction on a line motion compensation, characterized in that: a receiving step is performed by dividing a coding block into one or a plurality of prediction blocks based on a division type and performing motion compensation prediction coding. The encoded data of the encoded stream of the generated moving image is received and received; and the restoring step is to packetize the received pre-encoded data to recover the original encoded stream; and the candidate The deriving step selects, from the complex prediction block adjacent to the prediction block of the decoding target, the motion information including the information of the motion vector and the information of the reference image as valid decoded prediction blocks, and selects the pre-recording The motion information of the decoded prediction block is regarded as a selection candidate; and the invalidation step is based on the division type of the prediction block of the pre-decoded object and the position of the prediction block of the pre-decoded object in the pre-decode block. The motion information of the specific prediction block in the complex prediction block adjacent to the prediction block of the pre-decoded object is not regarded as a pre-selection candidate; And the candidate list generation step of generating a candidate list including the pre-selection candidates; and an appending step of adding the motion information having the predetermined motion vector as a new selection candidate to the pre-recorded candidate list; and coding column analysis The step of decoding the information indicating the position in the predecessor list from the reconstructed encoded stream; and selecting the step based on the information indicating the position before decoding, selecting from the predecessor list, and using Predicted block of the predecoded object The motion information in the motion compensation prediction. 一種收訊程式,係屬於在所接收到的動態影像的編碼串流中,將解碼區塊分割成1或複數個預測區塊而進行運動補償預測以進行解碼處理的收訊程式,其特徵為,令電腦執行:收訊步驟,係將基於分割類型而將編碼區塊分割成1或複數個預測區塊而進行運動補償預測所編碼而成的動態影像的編碼串流所被封包化而成的編碼資料,予以接收;和復原步驟,係將已被接收到的前記編碼資料進行封包處理,以復原出原本的編碼串流;和候補導出步驟,係從解碼對象之預測區塊所相鄰的複數預測區塊中,選擇出包含運動向量之資訊與參照影像之資訊的運動資訊係為有效的已解碼之預測區塊,將前記選擇之已解碼之預測區塊的運動資訊,視為選擇候補;和無效化步驟,係基於前記解碼對象之預測區塊的分割類型與前記解碼對象之預測區塊在前記解碼區塊內之位置,將前記解碼對象之預測區塊所相鄰之複數預測區塊內的特定之預測區塊的運動資訊,不視為前記選擇候補;和候補清單生成步驟,係生成含有前記選擇候補的候補清單;和追加步驟,係將具有預先訂定之所定運動向量的運動資訊,視為新的選擇候補而加入至前記候補清單;和編碼列解析步驟,係從已被復原之編碼串流,解碼出 表示在前記候補清單內之位置的資訊;和選擇步驟,係基於已解碼之前記表示位置之資訊,從前記候補清單中選擇出,使用於前記解碼對象之預測區塊的運動補償預測中的運動資訊。 A receiving program belongs to a receiving program for dividing a decoding block into one or a plurality of prediction blocks and performing motion compensation prediction for decoding processing in the encoded stream of the received moving image. And causing the computer to execute: the receiving step is to encode the encoded stream of the moving image encoded by the motion compensation prediction by dividing the coding block into one or a plurality of prediction blocks based on the division type. The encoded data is received; and the restoring step is to packetize the received pre-coded data to recover the original encoded stream; and the candidate deriving step is adjacent to the predicted block of the decoded object In the complex prediction block, the motion information including the information of the motion vector and the information of the reference image is selected as a valid decoded prediction block, and the motion information of the decoded prediction block selected by the pre-record is regarded as a selection. The candidate and the invalidation step are based on the segmentation type of the prediction block of the pre-decoded object and the prediction block of the pre-decoded object in the pre-decode block The motion information of the specific prediction block in the complex prediction block adjacent to the prediction block of the pre-decoded object is not regarded as a pre-selection candidate; and the candidate list generation step is to generate a candidate list including the pre-selection candidate And an additional step of adding motion information having a predetermined motion vector as a new selection candidate to the predecessor list; and encoding the column parsing step, decoding the encoded stream from the restored The information indicating the position in the predecessor list; and the selecting step is based on the information indicating the position before decoding, and is selected from the pre-recorded list, and used in the motion compensation prediction of the prediction block of the pre-decoded object. News.
TW101140307A 2011-10-31 2012-10-31 Moving-image encoding device, method, program, transmitter, transmission method and program, and moving-image decoding device, method, program, receiver, method and program TW201342930A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011239393 2011-10-31
JP2011239392 2011-10-31
JP2012239268A JP2013118626A (en) 2011-10-31 2012-10-30 Moving image encoding apparatus, moving image encoding method, moving image encoding program, transmitting apparatus, transmitting method and transmitting program
JP2012239269A JP2013118627A (en) 2011-10-31 2012-10-30 Moving image decoder, moving image decoding method, moving image decoding program, receiving device, receiving method, and receiving program

Publications (1)

Publication Number Publication Date
TW201342930A true TW201342930A (en) 2013-10-16

Family

ID=49771625

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101140307A TW201342930A (en) 2011-10-31 2012-10-31 Moving-image encoding device, method, program, transmitter, transmission method and program, and moving-image decoding device, method, program, receiver, method and program

Country Status (1)

Country Link
TW (1) TW201342930A (en)

Similar Documents

Publication Publication Date Title
US10820011B1 (en) Moving picture coding device, moving picture coding method, moving picture coding program, moving picture decoding device, moving picture decoding method, and moving picture decoding program
US9686564B2 (en) Picture encoding device, picture encoding method, picture encoding program, picture decoding device, picture decoding method, and picture decoding program
TWI580260B (en) Dynamic image decoding device, dynamic image decoding method, and dynamic image decoding program
US20180324442A1 (en) Moving picture coding device and moving picture coding method
TWI580263B (en) Dynamic image decoding device, dynamic image decoding method and dynamic image decoding program
WO2013001803A1 (en) Image encoding device, image encoding method, image encoding program, image decoding device, image decoding method, and image decoding program
JP2013118626A (en) Moving image encoding apparatus, moving image encoding method, moving image encoding program, transmitting apparatus, transmitting method and transmitting program
TW201342930A (en) Moving-image encoding device, method, program, transmitter, transmission method and program, and moving-image decoding device, method, program, receiver, method and program
JP6256539B2 (en) Moving picture decoding apparatus, moving picture decoding method, and moving picture decoding program
TW201325258A (en) Video encoding device, method, program, transmission device, transmission method, transmission program; and video decoding device, method, program, reception device, reception method, and reception program
JP2013123218A (en) Moving-image decoding device, moving-image decoding method, moving-image decoding program, reception device, reception method, and reception program
JP2013121164A (en) Image decoding device, image decoding method, and image decoding program
JP2013121163A (en) Image encoding device, image encoding method, and image encoding program
WO2013069269A1 (en) Video encoding device, video encoding method, video encoding program, transmission device, transmission method, transmission program, video decoding device, video decoding method, video decoding program, reception device, reception method, and reception program
WO2013065300A1 (en) Moving-image encoding device, moving-image encoding method, moving-image encoding program, transmitter, transmission method and transmission program, and moving-image decoding device, moving-image decoding method, moving-image decoding program, receiver, and reception method and reception program
JP2013021613A (en) Image decoder, image decoding method and image decoding program
JP2013123217A (en) Moving-image encoding device, moving-image encoding method, moving-image encoding program, transmission device, transmission method, and transmission program
JP2013021612A (en) Image encoder, image encoding method and image encoding program