TW201342681A - Organic light emitting device and method of producing - Google Patents

Organic light emitting device and method of producing Download PDF

Info

Publication number
TW201342681A
TW201342681A TW101145882A TW101145882A TW201342681A TW 201342681 A TW201342681 A TW 201342681A TW 101145882 A TW101145882 A TW 101145882A TW 101145882 A TW101145882 A TW 101145882A TW 201342681 A TW201342681 A TW 201342681A
Authority
TW
Taiwan
Prior art keywords
layer
roughened
organic light
emitting device
electrode
Prior art date
Application number
TW101145882A
Other languages
Chinese (zh)
Inventor
Jan Birnstock
Domagoj Pavicic
Sven Murano
Mauro Furno
Thomas Rosenow
Original Assignee
Novaled Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novaled Ag filed Critical Novaled Ag
Publication of TW201342681A publication Critical patent/TW201342681A/en

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

The invention relates to an organic light emitting device, in a layered structure, comprising a substrate, a bottom electrode, a top electrode, wherein the bottom electrode is closer to the substrate than the top electrode, an electrically active region, the electrically active region comprising one or more organic layers and being provided between and in electrical contact with the bottom electrode and the top electrode, a light emitting region provided in the electrically active region, and a roughening layer, the roughening layer being provided as non-closed layer in the electrically active region and providing an electrode roughness to the top electrode by rough-e-ning the top electrode on at least one an inner side facing the electrically active region and an outer side of the top electrode facing away from the electrically active region. Furthermore, a further organic light emitting device, and a method of producing an organic light emitting device are provided. (Fig. 1)

Description

有機發光裝置及其製造方法Organic light emitting device and method of manufacturing same

本發明是關於一種有機發光裝置與其產生方法。
The present invention relates to an organic light-emitting device and a method of producing the same.

有機半導體是用以產生簡單的電子元件(例如電阻器、二極體、場效電晶體)以及如有機發光裝置之光電元件(例如有機發光二極體(OLED)與許多其他元件)。有機半導體與其裝置的工業與經濟意義是反映於使用有機半導主動層的裝置數量增加、以及關注該主題的產業增加。
有機半導體裝置是由層所製成;這類有機半導層主要包含了共軛(conjugated)之有機化合物,其可為小分子,例如單體或寡聚合物、聚合物、共聚物、共軛與非共軛區塊之共聚物、完全或部分交鏈層、聚結體結構、或類似刷狀結構。以不同類型的化合物所製得、在不同層中或混合在一起(例如由聚合物與小分子層所製成)之裝置也被稱為聚合物-小分子複合裝置。有機發光二極體(OLEDs)優先地是由小分子製成,因為製造小分子之有機發光二極體所涉及的沉積技術可以製造多層結構。
從1987年開始,全世界就開始有研究團隊與工業組織開始花費大量心力來增進有機發光二極體的性能,特別是小分子之有機發光二極體的性能。最初的探討之一在於找出由小分子製成的適當的有機半導體材料,其可形成均質層。迄今,工業使用之電荷載體傳輸材料在至少到85°C都是形態穩定的,典型材料則具有高於100°C之玻璃轉換溫度。同時,這些材料需符合一系列的其他需求,例如在可見光光譜內具有高透明度,且具有良好的電荷傳遞能力。
大部分的具良好性能之電子或電洞傳輸材料都是相對高成本的材料,這主要是由於其複雜的合成途徑之故;此為一項待解決的問題。
另一個待解決的問題是,欲使用於照明之有機發光二極體的光外耦合(outcoupling)效率的提升。典型的有機發光二極體所具有的缺點是,只有約25%的產出光會從裝置中發射出來。大約有50%的光會在位於反射電極與半穿透電極之間的有機層配置中保持為內部模式。另外會有20%則因基板中全反射之故而損失,其原因為在有機發光二極體內部的光是形成於具有折射係數為約1.6至1.8的光學媒介中。當此光正衝擊到具有較低折射係數的光學媒介上時,例如在一有機發光二極體堆疊內的另一層、該有機發光二極體形成於其上之基板、或是其中一個電極,若超過一特定數值之入射角,即會發生全反射。為增進光外耦合,使用了數種不同技術,例如在文件US 2010/0224313 A1中所描述的微透鏡陣列。然而這類技術需要進一步發展,因為其光擷取效率仍遠低於100%。
為了在照明與顯示領域中使用有機發光二極體,因此需要使用可進一步以較不昂貴的方式併入製程中之適當光外耦合方法。就照明應用而言,假設1平方公分的有機發光二極體面積必須僅能花費數分美元(cents),始能使其應用具有合理經濟效益。然而這也表示,僅僅能夠考慮以特定不昂貴的方法來增加光外耦合。目前是藉由真空中熱蒸鍍的輔助來處理以所謂的小分子(small molecules, SM)為基礎之有機發光二極體。一般而言,有機發光二極體是由全部皆經個別加熱蒸氣沉積的兩層至二十層所組成。若現可藉由僅僅再多一層的單一加熱蒸氣沉積層來明顯增進光外耦合,則可於任何情況中滿足光外耦合方法的成本條件。對於小分子-聚合物之複合式有機發光二極體亦然。
就應用有機發光二極體作為發光元件而言,係進一步需要使裝置具有大面積。舉例而言,若一有機發光二極體以1000 cd/m2之亮度運作,則需要有數平方公尺的面積範圍來照明一辦公室空間。
Organic semiconductors are used to produce simple electronic components (such as resistors, diodes, field effect transistors) and optoelectronic components such as organic light-emitting devices (such as organic light-emitting diodes (OLEDs) and many other components). The industrial and economic significance of organic semiconductors and their devices is reflected in the increased number of devices using organic semiconducting active layers, as well as the increase in industries that focus on this topic.
Organic semiconductor devices are made of layers; such organic semiconductor layers mainly comprise conjugated organic compounds, which may be small molecules such as monomers or oligomers, polymers, copolymers, conjugates. a copolymer with a non-conjugated block, a fully or partially interlinked layer, an agglomerate structure, or a brush-like structure. Devices made with different types of compounds, in different layers or mixed together (for example, made of polymers and small molecular layers) are also referred to as polymer-small molecule composite devices. Organic light-emitting diodes (OLEDs) are preferably made of small molecules because the deposition techniques involved in fabricating small-molecule organic light-emitting diodes can produce multilayer structures.
Since 1987, research teams and industrial organizations around the world have begun to spend a lot of effort to improve the performance of organic light-emitting diodes, especially the performance of small-molecule organic light-emitting diodes. One of the initial discussions was to find a suitable organic semiconductor material made of small molecules that could form a homogeneous layer. To date, industrially used charge carrier transport materials are morphologically stable at least to 85 ° C, and typical materials have glass transition temperatures above 100 ° C. At the same time, these materials are subject to a range of other needs, such as high transparency in the visible light spectrum and good charge transfer capability.
Most of the good performance electronic or hole transport materials are relatively high cost materials, mainly due to their complex synthetic approach; this is a problem to be solved.
Another problem to be solved is the improvement in the outcoupling efficiency of the organic light-emitting diode to be used for illumination. A typical organic light-emitting diode has the disadvantage that only about 25% of the produced light is emitted from the device. Approximately 50% of the light remains in the internal mode in the organic layer configuration between the reflective and semi-transmissive electrodes. In addition, 20% is lost due to total reflection in the substrate because the light inside the organic light-emitting diode is formed in an optical medium having a refractive index of about 1.6 to 1.8. When the light is impinging on an optical medium having a lower refractive index, such as another layer in an organic light emitting diode stack, a substrate on which the organic light emitting diode is formed, or one of the electrodes, if Total reflection occurs when the incident angle exceeds a certain value. To enhance the optical outcoupling, several different techniques are used, such as the microlens array described in document US 2010/0224313 A1. However, such technologies need to be further developed because their light extraction efficiency is still far below 100%.
In order to use organic light-emitting diodes in the field of illumination and display, it is therefore necessary to use suitable optical outcoupling methods that can be further incorporated into the process in a less expensive manner. For lighting applications, assuming that a square centimeter of organic light-emitting diode area must be able to cost only a few cents (cents), it can be used to make its application economically reasonable. However, this also means that it is only possible to consider increasing the optical outcoupling in a particularly inexpensive way. At present, organic light-emitting diodes based on so-called small molecules (SM) are processed by the aid of thermal evaporation in a vacuum. In general, organic light-emitting diodes are composed of two to twenty layers all deposited by individual heated vapor. If the optical outcoupling can now be significantly enhanced by a single layer of a single heated vapor deposition layer, the cost conditions of the optical outcoupling method can be met in any case. The same is true for a small molecule-polymer composite organic light-emitting diode.
In the case of applying an organic light-emitting diode as a light-emitting element, it is further required to have a large area of the device. For example, if an organic light emitting diode operates at a luminance of 1000 cd/m 2 , an area of several square meters is required to illuminate an office space.

本發明的目的之一為提供一種有機發光裝置,其對於發光區域中所產生光之光外耦合具有增進之效率 (光外耦合效率)。
此問題分別由根據獨立申請專利範圍第1項與第12項之裝置解決。同時,也提供了一種根據獨立申請專利範圍第13項之產生有機發光裝置的方法。附屬項則與較佳具體實施例相應。
根據一構想,提供了一種包含一層狀結構之有機發光裝置。該層狀結構包含一基板、一底部電極、一頂部電極、以及一電性主動區域,其中該底部電極比該頂部電極更靠近基板。該電性主動區域包含一或多層有機層,且是被提供在底部電極與頂部電極之間並與其電性接觸。一發光區域被提供在該電性主動區域。在電性主動區域中有一粗化層被提供作為非封閉層。本文中用語「非封閉」是指由自下方層突出之粗化結構所製成、且彼此之間以不含粗化結構之空間分隔的一層。在不含粗化結構的空間中可存在一平坦、非常薄的接地層,其具有與粗化結構相同之化學組成,且其層厚度小於5奈米。舉例而言,這類接地層可為在粗化層產生程序中所沉積的一或多層分子單層。
藉由粗化頂部電極面對該電性主動區域的一內側以及頂部電極不正對該電性主動區域的一外側中至少其中之一,粗化層係使頂部電極被提供具有一電極粗化部。
頂部電極粗化部可包含在頂部電極之面向電性主動區域的內側上之粗化內表面結構。頂部電極粗化部可包含在頂部電極的外側上之粗化外表面結構。從電極上方觀之,粗化之內表面結構與粗化之外表面結構可實質上重疊。
根據另一構想,提供一種包含一層狀結構之有機發光裝置。該層狀結構包含一基板、一底部電極、一頂部電極、以及一電性主動區域,其中該底部電極比該頂部電極更靠近基板。該電性主動區域包含一或多層有機層,且是被提供在底部電極與頂部電極之間並與其電性接觸,一發光區域被提供在該電性主動區域中。基板與底部電極之間有一粗化層被提供作為非封閉之電性非活性層,藉由粗化底部電極在面向電性主動區域之一內側以及底部電極不正對該電性主動區域之一外側中至少其中之一,該粗化層至少使該底部電極被提供具有一電極粗化部。對於底部電極而言,外電極側部係面向基板。對於此一裝置而言,粗化層亦使頂部電極在面向電性主動區域之內側與頂部電極不正對電性主動區域之外側中至少其中之一上被提供具有電極粗化部。除了在底部電極下方的粗化層以外,在電性主動區域中也可設置另一粗化層。該另一粗化層係根據與為頂部電極產生電極粗化部之粗化層相關而描述的一或多個具體實施例而被提供。
由於粗化層的非封閉結構之故,此層並不完全覆蓋下方的層體。可提供一島狀或顆粒結構,其包含了由未被粗化結構覆蓋之區域所分隔的材料島部/顆粒。這些區域可不含粗化層的材料。不含粗化層的材料之區域可藉由粗化層中所存在的孔洞來提供。
有機發光裝置可被提供具有一層以上的粗化層。在電性主動區域中可提供一層以上的粗化層。可在發光區域的上方及/或下方提供複數層粗化層。
粗化層所導致之電極粗化部可被提供具有反射(例如擴散地)光之光反射表面結構。粗化層本身的結構可反射裝置中所產生的光線。作為替代,粗化層本身的結構可實質上不含主動光反射。
直接沉積在電性主動區域中粗化層上的一或多層可被提供作為一封閉層。作為替代,這些層可為一非封閉層,其中形成粗化層之顆粒提供了一種冰山結構。粗化層的結構延伸通過直接沉積在粗化層上的一或多層。
電極的粗化結構具有可為電極層厚度大小等級之維度。個別電極可僅在下方存在粗化層顆粒的位置處被粗化,否則就是平坦的。可藉由例如一測平儀(例如Dektak)或裝置的一電子顯微鏡截面影像來測量表面粗糙度。
被提供具有由粗化層所產生之粗化部的電極的厚度可被提供具有比粗化層的額定厚度高出許多之一層厚度。
粗化層可被提供具有隨機分佈於一下方層(粗化層係沉積於其上)上方的複數個分隔顆粒(島部)。粗化層也稱為「顆粒層」。複數個分隔顆粒可被提供隨機的方向、彼此之間的距離(顆粒之間的空間)上、以及/或顆粒大小。分佈於下方層上之分隔顆粒為粗化層提供了一島狀結構。顆粒的大小可落於可見光的波長範圍,較佳為有機發光裝置所發出的光的波長範圍,該波長可為圍繞顆粒之有機媒介中的波長、或是顆粒材料中的波長。
粗化層的顆粒可具有約50奈米至約500奈米之一側向維度、及/或約3奈米至約50奈米(較佳為約3奈米至約15奈米)之一高度。有機發光裝置內部的顆粒密度可介於每平方微米為5至50個顆粒,較佳為每平方微米10至30個顆粒。這些顆粒可具有達1000奈米之一維度。那些維度可提供用於米氏散射(Mie scattering),其較佳地發生於可見光波長(介於450奈米與700奈米之間)除以周圍有機材料的折射係數之等級的直徑的物體上。
頂部電極可被提供在一電性主動區域的頂層上,其係由提供在頂層下方的粗化層加以粗化。頂部電極可與頂層直接接觸。在其他具體實施例中,在頂部電極與電性主動區域的頂層之間可提供有一或多層。頂部電極可由一單一層、或複數電極層所製成。
頂部電極可直接提供在粗化層上。
頂層可為一結合之發光與電子傳輸層。頂層(提供為單一層或複數次層)係一封閉層。作為替代,頂層可為一非封閉層,其中形成粗化層之顆粒提供了一種冰山結構。這種冰山結構會導致頂部電極與冰山區域之間的直接接觸。
粗化層可提供於發光區域與頂部電極之間。
粗化層可提供於發光區域與底部電極之間。在有一層以上的粗化層的情況下,一粗化層可提供在發光區域上方,而另有一層粗化層可提供在發光區域下方。
粗化層可被提供具有介於約3奈米至約50奈米之一額定層厚度,較佳是介於約3奈米至約15奈米。粗化層的厚度為額定厚度,此厚度通常是從沉積在一特定面積上的質量除以材料的密度知識計算而得。舉例而言,在真空加熱蒸鍍VTE中,額定厚度為厚度監控設備所指示之數值。粗化層的顆粒可成長於在下方層的一表面上,這些顆粒係彼此分開,且不接合形成一封閉層。
同時,粗化層的額定厚度也可得自原子力顯微鏡(AFM)量測。
粗化層可提供在一電性摻雜之電荷載體傳輸層上或可被其覆蓋。粗化層可夾在兩個電性摻雜之電荷載體傳輸層之間,這兩個電性摻雜層為電洞及/或電子傳輸層。頂層可為電性摻雜之單一層、或複數個電性摻雜之次層。粗化層可提供於一發光層上。
粗化層可提供於電子傳輸層與陰極之間、或電動傳輸層與陽極之間,並與其直接接觸。傳輸層係經電性摻雜。粗化層可為未經摻雜。
粗化層可由一自結晶材料所製成。由自結晶材料所製成之粗化層可配置為與電洞傳輸層相鄰,其可與電洞傳輸層直接接觸。藉此,可增加光之光外耦合。或者是,由自結晶材料所製成之粗化層可配置在裝置的電子傳輸側上,特別是與電子傳輸層相鄰。
為使來自有機發光裝置之光外耦合達最大化,需要使內部吸收達到最小化,並且能夠進行波導模式及表面電漿激元(plasmon)模式的光擷取。為了處理這些光學模式,粗化層係提供了傳統平坦狀有機發光裝置結構之改良。在傳統的有機發光裝置中,兩個平坦電極係沉積在一平坦基板上,其間係夾有平坦的有機層。在此一配置中,波導模式(亦即在有機層中以及也可能在半透明電極(例如ITO)中的光傳播模式)以及表面電漿激元模式(在通常為金屬性電極的表面電漿激元中的光傳播模式)係可輕易地耦合至有機發光二極體中之射極。在這些模式中進行的光則再也不會輕易地光外耦合至空氣模式,其明顯限制了有機發光裝置的光轉換效率。
本文所提出之有機發光裝置的架構允許一種頂部電極層與底部電極層中至少其一的簡單結構。這類粗化部結構使電漿激元損失最小化,並且提升了波導模式的光外耦合。經由此方式,即可實現電極層之粗化部,其可作為波導模式以及表面電漿激元模式兩者的散射中心/結構。
由於使用粗化層之結果,不僅可增進光外耦合,同時也可改善光發射之角度相關性。白光光譜含有數種光色的組成,然而一般為至少某些藍光、綠光與紅光組成。由於不同波長有不同的發射特性,因此在傳統的OLEDs中在不同的觀看角度上可看見不同顏色。這可藉由本文所提裝置的散射特性而大幅減少。
粗化層可改善內部模式的光外耦合;其亦可改善基板模式的光外耦合。可使用粗化層以使OLED的電子性質不受影響。進一步確定可藉由一光外耦合薄膜來達到一附加功率增益,這以一般的光外耦合解決方式(傳統的散射層)是無法達到的。相比之下,在具有簡單傳統散射層的傳統OLEDs中,若使用另一附加的光外耦合薄膜,則無功率增益。
提出了一種簡單結構以產生高效率的有機發光裝置而不需昂貴方法(例如電極側基板表面或半導體側電極表面的微結構化)。也可使用一平坦(未經微結構化)的底部電極。微結構化被理解為表示具有光波長範圍之大小以影響光線的結構。
在電性主動區域中的所有有機層係藉由真空中蒸鍍(真空加熱蒸鍍,Vacuum thermal evaporation, VTE)的方式製造。或者是,在堆疊層配置中的所有有機層可藉由OVPD的方式製造。在一較佳具體實施例中,所有的有機層以及兩個電極都是在一真空塗佈程序中沉積,例如VTE或者濺鍍。
粗化層係由一有機材料形成為蒸氣沉積層,其可藉由在真空中加熱蒸鍍的方式蒸鍍而成。為此目的,該材料具有低於在真空中之分解溫度的在真空中之一汽化(或昇華)溫度。作為替代、或除此之外,粗化的有機層係可藉由OVPD的方式而製得。粗化層可經由例如透過旋轉塗佈與後續熱處理所製成之薄膜(例如,苯甲醚中(螺旋-TTB)之5%溶液)的除潤(dewetting)而建立。此外,具奈米等級之有機薄膜的除潤也可經由從氣態凝結溶劑而達成。
粗化層可藉由金屬氮化物奈米顆粒的氣態凝結、電鍍沉積、真空噴塗、光微影、以及印刷(例如奈米顆粒陣列的微接觸印刷)中的其中一種而形成。
粗化有機層較佳是由一有機材料所製成,其具有低於約攝氏40度之Tg。較佳地,使用無Tg的材料。在此方式中,有機材料在蒸氣沉積至基板上的期間可自己結晶出來,而不需任何進一步的回火步驟,因為在傳統的VTE系統中,基板溫度通常是介於攝氏20度至攝氏60度之間。
Tg是由DSC量測的方式而決定。DSC量測是使用在熔化後藉由衝擊冷卻的方式回到室溫的材料來進行。然後該材料在量測中係以10K/min的速率進行加熱。在粗化有機層中所使用之較佳材料中,並未觀察到Tg。
粗化層較佳係於蒸氣沉積期間結晶化。或者是,回火步驟可接在層體完成之後以及在沉積下一層之前。
以下將更詳細說明本發明的其他構想。
粗化層可由一電荷載體傳輸層所覆蓋,使得電荷會流到這些粗化顆粒周圍;然而他們也可直接被金屬電極所覆蓋。這類結構的實現係可經由使用p-與n-型摻雜之傳輸層而達成,因為電荷傳遞層的摻雜會使可能的電荷載體阱(traps)(其可能形成於粗化顆粒的表面處)達到飽和。
粗化層的分隔結構(顆粒、島部)較佳係在可見光範圍中呈現出最小化之吸收,以避免吸收性光損失。顆粒的折射係數係經選擇,使得在顆粒處的波導模式散射可達最小化(亦即,粗化顆粒的折射係數應與有機發光裝置的有機層的折射係數相符)或達最大化(亦即,需要使相對於有機發光裝置之有機層的折射係數達最大化)。在第一種情況中,波導模式不會被粗化顆粒散射,而是僅經由金屬電極的粗化部而散射。在後者情況中,波導模式的散射可直接由粗化顆粒發生。
粗化層的沉積顆粒可具有圓形形狀而無任何明顯的尖端或邊緣(其可能會導致陰極中之捷徑形成或不佳的粗化輪廓)。粗化顆粒可為長球形、或扁圓形球體、或具有定義良好邊緣的晶體(例如針體、四面體、八邊形等)。這些形狀可藉由例如除潤而達成(由於表面張力之故)。對於在正確的參數組、適當材料選擇(如何結晶化)下進行的印刷製程而言,其亦為真。
所述之光外耦合方法也可與該領域技術人士所熟知的其他方法組合,例如微型透鏡陣列薄膜或是散射基板。
粗化層的顆粒可成長得比高更寬(例如寬高比為5:1至1:1)。如果這些顆粒比寬更高,則其應具有1:1至1:5之一寬高比,以避免中斷或貫穿頂部電極。
有機發光裝置可被提供具有至少下列其中一個特徵:
-存在低於熔化溫度至少300K之一玻璃轉換溫度。較佳地,該材料在室溫以上的溫度下不存在任何可測之玻璃轉換溫度,且直接從玻璃態變化至結晶態,或在玻璃態中完全不可知。
-對於所有可見光而言,存在一高透光性,其亦可定義為具有低消光係數(小於0.1)。
-沒有明顯顏色。
-至少3 eV的HOMO-LUMO能隙。
-在可見光區域中該材料為透明的(光學能隙 >3 eV)。
-存在小於2.0 eV(絕對值)之LUMO(其對於OLEDs中所使用之ETMs而言為非典型),或是存在大於5.5 eV(絕對值)之HOMO(其對於OLEDs中使用之HTMs而言為非典型)。
-用於傳輸層中電性摻雜之有機材料的分子質量為大於200 g/mol,且小於400 g/mol(小於200 g/mol者為具有過高揮發性之化合物,而大於400 g/mol者則為無法充分結晶的化合物)。
當使用一除潤機制來形成粗化層的顆粒時,顆粒的材料可具有一高Tg,例如高於攝氏85度,使得其於傳統裝置運作下是穩定的。除潤方式的一個示例為得自苯甲醚溶液之2,2',7,7'-四(N,N-二-對-甲基苯基胺基)-9,9'-旋環雙芴層。
在一具體實施例中,頂部電極為陽極,且粗化層的材料是一電子傳輸材料(亦即,電洞注入至散射層材料的HOMO中之能障是如此高,因此其無法於裝置中產生電洞傳輸)。特別令人驚訝的是,此一具體實施例可完全運作,其說明了散射層的材料在裝置中不需要具有任何的電子性功能。
在另一具體實施例中,頂部電極是為陰極,且粗化層的材料是一電洞傳輸材料(亦即,電子注入至散射層材料的LUMO中之能障是如此高,因此無法於裝置中進行電子傳輸)。這也是如上述說明般地令人驚訝。
對於有機發光裝置的電性主動區域中散射或粗化化合物之使用而言,較佳的是,對於粗化層而言,其額定層厚度係低於50奈米;更佳的是低於10奈米。若包含粗化化合物的層體是作為一模板使用,則發現到當粗化層設置在一第一與一第二電子傳輸層之間時,可得到最佳的裝置性能,且其中該粗化層的額定厚度是大於或等於3奈米,且小於或等於30奈米,較佳的是介於5奈米與15奈米之間。
顆粒尺寸可在周圍有機媒介中之光學波長範圍大小的電極上產生結構,以影響光線。較佳地,特徵的寬度(平行於基板平面)係落於周圍有機媒介中之光學波長的範圍中。高度可比寬度小,例如小了2或3之因子。在層體上方的顆粒以及個別特徵結構(例如頂部電極)是隨機地分佈。通常,有機媒介的折射係數一般都是介於1.7與2之間,在大部分的情況下,1.7是個良好近似值。
波長也可為顆粒材料中的波長,特別是如果在粗化層與頂部電極之間沒有層體存在時。較佳地,顆粒具有介於100奈米至450奈米之間之至少一個維度。
粗化結構可具有足以影響頂部電極中電漿激元之尺寸。高度可少於寬度,例如少了2或3之因子。在層體上方的顆粒以及個別特徵結構例如頂部電極係隨機地分佈。
一般而言,有機發光裝置(OLED)是根據電致發光原理,其中電子-電洞對(即所謂的激發電子)在光照射下會重新結合。為此,有機發光裝置係以三明治結構的形式建構,其中至少一有機薄膜是配置在兩個電極之間作為活性材料,正與負電荷載體被注入至有機材料中,且從電洞或電子至一重新結合區(發光層)之一電荷傳遞至有機層中,在該處係發生電荷載體重新結合為單態及/或三態之激發電子在光照射下發生。激發電子的後續輻射重新結合會導致發光。至少其中一個電極必須是透明的,使光離開元件。典型地,透明電極是由稱之為TCOs(transparent conductive oxides,透明傳導性氧化物)的傳導性氧化物、或是由非常薄的金屬電極所組成,然而也可使用其他材料。有機發光裝置的製造的開始點是基板,在基板上沉積OLED的個別層體。如果最靠近基板的電極是透明的,則該元件被稱為一「底部發光OLED」;且若是另一電極為透明的,則該元件被稱為一「頂部發光OLED」。底部電極比頂部電極更靠近基板。底部電極是在頂部電極形成(沉積)之前就先形成(沉積)。
最可靠且有效率的OLEDs是包含有摻雜層者。藉由分別對電洞傳輸層電性摻雜適當的接受材料(p-型摻雜)及對電子傳輸層電性摻雜適當的供應材料(n-型摻雜),即可實質增加有機固體中的電荷載體密度(並因而增加傳導率)。此外,類似於無機半導體的經驗,可預知精確地基於元件中p-型與n-型摻雜層使用的應用方式,否則則無法推知。摻雜之電荷載體傳輸層(以接受類型之分子混合物所行之電洞傳輸層的p-型摻雜、以供應類型之分子混合物所行之電子傳輸層的n-型摻雜)在有機發光二極體中的使用係說明於文件US 2008/203406與US 5,093,698。
層配置中所使用之材料為用於OLEDs中的傳統材料,這些材料或其混合物係滿足層體的作用,例如注入層、傳輸層、發射層、連接單元等。至於這些層體與材料的例示實例,請參閱文件US 2009/045728、US 2009/0009072、EP 1 336 208、以及其中的參考文獻。
發光區域是由一或多層製成、其中參與發光的激發電子會在該處形成、及/或激發電子會在該處重新結合發射光的區域。可能的發光層係說明於例如文件EP 1 508 176、US 2008/203406、EP 1 705 727、US 6,693, 296中。在OLED中之發光層的不同可能配置說明於例如EP 1 804 308、EP 1 804 309中。在具體情況下,電荷載體注入與電荷載體傳輸係高度平衡,且OLED可以單一層(EP 1 713 136)製成,在此一情況下,發光層不需要具有明顯的交界面,包含有進行發光之激發電子的區域為發光層。
關於有機發光裝置,電洞傳輸層(Hole transport layer, HTL)是含有大能隙半導體的一層,其負責從陽極傳輸電洞、或從一連接單元(CU)傳輸電洞至發光層(Light emitting layer, LEL或EML)。HTL是包含在陽極與LEL之間,或是在一CU的電洞生成側與LEL之間。HTL可與另一材料混合,例如一p-型摻雜物,在這樣情況下稱該HTL為經p-型摻雜。HTL可含有具有不同組成的數層。對HTL進行p-型摻雜會降低其電阻率,並可避免因未經摻雜之半導體的高電阻率所致之個別功率損失。經摻雜之HTL也可作為光學分隔件之用,因為其可製作的非常厚,厚達1000奈米或更多,且電阻率並不會明顯增加。
關於有機發光裝置,一電子傳輸層(Electron transport layer, ETL)為包含有大能隙半導體的一層,其負責從陰極傳輸電子、或從一連接單元傳輸電子至發光層。ETL是包含在陽極與LEL之間、或是在連接單元的電子生成側與LEL之間。ETL可與另一材料混合,例如一n-型摻雜物,在此情況下,稱該ETL經n-型摻雜。ETL可含有具不同組成的數層。對ETL進行n-型摻雜降低其電阻率,並可避免因未經摻雜之半導體的高電阻率所致之個別功率損失。經摻雜之ETL也可作為光學分隔件之用,因為其可製作的非常厚,厚達1000奈米或更多,且電阻率並不會明顯增加。
同時也可使用典型應用於OLED製造中的其他層體,例如電洞與電子阻擋層、注入層、激發電子阻擋層等。
最可靠、同時也是最有效率的裝置是含有電性摻雜層的有機發光裝置。藉由分別對電洞傳輸層電性摻雜適當的接受材料(p-型摻雜)或對電子傳輸層電性摻雜適當的供應材料(n-型摻雜),即可實質增加有機固體中的電荷載體密度(並因而增加傳導率)。此外,類似於關於無機半導體的經驗,可預知精確地基於元件中p-型與n-型層使用的某些應用方式,否則則無法推知。摻雜之電荷載體傳輸層(以接受類型之分子混合物所行之電洞傳輸層的p-型摻雜、以供應類型之分子混合物所行之電子傳輸層的n-型摻雜)在有機發光二極體中的使用說明於文件US 2008/203406與US 5,093,698。
電性摻雜也稱為氧化還原摻雜或電荷傳送摻雜。已知摻雜會使一半導體基質的電荷載體之密度朝向未摻雜之基質的電荷載體密度增加。
US 2008/227979詳細揭露了以無機摻雜物及以有機摻雜物來對有機傳輸材料進行摻雜。基本上,有效的電子傳送是從摻雜物發生而至基質,其增加了基質的費米能階(Fermi level)。對於在p-型摻雜情況中的有效傳送而言,摻雜物的LUMO能階較佳是比基質的HOMO能階更為負性,或是至少比基質的HOMO能階稍微更為正性(不超過0.5 eV)。對於n-型摻雜的情況而言,摻雜物的HOMO能階較佳是比基質的LUMO能階更為正性,或是至少比基質的LUMO能階稍微更為負性(不低於0.5 eV)。更為需要的是,從摻雜物至基質的能量傳送之能階差小於+0.3 eV。
經摻雜之電洞傳輸材料的典型實例為:以四氟-四氰醌二甲苯(F4TCNQ)摻雜的銅酞青(CuPc),其HOMO階是大約-5.2 eV,LUMO階是大約-5.2 eV;以F4TCNQ摻雜的鋅酞青(ZnPc)(HOMO=-5.2 eV);以F4TCNQ摻雜的a-NPD(N,N'-二(萘-1-基)-N,N'-二(苯基)-聯苯胺)。以2,2'-(全氟萘-2,6-二亞基)二丙二腈 (PD1)摻雜的a-NPD。以2,2',2''-(環丙烷-1,2,3-伸三基)三(2-(對-氰基四氟苯基)乙腈)(PD2)摻雜的a-NPD。在裝置例子中之所有的p-摻雜都是以5莫耳%的PD2而進行。其他有用的電洞傳輸材料像是N4,N4,N4'',N4''-四([1,1'-聯苯基]-4-基)-[1,1':4',1''-三苯基]-4,4''-二胺(HT1)是揭露在WO 2011/134458。另一種電洞傳輸材料是2,2’,7,7’-四(N,N-二-對-甲基苯基胺基)-9,9’-旋環雙芴(HT2)。另一種電洞傳輸材料是公開於US 2012/223296中的N4,N4’’-二(萘-1-基)-N4,N4’’-二苯基-[1,1’:4’,1’’-三苯基]-4,4’’-二胺(HT3)。
經摻雜之電子傳輸材料的典型實例是:以吖啶橙鹼(AOB)摻雜的富勒烯C60;以白結晶紫摻雜的苝-3,4,9,10-四羧酸-3,4,9,10-二酐(PTCDA);以四(1,3,4,6,7,8–六氫-2H–嘧啶並[1,2-a]嘧啶鎓)-二鎢(II)(W2(hpp)4,ND1)摻雜的2,9-二(菲-9-基)-4,7-二苯基-1,10-啡啉;以3,6-二-(二甲基胺基)-吖啶摻雜的萘四羧酸二-酐(NTCDA);以二(乙烯-二硫代)四硫富瓦烯(BEDT-TTF)摻雜的萘四羧酸二-酐。用於像是4,4',5,5'-四環己基-1,1',2,2',3,3'-六甲基-2,2',3,3'-四氫-1H,1'H-2,2'-二咪唑(ND2)的n-摻雜物之有用空氣穩定前驅物,被揭露在EP 1 837 926中。另一種材料是市售的2,4,7,9-1,10-啡啉(ET5)。
有機發光裝置可包含在電性主動區域(電極之間的區域)外部的一外部光外耦合層。此一外部光外耦合層是除所述散射層以外者。對於一頂發光OLED而言,此一外部光外耦合可為與堆疊體的折射係數匹配的一層,以增進從一透明頂部電極至空氣中之光外耦合。頂發光之OLEDs係說明於例如WO 2005/106987、EP 1 739 765中。在一較佳具體實施例中,散射層係與頂部電極直接接觸。外部光外耦合層在從一底發光OLED的基板的底側部上也可含有微球體。
有機發光裝置可形成為一種非反轉結構或一反轉結構。在非反轉結構的情況中,底部電極是陽極,而頂部電極是陰極。在反轉結構中,底部電極為陰極,而頂部電極為陽極。
粗化層可自具有單一分子結構的材料均勻地形成。
有機發光裝置可為一大面積照明裝置,其中粗化層經圖案化,且該圖案可為人眼所解析。舉例而言,該圖案具有的維度係可由在以一公尺至數公尺之距離觀看該裝置的人類觀察者的人眼所解析。該圖案具有在關閉狀態中被視為一模糊符號之優點,例如因反射層的不同鏡面/擴散表面之故。此外,該符號可被製作為也可在開啟狀態下被看見,當該裝置被設定為中等亮度時,人類觀察者也可觀察到較強與較弱光外耦合區域之間的對比。
已知人眼解析度的標準值為1角分(=1/60度)。假設離發光層之觀看距離為1公尺,其即解析度對應為0.29毫米。若假設觀看距離是30公分,則產生解析度為35大致為100微米。因此,側向距離及/或線型發光層的寬度大約為100微米之數值係可被假設為仍可由人眼所解析之發光層的側向維度之合適下限。
粗化層之製程係經調整以獲得較佳的成長模式:沉積速率、沉積期間之基板溫度、薄膜沉積之後(回火)的等待時間。低蒸鍍速率會造成小顆粒密度。另一方面,若蒸鍍速率過高,則顆粒會融合在一起,或是該層體甚至會變為非晶性。在產生粗化層的程序中,材料的蒸鍍速率可在約1至約10 A/s之範圍中。
粗化層的LUMO與至少一鄰近層的LUMO間之變化係大於0.5 eV。較佳為粗化層是形成為未經摻雜。若粗化有機層的材料是一HTL(作為HTL使用),則較佳為HOMO與鄰近層之HOMO間的變化量大於0.5 eV。較佳為,粗化層是形成為未經摻雜。
基於裝置中任何實際目的,粗化層的材料可為一絕緣體。
因此,較佳變化例具有下列層結構:
-未經摻雜之粗化層 / n-型摻雜之ETL / 陰極
-未經摻雜之粗化層 / p-型摻雜之HTL / 陽極。
粗化層較佳為由其化學結構為線性且未分支的分子所形成,實例為具有低於7個環的縮合環系,例如:蒽、菲、五苯環、BPphen。也可使用化學結構容許沿著主要軸的至少一個軸旋轉之材料。
在粗化有機層也形成電子傳輸層(ETL)(在陰極及有機發光層之間)的例子中,可能使用得自橋聯二噁唑類的材料(及其較高的均質物),特別是1,4-二(苯並[d]噁唑-2-基)苯。
在其他性質間,若使用作為電子傳輸材料或用於一電子傳輸區域/層中時,可排除下列材料:得自橋聯二噁唑類的材料(及其較高的均質物),特別是1,4-二(苯並[d]噁唑-2-基)苯。
在其他性質間,若使用作為電洞傳輸材料或用於一電洞傳輸區域/層中時,可排除苯化的氧硫雜環己二烯。在一具體實施例中,在其他性質間,若使用作為電洞傳輸材料或用於一電洞傳輸區域/層中時,可排除下述化合物:


其中X及Y彼此不同,但獨立地選自氧、硫、硒及碲;n是1、2、3、4、5或6;以及R1-9是獨立地選自氫、烷基、芳基、雜芳基、縮合碳環、縮合雜環、OR’、SR’及NR2’,其中R’是獨立地選自烷基、芳基、雜芳基、縮合碳環及縮合雜環。
在粗化層下方的層可不包括2,7,9-三苯基-4-(對-甲苯基)吡啶並[3,2-h]喹唑啉。
It is an object of the present invention to provide an organic light-emitting device which has improved efficiency (out-of-optical coupling efficiency) for light outcoupling of light generated in a light-emitting region.
This problem is solved by the devices according to items 1 and 12 of the independent patent application, respectively. At the same time, a method of producing an organic light-emitting device according to item 13 of the independent patent application is also provided. The subsidiary items correspond to the preferred embodiments.
According to an idea, an organic light-emitting device comprising a layered structure is provided. The layered structure includes a substrate, a bottom electrode, a top electrode, and an electrically active region, wherein the bottom electrode is closer to the substrate than the top electrode. The electrically active region comprises one or more organic layers and is provided between and in electrical contact with the bottom electrode and the top electrode. A light emitting region is provided in the electrically active region. A roughened layer is provided as a non-closed layer in the electrically active region. The term "non-closed" as used herein refers to a layer made of a roughened structure that protrudes from the underlying layer and separated from each other by a space that does not contain a roughened structure. There may be a flat, very thin ground plane in the space free of the roughened structure, which has the same chemical composition as the roughened structure and has a layer thickness of less than 5 nm. For example, such a ground plane can be one or more layers of molecular monolayers deposited in the rough layer generation process.
And roughening the layer so that the top electrode is provided with an electrode roughening portion by roughening the top electrode facing an inner side of the electrical active region and at least one of an outer side of the top surface of the electrical active region .
The top electrode roughening portion may comprise a roughened inner surface structure on the inner side of the top electrode facing the electrically active region. The top electrode roughening portion may comprise a roughened outer surface structure on the outer side of the top electrode. Viewed from above the electrode, the roughened inner surface structure and the roughened outer surface structure may substantially overlap.
According to another concept, an organic light-emitting device comprising a layered structure is provided. The layered structure includes a substrate, a bottom electrode, a top electrode, and an electrically active region, wherein the bottom electrode is closer to the substrate than the top electrode. The electrically active region comprises one or more organic layers and is provided between and in electrical contact with the bottom electrode and the top electrode, and a light emitting region is provided in the electrical active region. A roughened layer is provided between the substrate and the bottom electrode as a non-closed electrically inactive layer, by roughening the bottom electrode on the inner side of one of the electrically active regions and the bottom electrode is not on the outside of one of the electrically active regions At least one of the roughening layers at least the bottom electrode is provided with an electrode roughening. For the bottom electrode, the outer electrode side faces the substrate. For this device, the roughened layer also provides the electrode with an electrode roughening on at least one of the inner side facing the electrically active region and the outer side of the top electrode non-positive active region. In addition to the roughened layer below the bottom electrode, another roughened layer may be provided in the electrically active region. The other roughened layer is provided in accordance with one or more specific embodiments described in connection with a roughened layer that produces an electrode roughening for the top electrode.
Due to the non-closed structure of the roughened layer, this layer does not completely cover the underlying layer. An island or particle structure can be provided that includes islands/particles of material separated by areas not covered by the roughened structure. These areas may contain no material for the rough layer. The area of the material that does not contain the roughened layer can be provided by the holes present in the roughened layer.
The organic light-emitting device can be provided with more than one layer of roughening. More than one layer of roughening layer may be provided in the electrically active region. A plurality of layers of roughening layers may be provided above and/or below the light emitting regions.
The electrode roughening caused by the roughening layer can be provided with a light reflecting surface structure having reflected (e.g., diffused) light. The structure of the roughened layer itself reflects the light generated in the device. Alternatively, the structure of the roughened layer itself may be substantially free of active light reflection.
One or more layers deposited directly on the roughened layer in the electrically active region may be provided as a closed layer. Alternatively, the layers can be a non-closed layer wherein the particles forming the roughened layer provide an iceberg structure. The structure of the roughened layer extends through one or more layers deposited directly on the roughened layer.
The roughened structure of the electrode has a dimension that can be a thickness level of the electrode layer. The individual electrodes may be roughened only at the locations where the coarse layer particles are present below, otherwise they are flat. The surface roughness can be measured by, for example, a leveling instrument (e.g., Dektak) or an electron microscope cross-sectional image of the device.
The thickness of the electrode provided with the roughened portion produced by the roughened layer may be provided to have a thickness that is many more than the nominal thickness of the roughened layer.
The roughened layer may be provided with a plurality of separate particles (islands) randomly distributed over an underlying layer on which the roughened layer is deposited. The roughened layer is also referred to as a "grain layer." The plurality of separator particles can be provided in random directions, distances between each other (space between the particles), and/or particle size. The separator particles distributed on the lower layer provide an island-like structure for the rough layer. The size of the particles may fall within the wavelength range of visible light, preferably the wavelength range of light emitted by the organic light-emitting device, which may be the wavelength in the organic medium surrounding the particles, or the wavelength in the particulate material.
The particles of the roughened layer may have a lateral dimension of from about 50 nanometers to about 500 nanometers, and/or one of from about 3 nanometers to about 50 nanometers (preferably from about 3 nanometers to about 15 nanometers). height. The particle density inside the organic light-emitting device may be from 5 to 50 particles per square micrometer, preferably from 10 to 30 particles per square micrometer. These particles may have a dimension of up to 1000 nm. Those dimensions may be provided for Mie scattering, which preferably occurs at objects of visible light wavelength (between 450 nm and 700 nm) divided by the diameter of the refractive index of the surrounding organic material. .
The top electrode can be provided on the top layer of an electrically active region which is roughened by a roughened layer provided below the top layer. The top electrode can be in direct contact with the top layer. In other embodiments, one or more layers may be provided between the top electrode and the top layer of the electrically active region. The top electrode can be made of a single layer, or a plurality of electrode layers.
The top electrode can be provided directly on the roughened layer.
The top layer can be a combined illuminating and electron transporting layer. The top layer (provided as a single layer or multiple layers) is a closed layer. Alternatively, the top layer can be a non-closed layer wherein the particles forming the roughened layer provide an iceberg structure. This iceberg structure causes direct contact between the top electrode and the iceberg area.
A roughened layer can be provided between the light emitting region and the top electrode.
A roughened layer can be provided between the light emitting region and the bottom electrode. In the case of more than one layer of roughening, a roughened layer may be provided above the light emitting region, and another layer of roughening may be provided below the light emitting region.
The roughened layer can be provided to have a nominal layer thickness of from about 3 nanometers to about 50 nanometers, preferably from about 3 nanometers to about 15 nanometers. The thickness of the roughened layer is the nominal thickness, which is typically calculated from the mass deposited on a particular area divided by the density of the material. For example, in vacuum heated vapor deposition VTE, the nominal thickness is the value indicated by the thickness monitoring device. The particles of the roughened layer may grow on a surface of the underlying layer which are separated from one another and do not join to form a closed layer.
At the same time, the nominal thickness of the roughened layer can also be measured by atomic force microscopy (AFM).
The roughened layer can be provided on or overlying an electrically doped charge carrier transport layer. The roughened layer may be sandwiched between two electrically doped charge carrier transport layers, the two electrically doped layers being holes and/or electron transport layers. The top layer can be a single layer that is electrically doped, or a plurality of electrically doped sublayers. A roughened layer can be provided on a luminescent layer.
The roughened layer may be provided between and in direct contact with the electron transport layer and the cathode, or between the electromotive transport layer and the anode. The transport layer is electrically doped. The roughened layer can be undoped.
The roughened layer can be made of a self-crystallizing material. The roughened layer made of the self-crystallized material may be disposed adjacent to the hole transport layer, which may be in direct contact with the hole transport layer. Thereby, the light outcoupling of light can be increased. Alternatively, the roughened layer made of self-crystalline material can be disposed on the electron transport side of the device, particularly adjacent to the electron transport layer.
In order to maximize the out-of-light coupling from the organic light-emitting device, it is necessary to minimize internal absorption and to perform light extraction in the waveguide mode and the surface plasmon mode. To handle these optical modes, the roughened layer provides an improvement in the structure of conventional flat-like organic light-emitting devices. In a conventional organic light-emitting device, two flat electrodes are deposited on a flat substrate with a flat organic layer interposed therebetween. In this configuration, the waveguide mode (i.e., the mode of light propagation in the organic layer and possibly also in a translucent electrode (e.g., ITO)) and the surface plasmon mode (on the surface of a generally metallic electrode) The light propagation mode in the excimer is easily coupled to the emitter in the organic light emitting diode. The light that is carried out in these modes is no longer readily optically coupled to the air mode, which significantly limits the light conversion efficiency of the organic light-emitting device.
The architecture of the organic light-emitting device proposed herein allows for a simple structure of at least one of the top electrode layer and the bottom electrode layer. This type of roughening minimizes plasma loss and enhances the optical outcoupling of the waveguide mode. In this way, the roughened portion of the electrode layer can be realized, which can serve as a scattering center/structure of both the waveguide mode and the surface plasmon mode.
As a result of the use of the roughened layer, not only the optical outcoupling but also the angular correlation of the light emission can be improved. The white light spectrum contains several light color compositions, but typically consists of at least some of the blue, green and red light. Since different wavelengths have different emission characteristics, different colors can be seen in different viewing angles in conventional OLEDs. This can be greatly reduced by the scattering properties of the devices proposed herein.
The roughened layer improves the out-of-plane coupling of the internal mode; it also improves the out-of-plane coupling of the substrate mode. The roughening layer can be used to protect the electronic properties of the OLED from being affected. It is further determined that an additional power gain can be achieved by an optical outcoupling film, which is not achievable in a general optical outcoupling solution (conventional scattering layer). In contrast, in conventional OLEDs with simple conventional scattering layers, there is no power gain if another additional optical outcoupling film is used.
A simple structure is proposed to produce a highly efficient organic light-emitting device without an expensive method (for example, micro-structure of the electrode-side substrate surface or the semiconductor-side electrode surface). A flat (unstructured) bottom electrode can also be used. Microstructuring is understood to mean a structure that has a range of wavelengths of light to affect light.
All of the organic layers in the electrically active region were fabricated by vacuum evaporation (Vucuum thermal evaporation, VTE). Alternatively, all of the organic layers in the stacked layer configuration can be fabricated by means of OVPD. In a preferred embodiment, all of the organic layer and both electrodes are deposited in a vacuum coating process, such as VTE or sputtering.
The roughened layer is formed of an organic material as a vapor deposited layer which can be deposited by heating and evaporation in a vacuum. For this purpose, the material has a vaporization (or sublimation) temperature in vacuum that is lower than the decomposition temperature in vacuum. Alternatively, or in addition, the roughened organic layer can be made by means of OVPD. The roughening layer can be established by, for example, dewetting of a film made by spin coating and subsequent heat treatment (for example, a 5% solution of (spiral-TTB) in anisole). In addition, the degreasing of the nano-grade organic film can also be achieved by condensing the solvent from the gaseous state.
The roughened layer can be formed by gaseous condensation of metal nitride nanoparticles, electroplating deposition, vacuum spraying, photolithography, and printing (eg, microcontact printing of nanoparticle arrays).
The roughened organic layer is preferably made of an organic material having a Tg of less than about 40 degrees Celsius. Preferably, a material free of Tg is used. In this manner, the organic material crystallizes itself during vapor deposition onto the substrate without any further tempering steps, as in conventional VTE systems, the substrate temperature is typically between 20 degrees Celsius and 60 degrees Celsius. Between degrees.
Tg is determined by the way DSC measures. The DSC measurement is performed using a material that is returned to room temperature by means of impingement cooling after melting. The material was then heated at a rate of 10 K/min in the measurement. Of the preferred materials used in the roughened organic layer, no Tg was observed.
The roughened layer is preferably crystallized during vapor deposition. Alternatively, the tempering step can be performed after the layer is completed and before the next layer is deposited.
Other concepts of the present invention will be described in more detail below.
The roughened layer may be covered by a charge carrier transport layer such that charge will flow around the roughened particles; however, they may also be directly covered by the metal electrode. Implementation of such structures can be achieved via the use of p- and n-type doped transport layers, as doping of the charge transport layer can result in possible charge carrier traps (which may form on the surface of the roughened particles) At) to reach saturation.
The separation structure (particles, islands) of the roughened layer preferably exhibits minimal absorption in the visible range to avoid absorptive light loss. The refractive index of the particles is selected such that the waveguide mode scattering at the particles is minimized (ie, the refractive index of the roughened particles should be consistent with the refractive index of the organic layer of the organic light-emitting device) or maximized (ie, It is necessary to maximize the refractive index of the organic layer relative to the organic light-emitting device. In the first case, the waveguide mode is not scattered by the roughened particles, but is only scattered via the roughened portion of the metal electrode. In the latter case, the scattering of the waveguide mode can occur directly from the roughened particles.
The deposited particles of the roughened layer can have a circular shape without any significant tip or edge (which may result in a shortcut formation in the cathode or a poorly roughened profile). The roughened particles may be long spherical, or oblate spheroids, or crystals having well-defined edges (eg, needles, tetrahedra, octagons, etc.). These shapes can be achieved, for example, by de-wetting (due to surface tension). It is also true for the printing process performed under the correct parameter set, appropriate material selection (how to crystallize).
The optical outcoupling method can also be combined with other methods well known to those skilled in the art, such as a microlens array film or a scattering substrate.
The particles of the roughened layer can grow wider than the height (for example, the aspect ratio is 5:1 to 1:1). If these particles are taller than the width, they should have a width to height ratio of 1:1 to 1:5 to avoid interruption or penetration through the top electrode.
The organic light emitting device can be provided with at least one of the following features:
- There is a glass transition temperature of at least 300 K below the melting temperature. Preferably, the material does not have any measurable glass transition temperature at temperatures above room temperature and varies directly from the glassy state to the crystalline state, or is completely unknown in the glassy state.
- For all visible light, there is a high light transmission, which can also be defined as having a low extinction coefficient (less than 0.1).
- No obvious color.
- A HOMO-LUMO energy gap of at least 3 eV.
- The material is transparent in the visible region (optical energy gap > 3 eV).
- there is a LUMO of less than 2.0 eV (absolute) (which is atypical for ETMs used in OLEDs), or a HOMO of greater than 5.5 eV (absolute) (which is for HTMs used in OLEDs) Atypical).
- the molecular mass of the electrically doped organic material used in the transport layer is greater than 200 g/mol and less than 400 g/mol (less than 200 g/mol is a compound with excessive volatility, and greater than 400 g/ The case of mol is a compound which cannot be sufficiently crystallized).
When a dehumidification mechanism is used to form the particles of the roughened layer, the material of the particles may have a high Tg, for example above 85 degrees Celsius, such that it is stable under conventional apparatus operation. An example of a degreasing method is 2,2',7,7'-tetrakis (N,N-di-p-methylphenylamino)-9,9'-ring doubled from anisole solution.芴 layer.
In a specific embodiment, the top electrode is an anode, and the material of the rough layer is an electron transport material (ie, the energy barrier of the hole injected into the HOMO of the scattering layer material is so high that it cannot be in the device. Generate hole transmission). It is particularly surprising that this particular embodiment is fully operational, which illustrates that the material of the scattering layer does not need to have any electronic function in the device.
In another embodiment, the top electrode is a cathode, and the material of the roughened layer is a hole transport material (ie, the energy barrier of electron injection into the LUMO of the scattering layer material is so high that it is not available. In the electronic transmission). This is also surprising as explained above.
For the use of scattering or roughening compounds in the electrically active region of the organic light-emitting device, it is preferred that the rough layer has a nominal layer thickness of less than 50 nm; more preferably less than 10 Nano. If the layer containing the roughening compound is used as a template, it is found that when the roughened layer is disposed between a first and a second electron transporting layer, optimum device performance is obtained, and wherein the roughening is obtained. The nominal thickness of the layer is greater than or equal to 3 nanometers and less than or equal to 30 nanometers, preferably between 5 nanometers and 15 nanometers.
The particle size creates a structure on the electrode of the optical wavelength range in the surrounding organic medium to affect the light. Preferably, the width of the feature (parallel to the plane of the substrate) falls within the range of optical wavelengths in the surrounding organic medium. The height is smaller than the width, for example, a factor of 2 or 3. The particles above the layer as well as the individual features (eg top electrode) are randomly distributed. Generally, the refractive index of an organic medium is generally between 1.7 and 2. In most cases, 1.7 is a good approximation.
The wavelength can also be the wavelength in the particulate material, especially if no layer is present between the roughened layer and the top electrode. Preferably, the particles have at least one dimension between 100 nanometers and 450 nanometers.
The roughened structure can have a size sufficient to affect the plasmonics in the top electrode. The height can be less than the width, for example by a factor of 2 or 3. The particles above the layer and individual features such as the top electrode system are randomly distributed.
In general, organic light-emitting devices (OLEDs) are based on the principle of electroluminescence, in which electron-hole pairs (so-called excited electrons) recombine under light illumination. To this end, the organic light-emitting device is constructed in the form of a sandwich structure in which at least one organic film is disposed between two electrodes as an active material, positive and negative charge carriers are injected into the organic material, and from holes or electrons to A charge of a recombination zone (light-emitting layer) is transferred to the organic layer where the charge carriers recombine into singlet and/or tri-state excited electrons under light illumination. Subsequent recombination of the excited electrons causes luminescence. At least one of the electrodes must be transparent to allow light to exit the component. Typically, the transparent electrodes are composed of conductive oxides called TCOs (transparent conductive oxides) or very thin metal electrodes, although other materials may be used. The starting point for the fabrication of the organic light-emitting device is a substrate on which individual layers of the OLED are deposited. If the electrode closest to the substrate is transparent, the element is referred to as a "bottom-emitting OLED"; and if the other electrode is transparent, the element is referred to as a "top-emitting OLED." The bottom electrode is closer to the substrate than the top electrode. The bottom electrode is formed (deposited) before the top electrode is formed (deposited).
The most reliable and efficient OLEDs are those that contain doped layers. The organic solid can be substantially increased by electrically doping the hole transport layer with a suitable receiving material (p-type doping) and electrically doping the electron transport layer with an appropriate supply material (n-type doping). The charge carrier density (and thus the conductivity). Furthermore, similar to the experience of inorganic semiconductors, it is foreseeable to be based precisely on the application of the p-type and n-type doped layers in the component, otherwise it cannot be inferred. Doped charge carrier transport layer (p-type doping of a hole transport layer carried out by a molecular mixture of a receiving type, n-type doping of an electron transport layer carried out by a molecular mixture of a supply type) in organic light emission The use of the diodes is described in documents US 2008/203406 and US 5,093,698.
The materials used in the layer configuration are conventional materials used in OLEDs, and these materials or mixtures thereof satisfy the functions of the layer, such as an injection layer, a transport layer, an emission layer, a connection unit, and the like. For an illustrative example of such layers and materials, please refer to documents US 2009/045728, US 2009/0009072, EP 1 336 208, and references therein.
The illuminating region is a region made of one or more layers in which excited electrons participating in luminescence are formed, and/or where excited electrons recombine the emitted light. Possible illuminating layers are described, for example, in the documents EP 1 508 176, US 2008/203406, EP 1 705 727, US 6,693,296. Different possible configurations of the luminescent layer in the OLED are described, for example, in EP 1 804 308, EP 1 804 309. In a specific case, the charge carrier injection is highly balanced with the charge carrier transport system, and the OLED can be made in a single layer (EP 1 713 136). In this case, the luminescent layer does not need to have a distinct interface, including illuminating The region where the electrons are excited is a light-emitting layer.
Regarding an organic light-emitting device, a Hole Transport Layer (HTL) is a layer containing a large-gap semiconductor, which is responsible for transmitting a hole from an anode or transmitting a hole from a connection unit (CU) to a light emitting layer (Light emitting layer). Layer, LEL or EML). The HTL is included between the anode and the LEL, or between the hole generating side of the CU and the LEL. The HTL can be mixed with another material, such as a p-type dopant, in which case the HTL is said to be p-type doped. The HTL may contain several layers having different compositions. P-type doping of the HTL reduces its resistivity and avoids individual power losses due to the high resistivity of the undoped semiconductor. The doped HTL can also be used as an optical separator because it can be made very thick, up to 1000 nm or more, and the resistivity is not significantly increased.
Regarding an organic light-emitting device, an electron transport layer (ETL) is a layer containing a large-gap semiconductor, which is responsible for transporting electrons from a cathode or transferring electrons from a connection unit to a light-emitting layer. The ETL is included between the anode and the LEL or between the electron generating side of the connecting unit and the LEL. The ETL can be mixed with another material, such as an n-type dopant, in which case the ETL is said to be n-type doped. ETL can contain several layers with different compositions. The n-type doping of the ETL reduces its resistivity and avoids individual power losses due to the high resistivity of the undoped semiconductor. The doped ETL can also be used as an optical separator because it can be made very thick, up to 1000 nm or more, and the resistivity does not increase significantly.
Other layers typically used in OLED fabrication, such as holes and electron blocking layers, implant layers, excited electron blocking layers, and the like, can also be used.
The most reliable and at the most efficient device is an organic light-emitting device containing an electrically doped layer. The organic solid can be substantially increased by electrically doping the hole transport layer with a suitable receiving material (p-type doping) or by electrically doping the electron transport layer with an appropriate supply material (n-type doping). The charge carrier density (and thus the conductivity). Furthermore, similar to the experience with inorganic semiconductors, it is foreseeable to be based precisely on certain applications of the p-type and n-type layers used in the element, otherwise it cannot be inferred. Doped charge carrier transport layer (p-type doping of a hole transport layer carried out by a molecular mixture of a receiving type, n-type doping of an electron transport layer carried out by a molecular mixture of a supply type) in organic light emission The use of the diodes is described in documents US 2008/203406 and US 5,093,698.
Electrical doping is also known as redox doping or charge transfer doping. Doping is known to increase the density of charge carriers of a semiconductor substrate towards the charge carrier density of the undoped matrix.
US 2008/227979 discloses in detail the doping of organic transport materials with inorganic dopants and with organic dopants. Basically, efficient electron transport occurs from the dopant to the matrix, which increases the Fermi level of the matrix. For efficient transport in the case of p-type doping, the LUMO energy level of the dopant is preferably more negative than the HOMO energy level of the matrix, or at least slightly more positive than the HOMO energy level of the matrix. (no more than 0.5 eV). For the case of n-type doping, the HOMO energy level of the dopant is preferably more positive than the LUMO energy level of the matrix, or at least slightly more negative than the LUMO energy level of the matrix (not less than 0.5 eV). What is more desirable is that the energy transfer from the dopant to the substrate has an energy level difference of less than +0.3 eV.
A typical example of a doped hole transport material is a copper indigo (CuPc) doped with tetrafluoro-tetracyanium xylene (F4TCNQ) having a HOMO order of about -5.2 eV and a LUMO order of about -5.2. eV; zinc indigo (ZnPc) doped with F4TCNQ (HOMO=-5.2 eV); a-NPD (N,N'-bis(naphthalen-1-yl)-N,N'-di doped with F4TCNQ (phenyl)-benzidine). a-NPD doped with 2,2'-(perfluoronaphthalene-2,6-diphenyl)dipropanecarbonitrile (PD1). a-NPD doped with 2,2',2''-(cyclopropane-1,2,3-extended triyl)tris(2-(p-cyanotetrafluorophenyl)acetonitrile) (PD2). All p-doping in the device example was carried out with 5 mol% of PD2. Other useful hole transport materials are like N4, N4, N4'', N4''-tetrakis ([1,1'-biphenyl]-4-yl)-[1,1':4',1''-Triphenyl]-4,4''-diamine (HT1) is disclosed in WO 2011/134458. Another type of hole transport material is 2,2',7,7'-tetrakis(N,N-di-p-methylphenylamino)-9,9'-cyclohexane (HT2). Another type of hole transport material is N4,N4''-bis(naphthalen-1-yl)-N4,N4''-diphenyl-[1,1':4',1 disclosed in US 2012/223296 ''-Triphenyl]-4,4''-diamine (HT3).
Typical examples of doped electron transport materials are: fullerene C60 doped with acridine orange base (AOB); technetium-3,4,9,10-tetracarboxylic acid-3 doped with white crystal violet , 4,9,10-dianhydride (PTCDA); with four (1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidinium)-di-tungsten (II (W 2 (hpp) 4 , ND1) doped 2,9-di(phenanthr-9-yl)-4,7-diphenyl-1,10-morpholine; with 3,6-di-( Dimethylamino)-acridine-doped naphthalenetetracarboxylic acid bis-anhydride (NTCDA); naphthalene tetracarboxylic acid doped with bis(ethylene-dithio)tetrathiafulvalene (BEDT-TTF) -anhydride. For example, 4,4',5,5'-tetracyclohexyl-1,1',2,2',3,3'-hexamethyl-2,2',3,3'-tetrahydro- A useful air-stable precursor of the n-dopant of 1H,1'H-2,2'-diimidazole (ND2) is disclosed in EP 1 837 926. Another material is commercially available 2,4,7,9-1,10-morpholine (ET5).
The organic light-emitting device may include an external light outcoupling layer outside the electrically active region (the region between the electrodes). This external light outcoupling layer is other than the scattering layer. For a top-emitting OLED, the external optical outcoupling can be a layer that matches the refractive index of the stack to enhance optical outcoupling from a transparent top electrode to air. Top-emitting OLEDs are described, for example, in WO 2005/106987, EP 1 739 765. In a preferred embodiment, the scattering layer is in direct contact with the top electrode. The external light outcoupling layer may also contain microspheres on the bottom side of the substrate from which the bottom OLED is illuminated.
The organic light-emitting device may be formed as a non-inverted structure or a reversed structure. In the case of a non-inverted structure, the bottom electrode is the anode and the top electrode is the cathode. In the inverted configuration, the bottom electrode is the cathode and the top electrode is the anode.
The roughened layer can be uniformly formed from a material having a single molecular structure.
The organic light-emitting device can be a large-area illumination device in which the roughened layer is patterned and the pattern can be resolved by the human eye. For example, the pattern has dimensions that can be resolved by the human eye of a human observer viewing the device at a distance of one meter to several meters. This pattern has the advantage of being considered a blurred symbol in the closed state, for example due to the different mirror/diffusion surfaces of the reflective layer. In addition, the symbol can be made to be seen also in the on state, and when the device is set to medium brightness, the human observer can also observe a contrast between the stronger and weaker light outcoupling regions.
The standard value of the human eye resolution is known to be 1 cent (1/60 degree). It is assumed that the viewing distance from the luminescent layer is 1 metre, which corresponds to a resolution of 0.29 mm. If the viewing distance is assumed to be 30 cm, a resolution of 35 is approximately 100 microns. Thus, the value of the lateral distance and/or the width of the linear luminescent layer of approximately 100 microns can be assumed to be a suitable lower limit for the lateral dimension of the luminescent layer that can still be resolved by the human eye.
The process of roughening the layer is adjusted to achieve a preferred growth mode: deposition rate, substrate temperature during deposition, and latency after film deposition (tempering). Low evaporation rates result in small particle densities. On the other hand, if the evaporation rate is too high, the particles will fuse together or the layer may become amorphous. In the procedure for producing the roughened layer, the evaporation rate of the material may range from about 1 to about 10 A/s.
The change between the LUMO of the roughened layer and the LUMO of at least one adjacent layer is greater than 0.5 eV. Preferably, the roughened layer is formed to be undoped. If the material of the roughened organic layer is an HTL (used as an HTL), it is preferred that the amount of change between the HOMO and the HOMO of the adjacent layer is greater than 0.5 eV. Preferably, the roughened layer is formed to be undoped.
The material of the roughened layer may be an insulator based on any practical purpose in the device.
Therefore, the preferred variation has the following layer structure:
- Undoped rough layer / n-type doped ETL / cathode
- Undoped rough layer / p-type doped HTL / anode.
The roughened layer is preferably formed of molecules whose chemical structure is linear and unbranched, and examples are condensed ring systems having less than 7 rings, such as fluorene, phenanthrene, pentabenzene ring, and BPphen. It is also possible to use a chemical structure that allows material to be rotated along at least one axis of the main axis.
In the case where the roughened organic layer also forms an electron transport layer (ETL) (between the cathode and the organic light-emitting layer), it is possible to use materials derived from bridged dioxins (and their higher homogenates), in particular It is 1,4-bis(benzo[d]oxazol-2-yl)benzene.
Among other properties, if used as an electron transporting material or in an electron transporting region/layer, the following materials may be excluded: materials derived from bridged oxazoles (and their higher homogenates), especially 1,4-bis(benzo[d]oxazol-2-yl)benzene.
Among other properties, if used as a hole transport material or in a hole transporting region/layer, the benzoated oxetane can be excluded. In a specific embodiment, the following compounds may be excluded if used as a hole transport material or in a hole transport region/layer between other properties:


Wherein X and Y are different from each other, but are independently selected from the group consisting of oxygen, sulfur, selenium and tellurium; n is 1, 2, 3, 4, 5 or 6; and R 1-9 is independently selected from the group consisting of hydrogen, alkyl and aromatic. a base, a heteroaryl group, a condensed carbocyclic ring, a condensed heterocyclic ring, OR', SR' and NR 2 ', wherein R' is independently selected from the group consisting of an alkyl group, an aryl group, a heteroaryl group, a condensed carbocyclic ring, and a condensed heterocyclic ring.
The layer below the roughened layer may not include 2,7,9-triphenyl-4-(p-tolyl)pyrido[3,2-h]quinazoline.

1、50...基板1, 50. . . Substrate

2、51...底部電極2, 51. . . Bottom electrode

3、5...發光層3, 5. . . Luminous layer

4、7...傳輸層4, 7. . . Transport layer

6、22、32、41...粗化層6, 22, 32, 41. . . Rough layer

7.1、13.1、17.1、18.1...玻璃基板7.1, 13.1, 17.1, 18.1. . . glass substrate

7.2、13.2...ITO7.2, 13.2. . . ITO

7.3、13.3...HT1:PD2(97:3)(層厚度為30奈米)7.3, 13.3. . . HT1: PD2 (97:3) (layer thickness is 30 nm)

7.4、13.4...HT1:PD2(99:1)(145奈米)7.4, 13.4. . . HT1: PD2 (99:1) (145 nm)

7.5、13.5...HT1(10奈米)7.5, 13.5. . . HT1 (10 nm)

7.6、13.6...ABHO36...NRD129(99:1)(5奈米)7.6, 13.6. . . ABHO36. . . NRD129 (99:1) (5 nm)

7.7、13.7...ABHO36:NUBD369(95:5)(25奈米)7.7, 13.7. . . ABHO36: NUBD369 (95:5) (25 nm)

7.8、13.8...ET2(10奈米)7.8, 13.8. . . ET2 (10 nm)

7.9、13.9...化合物(1d)-(1f)7.9, 13.9. . . Compound (1d)-(1f)

7.10...ET2:ND2(90:10)(30奈米)7.10. . . ET2: ND2 (90:10) (30 nm)

7.11、13.11...銀(100奈米)7.11, 13.11. . . Silver (100 nm)

8、55...頂部電極8, 55. . . Top electrode

9...封裝體9. . . Package

10...電性主動區域10. . . Electrical active area

13.10...ET2:ND1(30奈米)13.10. . . ET2: ND1 (30 nm)

17.2、18.2...ITO(層厚度為90奈米)17.2, 18.2. . . ITO (layer thickness is 90 nm)

17.3、18.3...HT2:PD1(98.5:1.5)(50奈米)17.3, 18.3. . . HT2: PD1 (98.5: 1.5) (50 nm)

17.4、18.4...a-NPD(20奈米)17.4, 18.4. . . a-NPD (20 nm)

17.5、18.5...化合物1d)(10奈米)17.5, 18.5. . . Compound 1d) (10 nm)

17.6、18.6...a-NPD:REO76(95:5)(20奈米)17.6, 18.6. . . a-NPD: REO76 (95: 5) (20 nm)

17.7...ET5(10奈米)17.7. . . ET5 (10 nm)

17.8...ET2(10奈米)17.8. . . ET2 (10 nm)

17.9...ET2:ND1(92:8)(40奈米)17.9. . . ET2: ND1 (92: 8) (40 nm)

17.10...銀17.10. . . silver

18.7...ET5(60奈米)18.7. . . ET5 (60 nm)

18.8...LiQ(2奈米)18.8. . . LiQ (2 nm)

18.9...Al18.9. . . Al

21、31、40...下方層21, 31, 40. . . Lower layer

23、33...顆粒23, 33. . . Granule

24...高度twenty four. . . height

25...開放空間25. . . Open space

34...接地層34. . . Ground plane

42...已粗化層42. . . Roughened layer

43...粗化結構43. . . Coarse structure

44...外側部44. . . Outer part

45...內側部45. . . Inner side

46...區域46. . . region

52、53、54...有機層52, 53, 54. . . Organic layer

56...交界面56. . . Interface

57...粗化部57. . . Roughing department

Al...銀Al. . . silver

ITO...電極ITO. . . electrode

下文則參照圖式中的各圖、藉由其他具體實施例的方式來更詳細解釋本發明。在圖式中顯示:
第1圖為表示一有機發光裝置的層狀結構之示意(截面)圖,
第2圖為表示具有在一下方層上之粗化層的層狀結構的示意(截面)圖,
第3圖為表示具有在一下方層上之粗化層的層狀結構的示意(截面)圖,
第4圖為表示一下方層(後續沉積有一粗化層以及沉積在粗化層上之一已粗化層)的示意(截面圖),
第5圖為表示一有機發光裝置的層狀結構之示意(截面)圖,
第6圖為以AFM(原子力顯微鏡)所進行之一樣品層結構的輪廓量測,
第7圖繪示了一有機發光裝置之層狀結構,
第8圖為以SEM(掃瞄式電子顯微鏡)進行之有機發光裝置的實驗結果,
第9圖為以SEM進行之有機發光裝置的實驗結果,
第10圖為以SEM進行之有機發光裝置的實驗結果,
第11圖為以SEM進行之有機發光裝置的實驗結果,
第12圖為以SEM進行之有機發光裝置的實驗結果,
第13圖繪示了一有機發光裝置的層狀結構,
第14圖為以SEM進行之有機發光裝置的實驗結果,其中該有機發光裝置係以第13圖所示之層狀結構製備而得,
第15圖為以SEM進行之有機發光裝置的實驗結果,其中該有機發光裝置係以第13圖所示之層狀結構製備而得,
第16圖為以AFM所進行之層狀結構的實驗結果,
第17圖繪示了一有機發光裝置的層狀結構,
第18圖繪示了一有機發光裝置的層狀結構,
第19圖為以SEM進行之有機發光裝置的實驗結果。
The invention is explained in more detail below by means of other figures in the drawings. Shown in the schema:
1 is a schematic (cross-sectional) view showing a layered structure of an organic light-emitting device,
Figure 2 is a schematic (cross-sectional) view showing a layered structure having a roughened layer on a lower layer,
Figure 3 is a schematic (cross-sectional) view showing a layered structure having a roughened layer on a lower layer,
Figure 4 is a schematic (cross-sectional view) showing an underlying layer (subsequently deposited with a roughened layer and one of the roughened layers deposited on the roughened layer),
Figure 5 is a schematic (sectional) view showing a layered structure of an organic light-emitting device,
Figure 6 is a profile measurement of a sample layer structure by AFM (Atomic Force Microscopy).
Figure 7 is a diagram showing the layered structure of an organic light-emitting device.
Figure 8 is an experimental result of an organic light-emitting device by SEM (Scanning Electron Microscope),
Figure 9 is an experimental result of an organic light-emitting device by SEM.
Figure 10 is an experimental result of an organic light-emitting device by SEM.
Figure 11 is an experimental result of an organic light-emitting device by SEM.
Figure 12 is an experimental result of an organic light-emitting device by SEM,
Figure 13 is a diagram showing the layered structure of an organic light-emitting device.
Fig. 14 is an experimental result of an organic light-emitting device by SEM, wherein the organic light-emitting device is prepared by the layered structure shown in Fig. 13.
Figure 15 is an experimental result of an organic light-emitting device by SEM, wherein the organic light-emitting device is prepared by the layered structure shown in Figure 13
Figure 16 shows the experimental results of the layered structure by AFM.
Figure 17 is a diagram showing the layered structure of an organic light-emitting device.
Figure 18 is a diagram showing the layered structure of an organic light-emitting device.
Fig. 19 is an experimental result of an organic light-emitting device by SEM.

第1圖繪示了表示一有機發光裝置的層狀結構的示意(截面)圖。該有機發光裝置可提供用於一有機發光二極體(OLED)。該層狀結構包含一基板1、一底部電極2、一電性主動區域10、一粗化層6、以及一頂部電極8,該頂部電極以一封裝體9覆蓋。在頂部電極8與粗化層6之間有一傳輸層7。在其他具體實施例中,傳輸層7可不存在。第一圖中之層狀結構也包含一發光層5與一傳輸層4。在其他具體實施例中,傳輸層4可不存在。此外,還有另一發光層3,其係由一或多層所製成,且在其他具體實施例中也可不存在。不同於第1圖所示之示意圖,在發光層5與粗化層6之間可能有另一傳輸層。
第2圖繪示了表示一層狀結構的示意(截面)圖,其在一下方層21上具有一粗化層22。粗化層22被提供一非封閉層。粗化層22的顆粒23彼此分隔,提供了一島狀或顆粒結構。顆粒23具有一高度24,位在相鄰的顆粒之間係有開放空間或區域25。在開放空間25中,粗化層22的材料並不覆蓋下方層21。舉例而言,這類層設計係藉由在下方層21上之粗化層22的沃謨 - 韋伯(Volmer-Weber, VW)模式成長而產生。
第3圖繪示了表示具有粗化層的一層狀結構的示意(截面)圖,其中該粗化層32在一下方層31上被提供具有粗化結構,亦即顆粒33。存在以與顆粒33相同之材料所製成之一接地層34,其具有5奈米或更小之厚度,並且覆蓋了下方層31中提供粗化結構之顆粒33之間的區域。顆粒33與接地層34一起為粗化層提供了一冰山結構。舉例而言,這類層結構係藉由在下方層31上之粗化層32的三維模式成長(Stranski-Krastanow, SK)而提供。
第4圖繪示了表示一下方層40的示意(截面)圖,其後續有一粗化層41以及沉積在粗化層41頂部之一已粗化層42。已粗化層42被提供具有一粗化部,其包含在外側部44與內側部45上之粗化結構43。在其他具體實施例中(未顯示),已粗化層42可僅於內側部45上被提供具有表面粗化部,而外側部44則為平坦。
層42可為視需要而經摻雜之一傳輸層或一電極。
第4圖也繪示了沒有粗化結構(不含顆粒)的一區域46,此區域可例如藉由於蒸鍍期間使用遮光罩而建立。在區域46中,可以直接測量層42的厚度,例如藉由一測平儀。注意,圖式僅為示意之用,而不需代表其尺度。
第5圖繪示了代表一有機發光裝置的層狀結構的示意(截面)圖,有基板50、底部電極51(例如一ITO陽極)、有機層52、53與54。有機-有機界面是以虛線(例如56)標示。有機層54也包含粗化顆粒(未明確繪示出來),其可導致例如一鋁陰極之頂部電極55的粗化部57。
第6圖說明以AFM對一樣品石英 / 30奈米之2,7,9-三苯基-4-(對-甲苯基)吡啶並[3,2-h]喹唑啉 / 10奈米之化合物(1a–見下文) / 30奈米之2,7,9-三苯基-4-(對-甲苯基)吡啶並[3,2-h]喹唑啉 / 100奈米之銀所進行之輪廓量測。在石英上的30奈米之2,7,9-三苯基-4-(對-甲苯基)吡啶並[3,2-h]喹唑啉層是平坦的,具有低於3奈米的粗糙度。化合物(1a)的層體並不形成一封閉層,而是僅形成顆粒。此量測是從銀電極的頂部開始顯示,因為其凍結了化合物(1a)之層體的形態(最短等待時間)。
上述有機層狀結構含有至少一發光層。有機發光二極體之典型層狀結構係描述於例如EP 1 705 727、EP 1 804 309中。OLED也可具有一p-i-n層狀結構,其係說明於例如US 7,074,500、US 2006/250076中。p-i-n OLED中所使用的n-型摻雜物與p-型摻雜物係說明於例如US 6,908,783、US 2008/265216、WO 07/107306、EP 1 672 714中。
下列化合物可用於在有機發光裝置中產生粗化層。





因此化合物(1a)至(1f)及其合成即為已知。一或多種化合物係已被使用作為螢光增亮劑。
用於電子傳輸層的化合物(4-(二苯並[c,h]吖啶-7-基)苯基)二苯基膦氧化物(ET3)及7-(4'-(1-苯基-1H-苯並[d]咪唑-2-基)-[1,1'-聯苯基]-4-基)二苯並[c,h]吖啶(ET4)之合成,是以下述方法進行。THF代表四氫呋喃、MTBE代表甲基-第三丁基醚、DCM代表二氯甲烷、Et2O代表二乙醚、MeOH代表甲醇、BuLi代表丁基鋰、HPLC代表高效能液態層析、NMR代表核磁共振。
第一步驟:(E)-2-(4-溴苯甲並基)-3,4-二氫萘-1(2H)-酮(c)的合成。所有的操作都是在空氣中進行,無需任何進一步純化市售的溶劑/化學品。



將250 mL的錐形瓶充填四氫萘酮(3.22 g,22 mmol)及4-溴苯甲醛(5.3 g,28.6 mmol)。將其溶解於溫熱的四氫呋喃(12 mL),並將4重量%KOH於甲醇中之溶液(100 mL)緩慢加到這個黃色的溶液中。將反應於室溫攪拌4天。將混合物濃縮並減少至大約10%體積。將殘留物過濾,並以MTBE清洗(3×50 mL)、乾燥,以得到淡黃色粉末(6.61 g,96%)。
第二步驟:7-(4-溴苯基)-5,6,8,9-四氫二苯並[c,h]吖啶(d)的合成。兩個反應步驟都在氬氣下進行。


將c(6.54 g,20.9 mmol)及四氫萘酮(2.93g,20.0 mmol)與BF3.Et2O(3 mL,23.7 mmol)一起導入至錐形瓶中。將混合物在100℃攪拌4小時,並冷卻至室溫。加入Et2O(25 mL),並將混合物再攪拌1小時。將沈澱物過濾並以Et2O(20 mL)清洗。接著將乾燥的粉末(3.8 g)在0℃與氨-乙醇溶液一起導入至錐形瓶中。使混合物在室溫攪拌5小時,將沈澱物過濾並以乙醇清洗數次。
得到2.98 g(34%產率)的白色粉末。
第三步驟:7-(4-溴苯基)二苯並[c,h]吖啶(7)的合成。氧化去氫作用是在氬氣下進行。


將d(2.98 g,6.80 mmol)溶解在190 mL二氧雜環,並加入2,3-二氯-5,6-二氰苯醌 (10.9 g,48 mmol)。將混合物在氬氣下迴流2天。然後將反應混合物冷卻至室溫,倒入600 mL飽和的碳酸鈉水溶液中,並且在65℃攪拌30分鐘。然後將混合物冷卻至室溫。將沈澱物過濾,並以水及二氯甲烷清洗。
產量:2 g(68%)。1H NMR(500 MHz, CD2Cl2)δ (ppm):9.80 (d, J = 8.0, 2H), 8.00 – 7.68 (m, 10H), 7.53 (d, J = 9.2, 2H), 7.45 – 7.34 (m, 2H)。
第四步驟:(4-(二苯並[c,h]吖啶-7-基)苯基)二苯基膦氧化物(23)的合成。與丁基鋰及與二苯基氯化膦的反應,是在無水溶劑及氬氣下進行。

將(7)(2.84 g,5.11 mmol)溶解於40 mL THF。將溶液冷卻至-78℃,並在20分鐘內逐滴加入n-BuLi(2.5 mol/L,3.5 mL,8.68 mmol),然後在該溫度中攪拌1小時。接著使溫度上升至-50℃,加入二苯基氯化膦(1.13 g,5.11 mmol),並將混合物在室溫中攪拌隔夜。後將反應以甲醇(25 mL)終止,並將溶劑蒸發。將殘留物溶解在40 mL的二氯甲烷,然後加入8 mL H2O2水溶液(30%水溶液w/w),並且攪拌隔夜。然後將反應混合物以50 mL濃鹽水清洗數次,然後將有機相乾燥並且蒸發。將粗產物經由管柱層析(SiO2、二氯甲烷,然後DCM/MeOH 97:3)而純化。接著將藉由真空蒸發得到的泡沫狀產物,以200 mL MTBE清洗。
產量1.6g(43%)。HPLC純度>97%。.
NMR:31P NMR (CDCl3, 121.5 MHz): δ (ppm): 29 (m).1H NMR (500 MHz, CD2Cl2) δ (ppm): 9.79 (d, 8.06 Hz, 2H), 7.86 (m, 10 Hz), 7.75 (m, 2 Hz), 7.69 (d, 9.20 Hz, 2H), 7.58 (m, 8 Hz), 7.44 (d, 9.18 Hz, 2H)。
第五步驟:7-(4'-(1-苯基-1H-苯並[d]咪唑-2-基)-[1,1'-聯苯基]-4-基)二苯並[c,h]吖啶(26)的合成。Pd-催化的縮合反應是在氬氣下進行。


將(7)(2.1 g,4.8 mmol)、1-苯基-2-(4-(4,4,5,5-四甲基-1,3,2-二氧硼戊環-2-基)苯基)-1H-苯並[d]咪唑(3.8 g,9.6 mmol)、四(三苯基膦)鈀(830 mg)及17 mL 的1M碳酸鉀水溶液與35 mL除氣甲苯一起導入至錐形瓶。將反應在80℃攪拌36小時,冷卻至室溫並過濾。然後將所得到的固體溶解在600 mL DCM,並在矽藻土墊上過濾。將揮發物藉由旋轉蒸餾而移除,然後將固體殘留物在真空烘箱中乾燥隔夜。
產量1.2 g(40%)。HPLC純度>98%。1H NMR (500 MHz, CD2Cl2) δ (ppm):9.82 (d, 8.16 Hz, 2H), 7.85 (d, 7.60 Hz, 2H), 7.88 (m, 5H), 7.79 (m, 2H), 7.76 (s, 4H), 7.74 (s, 1H), 7,63 (d, 9.2 Hz, 2H), 7.59 (m, 3H), 7.56 (m, 1H), 7,43 (dd, 3.13 Hz, 5.32 Hz, 2H), 7.36 (m, 1H), 7.29 (dt, 3.01 Hz, 3.01 Hz, 7.35 Hz, 2H)。
化合物2,7,9-三苯基-4-(對-甲苯基)吡啶並[3,2-h]喹唑啉(ET1)及4-(萘-1-基)-2,7,9-三苯基吡啶並[3,2-h]喹唑啉(ET2)的合成是描述於文件EP 1 970 371中。
下列層順序僅為如何產生所需形態的實例。層順序係包含於一有機發光二極體中。在每一層對中,由第一材料所製成之層體係作為下方層(ETL或n-ETL),且由一第二材料所製成之後續層體係作為粗化層。在裝置堆疊體中的結構如下:EML / 下方層 / 粗化層。
藉由對一OLED堆疊體中之層序列插入電性摻雜層而達到最佳結果。所有的沉積都是在室溫下完成。在發光層中所使用之材料(由太陽化學所販售),以其交易編碼ABH036、NRD129與NUB369表示。

相對於用以增進光外耦合的大部分技術(其中加入的不同手段不會對OLED的性能提供附加效應),在本發明中,驚訝地發現到可進一步顯著增進OLEDs。
藉由加入包含一微型透鏡陣列之一外部光外耦合箔片來增進光擷取,即可幾乎加倍最佳OLEDs的效率達幾乎為2之因子,得到高於60 lm/W的功率效率。
有機發光裝置係如第7圖所示而製備。製備下述層狀結構:
7.1:玻璃基板
7.2:ITO
7.3:HT1:PD2(97:3)(層厚度為30奈米)
7.4:HT1: PD2(99:1)(145奈米)
7.5:HT1(10奈米)
7.6:ABH036:NRD129(99:1)(5奈米)
7.7:ABH036:NUBD369(95:5)(25奈米)
7.8:ET2(10奈米)
7.9:化合物 (1d)-(1f)
7.10:ET2:ND2(90:10)(30奈米)
7.11:銀(100奈米)
作為對照組,製備不含層7.9的一有機發光裝置。
關於包含層7.9之裝置,使用下列材料:化合物(1d)、化合物(1e)、化合物(1f)。
以下參照第8圖至第12圖。
製備並研究以如第7圖所示之一層狀結構所製備之有機發光裝置。第8圖至第12圖顯示了由SEM(掃描式電子顯微鏡)所得的實驗結果,藉由聚焦離子束(FIB)來製備不同裝置之切片。
在第8圖至第12圖中,上圖顯示該裝置之一截面,而下圖則顯示了裝置的頂部電極的上視圖。對於截面影像,係使用下列參數:放大倍率為100,000x、EHT(電子高張力)為1kV、工作距離(WD)為5.1-5.2毫米、孔徑大小為30微米、以及探測器為鏡筒內(in-lens)探測器或SESI(結合二次電子二次離子)(僅在第12a圖中)。關於電極表面的上視圖,係使用下列參數:放大倍率為50,000x、EHT(電子高張力)為3kV、工作距離(WD)為4.9-5.1毫米、孔徑大小為30微米、以及探測器為SESI或SE2(僅在第15b圖中)。
關於第8圖,層7.9是由材料(A)製備而得,其具有6.7奈米之一層厚度(沉積速度為3A/s)。關於第9圖,層7.9是由材料(B)製備而得,其具有6.1奈米之一層厚度(沉積速度為3A/s)。關於第10圖,層7.9是由材料(A)製備而得,其具有10.1奈米之一額定層厚度(沉積速度為1A/s)。關於第11圖,層7.9是由材料(B)製備而得,其具有10.1奈米之一額定層厚度(沉積速度為1A/s)。關於第12圖,層7.9是由材料(C)製備而得,其具有5.6奈米之一層厚度(沉積速度為3A/s)。
以下概列出在第8圖至第12圖中所示之裝置之實驗結果。


面積是OLED的主動區域。CIE X與CIE Y為國際照明協會(CIE)於1931年所定義的色度座標系。Peff是指功率效率(或照明效率)(單位為lm/W)。EQE為外部量子效率。EQE提昇為具有粗化層之堆疊體的EQE與不含粗化層之堆疊體的EQE之間的比例。這些數值是從表中所指明的電流下於一整合球體中測量而得。
另一個有機發光裝置係如第13圖所示而製備。製備下列層狀結構:
13.1:玻璃基板
13.2:ITO
13.3:HT1:PD2(97:3)(層厚度為30奈米)
13.4:HT1: PD2(99:1)(145奈米)
13.5:HT1(10奈米)
13.6:ABH036:NRD129(99:1)(5奈米)
13.7:ABH036:NUBD369(95:5)(25奈米)
13.8:ET2(10奈米)
13.9:化合物 (1d)-(1f)
13.10:ET2:ND1(30奈米)
13.11:銀(100奈米)
作為對照組,製備不含層13.9的一有機發光裝置。
第14圖與第15圖顯示以第13圖所示之層狀結構所製備而得的有機發光裝置之SEM實驗結果。同樣的,第14圖與第15圖中的上圖是顯示截面,而下圖則顯示個別裝置的上視圖。
關於第14圖與第15圖,層13.9是由化合物(1a)製得。在第14圖中使用0.8 A/s的沉積速率,而在第15圖中之樣品有6 A/s的沉積速率。應注意到主動區域是不同的,因此,由於基板厚度的影響,無法對這兩個情況中的效率提昇進行比較。在堆疊體中也有某些不影響形態與效率提昇的差異:第14圖- ET2:ND1(15%)、100奈米之陰極,而第15圖- ET2:ND1(8%)、250奈米之陰極。
以下,總結第14圖與第15圖所示裝置的實驗結果。


第16a圖至第16d圖顯示層狀結構之AFM實驗結果,其中化合物(1a)是沉積在由ET2所製成之有機層上。
第16a圖與第16c圖顯示不含金屬頂部電極與具有金屬頂部電極(以100奈米之銀層製成)之層狀結構的結果。第16b圖與第16d圖顯示在粗化層上沉積有一傳輸層(以30奈米厚ET2所製成)之層狀結構的結果。同樣的,第16b圖與第16d圖顯示具有與不具有以銀製成之金屬頂部電極的結果。
一有機發光裝置係如第17圖所示而製備。製備下述層狀結構:
17.1:玻璃基板
17.2:ITO(層厚度為90奈米)
17.3:HT2:PD1(98.5:1.5)(50奈米)
17.4:a-NPD(20奈米)
17.5:化合物 1d) (10奈米)
17.6:a-NPD:RE076(95:5)(20奈米)
17.7:ET5(10奈米)
17.8:ET2(10奈米)
17.9:ET2:ND1(92:8)(40奈米)
17.10:銀
電子阻擋層(EBL)17.4的材料也可替代地為HT1、HT2與HT3。散射層17.5也可由稱為化合物1e)與1f)之材料製成。在一替代具體實施例中,該裝置可製造為不含散射層17.5。縮寫RE076是指商業上可得之材料銥(III)二(2-甲基二苯並-[f,h]喹噁啉)(乙醯丙酮酸鹽)。
另一有機發光裝置係如第18圖所示而製備。自結晶化之化合物1d)是配置在堆疊體的電洞側上。這是在電子傳輸側上不允許粗化層設置之堆疊體的一個實例。製備下述層狀結構(pii-堆疊):
18.1:玻璃基板
18.2:ITO(層厚度為90奈米)
18.3:HT2:PD1(98.5:1.5)(50奈米)
18.4:a-NPD (20奈米)
18.5:化合物1d) (10奈米)
18.6:a-NPD:RE076 (95:5)(20奈米)
18.7:ET5 (60奈米)
18.8:LiQ (2奈米)
18.9:Al
電子阻擋層(EBL)18.4的材料可替代地為HT1、HT2與HT3。散射層18.5也可由稱為化合物1e)與1f)之材料製成。
下表顯示了具有、以及不具有化合物1d)至1f)之不同EBL材料之外部量子效率(EQE)。外部量子效率係於固定電流密度(3 mA/cm2)下在一整合球體中進行測量。效率增加了
35%至40%。
Fig. 1 is a schematic (sectional) view showing a layered structure of an organic light-emitting device. The organic light emitting device can be provided for an organic light emitting diode (OLED). The layered structure comprises a substrate 1, a bottom electrode 2, an electrical active region 10, a roughened layer 6, and a top electrode 8, the top electrode being covered by a package 9. There is a transport layer 7 between the top electrode 8 and the roughened layer 6. In other embodiments, the transport layer 7 may not be present. The layered structure in the first figure also comprises a light-emitting layer 5 and a transport layer 4. In other embodiments, the transport layer 4 may not be present. In addition, there is another luminescent layer 3 which is made of one or more layers and which may not be present in other embodiments. Unlike the schematic shown in Fig. 1, there may be another transport layer between the light-emitting layer 5 and the roughened layer 6.
Figure 2 is a schematic (cross-sectional) view showing a layered structure having a roughened layer 22 on a lower layer 21. The roughened layer 22 is provided with a non-closed layer. The particles 23 of the roughened layer 22 are separated from one another to provide an island or granular structure. The particles 23 have a height 24 which is located between adjacent particles with an open space or region 25. In the open space 25, the material of the roughened layer 22 does not cover the underlying layer 21. For example, such layer designs are created by the growth of the Volmer-Weber (VW) mode of the roughened layer 22 on the underlying layer 21.
Figure 3 is a schematic (cross-sectional) view showing a layered structure having a roughened layer, wherein the roughened layer 32 is provided on a lower layer 31 with a roughened structure, i.e., particles 33. There is a ground layer 34 made of the same material as the particles 33, which has a thickness of 5 nm or less, and covers the area between the particles 33 of the underlying layer 31 which provide the roughened structure. Together with the ground layer 34, the particles 33 provide an iceberg structure for the roughened layer. For example, such a layer structure is provided by three-dimensional mode growth (Stranski-Krastanow, SK) of the roughened layer 32 on the underlying layer 31.
4 is a schematic (cross-sectional) view showing a lower layer 40, which is followed by a roughened layer 41 and a roughened layer 42 deposited on top of the roughened layer 41. The roughened layer 42 is provided with a roughened portion that includes a roughened structure 43 on the outer portion 44 and the inner portion 45. In other embodiments (not shown), the roughened layer 42 may be provided with a surface roughened portion only on the inner side portion 45, while the outer side portion 44 is flat.
Layer 42 can be doped with one of the transport layers or an electrode as desired.
Figure 4 also depicts a region 46 without a roughened structure (without particles) that can be created, for example, by the use of a hood during evaporation. In region 46, the thickness of layer 42 can be measured directly, such as by a leveling instrument. Note that the drawings are for illustrative purposes only and do not represent their scale.
Fig. 5 is a schematic (sectional) view showing a layered structure representing an organic light-emitting device, having a substrate 50, a bottom electrode 51 (e.g., an ITO anode), and organic layers 52, 53 and 54. The organic-organic interface is indicated by a dashed line (eg 56). The organic layer 54 also contains roughened particles (not explicitly shown) which may result in, for example, the roughened portion 57 of the top electrode 55 of an aluminum cathode.
Figure 6 illustrates a sample of quartz, 30 nm of 2,7,9-triphenyl-4-(p-tolyl)pyrido[3,2-h]quinazoline / 10 nm by AFM. Compound (1a - see below) / 30 nm of 2,7,9-triphenyl-4-(p-tolyl)pyrido[3,2-h]quinazoline / 100 nm silver Profile measurement. The 30 nm 2,7,9-triphenyl-4-(p-tolyl)pyrido[3,2-h]quinazoline layer on quartz is flat with less than 3 nm. Roughness. The layer body of the compound (1a) does not form a closed layer but forms only particles. This measurement is shown from the top of the silver electrode because it freezes the morphology of the layer of compound (1a) (the shortest waiting time).
The organic layered structure contains at least one luminescent layer. A typical layered structure of an organic light-emitting diode is described, for example, in EP 1 705 727, EP 1 804 309. OLEDs can also have a pin layer structure, which is described, for example, in US 7,074,500, US 2006/250076. The n-type dopants and the p-type dopants used in the pin OLEDs are described, for example, in US Pat. No. 6,908,783, US 2008/265,216, WO 07/107306, EP 1 672 714.
The following compounds can be used to create a roughened layer in an organic light-emitting device.





Therefore, the compounds (1a) to (1f) and their synthesis are known. One or more compounds have been used as fluorescent brighteners.
a compound for electron transport layer (4-(dibenzo[c,h]acridin-7-yl)phenyl)diphenylphosphine oxide (ET3) and 7-(4'-(1-phenyl) Synthesis of -1H-benzo[d]imidazol-2-yl)-[1,1'-biphenyl]-4-yl)dibenzo[c,h]acridine (ET4) by the following method get on. THF stands for tetrahydrofuran, MTBE stands for methyl-tert-butyl ether, DCM stands for dichloromethane, Et2O stands for diethyl ether, MeOH stands for methanol, BuLi stands for butyl lithium, HPLC stands for high performance liquid chromatography, NMR stands for nuclear magnetic resonance.
First step: Synthesis of (E)-2-(4-bromobenzoyl)-3,4-dihydronaphthalen-1(2H)-one (c). All operations were carried out in air without any further purification of commercially available solvents/chemicals.



A 250 mL Erlenmeyer flask was filled with tetralone (3.22 g, 22 mmol) and 4-bromobenzaldehyde (5.3 g, 28.6 mmol). This was dissolved in warm tetrahydrofuran (12 mL), and a solution of 4% by weight of KOH in methanol (100 mL) was slowly added to this yellow solution. The reaction was stirred at room temperature for 4 days. The mixture was concentrated and reduced to approximately 10% by volume. The residue was filtered and washed with EtOAc EtOAc EtOAc (EtOAc)
Second step: Synthesis of 7-(4-bromophenyl)-5,6,8,9-tetrahydrodibenzo[c,h]acridine (d). Both reaction steps were carried out under argon.


c (6.54 g, 20.9 mmol) and tetralone (2.93 g, 20.0 mmol) were introduced into a conical flask together with BF 3 .Et 2 O (3 mL, 23.7 mmol). The mixture was stirred at 100 ° C for 4 hours and cooled to room temperature. Et 2 O (25 mL) was added and the mixture was stirred for additional 1 hour. The precipitate was filtered and to Et 2 O (20 mL) wash. The dried powder (3.8 g) was then introduced into an Erlenmeyer flask together with an ammonia-ethanol solution at 0 °C. The mixture was stirred at room temperature for 5 hours, and the precipitate was filtered and washed with ethanol several times.
2.98 g (34% yield) of a white powder was obtained.
Third step: Synthesis of 7-(4-bromophenyl)dibenzo[c,h]acridine (7). Oxidative dehydrogenation is carried out under argon.


d (2.98 g, 6.80 mmol) was dissolved in 190 mL of dioxane and 2,3-dichloro-5,6-dicyanobenzoquinone (10.9 g, 48 mmol). The mixture was refluxed under argon for 2 days. The reaction mixture was then cooled to room temperature, poured into 600 mL of saturated aqueous sodium carbonate and stirred at 65 ° C for 30 min. The mixture was then cooled to room temperature. The precipitate was filtered and washed with water and dichloromethane.
Yield: 2 g (68%). 1 H NMR (500 MHz, CD 2 Cl 2 ) δ (ppm): 9.80 (d, J = 8.0, 2H), 8.00 - 7.68 (m, 10H), 7.53 (d, J = 9.2, 2H), 7.45 – 7.34 (m, 2H).
Fourth step: Synthesis of (4-(dibenzo[c,h]acridin-7-yl)phenyl)diphenylphosphine oxide (23). The reaction with butyllithium and with diphenylphosphine chloride is carried out in an anhydrous solvent under argon.

(7) (2.84 g, 5.11 mmol) was dissolved in 40 mL THF. The solution was cooled to -78 ° C, and n-BuLi (2.5 mol/L, 3.5 mL, 8.68 mmol) was added dropwise over 20 minutes, and then stirred at this temperature for one hour. Then the temperature was raised to -50 ° C, diphenylphosphonium chloride (1.13 g, 5.11 mmol) was added, and the mixture was stirred overnight at room temperature. The reaction was quenched with MeOH (25 mL) and solvent evaporated. The residue was dissolved in 40 mL of dichloromethane, then 8 mL aqueous H 2 O 2 (30% aqueous w/w) was added and stirred overnight. The reaction mixture was then washed several times with 50 mL of brine, then the organic phase was dried and evaporated. The crude product was purified via column chromatography (SiO 2, dichloromethane, and then DCM / MeOH 97: 3) was purified. The foamy product obtained by evaporation in vacuo was then washed with 200 mL of MTBE.
The yield was 1.6 g (43%). HPLC purity >97%. .
NMR: 31 P NMR (CDCl 3 , 121.5 MHz): δ (ppm): 29 (m). 1 H NMR (500 MHz, CD 2 Cl 2 ) δ (ppm): 9.79 (d, 8.06 Hz, 2H), 7.86 (m, 10 Hz), 7.75 (m, 2 Hz), 7.69 (d, 9.20 Hz, 2H), 7.58 (m, 8 Hz), 7.44 (d, 9.18 Hz, 2H).
Fifth step: 7-(4'-(1-phenyl-1H-benzo[d]imidazol-2-yl)-[1,1'-biphenyl]-4-yl)dibenzo[c , h] Synthesis of acridine (26). The Pd-catalyzed condensation reaction is carried out under argon.


(7) (2.1 g, 4.8 mmol), 1-phenyl-2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) Phenyl)-1H-benzo[d]imidazole (3.8 g, 9.6 mmol), tetrakis(triphenylphosphine)palladium (830 mg) and 17 mL of 1 M aqueous potassium carbonate solution were introduced with 35 mL of degassed toluene. Erlenmeyer flask. The reaction was stirred at 80 ° C for 36 hours, cooled to room temperature and filtered. The resulting solid was then dissolved in 600 mL DCM and filtered on a pad of celite. The volatiles were removed by rotary distillation and the solid residue was dried in a vacuum oven overnight.
The yield is 1.2 g (40%). HPLC purity > 98%. 1 H NMR (500 MHz, CD 2 Cl 2 ) δ (ppm): 9.82 (d, 8.16 Hz, 2H), 7.85 (d, 7.60 Hz, 2H), 7.88 (m, 5H), 7.79 (m, 2H), 7.76 ( s, 4H), 7.74 (s, 1H), 7,63 (d, 9.2 Hz, 2H), 7.59 (m, 3H), 7.56 (m, 1H), 7,43 (dd, 3.13 Hz, 5.32 Hz, 2H), 7.36 (m, 1H), 7.29 (dt, 3.01 Hz, 3.01 Hz, 7.35 Hz, 2H).
Compound 2,7,9-triphenyl-4-(p-tolyl)pyrido[3,2-h]quinazoline (ET1) and 4-(naphthalen-1-yl)-2,7,9 The synthesis of triphenylpyrido[3,2-h]quinazoline (ET2) is described in document EP 1 970 371.
The following sequence of layers is only an example of how to produce the desired form. The layer sequence is contained in an organic light emitting diode. In each layer pair, a layer system made of the first material is used as the under layer (ETL or n-ETL), and a subsequent layer system made of a second material is used as the rough layer. The structure in the device stack is as follows: EML / under layer / rough layer.
The best results are achieved by inserting an electrically doped layer into a layer sequence in an OLED stack. All deposition is done at room temperature. The materials used in the luminescent layer (sold by Sun Chemicals) are indicated by their transaction codes ABH036, NRD129 and NUB369.

In contrast to most of the techniques used to enhance optical outcoupling, in which different means of adding do not provide an additive effect on the performance of the OLED, it has been surprisingly found in the present invention that OLEDs can be further significantly enhanced.
By adding an external light outcoupling foil comprising an array of microlenses to enhance light extraction, the efficiency of almost optimal OLEDs is almost doubled to a factor of 2, resulting in power efficiencies higher than 60 lm/W.
The organic light-emitting device was prepared as shown in Fig. 7. Prepare the following layered structure:
7.1: Glass substrate
7.2: ITO
7.3: HT1: PD2 (97: 3) (layer thickness is 30 nm)
7.4: HT1: PD2 (99:1) (145 nm)
7.5: HT1 (10 nm)
7.6: ABH036: NRD129 (99: 1) (5 nm)
7.7: ABH036: NUBD369 (95: 5) (25 nm)
7.8: ET2 (10 nm)
7.9: Compound (1d)-(1f)
7.10: ET2: ND2 (90: 10) (30 nm)
7.11: Silver (100 nm)
As a control group, an organic light-emitting device containing no layer 7.9 was prepared.
Regarding the apparatus comprising layer 7.9, the following materials were used: compound (1d), compound (1e), and compound (1f).
Reference is made to Figs. 8 to 12 below.
An organic light-emitting device prepared by a layered structure as shown in Fig. 7 was prepared and studied. Fig. 8 to Fig. 12 show experimental results obtained by SEM (Scanning Electron Microscope), and sections of different devices were prepared by focusing ion beam (FIB).
In Figures 8 through 12, the top view shows a cross-section of the device, while the lower view shows a top view of the top electrode of the device. For cross-sectional images, the following parameters were used: magnification of 100,000 x, EHT (electron high tension) of 1 kV, working distance (WD) of 5.1-5.2 mm, aperture size of 30 μm, and detector inside the lens barrel (in -lens) Detector or SESI (in combination with secondary electron secondary ions) (only in Figure 12a). Regarding the upper view of the electrode surface, the following parameters were used: magnification of 50,000x, EHT (electron high tension) of 3kV, working distance (WD) of 4.9-5.1 mm, pore size of 30 μm, and detector SESI or SE2 (only in Figure 15b).
Regarding Fig. 8, layer 7.9 is prepared from material (A) having a layer thickness of 6.7 nm (deposition rate of 3 A/s). Regarding Figure 9, layer 7.9 was prepared from material (B) having a layer thickness of 6.1 nm (deposition rate of 3 A/s). Regarding Fig. 10, layer 7.9 is prepared from material (A) having a nominal layer thickness of 10.1 nm (deposition rate is 1 A/s). With regard to Figure 11, layer 7.9 is prepared from material (B) having a nominal layer thickness of 10.1 nm (deposition rate of 1 A/s). Regarding Fig. 12, layer 7.9 was prepared from material (C) having a layer thickness of 5.6 nm (deposition rate of 3 A/s).
The experimental results of the devices shown in Figs. 8 to 12 are summarized below.


The area is the active area of the OLED. CIE X and CIE Y are the chromaticity coordinate systems defined by the International Lighting Association (CIE) in 1931. Peff refers to power efficiency (or lighting efficiency) in lm/W. EQE is the external quantum efficiency. The EQE is promoted to the ratio between the EQE of the stack having the roughened layer and the EQE of the stack without the roughened layer. These values are measured in an integrated sphere from the current indicated in the table.
Another organic light-emitting device was prepared as shown in Fig. 13. Prepare the following layered structure:
13.1: Glass substrate
13.2: ITO
13.3: HT1: PD2 (97:3) (layer thickness is 30 nm)
13.4: HT1: PD2 (99:1) (145 nm)
13.5: HT1 (10 nm)
13.6: ABH036: NRD129 (99: 1) (5 nm)
13.7: ABH036: NUBD 369 (95: 5) (25 nm)
13.8: ET2 (10 nm)
13.9: Compound (1d)-(1f)
13.10: ET2: ND1 (30 nm)
13.11: Silver (100 nm)
As a control group, an organic light-emitting device containing no layer 13.9 was prepared.
Fig. 14 and Fig. 15 show the results of SEM experiments of the organic light-emitting device prepared by the layered structure shown in Fig. 13. Similarly, the upper graphs in Figures 14 and 15 show the cross-section, while the lower graph shows the top view of the individual devices.
With regard to Figures 14 and 15, layer 13.9 was prepared from compound (1a). The deposition rate of 0.8 A/s was used in Figure 14, while the sample in Figure 15 had a deposition rate of 6 A/s. It should be noted that the active areas are different, and therefore, the efficiency improvement in these two cases cannot be compared due to the influence of the thickness of the substrate. There are also some differences in the stack that do not affect morphology and efficiency improvement: Figure 14 - ET2: ND1 (15%), 100 nm cathode, and Figure 15 - ET2: ND1 (8%), 250 nm The cathode.
The experimental results of the devices shown in Figs. 14 and 15 are summarized below.


Figures 16a to 16d show the results of the AFM experiment of the layered structure in which the compound (1a) was deposited on the organic layer made of ET2.
Figures 16a and 16c show the results of a layered structure without a metal top electrode and a metal top electrode (made of a 100 nm silver layer). Figures 16b and 16d show the results of depositing a layered structure of a transport layer (made of 30 nm thick ET2) on the roughened layer. Similarly, Figures 16b and 16d show the results with and without a metal top electrode made of silver.
An organic light-emitting device was prepared as shown in Fig. 17. Prepare the following layered structure:
17.1: Glass substrate
17.2: ITO (layer thickness is 90 nm)
17.3: HT2: PD1 (98.5: 1.5) (50 nm)
17.4: a-NPD (20 nm)
17.5: Compound 1d) (10 nm)
17.6: a-NPD: RE076 (95: 5) (20 nm)
17.7: ET5 (10 nm)
17.8: ET2 (10 nm)
17.9: ET2: ND1 (92: 8) (40 nm)
17.10: The material of the silver electron blocking layer (EBL) 17.4 may alternatively be HT1, HT2 and HT3. The scattering layer 17.5 can also be made of a material called compounds 1e) and 1f). In an alternate embodiment, the device can be fabricated without the scattering layer 17.5. The abbreviation RE076 refers to the commercially available material 铱(III) bis(2-methyldibenzo-[f,h]quinoxaline) (acetylacetonate).
Another organic light-emitting device was prepared as shown in Fig. 18. The self-crystallized compound 1d) is disposed on the side of the cavity of the stack. This is an example of a stack in which the roughening layer is not allowed to be disposed on the electron transport side. Prepare the following layered structure (pii-stack):
18.1: Glass substrate
18.2: ITO (layer thickness is 90 nm)
18.3: HT2: PD1 (98.5: 1.5) (50 nm)
18.4: a-NPD (20 nm)
18.5: Compound 1d) (10 nm)
18.6: a-NPD: RE076 (95: 5) (20 nm)
18.7: ET5 (60 nm)
18.8: LiQ (2 nm)
18.9: Al
The material of the electron blocking layer (EBL) 18.4 may alternatively be HT1, HT2 and HT3. The scattering layer 18.5 can also be made of materials known as compounds 1e) and 1f).
The table below shows the external quantum efficiency (EQE) of different EBL materials with and without compounds 1d) to 1f). The external quantum efficiency is measured in an integrated sphere at a fixed current density (3 mA/cm2). Increased efficiency
35% to 40%.



第19圖顯示一有機發光裝置的截面,該有機發光裝置具有化合物1d)至1f)之其中一種的一層(3奈米),其中該層係設置為與HT1相鄰。HT1作為電子阻擋層(EBL)。在最後一層有機層與陰極之間的界面是呈波紋狀的。利用SEM取得影像。從第19圖可得出光外耦合機制係與在裝置的電子傳輸側上設置化合物1d)至1f)中其中一種的層體時相同的結論。
在前述說明、申請專利範圍、以及圖式中所揭露之發明特徵對於本發明各種具體實施例的實施在個別上以及任意組合上都具有重要性。


Figure 19 shows a cross section of an organic light-emitting device having a layer (3 nm) of one of the compounds 1d) to 1f), wherein the layer is disposed adjacent to the HT1. HT1 acts as an electron blocking layer (EBL). The interface between the last organic layer and the cathode is corrugated. Images were acquired using SEM. From Fig. 19, it can be concluded that the optical outcoupling mechanism is the same as when the layer of one of the compounds 1d) to 1f) is provided on the electron transport side of the device.
The inventive features disclosed in the foregoing description, the scope of the claims, and the drawings are of particular importance in the individual and any combination of the embodiments of the invention.

1...基板1. . . Substrate

2...底部電極2. . . Bottom electrode

3、5...發光層3, 5. . . Luminous layer

4、7...傳輸層4, 7. . . Transport layer

6...粗化層6. . . Rough layer

8...頂部電極8. . . Top electrode

9...封裝體9. . . Package

10...電性主動區域10. . . Electrical active area

Claims (13)

一種在一層狀結構中之有機發光裝置,包含:
-一基板,
-一底部電極,
-一頂部電極,其中該底部電極比該頂部電極更靠近該基板,
-一電性主動區域,該電性主動區域包含一或多層有機層,且是被提供在該底部電極與該頂部電極之間並與其電性接觸,
-一發光區域,其是被提供在該電性主動區域中,以及
-一粗化層,該粗化層被提供在該電性主動區域中作為非封閉層,並藉由粗化該頂部電極面向該電性主動區域的至少一內側、以及該頂部電極不正對該電性主動區域的一外側中至少其中之一,而對該頂部電極提供一電極粗化部。
An organic light-emitting device in a layered structure, comprising:
- a substrate,
- a bottom electrode,
a top electrode, wherein the bottom electrode is closer to the substrate than the top electrode
An electrically active region comprising one or more organic layers and being provided between and in electrical contact with the bottom electrode and the top electrode,
a illuminating area, which is provided in the electrically active area, and
a roughened layer, the roughened layer being provided as a non-closed layer in the electrically active region, and by roughening the top electrode facing at least one inner side of the electrically active region, and the top electrode is not At least one of an outer side of the electrically active region and an electrode refining portion is provided to the top electrode.
如申請專利範圍第1項所述之有機發光裝置,其中該粗化層包含一有機材料。The organic light-emitting device of claim 1, wherein the rough layer comprises an organic material. 如申請專利範圍第1項或第2項所述之有機發光裝置,其中該粗化層是由隨機分佈在一下方層上方之複數個分散顆粒所提供,該粗化層是沉積在該下方層上。The organic light-emitting device of claim 1 or 2, wherein the rough layer is provided by a plurality of dispersed particles randomly distributed above a lower layer, the rough layer being deposited on the lower layer on. 如前述申請專利範圍中至少其中一項所述之有機發光裝置,其中該頂部電極是被提供於該電性主動區域之一頂層上,該電性主動區域之該頂層是藉由提供於該頂層下方的該粗化層予以粗化。An organic light-emitting device according to at least one of the preceding claims, wherein the top electrode is provided on a top layer of one of the electrical active regions, the top layer of the electrical active region being provided by the top layer The roughened layer below is roughened. 如前述申請專利範圍中至少其中一項所述之有機發光裝置,其中該粗化層是設置在該發光區域與該頂部電極之間。An organic light-emitting device according to at least one of the preceding claims, wherein the roughened layer is disposed between the light-emitting region and the top electrode. 如申請專利範圍第1項至第4項中至少其中一項所述之有機發光裝置,其中該粗化層是提供在該發光區域與該底部電極之間。The organic light-emitting device of claim 1, wherein the roughening layer is provided between the light-emitting region and the bottom electrode. 如前述申請專利範圍中至少其中一項所述之有機發光裝置,其中該粗化層是被提供具有介於約3奈米至約50奈米、較佳為介於約3奈米至約15奈米之一額定層厚度。An organic light-emitting device according to at least one of the preceding claims, wherein the roughened layer is provided having from about 3 nm to about 50 nm, preferably from about 3 nm to about 15 One of the nominal thickness of the nanometer. 如前述申請專利範圍中至少其中一項所述之有機發光裝置,其中該粗化層是被提供在一電性摻雜電荷載體傳輸層上或被其覆蓋,或是夾置在兩個電性摻雜電荷載體傳輸層之間。An organic light-emitting device according to at least one of the preceding claims, wherein the roughened layer is provided on or covered by an electrically doped charge carrier transport layer, or sandwiched between two electrical properties. Doped between the charge carrier transport layers. 如前述申請專利範圍中至少其中一項所述之有機發光裝置,其中該粗化層是被提供在一電子傳輸層與一陰極、或是在一電洞傳輸層與一陽極之間,並且與其直接接觸。An organic light-emitting device according to at least one of the preceding claims, wherein the roughened layer is provided between an electron transport layer and a cathode, or between a hole transport layer and an anode, and direct contact. 一種在一層狀結構中之有機發光裝置,包含:
-一基板,
-一底部電極,
-一頂部電極,其中該底部電極比該頂部電極更靠近該基板,
-一電性主動區域,該電性主動區域包含一或多層有機層,且是被提供在該底部電極與該頂部電極之間並與其電性接觸,
-一發光區域,其是被提供在該電性主動區域中,以及
-一粗化層,該粗化層是被提供在該基板與該底部電極之間作為非封閉之電性非活性層,並且藉由粗化該底部電極而至少對該底部電極提供一電極粗化部。
An organic light-emitting device in a layered structure, comprising:
- a substrate,
- a bottom electrode,
a top electrode, wherein the bottom electrode is closer to the substrate than the top electrode
An electrically active region comprising one or more organic layers and being provided between and in electrical contact with the bottom electrode and the top electrode,
a illuminating area, which is provided in the electrically active area, and
a roughened layer, which is provided between the substrate and the bottom electrode as a non-closed electrically inactive layer, and at least one electrode is provided to the bottom electrode by roughening the bottom electrode Ministry of Chemicals.
一種產生一有機發光裝置的方法,該有機發光裝置被提供具有一層狀結構,該方法包含步驟:
-提供一基板,
-於該基板上沉積一底部電極,
-形成一電性主動結構,該形成步驟包含下列步驟:
 -於該粗化層上沉積一第二有機半導層,以及
 -於該底部電極上沉積一第一有機半導層,
 -於該有機半導層上沉積一粗化層,以及
-於該電性主動結構上方沉積一頂部電極。
A method of producing an organic light-emitting device that is provided with a layered structure, the method comprising the steps of:
- providing a substrate,
Depositing a bottom electrode on the substrate,
Forming an electrically active structure, the forming step comprising the steps of:
Depositing a second organic semiconducting layer on the roughened layer, and depositing a first organic semiconducting layer on the bottom electrode,
Depositing a rough layer on the organic semiconducting layer, and
- depositing a top electrode over the electrically active structure.
如申請專利範圍第11項所述之方法,其中該粗化層是藉由真空熱蒸鍍所沉積,且在真空沉積期間,藉由一石英晶體監視器而控制該粗化層的一額定厚度。The method of claim 11, wherein the roughened layer is deposited by vacuum thermal evaporation, and a nominal thickness of the roughened layer is controlled by a quartz crystal monitor during vacuum deposition. . 如申請專利範圍第11項或第12項所述之方法,更包含下列步驟:在該第一有機半導層上直接沉積該粗化層,以及選擇該第一有機半導層的材料與該粗化層的材料以利於一沃謨 - 韋伯成長(Volmer-Weber growth)模式。The method of claim 11 or 12, further comprising the steps of: depositing the rough layer directly on the first organic semiconductor layer, and selecting a material of the first organic semiconductor layer and The material of the rough layer is used to facilitate the Volmer-Weber growth model.
TW101145882A 2011-12-06 2012-12-06 Organic light emitting device and method of producing TW201342681A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11019223 2011-12-06
EP11019248 2011-12-07

Publications (1)

Publication Number Publication Date
TW201342681A true TW201342681A (en) 2013-10-16

Family

ID=49771563

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101145882A TW201342681A (en) 2011-12-06 2012-12-06 Organic light emitting device and method of producing

Country Status (1)

Country Link
TW (1) TW201342681A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107112429A (en) * 2015-01-06 2017-08-29 保土谷化学工业株式会社 Organic electroluminescence device
CN107431142A (en) * 2015-04-10 2017-12-01 保土谷化学工业株式会社 Organic electroluminescence device
CN107534093A (en) * 2015-04-27 2018-01-02 保土谷化学工业株式会社 Organic electroluminescence device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107112429A (en) * 2015-01-06 2017-08-29 保土谷化学工业株式会社 Organic electroluminescence device
CN107112429B (en) * 2015-01-06 2019-11-22 保土谷化学工业株式会社 Organic electroluminescence device
US10593884B2 (en) 2015-01-06 2020-03-17 Hodogaya Chemical Co., Ltd. Organic electroluminescent device
TWI747813B (en) * 2015-01-06 2021-12-01 日商保土谷化學工業股份有限公司 Organic electroluminescent device
CN107431142A (en) * 2015-04-10 2017-12-01 保土谷化学工业株式会社 Organic electroluminescence device
TWI740822B (en) * 2015-04-10 2021-10-01 日商保土谷化學工業股份有限公司 Organic electroluminescent device
CN107534093A (en) * 2015-04-27 2018-01-02 保土谷化学工业株式会社 Organic electroluminescence device
US10326079B2 (en) 2015-04-27 2019-06-18 Hodogaya Chemical Co., Ltd. Organic electroluminescent device
CN107534093B (en) * 2015-04-27 2020-06-30 保土谷化学工业株式会社 Organic electroluminescent device
EP3291323B1 (en) * 2015-04-27 2024-06-12 Hodogaya Chemical Co., Ltd. Organic electroluminescent element

Similar Documents

Publication Publication Date Title
US9318705B2 (en) Organic light emitting device with roughening layer and method of producing
EP2600431B1 (en) Organic electronic device and method of manufacturing the same
KR101890569B1 (en) Light-emitting element, light-emitting device, electronic device, and lighting device
US8040044B2 (en) Organic light emitting device and method for manufacturing the same
JP5986992B2 (en) Organic light emitting device
TWI481088B (en) A transparent electrode for organic electronic devices
US11832475B2 (en) Flexible electronic display device
CN116456753A (en) Optoelectronic device
US20200203609A1 (en) Radiation-Emitting Organic-Electronic Device and Method for Producing a Radiation-Emitting Organic-Electronic Device
TW201342681A (en) Organic light emitting device and method of producing
EP2789027B1 (en) Organic photovoltaic device
WO2024176065A1 (en) Organic compound, light-emitting device, display device, and electronic equipment
WO2024176058A1 (en) Organic compound, light emitting device, display device, and electronic device
CN103579521B (en) A kind of top radiation organic EL part and manufacture method thereof
Du et al. Design and assembly of an aqueous red CdTe QD-LED: major factors to fabricate aqueous QD-LEDs
WO2020071276A1 (en) Mixed composition for organic electroluminescent element
JP2024110949A (en) Organic compound, light-emitting device, display device, and electronic device
JP2014116390A (en) Light-emitting element, manufacturing method therefor, and laminate
양정진 Fabrication and characterization of solution-processed polymer light-emitting diodes