TW201334750A - Control method for cleaning robots - Google Patents

Control method for cleaning robots Download PDF

Info

Publication number
TW201334750A
TW201334750A TW101136167A TW101136167A TW201334750A TW 201334750 A TW201334750 A TW 201334750A TW 101136167 A TW101136167 A TW 101136167A TW 101136167 A TW101136167 A TW 101136167A TW 201334750 A TW201334750 A TW 201334750A
Authority
TW
Taiwan
Prior art keywords
cleaning robot
light
quasi
omnidirectional
virtual wall
Prior art date
Application number
TW101136167A
Other languages
Chinese (zh)
Other versions
TWI486140B (en
Inventor
You-Wen Teng
Shih-Che Hung
Yao-Shih Leng
Original Assignee
Micro Star Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micro Star Int Co Ltd filed Critical Micro Star Int Co Ltd
Priority to CN201210505328.XA priority Critical patent/CN103251359B/en
Priority to JP2013025860A priority patent/JP6085987B2/en
Priority to DE201310101564 priority patent/DE102013101564A1/en
Priority to US13/768,531 priority patent/US9014855B2/en
Publication of TW201334750A publication Critical patent/TW201334750A/en
Application granted granted Critical
Publication of TWI486140B publication Critical patent/TWI486140B/en

Links

Classifications

    • G05D1/661
    • G05D1/247
    • G05D2105/10
    • G05D2109/10
    • G05D2111/10

Abstract

An embodiment of the invention provides a control method for a cleaning robot with a quasi-omnidirectional detector and a directional light detector. The method comprises: rotating the non-omni light detector when the non-omni light detector detects a light beam; when the non-omni light detector does not detect the light beam, the non-omni light detector is stopped rotating and a rotation angle is estimated; determining a rotation direction according to the rotation angle; rotating the cleaning robot according to the rotation direction; stopping rotating the cleaning robot when the directional light detector detects the light beam.

Description

掃地機器人的控制方法 Control method of sweeping robot

本發明係有關於一種掃地機器人,特別是一種具有準全向式光偵測器與指向性光偵測器的掃地機器人。 The invention relates to a sweeping robot, in particular to a sweeping robot with a quasi-omnidirectional light detector and a directional light detector.

隨著科技的進步,電子產品的種類愈來愈多,其中機器人(robot)就是其中一種。在許多可移動的機器人裝置中,為了達到自動移動的功能,機器人通常會具有一驅動裝置、一偵測器以及一移動控制器。舉例而言,清掃機器人就是一種清掃裝置,不需使用者操作,便可自動移動,並吸取地板上的灰塵。 With the advancement of technology, there are more and more types of electronic products, among which robots are one of them. In many mobile robotic devices, in order to achieve the function of automatic movement, the robot usually has a driving device, a detector and a mobile controller. For example, a cleaning robot is a cleaning device that automatically moves and absorbs dust from the floor without user intervention.

本發明的一實施例提供一種掃地機器人的控制方法,適用於具有一準全向式光偵測器與一指向性光偵測器的一掃地機器人。該方法包括當該準全向式光偵測器偵測一光線時,轉動該準全向式光偵測器;當該準全向式光偵測器偵測不到該光線時,停止轉動該準全向式光偵測器並估計一旋轉角度;根據該旋轉角度決定一旋轉方向;根據該旋轉方向旋轉該掃地機器人;以及當該指向性光偵測器偵測到該光線時,停止轉動該掃地機器人。 An embodiment of the present invention provides a method for controlling a cleaning robot, which is suitable for a cleaning robot having a quasi-omnidirectional photodetector and a directional photodetector. The method includes rotating the quasi-omnidirectional photodetector when the quasi-omnidirectional photodetector detects a light, and stops rotating when the quasi-omnidirectional photodetector detects the light The quasi-omnidirectional photodetector estimates a rotation angle; determines a rotation direction according to the rotation angle; rotates the cleaning robot according to the rotation direction; and stops when the directional light detector detects the light Turn the sweeping robot.

本發明的另一實施例提供一種掃地機器人的控制方法,適用於具有一準全向式光偵測器與一指向性光偵測器的一掃地機器人。該方法包括:透過該準全向式光偵測器 偵測一光線;當該準全向式光偵測器第一次偵測到該光線時,該掃地機器人繼續移動;當該準全向式光偵測器偵測不到該光線時,停止轉動該準全向式光偵測器並估計一旋轉角度;根據該旋轉角度決定一旋轉方向;根據該旋轉方向旋轉該掃地機器人;以及當該指向性光偵測器偵測到該光線時,停止轉動該掃地機器人。 Another embodiment of the present invention provides a method for controlling a cleaning robot, which is suitable for a cleaning robot having a quasi-omnidirectional photodetector and a directional photodetector. The method includes: transmitting the quasi-omnidirectional light detector Detecting a light; when the quasi-omnidirectional photodetector detects the light for the first time, the sweeping robot continues to move; when the quasi-omnidirectional photodetector detects the light, stops Rotating the quasi-omnidirectional photodetector and estimating a rotation angle; determining a rotation direction according to the rotation angle; rotating the cleaning robot according to the rotation direction; and when the directional light detector detects the light, Stop turning the sweeping robot.

本發明的另一實施例提供一種掃地機器人。掃地機器人包括一非全向性偵測器與一指向性偵測器。非全向性偵測器與一指向性偵測器皆用以偵測一無線信號。當該非全向性偵測器偵測到該無線信號時,該非全向性偵測器以決定一旋轉方向。當該旋轉方向被決定時,該掃地機器人被以該旋轉方向進行旋轉,直到該指向性偵測器偵測到該無線信號時,該掃地機器人才被停止旋轉。 Another embodiment of the present invention provides a cleaning robot. The sweeping robot includes a non-omnidirectional detector and a directional detector. Both the non-omnidirectional detector and the directional detector are used to detect a wireless signal. When the non-omnidirectional detector detects the wireless signal, the non-omnidirectional detector determines a direction of rotation. When the rotation direction is determined, the cleaning robot is rotated in the rotation direction until the directional detector detects the wireless signal, and the cleaning robot is stopped.

有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之一較佳實施例的詳細說明中,將可清楚的呈現。以下實施例中所提到的方向用語,例如:上、下、左、右、前或後等,僅是參考附加圖式的方向。因此,使用的方向用語是用來說明並非用來限制本發明。 The above and other technical contents, features and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments. The directional terms mentioned in the following embodiments, such as up, down, left, right, front or back, etc., are only directions referring to the additional drawings. Therefore, the directional terminology used is for the purpose of illustration and not limitation.

第1圖為根據本發明之一掃地機器人與一虛擬牆的一實施例的示意圖。虛擬牆12會發出一光線15用以標示掃地機器人11不能進入的一限制區域。掃地機器人11包括具有一肋(rib)14的一準全向式光偵測器13。該肋14會覆蓋在準全向式光偵測器13的表面,並形成一不透光區 域,該不透光區域會讓準全向式光偵測器13有一預定角度是無法接收到光線,該預定角度的範圍約30度到90度。 Figure 1 is a schematic illustration of an embodiment of a sweeping robot and a virtual wall in accordance with the present invention. The virtual wall 12 emits a light 15 for indicating a restricted area that the cleaning robot 11 cannot enter. The cleaning robot 11 includes a quasi-omnidirectional photodetector 13 having a rib 14. The rib 14 covers the surface of the quasi-omnidirectional photodetector 13 and forms an opaque region. The opaque region causes the quasi-omnidirectional photodetector 13 to have a predetermined angle that is incapable of receiving light, the predetermined angle being in the range of about 30 to 90 degrees.

該肋14可能是固定在準全向式光偵測器13的表面,或是固定在另一個可旋轉的裝置,使得該肋14可以沿著準全向式光偵測器13的表面做360度的旋轉。在本實施例中,非全向式只是一個功能上的描述,用以說明說肋14會在準全向式光偵測器13會因為肋14而有一定的區域是無法偵測光線。 The rib 14 may be fixed to the surface of the quasi-omnidirectional photodetector 13 or fixed to another rotatable device such that the rib 14 may be 360 along the surface of the quasi-omnidirectional photodetector 13. Degree of rotation. In the present embodiment, the non-omnidirectional is only a functional description to illustrate that the rib 14 will not detect light in the quasi-omnidirectional photodetector 13 due to the rib 14 having a certain area.

因此,準全向式光偵測器13可能有兩種實現方式。準全向式光偵測器13的第一種實現方式就是將一全向式光偵測器與一肋14直接組合,使得肋14是固定在全向式光偵測器的表面上的一固定位置。接著,該準全向式光偵測器13會被設計成可以直接透過一馬達驅動而被轉動,或是該準全向式光偵測器13會被設置在一平台上,該平台可被一馬達所轉動,進而達到轉動該準全向式光偵測器13的目的。透過這樣的方式,當該準全向式光偵測器13偵測到該光線15時,便可以透過轉動該準全向式光偵測器13來偵測光線15的一入射角度。 Therefore, the quasi-omnidirectional photodetector 13 may have two implementations. The first implementation of the quasi-omnidirectional photodetector 13 is to directly combine an omnidirectional photodetector with a rib 14 such that the rib 14 is fixed on the surface of the omnidirectional photodetector. Fixed position. Then, the quasi-omnidirectional photodetector 13 is designed to be directly driven by a motor drive, or the quasi-omnidirectional photodetector 13 is disposed on a platform, the platform can be A motor rotates to achieve the purpose of rotating the quasi-omnidirectional light detector 13. In this manner, when the quasi-omnidirectional photodetector 13 detects the light 15, the incident angle of the light 15 can be detected by rotating the quasi-omnidirectional photodetector 13.

準全向式光偵測器13的第二種實現方式就是將一遮罩套件(mask kit)套在全向式光偵測器的外側,且該遮罩套件是可以被轉動的,但該全向式光偵測器則無法被轉動。該遮罩套件可透過一馬達的驅動而被轉動。當該準全向式光偵測器13偵測到該光線15時,便可以透過轉動該遮罩套件來偵測光線15的一入射角度。 A second implementation of the quasi-omnidirectional photodetector 13 is to place a mask kit on the outside of the omnidirectional photodetector, and the mask kit can be rotated, but The omnidirectional light detector cannot be rotated. The mask kit is rotatable by a motor drive. When the quasi-omnidirectional photodetector 13 detects the light 15, the incident angle of the light 15 can be detected by rotating the mask set.

關於準全向式光偵測器13的詳細說明請參考第2a至 第2e圖。 For details of the quasi-omnidirectional photodetector 13, please refer to section 2a to Figure 2e.

第2a圖為根據本發明之一準全向式光偵測器的一實施例的一上視圖。遮罩(mask)22是由一不透光材質所形成,並黏附在全向式光偵測器21的一感測表面上。遮罩22會在全向式光偵測器21上形成一θ角的感應死區(sensing dead zone)。 Figure 2a is a top view of an embodiment of a quasi-omnidirectional photodetector in accordance with the present invention. The mask 22 is formed of an opaque material and adheres to a sensing surface of the omnidirectional photodetector 21. The mask 22 forms an sensing dead zone on the omnidirectional photodetector 21 at an angle θ.

請參考第2b圖。第2b圖為第2a圖的準全向式光偵測器的一實施例的一平視圖。從第2b圖可以看到,全向式光偵測器21被固定在一基座23上。基座23可被一馬達或一步進馬達所轉動。馬達或步進馬達會根據掃地機器人內的一控制器的一控制信號來轉動基座23。雖然一般的全向式光偵測器可以沒有死角地偵測虛擬牆或充電站發出的光線,但是並無法用來判斷此時光線是由哪個方向傳送過來,進而無法得知虛擬牆或充電站與此時的掃地機器人的一相對位置。透過遮罩22的幫助就可以判斷偵測到的光線的角度。 Please refer to Figure 2b. Figure 2b is a plan view of an embodiment of a quasi-omnidirectional photodetector of Figure 2a. As can be seen from Fig. 2b, the omnidirectional photodetector 21 is fixed to a pedestal 23. The base 23 can be rotated by a motor or a stepper motor. The motor or stepper motor rotates the base 23 based on a control signal from a controller within the sweeping robot. Although a general omnidirectional photodetector can detect the light emitted by a virtual wall or a charging station without a dead angle, it cannot be used to determine which direction the light is transmitted at this time, and thus the virtual wall or charging station cannot be known. A relative position to the sweeping robot at this time. The angle of the detected light can be judged by the help of the mask 22.

當全向式光偵測器21偵測到一光線時,基座23被預設以順時針方向或逆時針方向來旋轉360度。當全向式光偵測器21偵測不到光線時,掃地機器人內的控制器會求得全向式光偵測器21偵測不到光線時,基座23的一旋轉角度。該旋轉角度的範圍為0度到(360-θ)度。接著,控制器就可以根據基座23的旋轉方向、該旋轉角度以及該θ角來估算出光線的方向。詳細的說明請參考第2c與第2d圖。 When the omnidirectional photodetector 21 detects a light, the susceptor 23 is preset to rotate 360 degrees in a clockwise or counterclockwise direction. When the omnidirectional photodetector 21 detects no light, the controller in the cleaning robot obtains a rotation angle of the susceptor 23 when the omnidirectional photodetector 21 detects no light. The angle of rotation ranges from 0 degrees to (360-theta) degrees. Then, the controller can estimate the direction of the light according to the rotation direction of the susceptor 23, the rotation angle, and the θ angle. For detailed instructions, please refer to Figures 2c and 2d.

第2c與第2d圖為利用本發明之一準全向式光偵測器來估計一光線的入射角度的示意圖。在第2c圖中,遮罩 22的初始位置於位置P1。當該準全向式光偵測器25偵測到光線24時,該準全向式光偵測器25被以一預定方向轉動。在本實施例中,該預定方向為逆時鐘方向。在第2d圖中,當該準全向式光偵測器25沒有偵測到該光線24時,該準全向式光偵測器25停止轉動。此時,掃地機器人內的控制器會記錄該準全向式光偵測器25的一轉動角度Φ,並根據該轉動角度Φ與初始位置P1來估計光線24的方向。 Figures 2c and 2d are schematic diagrams for estimating the angle of incidence of a ray using a quasi-omnidirectional photodetector of the present invention. In Figure 2c, the mask The initial position of 22 is at position P1. When the quasi-omnidirectional photodetector 25 detects the light 24, the quasi-omnidirectional photodetector 25 is rotated in a predetermined direction. In this embodiment, the predetermined direction is the counterclockwise direction. In Fig. 2d, when the quasi-omnidirectional photodetector 25 does not detect the light 24, the quasi-omnidirectional photodetector 25 stops rotating. At this time, the controller in the cleaning robot records a rotation angle Φ of the quasi-omnidirectional photodetector 25, and estimates the direction of the light 24 according to the rotation angle Φ and the initial position P1.

在一實施例中,準全向式光偵測器25由一馬達所轉動,且該馬達會傳送一轉動信號給控制器,使得控制器可以根據該轉動信號來估計該轉動角度Φ。在另一實施例中,準全向式光偵測器25由一步進馬達所轉動。該步進馬達是根據一脈衝信號的數量來決定轉動的次數。因此控制器可以由脈衝信號的數量以及該步進馬達每一次轉動的角度來估計該轉動角度Φ。 In one embodiment, the quasi-omnidirectional photodetector 25 is rotated by a motor and the motor transmits a rotational signal to the controller such that the controller can estimate the rotational angle Φ based on the rotational signal. In another embodiment, the quasi-omnidirectional photodetector 25 is rotated by a stepper motor. The stepping motor determines the number of rotations based on the number of pulses. Therefore, the controller can estimate the rotation angle Φ from the number of pulse signals and the angle of each rotation of the stepping motor.

在另一實施例中,準全向式光偵測器25是被固定在一底座上,且該底座設有一齒輪,使得馬達可以直接透過一齒輪來轉動該齒輪,或是透過一傳動皮帶(timing belt)來轉動該齒輪。 In another embodiment, the quasi-omnidirectional photodetector 25 is fixed to a base, and the base is provided with a gear so that the motor can directly rotate the gear through a gear or through a transmission belt ( Timing belt) to rotate the gear.

第2e圖為根據本發明之一準全向式光偵測器的另一實施例的示意圖。準全向式光偵測器26包括了一全向式光偵測器27、一底座28與一垂直延伸部29。該垂直延伸部29是由一不透光材料所形成,且會在全向式光偵測器27的感測表面上形成一感應死區。底座28可由一馬達轉動,以偵測一光線的方向。在本實施例中,全向式光偵測器26與底座28並沒有連接在一起。也就是說當底座28被轉動 時,全向式光偵測器26並不會被跟著轉動。至於如何偵測光線的方向請參考第2c與第2d圖,在此不贅述。 Figure 2e is a schematic illustration of another embodiment of a quasi-omnidirectional photodetector in accordance with the present invention. The quasi-omnidirectional photodetector 26 includes an omnidirectional photodetector 27, a base 28 and a vertical extension 29. The vertical extension 29 is formed of an opaque material and forms a sensing dead zone on the sensing surface of the omnidirectional photodetector 27. The base 28 is rotatable by a motor to detect the direction of a light. In the present embodiment, the omnidirectional photodetector 26 is not connected to the base 28. That is, when the base 28 is rotated At this time, the omnidirectional light detector 26 is not rotated. For the direction of how to detect light, please refer to the 2c and 2d diagrams, and will not go into details here.

第3圖為根據本發明之一掃地機器人的一實施例的示意圖。掃地機器人31包括了一準全向式光偵測器32、一指向性光偵測器33以及一遮罩34。第3圖中的掃地機器人31只列出與本發明相關之元件,非將本發明限制於此。掃地機器人31仍包含了其他硬體元件或控制硬體之軔體或軟體,在此不一一贅述。 Figure 3 is a schematic illustration of an embodiment of a sweeping robot in accordance with the present invention. The cleaning robot 31 includes a quasi-omnidirectional photodetector 32, a directional light detector 33, and a mask 34. The cleaning robot 31 in Fig. 3 only lists the elements related to the present invention, and the present invention is not limited thereto. The cleaning robot 31 still includes other hardware components or hardware or software for controlling the hardware, which will not be described herein.

當準全向式光偵測器32偵測到一光線時,準全向式光偵測器32的一控制器或掃地機器人31的一處理器會先判斷該光線的強度。當該光線的的強度小於一預定值時,該控制器或該處理器不進行任何處理。當該光線的的強度大於或等於該預定值時,該控制器或該處理器則判斷該光線是否是由一虛擬牆發出。 When the quasi-omnidirectional photodetector 32 detects a light, a controller of the quasi-omnidirectional photodetector 32 or a processor of the cleaning robot 31 first determines the intensity of the light. When the intensity of the light is less than a predetermined value, the controller or the processor does not perform any processing. When the intensity of the light is greater than or equal to the predetermined value, the controller or the processor determines whether the light is emitted by a virtual wall.

若該光線是由該虛擬牆所發出,該準全向式光偵測器32會被旋轉以偵測該光線的方向或該光線與掃地機器人31目前的行進方向的一夾角。當得知該光線的方向或該夾角後,掃地機器人31的處理器會決定一旋轉方向,順時針旋轉或逆時針旋轉,且該掃地機器人31會原地旋轉,直到指向性光偵測器33偵測到該光線時,該掃地機器人31才會停止旋轉。 If the light is emitted by the virtual wall, the quasi-omnidirectional light detector 32 is rotated to detect the direction of the light or an angle between the light and the current traveling direction of the cleaning robot 31. When the direction of the light or the angle is known, the processor of the cleaning robot 31 determines a rotation direction, clockwise rotation or counterclockwise rotation, and the cleaning robot 31 rotates in place until the directional light detector 33 When the light is detected, the cleaning robot 31 stops rotating.

在另一個實施方式中,當準全向式光偵測器32偵測到該光線且確認該光線是來自該虛擬牆時,掃地機器人31與準全向式光偵測器32就會被以順時針旋轉或逆時針方向同時進行旋轉。當指向性光偵測器33偵測到該光線時,該 掃地機器人31停止旋轉。 In another embodiment, when the quasi-omnidirectional photodetector 32 detects the light and confirms that the light is from the virtual wall, the sweeping robot 31 and the quasi-omnidirectional photodetector 32 are Rotate clockwise or counterclockwise. When the directional light detector 33 detects the light, the The cleaning robot 31 stops rotating.

換言之,掃地機器人31的處理器會根據準全向式光偵測器32的偵測結果控制掃地機器人31以順時針方向或是逆時針方向進行旋轉。一但指向性光偵測器33偵測到虛擬牆發出的光線時,掃地機器人31就會停止旋轉,接著掃地機器人31的處理器會控制掃地機器人31筆直的往虛擬牆移動。 In other words, the processor of the cleaning robot 31 controls the cleaning robot 31 to rotate in a clockwise or counterclockwise direction according to the detection result of the quasi-omnidirectional photodetector 32. When the directional light detector 33 detects the light emitted by the virtual wall, the cleaning robot 31 stops rotating, and then the processor of the cleaning robot 31 controls the cleaning robot 31 to move straight toward the virtual wall.

在另一實施例中,掃地機器人31的處理器會根據準全向式光偵測器32與指向性光偵測器33的偵測結果控制該掃地機器人31之行為,該行為包括運動行為,清潔行為,機器人與互動裝置之間的互動行為等。舉例來說,若是虛擬牆發出的光線,則掃地機器人31的處理器會控制掃地機器人31沿著光線前進並進行清潔動作。如果是充電站發出的光線,則掃地機器人31的處理器會判斷是否要進入充電站進行充電。如果要進行充電,則掃地機器人31的處理器會執行一充電程序,控制該掃地機器人31進入充電站充電,並在行進過程中進行清楚行為。 In another embodiment, the processor of the cleaning robot 31 controls the behavior of the cleaning robot 31 according to the detection results of the quasi-omnidirectional photodetector 32 and the directional light detector 33, and the behavior includes the motion behavior. Cleaning behavior, interaction between robots and interactive devices, etc. For example, if the light is emitted by the virtual wall, the processor of the cleaning robot 31 controls the cleaning robot 31 to advance along the light and perform a cleaning operation. If it is the light emitted by the charging station, the processor of the cleaning robot 31 determines whether or not to enter the charging station for charging. If charging is to be performed, the processor of the cleaning robot 31 performs a charging procedure that controls the cleaning robot 31 to enter the charging station for charging and performs clear behavior during traveling.

在另一實施例中,掃地機器人31偵測到的光線中有包含資訊或控制信號,掃地機器人31的處理器會先對接收到的光線進行解碼並接收該資訊或該控制信號。舉例來說,充電站可透過網路連接至使用者的一手持裝置,使用者可以透過該手持裝置控制該掃地機器人31。該手持裝置可能是該掃地機器人31的遙控器或一智慧型手機。 In another embodiment, the light detected by the cleaning robot 31 includes information or control signals, and the processor of the cleaning robot 31 first decodes the received light and receives the information or the control signal. For example, the charging station can be connected to a handheld device of the user through a network, and the user can control the cleaning robot 31 through the handheld device. The handheld device may be a remote controller of the cleaning robot 31 or a smart phone.

在到達虛擬牆之前,掃地機器人31就會沿著虛擬牆發出的光線移動並進行清潔的動作。掃地機器人31的處理器 會持續監控指向性光偵測器33是否有持續接收到虛擬牆發出的光線。一但指向性光偵測器33沒有接收到光線,掃地機器人31會被旋轉以校正該掃地機器人31的一行進方向。 Before reaching the virtual wall, the sweeping robot 31 moves along the light emitted by the virtual wall and cleans it. Sweeping robot 31 processor The directional light detector 33 is continuously monitored for continuous light reception from the virtual wall. Once the directional light detector 33 has not received the light, the cleaning robot 31 is rotated to correct a traveling direction of the cleaning robot 31.

在另一實施例中,指向性光偵測器33是由複數個光偵測元件所組成,掃地機器人31的處理器會根據該等光感測元件的感測結果對掃地機器人的移動方向,於行進間進行微調。 In another embodiment, the directional light detector 33 is composed of a plurality of light detecting components, and the processor of the cleaning robot 31 can move the sweeping robot according to the sensing result of the light sensing components. Fine-tune between marches.

第4圖為根據本發明之一掃地機器人的控制方法的一實施例的示意圖。虛擬牆45會發出一光線用以標示掃地機器人41不能進入的一限制區域。該光線具有一第一邊界b1與一第二邊界b2。在時間點T1時,掃地機器人41依照一預定路徑移動。在時間點T2時,準全向式光偵測器42偵測到虛擬牆45發出的光線的第一邊界b2。此時掃地機器人41會停止移動,且準全向式光偵測器42會以一順時鐘方式或一逆時鐘方向進行旋轉。 Fig. 4 is a view showing an embodiment of a control method of a cleaning robot according to the present invention. The virtual wall 45 emits a light to indicate a restricted area that the cleaning robot 41 cannot enter. The light has a first boundary b1 and a second boundary b2. At the time point T1, the cleaning robot 41 moves in accordance with a predetermined path. At time T2, the quasi-omnidirectional photodetector 42 detects the first boundary b2 of the light emitted by the virtual wall 45. At this time, the cleaning robot 41 stops moving, and the quasi-omnidirectional photodetector 42 rotates in a clockwise manner or a counterclockwise direction.

當遮罩44擋住了虛擬牆45發出的光線,使得準全向式光偵測器42無法偵測到光線。此時,掃地機器人41內的一處理器會記錄目前遮罩44的一目前位置,並根據遮罩44的目前位置與其初始位置求得準全向式光偵測器42的一第一旋轉角度。掃地機器人41的處理器會根據該第一旋轉角度來決定掃地機器人41的一旋轉方向。 When the mask 44 blocks the light emitted by the virtual wall 45, the quasi-omnidirectional photodetector 42 cannot detect the light. At this time, a processor in the cleaning robot 41 records a current position of the current mask 44, and obtains a first rotation angle of the quasi-omnidirectional photodetector 42 according to the current position of the mask 44 and its initial position. . The processor of the cleaning robot 41 determines a rotational direction of the cleaning robot 41 based on the first rotation angle.

舉例來說,當該第一旋轉角度小於180度時,掃地機器人41以逆時針方向進行旋轉。當該第一旋轉角度大於180度時,掃地機器人41以順時針方向進行旋轉。 For example, when the first rotation angle is less than 180 degrees, the cleaning robot 41 rotates in a counterclockwise direction. When the first rotation angle is greater than 180 degrees, the cleaning robot 41 rotates in a clockwise direction.

接著,在時間點T3時,掃地機器人41就會根據該旋轉方向進行旋轉,直到指向性光偵測器43偵測到虛擬牆45發出的光線時,掃地機器人41才會停止旋轉。一般來說,當指向性光偵測器43偵測到虛擬牆45發出的光線時,此時通常都是指向性光偵測器43的邊緣的感測元件偵測到虛擬牆45發出的光線。因此當掃地機器人41移動時,指向性光偵測器43就很容易再次偵測不到光線,使得掃地機器人41必須再次停止移動進行移動方向的校正。 Next, at the time point T3, the cleaning robot 41 rotates according to the rotation direction until the directional light detector 43 detects the light emitted from the virtual wall 45, and the cleaning robot 41 stops rotating. Generally, when the directional light detector 43 detects the light emitted by the virtual wall 45, the sensing element that is usually the edge of the directional light detector 43 detects the light emitted by the virtual wall 45. . Therefore, when the cleaning robot 41 moves, the directional light detector 43 can easily detect the light again, so that the cleaning robot 41 must stop moving again to correct the moving direction.

為了解決這個缺點,在另一個實施方式中,掃地機器人41的處理器會根據掃地機器人41的旋轉角速度以及指向性光偵測器43的尺寸,估計一延遲時間。當直到指向性光偵測器43偵測到虛擬牆45發出的光線時,掃地機器人41不會馬上停止轉動,而是在經過該延遲時間後才會停止轉動。透過該延遲時間,可以使得虛擬牆45發射出的光線對準指向性光偵測器43的中央。 In order to solve this disadvantage, in another embodiment, the processor of the cleaning robot 41 estimates a delay time based on the rotational angular velocity of the cleaning robot 41 and the size of the directional light detector 43. When the directional light detector 43 detects the light emitted from the virtual wall 45, the cleaning robot 41 does not stop rotating immediately, but stops the rotation after the lapse of the delay time. Through the delay time, the light emitted from the virtual wall 45 can be aligned with the center of the directional light detector 43.

另外,要注意的是在時間點T2與時間點T3的時候,掃地機器人41並沒有移動。在時間點T2時,掃地機器人並不會移動也不會轉動,只有準全向式光偵測器42被轉動而已。而在時間點T3時,掃地機器人41會在原地轉動。雖然第4圖中,在時間點T2與時間點T3時,掃地機器人41似乎位於不同的位置,但實際上,在上述兩個時間點的時候,掃地機器人41的位置並沒有改變。 In addition, it is to be noted that the sweeping robot 41 does not move at the time point T2 and the time point T3. At the time point T2, the sweeping robot does not move or rotate, and only the quasi-omnidirectional photodetector 42 is rotated. At the time point T3, the cleaning robot 41 will rotate in place. Although in Fig. 4, the cleaning robot 41 seems to be located at a different position at the time point T2 and the time point T3, actually, at the above two time points, the position of the cleaning robot 41 is not changed.

不過在另一個實施例中,掃地機器人41於時間點T2與時間點T3的動作可以被整合為一個步驟。在時間點T2的時候,準全向式光偵測器42以一預定方向進行旋轉,此 時掃地機器人41也同時也會以該預定方向進行旋轉。當該指向性光偵測器43偵測到虛擬牆45發射的光線時,掃地機器人41停止旋轉。當掃地機器人41停止旋轉時,準全向式光偵測器42可以停止旋轉或是繼續旋轉。如果準全向式光偵測器42繼續旋轉的話,掃地機器人41的處理器會根據準全向式光偵測器42的旋轉角度以估計虛擬牆45發射的光線的方向且對掃地機器人41的行進方向進行校正。 However, in another embodiment, the actions of the cleaning robot 41 at the time point T2 and the time point T3 can be integrated into one step. At time T2, the quasi-omnidirectional photodetector 42 rotates in a predetermined direction. The sweeping robot 41 also rotates in the predetermined direction at the same time. When the directional light detector 43 detects the light emitted by the virtual wall 45, the cleaning robot 41 stops rotating. When the cleaning robot 41 stops rotating, the quasi-omnidirectional photodetector 42 can stop rotating or continue to rotate. If the quasi-omnidirectional photodetector 42 continues to rotate, the processor of the cleaning robot 41 estimates the direction of the light emitted by the virtual wall 45 and the sweeping robot 41 according to the rotation angle of the quasi-omnidirectional photodetector 42. The direction of travel is corrected.

當掃地機器人41往虛擬牆45移動時,掃地機器人41的處理器會記錄掃地機器人41的移動路徑,並在掃地機器人41的一地圖上標示該移動路徑,並畫出該限制區域。在另一實施例中,當掃地機器人41的處理器已經確認了虛擬牆45發射的光光線的方向時,該控制器可以在該地圖上標示該光線的位置,並畫出該限制區域。該地圖可能儲存在掃地機器人41內的一記憶體或是一地圖資料庫。掃地機器人41的控制器可以根據掃地機器人41每次的運動來修正該地圖,並於地圖上標示出障礙物的位置。 When the cleaning robot 41 moves toward the virtual wall 45, the processor of the cleaning robot 41 records the moving path of the cleaning robot 41, marks the moving path on a map of the cleaning robot 41, and draws the restricted area. In another embodiment, when the processor of the cleaning robot 41 has confirmed the direction of the light ray emitted by the virtual wall 45, the controller may mark the location of the ray on the map and draw the restricted area. The map may be stored in a memory or a map database within the sweeping robot 41. The controller of the cleaning robot 41 can correct the map according to each movement of the cleaning robot 41, and mark the position of the obstacle on the map.

當掃地機器人41接近虛擬牆45,且掃地機器人41與虛擬牆45的距離小於一預定值時,掃地機器人41前端的一碰撞感測器或一聲學感測器會發出一停止信號給掃地機器人41的控制器。碰撞感測器或聲學感測器被設置在掃地機器人41的前端,用以偵測掃地機器人41的前方是否有障礙物。如果碰撞感測器或聲學感測器偵測到一障礙物,掃地機器人41會先判斷該障礙物是否就是虛擬牆45。如果是的話,掃地機器人41會停止前進,並且會轉以另一個方向繼續前進。如果掃地機器人41判斷該障礙物不是虛擬 牆45,掃地機器人41會先避開該障礙物,接著再回到原先移動的路徑上。 When the cleaning robot 41 approaches the virtual wall 45, and the distance between the cleaning robot 41 and the virtual wall 45 is less than a predetermined value, a collision sensor or an acoustic sensor at the front end of the cleaning robot 41 sends a stop signal to the cleaning robot 41. Controller. A collision sensor or an acoustic sensor is disposed at the front end of the cleaning robot 41 for detecting an obstacle in front of the cleaning robot 41. If the collision sensor or the acoustic sensor detects an obstacle, the cleaning robot 41 first determines whether the obstacle is the virtual wall 45. If so, the sweeping robot 41 will stop moving forward and will continue to move in the other direction. If the cleaning robot 41 determines that the obstacle is not virtual The wall 45, the sweeping robot 41 will first avoid the obstacle and then return to the original moving path.

當掃地機器人41接近虛擬牆45時,虛擬牆45會發出一射頻信號、一聲學信號或是一紅外線信號,使得掃地機器人41可以得知掃地機器人41已經非常接近虛擬牆45。在另一個實施例中,可以利用將近場通信(Near Field Communication,NFC)裝置安裝在掃地機器人41與虛擬牆45上來達到相同的目的。當掃地機器人41上的NFC裝置接收到來自虛擬牆45上的NFC裝置傳送的資料或信號時,這表示掃地機器人41與虛擬牆45已經非常接近,且掃地機器人41應該要停止移動。一般來說,近場通信的感應距離約為20cm。 When the cleaning robot 41 approaches the virtual wall 45, the virtual wall 45 emits a radio frequency signal, an acoustic signal or an infrared signal, so that the cleaning robot 41 can know that the cleaning robot 41 is very close to the virtual wall 45. In another embodiment, the Near Field Communication (NFC) device can be mounted on the cleaning robot 41 and the virtual wall 45 for the same purpose. When the NFC device on the cleaning robot 41 receives the material or signal transmitted from the NFC device on the virtual wall 45, this indicates that the cleaning robot 41 is already very close to the virtual wall 45, and the cleaning robot 41 should stop moving. In general, the near field communication has a sensing distance of approximately 20 cm.

利用上述的方式,可以使得掃地機器人41可以清潔虛擬牆45所發出的光線附近的區域,而且掃地機器人41也不會進入限制區域。此外,也可以利用這樣的方式讓掃地機人41內的控制器描繪出一清潔區域地圖。爾後掃地機器人便可以依據該清潔區域地圖來移動,且可以更有效且更快速的完成清潔工作。 With the above-described manner, the cleaning robot 41 can clean the area near the light emitted by the virtual wall 45, and the cleaning robot 41 does not enter the restricted area. In addition, the controller in the sweeper 41 can also be used to draw a map of the cleaning area in this manner. The sweeping robot can then move according to the map of the cleaning area, and the cleaning work can be completed more efficiently and quickly.

雖然第4圖示以虛擬牆45為例說明,但非將本發明限制於此。第4圖所說明之方法也可以應用在充電站上。充電站也會發出一導引信號,如一光學信號,用以引導掃地機器人41進行充電。 Although the fourth illustration is exemplified by the virtual wall 45, the present invention is not limited thereto. The method illustrated in Figure 4 can also be applied to a charging station. The charging station also sends a pilot signal, such as an optical signal, for guiding the cleaning robot 41 to charge.

另外,雖然第4圖是以準全向式光偵測器42與指向性光偵測器43為例說明,但非將本發明限制於此。本實施例揭示的控制方法稍加修改,一樣可以應用在聲學偵測器或 是其他種類的偵測器。 In addition, although FIG. 4 illustrates the quasi-omnidirectional photodetector 42 and the directional photodetector 43 as an example, the present invention is not limited thereto. The control method disclosed in this embodiment is slightly modified, and can be applied to an acoustic detector or It is another kind of detector.

第5圖為根據本發明之一掃地機器人的控制方法的另一實施例的示意圖。虛擬牆55會發出一光線用以標示掃地機器人51不能進入的一限制區域。該光線具有一第一邊界b1與一第二邊界b2。在時間點T1時,掃地機器人51依照一預定路徑移動。在時間點T2時,準全向式光偵測器52偵測到虛擬牆55發出的光線的第一邊界b2。此時掃地機器人51仍會以預定路徑繼續移動。在時間點T3時,準全向式光偵測器52偵測不到虛擬牆55發射出的光線,此時掃地機器人51會停止移動,且準全向式光偵測器52會以一順時鐘方式或一逆時鐘方向進行旋轉。 Fig. 5 is a schematic view showing another embodiment of a control method of a cleaning robot according to the present invention. The virtual wall 55 emits a light to indicate a restricted area that the cleaning robot 51 cannot enter. The light has a first boundary b1 and a second boundary b2. At the time point T1, the cleaning robot 51 moves in accordance with a predetermined path. At time T2, the quasi-omnidirectional photodetector 52 detects the first boundary b2 of the light emitted by the virtual wall 55. At this time, the cleaning robot 51 will continue to move in the predetermined path. At time T3, the quasi-omnidirectional photodetector 52 does not detect the light emitted by the virtual wall 55. At this time, the cleaning robot 51 stops moving, and the quasi-omnidirectional photodetector 52 will follow Rotate in clock mode or in reverse clock direction.

當遮罩54擋住了虛擬牆55發出的光線,使得準全向式光偵測器52無法偵測到光線。此時,掃地機器人51內的一處理器會記錄目前遮罩54的一目前位置,並根據遮罩54的目前位置與其初始位置求得準全向式光偵測器52的一第一旋轉角度。掃地機器人51的處理器會根據該第一旋轉角度來決定掃地機器人51的一旋轉方向。 When the mask 54 blocks the light emitted by the virtual wall 55, the quasi-omnidirectional photodetector 52 cannot detect the light. At this time, a processor in the cleaning robot 51 records a current position of the current mask 54 and obtains a first rotation angle of the quasi-omnidirectional photodetector 52 according to the current position of the mask 54 and its initial position. . The processor of the cleaning robot 51 determines a rotation direction of the cleaning robot 51 based on the first rotation angle.

舉例來說,當該第一旋轉角度小於180度時,掃地機器人51以逆時針方向進行旋轉。當該第一旋轉角度大於180度時,掃地機器人51以順時針方向進行旋轉。 For example, when the first rotation angle is less than 180 degrees, the cleaning robot 51 rotates in a counterclockwise direction. When the first rotation angle is greater than 180 degrees, the cleaning robot 51 rotates in a clockwise direction.

接著,在時間點T4時,掃地機器人51就會根據該旋轉方向進行旋轉,直到指向性光偵測器53偵測到虛擬牆55發出的光線時,掃地機器人51才會停止旋轉。一般來說,當指向性光偵測器53偵測到虛擬牆55發出的光線時,此時通常都是指向性光偵測器53的邊緣的感測元件偵測 到虛擬牆55發出的光線。因此當掃地機器人51移動時,指向性光偵測器53就很容易再次偵測不到光線,使得掃地機器人51必須再次停止移動進行移動方向的校正。 Next, at the time point T4, the cleaning robot 51 rotates according to the rotation direction until the directional light detector 53 detects the light emitted from the virtual wall 55, and the cleaning robot 51 stops rotating. Generally, when the directional light detector 53 detects the light emitted by the virtual wall 55, the sensing element detection at the edge of the directional light detector 53 is usually detected at this time. Light to the virtual wall 55. Therefore, when the cleaning robot 51 moves, the directional light detector 53 can easily detect the light again, so that the cleaning robot 51 must stop moving again to correct the moving direction.

為了解決這個缺點,在另一個實施方式中,掃地機器人51的處理器會根據掃地機器人51的旋轉角速度以及指向性光偵測器53的尺寸,估計一延遲時間。當直到指向性光偵測器53偵測到虛擬牆55發出的光線時,掃地機器人51不會馬上停止轉動,而是在經過該延遲時間後才會停止轉動。透過該延遲時間,可以使得虛擬牆55發射出的光線對準指向性光偵測器53的中央。 In order to solve this disadvantage, in another embodiment, the processor of the cleaning robot 51 estimates a delay time based on the rotational angular velocity of the cleaning robot 51 and the size of the directional light detector 53. When the directional light detector 53 detects the light emitted from the virtual wall 55, the cleaning robot 51 does not stop rotating immediately, but stops the rotation after the lapse of the delay time. Through the delay time, the light emitted from the virtual wall 55 can be aligned with the center of the directional light detector 53.

另外,要注意的是在時間點T3與時間點T4的時候,掃地機器人51並沒有移動。在時間點T3時,掃地機器人並不會移動也不會轉動,只有準全向式光偵測器52被轉動而已。而在時間點T4時,掃地機器人51會在原地轉動。雖然第5圖中,在時間點T3與時間點T4時,掃地機器人51似乎位於不同的位置,但實際上,在上述兩個時間點的時候,掃地機器人51的位置並沒有改變。 In addition, it is to be noted that the sweeping robot 51 does not move at the time point T3 and the time point T4. At the time point T3, the sweeping robot does not move or rotate, and only the quasi-omnidirectional photodetector 52 is rotated. At the time point T4, the cleaning robot 51 will rotate in place. Although in FIG. 5, the cleaning robot 51 seems to be located at a different position at the time point T3 and the time point T4, actually, at the above two time points, the position of the cleaning robot 51 does not change.

不過在另一個實施例中,掃地機器人51於時間點T3與時間點T4的動作可以被整合為一個步驟。在時間點T3的時候,準全向式光偵測器52以一預定方向進行旋轉,此時掃地機器人51也同時也會以該預定方向進行旋轉。當該指向性光偵測器53偵測到虛擬牆55發射的光線時,掃地機器人51停止旋轉。當掃地機器人51停止旋轉時,準全向式光偵測器52可以停止旋轉或是繼續旋轉。如果準全向式光偵測器52繼續旋轉的話,掃地機器人51的處理器會 根據準全向式光偵測器52的旋轉角度以估計虛擬牆55發射的光線的方向且對掃地機器人51的行進方向進行校正。 However, in another embodiment, the actions of the cleaning robot 51 at time point T3 and time point T4 can be integrated into one step. At the time point T3, the quasi-omnidirectional photodetector 52 rotates in a predetermined direction, and at this time, the cleaning robot 51 also rotates in the predetermined direction. When the directional light detector 53 detects the light emitted by the virtual wall 55, the cleaning robot 51 stops rotating. When the cleaning robot 51 stops rotating, the quasi-omnidirectional photodetector 52 can stop rotating or continue to rotate. If the quasi-omnidirectional photodetector 52 continues to rotate, the processor of the cleaning robot 51 will The direction of the light emitted by the virtual wall 55 is estimated based on the rotation angle of the quasi-omnidirectional light detector 52 and corrected for the traveling direction of the cleaning robot 51.

當掃地機器人51往虛擬牆55移動時,掃地機器人51的處理器會記錄掃地機器人51的移動路徑,並在掃地機器人51的一地圖上標示該移動路徑,並畫出該限制區域。在另一實施例中,當掃地機器人51的處理器已經確認了虛擬牆55發射的光光線的方向時,該控制器可以在該地圖上標示該光線的位置,並畫出該限制區域。該地圖可能儲存在掃地機器人51內的一記憶體或是一地圖資料庫。掃地機器人51的控制器可以根據掃地機器人51每次的運動來修正該地圖,並於地圖上標示出障礙物的位置。 When the cleaning robot 51 moves toward the virtual wall 55, the processor of the cleaning robot 51 records the moving path of the cleaning robot 51, marks the moving path on a map of the cleaning robot 51, and draws the restricted area. In another embodiment, when the processor of the cleaning robot 51 has confirmed the direction of the light ray emitted by the virtual wall 55, the controller can mark the location of the ray on the map and draw the restricted area. The map may be stored in a memory or a map database within the cleaning robot 51. The controller of the cleaning robot 51 can correct the map according to each movement of the cleaning robot 51, and mark the position of the obstacle on the map.

當掃地機器人51接近虛擬牆55,且掃地機器人51與虛擬牆55的距離小於一預定值時,掃地機器人51前端的一碰撞感測器或一聲學感測器會發出一停止信號給掃地機器人51的控制器。碰撞感測器或聲學感測器被設置在掃地機器人51的前端,用以偵測掃地機器人51的前方是否有障礙物。如果碰撞感測器或聲學感測器偵測到一障礙物,掃地機器人51會先判斷該障礙物是否就是虛擬牆55。如果是的話,掃地機器人51會停止前進,並且會轉以另一個方向繼續前進。如果掃地機器人51判斷該障礙物不是虛擬牆55,掃地機器人51會先避開該障礙物,接著再回到原先移動的路徑上。 When the cleaning robot 51 approaches the virtual wall 55, and the distance between the cleaning robot 51 and the virtual wall 55 is less than a predetermined value, a collision sensor or an acoustic sensor at the front end of the cleaning robot 51 sends a stop signal to the cleaning robot 51. Controller. A collision sensor or an acoustic sensor is disposed at the front end of the cleaning robot 51 for detecting an obstacle in front of the cleaning robot 51. If the collision sensor or the acoustic sensor detects an obstacle, the cleaning robot 51 first determines whether the obstacle is the virtual wall 55. If so, the sweeping robot 51 will stop moving forward and will continue to move in the other direction. If the cleaning robot 51 determines that the obstacle is not the virtual wall 55, the cleaning robot 51 will first avoid the obstacle and then return to the original moving path.

當掃地機器人51接近虛擬牆55時,虛擬牆55會發出一射頻信號、一聲學信號或是一紅外線信號,使得掃地機器人51可以得知掃地機器人51已經非常接近虛擬牆55。 在另一個實施例中,可以利用將近場通信(Near Field Communication,NFC)裝置安裝在掃地機器人51與虛擬牆55上來達到相同的目的。當掃地機器人51上的NFC裝置接收到來自虛擬牆55上的NFC裝置傳送的資料或信號時,這表示掃地機器人51與虛擬牆55已經非常接近,且掃地機器人51應該要停止移動。一般來說,近場通信的感應距離約為20cm。第6圖為根據本發明之一掃地機器人的控制方法的另一實施例的示意圖。虛擬牆65會發出一光線用以標示掃地機器人61不能進入的一限制區域。該光線具有一第一邊界b1與一第二邊界b2。在時間點T1時,掃地機器人61依照一預定路徑移動。在時間點T2時,準全向式光偵測器62偵測到虛擬牆65發出的光線的第一邊界b2。此時掃地機器人61會停止移動,且準全向式光偵測器62會以一順時鐘方式或一逆時鐘方向進行旋轉。 When the cleaning robot 51 approaches the virtual wall 55, the virtual wall 55 emits a radio frequency signal, an acoustic signal or an infrared signal, so that the cleaning robot 51 can know that the cleaning robot 51 is very close to the virtual wall 55. In another embodiment, the Near Field Communication (NFC) device can be mounted on the cleaning robot 51 and the virtual wall 55 for the same purpose. When the NFC device on the cleaning robot 51 receives the material or signal transmitted from the NFC device on the virtual wall 55, this indicates that the cleaning robot 51 is already very close to the virtual wall 55, and the cleaning robot 51 should stop moving. In general, the near field communication has a sensing distance of approximately 20 cm. Figure 6 is a schematic view showing another embodiment of a control method of a cleaning robot according to the present invention. The virtual wall 65 emits a light to indicate a restricted area that the cleaning robot 61 cannot enter. The light has a first boundary b1 and a second boundary b2. At the time point T1, the cleaning robot 61 moves in accordance with a predetermined path. At time T2, the quasi-omnidirectional photodetector 62 detects the first boundary b2 of the light emitted by the virtual wall 65. At this time, the cleaning robot 61 stops moving, and the quasi-omnidirectional photodetector 62 rotates in a clockwise manner or a counterclockwise direction.

當遮罩64擋住了虛擬牆65發出的光線,使得準全向式光偵測器62無法偵測到光線。此時,掃地機器人61內的一處理器會記錄目前遮罩64的一目前位置,並根據遮罩64的目前位置與其初始位置求得準全向式光偵測器62的一第一旋轉角度。掃地機器人61的處理器會根據該第一旋轉角度來決定掃地機器人61的一旋轉方向。 When the mask 64 blocks the light emitted by the virtual wall 65, the quasi-omnidirectional photodetector 62 cannot detect the light. At this time, a processor in the cleaning robot 61 records a current position of the current mask 64, and obtains a first rotation angle of the quasi-omnidirectional photodetector 62 according to the current position of the mask 64 and its initial position. . The processor of the cleaning robot 61 determines a rotation direction of the cleaning robot 61 based on the first rotation angle.

舉例來說,當該第一旋轉角度小於180度時,掃地機器人61以逆時針方向進行旋轉。當該第一旋轉角度大於180度時,掃地機器人61以順時針方向進行旋轉。 For example, when the first rotation angle is less than 180 degrees, the cleaning robot 61 rotates in a counterclockwise direction. When the first rotation angle is greater than 180 degrees, the cleaning robot 61 rotates in a clockwise direction.

接著,在時間點T3時,掃地機器人61就會根據該旋 轉方向進行旋轉,直到指向性光偵測器63偵測到虛擬牆65發出的光線時,掃地機器人61才會停止旋轉。一般來說,當指向性光偵測器63偵測到虛擬牆65發出的光線時,此時通常都是指向性光偵測器63的邊緣的感測元件偵測到虛擬牆65發出的光線。因此當掃地機器人61移動時,指向性光偵測器63就很容易再次偵測不到光線,使得掃地機器人61必須再次停止移動進行移動方向的校正。 Then, at time point T3, the sweeping robot 61 will follow the rotation The rotation direction is rotated until the directional light detector 63 detects the light emitted from the virtual wall 65, and the cleaning robot 61 stops rotating. Generally, when the directional light detector 63 detects the light emitted by the virtual wall 65, the sensing element that is usually the edge of the directional light detector 63 detects the light emitted by the virtual wall 65. . Therefore, when the cleaning robot 61 moves, the directional light detector 63 can easily detect the light again, so that the cleaning robot 61 must stop moving again to correct the moving direction.

為了解決這個缺點,在另一個實施方式中,掃地機器人61的處理器會根據掃地機器人61的旋轉角速度以及指向性光偵測器63的尺寸,估計一延遲時間。當直到指向性光偵測器63偵測到虛擬牆65發出的光線時,掃地機器人61不會馬上停止轉動,而是在經過該延遲時間後才會停止轉動。透過該延遲時間,可以使得虛擬牆65發射出的光線對準指向性光偵測器63的中央。 In order to solve this disadvantage, in another embodiment, the processor of the cleaning robot 61 estimates a delay time based on the rotational angular velocity of the cleaning robot 61 and the size of the directional light detector 63. When the directional light detector 63 detects the light emitted from the virtual wall 65, the cleaning robot 61 does not stop rotating immediately, but stops the rotation after the lapse of the delay time. Through the delay time, the light emitted from the virtual wall 65 can be aligned with the center of the directional light detector 63.

另外,要注意的是在時間點T2與時間點T3的時候,掃地機器人61並沒有移動。在時間點T2時,掃地機器人並不會移動也不會轉動,只有準全向式光偵測器62被轉動而已。而在時間點T3時,掃地機器人61會在原地轉動。雖然第6圖中,在時間點T2與時間點T3時,掃地機器人61似乎位於不同的位置,但實際上,在上述兩個時間點的時候,掃地機器人61的位置並沒有改變。 In addition, it is to be noted that the sweeping robot 61 does not move at the time point T2 and the time point T3. At the time point T2, the sweeping robot does not move or rotate, and only the quasi-omnidirectional photodetector 62 is rotated. At the time point T3, the cleaning robot 61 will rotate in place. Although in Fig. 6, at the time point T2 and the time point T3, the cleaning robot 61 seems to be located at a different position, actually, at the above two time points, the position of the cleaning robot 61 does not change.

不過在另一個實施例中,掃地機器人61於時間點T2與時間點T3的動作可以被整合為一個步驟。在時間點T2的時候,準全向式光偵測器62以一預定方向進行旋轉,此時掃地機器人61也同時也會以該預定方向進行旋轉。當該 指向性光偵測器63偵測到虛擬牆65發射的光線時,掃地機器人61停止旋轉。當掃地機器人61停止旋轉時,準全向式光偵測器62可以停止旋轉或是繼續旋轉。如果準全向式光偵測器62繼續旋轉的話,掃地機器人61的處理器會根據準全向式光偵測器62的旋轉角度以估計虛擬牆65發射的光線的方向且對掃地機器人61的行進方向進行校正。 However, in another embodiment, the action of the cleaning robot 61 at time point T2 and time point T3 can be integrated into one step. At the time point T2, the quasi-omnidirectional photodetector 62 rotates in a predetermined direction, and at this time, the cleaning robot 61 also rotates in the predetermined direction. When When the directional light detector 63 detects the light emitted by the virtual wall 65, the cleaning robot 61 stops rotating. When the cleaning robot 61 stops rotating, the quasi-omnidirectional photodetector 62 can stop rotating or continue to rotate. If the quasi-omnidirectional photodetector 62 continues to rotate, the processor of the cleaning robot 61 estimates the direction of the light emitted by the virtual wall 65 according to the rotation angle of the quasi-omnidirectional photodetector 62 and to the sweeping robot 61. The direction of travel is corrected.

在時間點T4的時候,掃地機器人61的指向性光偵測器63沒有偵測到虛擬牆65發出的光線,掃地機器人61會先停止,並同時旋轉掃地機器人61與準全向式光偵測器62,直到指向性光偵測器63偵測到虛擬牆65發出的光線,掃地機器人61與準全向式光偵測器62才會停止轉動。接著,在時間點T5時,掃地機器人61繼續往虛擬牆65移動。 At the time point T4, the directional light detector 63 of the cleaning robot 61 does not detect the light emitted by the virtual wall 65, the cleaning robot 61 stops first, and simultaneously rotates the cleaning robot 61 and the quasi-omnidirectional light detection. The illuminating robot 61 and the quasi-omnidirectional photodetector 62 stop rotating until the directional light detector 63 detects the light emitted by the virtual wall 65. Next, at time point T5, the cleaning robot 61 continues to move toward the virtual wall 65.

在一實施例中,掃地機器人61於時間點T4的旋轉方向是與掃地機器人61於時間點T2的旋轉方向是相同的。 In an embodiment, the rotational direction of the cleaning robot 61 at the time point T4 is the same as the rotational direction of the cleaning robot 61 at the time point T2.

在時間點T6時,掃地機器人61的指向性光偵測器63再一次沒有偵測到虛擬牆65發出的光線,掃地機器人61會先停止,並同時旋轉掃地機器人61與準全向式光偵測器62,直到指向性光偵測器63偵測到虛擬牆65發出的光線,掃地機器人61與準全向式光偵測器62才會停止轉動。接著,在時間點T7時,掃地機器人61繼續往虛擬牆65移動。 At the time point T6, the directional light detector 63 of the cleaning robot 61 does not detect the light emitted by the virtual wall 65 again, the cleaning robot 61 stops first, and simultaneously rotates the cleaning robot 61 and the quasi-omnidirectional optical detection. The detector 62 does not stop the rotation of the sweeping robot 61 and the quasi-omnidirectional light detector 62 until the directional light detector 63 detects the light emitted by the virtual wall 65. Next, at time T7, the cleaning robot 61 continues to move toward the virtual wall 65.

當掃地機器人61往虛擬牆65移動時,掃地機器人61的處理器會記錄掃地機器人61的移動路徑,並在掃地機器人61的一地圖上標示該移動路徑,並畫出一限制區域。在另一實施例中,當掃地機器人61的處理器已經確認了虛擬牆65發射的光光線的方向時,該控制器可以在該地圖上標 示該光線的位置,並畫出該限制區域。該地圖可能儲存在掃地機器人61內的一記憶體或是一地圖資料庫。掃地機器人61的控制器可以根據掃地機器人61每次的運動來修正該地圖,並於地圖上標示出障礙物的位置。 When the cleaning robot 61 moves toward the virtual wall 65, the processor of the cleaning robot 61 records the moving path of the cleaning robot 61, marks the moving path on a map of the cleaning robot 61, and draws a restricted area. In another embodiment, when the processor of the cleaning robot 61 has confirmed the direction of the light ray emitted by the virtual wall 65, the controller may mark the map Show the position of the light and draw the restricted area. The map may be stored in a memory or a map database within the cleaning robot 61. The controller of the cleaning robot 61 can correct the map according to each movement of the cleaning robot 61, and mark the position of the obstacle on the map.

當掃地機器人61接近虛擬牆65,且掃地機器人61與虛擬牆65的距離小於一預定值時,掃地機器人61前端的一碰撞感測器或一聲學感測器會發出一停止信號給掃地機器人61的控制器。碰撞感測器或聲學感測器被設置在掃地機器人61的前端,用以偵測掃地機器人61的前方是否有障礙物。如果碰撞感測器或聲學感測器偵測到一障礙物,掃地機器人61會先判斷該障礙物是否就是虛擬牆65。如果是的話,掃地機器人61會停止前進,並且會轉以另一個方向繼續前進。如果掃地機器人61判斷該障礙物不是虛擬牆65,掃地機器人61會先避開該障礙物,接著再回到原先移動的路徑上。 When the cleaning robot 61 approaches the virtual wall 65 and the distance between the cleaning robot 61 and the virtual wall 65 is less than a predetermined value, a collision sensor or an acoustic sensor at the front end of the cleaning robot 61 sends a stop signal to the cleaning robot 61. Controller. A collision sensor or an acoustic sensor is disposed at the front end of the cleaning robot 61 for detecting an obstacle in front of the cleaning robot 61. If the collision sensor or the acoustic sensor detects an obstacle, the cleaning robot 61 first determines whether the obstacle is the virtual wall 65. If so, the sweeping robot 61 will stop moving forward and will continue to move in the other direction. If the cleaning robot 61 determines that the obstacle is not the virtual wall 65, the cleaning robot 61 will first avoid the obstacle and then return to the original moving path.

當掃地機器人61接近虛擬牆65時,虛擬牆65會發出一射頻信號、一聲學信號或是一紅外線信號,使得掃地機器人61可以得知掃地機器人61已經非常接近虛擬牆65。在另一個實施例中,可以利用將近場通信(Near Field Communication,NFC)裝置安裝在掃地機器人61與虛擬牆65上來達到相同的目的。當掃地機器人61上的NFC裝置接收到來自虛擬牆65上的NFC裝置傳送的資料或信號時,這表示掃地機器人61與虛擬牆65已經非常接近,且掃地機器人61應該要停止移動。 When the cleaning robot 61 approaches the virtual wall 65, the virtual wall 65 emits a radio frequency signal, an acoustic signal or an infrared signal, so that the cleaning robot 61 can know that the cleaning robot 61 is very close to the virtual wall 65. In another embodiment, the Near Field Communication (NFC) device can be mounted on the cleaning robot 61 and the virtual wall 65 for the same purpose. When the NFC device on the cleaning robot 61 receives the material or signal transmitted from the NFC device on the virtual wall 65, this indicates that the cleaning robot 61 is already very close to the virtual wall 65, and the cleaning robot 61 should stop moving.

在第4圖、第5圖與第6圖的說明中,掃地機器人都 是沿著光線往虛擬牆移動,但非將本發明限制於此。掃地機器人也可以是往遠離虛擬牆的方向移動。此外,第4圖、第5圖與第6圖中的虛擬牆也可以替換為充電站,掃地機器人可以依據類似第4圖、第5圖與第6圖的的方法,進入充電站充電。 In the descriptions of Figures 4, 5, and 6, the sweeping robots are It is moving along the light to the virtual wall, but the invention is not limited thereto. The sweeping robot can also move away from the virtual wall. In addition, the virtual wall in FIGS. 4, 5, and 6 can also be replaced with a charging station, and the cleaning robot can enter the charging station according to the methods similar to those in FIG. 4, FIG. 5, and FIG.

第7a圖為根據本發明之一指向性光偵測器的一實施例的示意圖。指向性光偵測器71包括一光偵測元件73、一第一遮光部72a以及一第二遮光部72b。第一遮光部72a與第二遮光部72b可以避免光偵測元件73接收到側向的光線。第一遮光部72a與第二遮光部72b由不透光材料所形成。在另一實施例中,第一遮光部72a與第二遮光部72b可被一中空的環形遮光部所取代,且該光偵測元件73位於該環形遮光部的中空部位。 Figure 7a is a schematic illustration of an embodiment of a directional light detector in accordance with the present invention. The directional light detector 71 includes a light detecting element 73, a first light blocking portion 72a, and a second light blocking portion 72b. The first light blocking portion 72a and the second light blocking portion 72b can prevent the light detecting element 73 from receiving lateral light. The first light blocking portion 72a and the second light blocking portion 72b are formed of an opaque material. In another embodiment, the first light shielding portion 72a and the second light shielding portion 72b may be replaced by a hollow annular light shielding portion, and the light detecting element 73 is located at a hollow portion of the annular light shielding portion.

第7b圖為根據本發明之一指向性光偵測器的另一實施例的示意圖。指向性光偵測器74包括一第一光偵測元件76a、一第二光偵測元件76b、一第一遮光部75a以及一第二遮光部75b。第一遮光部75a與第二遮光部75b可以避免第一光偵測元件76a與第二光偵測元件76b接收到側向的光線。第一遮光部75a與第二遮光部75b由不透光材料所形成。在另一實施例中,第一遮光部75a與第二遮光部75b可被一中空的環形遮光部所取代,且該第一光偵測元件76a與第二光偵測元件76b位於該環形遮光部的中空部位。 Figure 7b is a schematic illustration of another embodiment of a directional light detector in accordance with the present invention. The directional light detector 74 includes a first light detecting element 76a, a second light detecting element 76b, a first light blocking portion 75a, and a second light blocking portion 75b. The first light blocking portion 75a and the second light blocking portion 75b can prevent the first light detecting element 76a and the second light detecting element 76b from receiving lateral light. The first light blocking portion 75a and the second light blocking portion 75b are formed of an opaque material. In another embodiment, the first light blocking portion 75a and the second light blocking portion 75b may be replaced by a hollow annular light blocking portion, and the first light detecting element 76a and the second light detecting element 76b are located in the annular light blocking portion. The hollow part of the part.

當掃地機器人在移動時,指向性光偵測器74從偵測到虛擬牆發出的光線到偵測不到光線時,掃地機器人必須要 校正其行進方向,此時便可以透過第一光偵測元件76a與第二光偵測元件76b來決定掃地機器人要以順時針方向旋轉或以逆時針方向旋轉來校正掃地機器人的行進方向。 When the sweeping robot is moving, the directional light detector 74 must detect the light from the virtual wall to detect no light. Correcting the direction of travel, the first light detecting element 76a and the second light detecting element 76b can be used to determine whether the sweeping robot should rotate in a clockwise direction or a counterclockwise direction to correct the traveling direction of the sweeping robot.

舉例來說,當指向性光偵測器74偵測不到光線時,掃地機器人的處理器或是指向性光偵測器74的控制器會判斷最後偵測到虛擬牆發出的光線是第一光偵測元件76a或第二光偵測元件76b。如果最後偵測到虛擬牆發出的光線的是第一光偵測元件76a,則掃地機器人以逆時針方向旋轉來校正掃地機器人的行進方向。如果最後偵測到虛擬牆發出的光線的是第二光偵測元件76b,則掃地機器人以順時針方向旋轉來校正掃地機器人的行進方向。 For example, when the directional light detector 74 detects no light, the processor of the cleaning robot or the controller of the directional light detector 74 determines that the light detected by the virtual wall is the first. The light detecting element 76a or the second light detecting element 76b. If it is finally detected that the light emitted by the virtual wall is the first light detecting element 76a, the cleaning robot rotates in the counterclockwise direction to correct the traveling direction of the cleaning robot. If the second light detecting element 76b is finally detected by the virtual wall, the cleaning robot rotates clockwise to correct the traveling direction of the cleaning robot.

第7c圖為根據本發明之一指向性光偵測器的另一實施例的示意圖。指向性光偵測器77包括一光偵測元件79、一第一發射器710a、一第二發射器710b、一第一遮光部78a以及一第二遮光部78b。第一遮光部78a與第二遮光部78b可以避免光偵測元件79接收到側向的光線。第一遮光部78a與第二遮光部78b由不透光材料所形成。在另一實施例中,第一遮光部78a與第二遮光部78b可被一中空的環形遮光部所取代,且該光偵測元件79位於該環形遮光部的中空部位。 Figure 7c is a schematic illustration of another embodiment of a directional light detector in accordance with the present invention. The directional light detector 77 includes a light detecting component 79, a first emitter 710a, a second emitter 710b, a first light blocking portion 78a, and a second light blocking portion 78b. The first light blocking portion 78a and the second light blocking portion 78b can prevent the light detecting element 79 from receiving lateral light. The first light blocking portion 78a and the second light blocking portion 78b are formed of an opaque material. In another embodiment, the first light blocking portion 78a and the second light blocking portion 78b may be replaced by a hollow annular light blocking portion, and the light detecting element 79 is located at a hollow portion of the annular light blocking portion.

第一發射器710a與第二發射器710b可能為一光發射器或一聲學信號發射器。虛擬牆上也有對應的接收器,用以接收第一發射器710a與/或第二發射器710b的輸出信號。當虛擬牆上的接收器接收到第一發射器710a與/或第二發射器710b的輸出信號時,會傳送回應信號給掃地機器 人。在本實施例中,回應信號會被以編碼的方式或調變的方式,透過光線傳送給掃地機器人。 The first transmitter 710a and the second transmitter 710b may be a light emitter or an acoustic signal transmitter. The virtual wall also has a corresponding receiver for receiving the output signals of the first transmitter 710a and/or the second transmitter 710b. When the receiver on the virtual wall receives the output signal of the first transmitter 710a and/or the second transmitter 710b, a response signal is sent to the sweeping machine. people. In this embodiment, the response signal is transmitted to the cleaning robot through the light in an encoded manner or in a modulated manner.

利用第一發射器710a與第二發射器710b可以確保掃地機器人是朝虛擬牆的方向移動,且掃地機器人可以透過第一發射器710a或第二發射器710b傳送資料給虛擬牆,而虛擬牆可以透過發出的光線傳送資料給掃地機器人,藉此達到溝通的目的。 The first emitter 710a and the second emitter 710b can ensure that the sweeping robot moves in the direction of the virtual wall, and the sweeping robot can transmit the data to the virtual wall through the first emitter 710a or the second emitter 710b, and the virtual wall can The data is transmitted to the sweeping robot through the emitted light to achieve the purpose of communication.

第7d圖為根據本發明之一掃地機器人的一實施例的示意圖。掃地機器人711包括了準全向式光偵測器712、指向性光偵測器713、發射器714、碰撞感測器715以及移動裝置716。移動裝置716會根據準全向式光偵測器712與指向性光偵測器713的偵測結果移動掃地機器人711。當準全向式光偵測器712偵測到光線時,準全向式光偵測器712被轉動以得知光線的方向。關於準全向式光偵測器712的結構可參考第2a至第2e圖。關於準全向式光偵測器712的運作或功能可參考第3至第6圖的說明。 Figure 7d is a schematic view of an embodiment of a sweeping robot in accordance with the present invention. The cleaning robot 711 includes a quasi-omnidirectional light detector 712, a directional light detector 713, a transmitter 714, a collision sensor 715, and a mobile device 716. The mobile device 716 moves the cleaning robot 711 according to the detection result of the quasi-omnidirectional light detector 712 and the directional light detector 713. When the quasi-omnidirectional photodetector 712 detects light, the quasi-omnidirectional photodetector 712 is rotated to know the direction of the light. For the structure of the quasi-omnidirectional photodetector 712, reference may be made to Figs. 2a to 2e. For the operation or function of the quasi-omnidirectional photodetector 712, reference may be made to the description of FIGS. 3 to 6.

指向性光偵測器713用以讓掃地機器人711可以直線地朝虛擬牆移動。關於指向性光偵測器713的結構可以參考第7a至第7c圖。關於指向性光偵測器713的運作或功能可以參考第3圖至第6圖的說明。碰撞感測器715可能為一機械式感應裝置或一聲學感測裝置。當碰撞感測器715碰觸到障礙物時,會發出一感測信號給掃地機器人711的處理器。當該處理器接收到該感測信號時,該處理器會執行對應的迴避程序。 The directional light detector 713 is used to allow the cleaning robot 711 to move linearly toward the virtual wall. Regarding the structure of the directional light detector 713, reference can be made to Figs. 7a to 7c. Regarding the operation or function of the directional light detector 713, reference may be made to the description of FIGS. 3 to 6. The collision sensor 715 may be a mechanical sensing device or an acoustic sensing device. When the collision sensor 715 touches an obstacle, a sensing signal is sent to the processor of the cleaning robot 711. When the processor receives the sensing signal, the processor executes a corresponding avoidance procedure.

第8圖為根據本發明之一掃地機器人的控制方法的另 一實施例的流程圖。在步驟S81中,掃地機器人會根據一預定的路徑移動。一般來說,當掃地機器人開始工作時,可能會先以隨機移動方式移動,或是由使用者設定掃地機器人一開始的移動模式。掃地機器人以隨機方式移動的話,可以協助掃地機器人內的控制器繪製一室內空間的一平面地圖。當掃地機器人下次被啟動時,就可以根據該平面地圖上的資訊來移動。 Figure 8 is a view showing another method of controlling the cleaning robot according to the present invention. A flow chart of an embodiment. In step S81, the cleaning robot moves according to a predetermined path. Generally speaking, when the cleaning robot starts working, it may move in a random movement first, or the user may set the movement mode of the cleaning robot at the beginning. If the sweeping robot moves in a random manner, it can assist the controller in the sweeping robot to draw a plane map of an indoor space. When the sweeping robot is started next time, it can be moved according to the information on the plane map.

在步驟S82中,判斷掃地機器人的一光偵測器是否有偵測到虛擬牆發出的光線。如果沒有的話,則掃地機器人繼續以預定的路徑移動。如果光偵測器偵測虛擬牆發出的光線,則執行步驟S83。在本實施例中,光偵測器是一準全向式光偵測器。虛擬牆發出的光線中會攜帶一編碼過的資訊或是經過調變過的資料。當光偵測器偵測到光線時,會去解碼光線中所攜帶的資訊或是對該光線進行解調變,以確認該光線是否為虛擬牆所發出。 In step S82, it is determined whether a photodetector of the cleaning robot detects the light emitted by the virtual wall. If not, the sweeping robot continues to move in a predetermined path. If the photodetector detects the light emitted by the virtual wall, step S83 is performed. In this embodiment, the photodetector is a quasi-omnidirectional photodetector. The light emitted by the virtual wall carries a coded message or a modulated data. When the light detector detects light, it decodes the information carried in the light or demodulates the light to confirm whether the light is emitted by the virtual wall.

在步驟S83中,掃地機器人的控制器會決定是否要針對光偵測器偵測到虛擬牆發出的光線的事件進行對應的動作,如離開該光線所涵蓋的區域。如果控制器決定回應,則執行步驟S84。如果控制器決定不回應,則執行步驟S89,且掃地機器人繼續移動。 In step S83, the controller of the cleaning robot determines whether to perform an action corresponding to the event that the photodetector detects the light emitted by the virtual wall, such as leaving the area covered by the light. If the controller decides to respond, step S84 is performed. If the controller decides not to respond, step S89 is performed and the sweeping robot continues to move.

在步驟S89中,掃地機器人的控制器判斷掃地機器人的光偵測器是否仍有偵測到虛擬牆發出的光線。如果有的話,則掃地機器人繼續移動,並繼續執行步驟S89。當掃地機器人的光偵測器偵測不到虛擬牆所發出的光線時,執行步驟S84。在步驟S89中,掃地機器人的光偵測器偵測 不到虛擬牆所發出的光線的情況表示此時掃地機器可能已經進入限制區域內,掃地機器人必須要馬上離開。 In step S89, the controller of the cleaning robot determines whether the light detector of the cleaning robot still detects the light emitted by the virtual wall. If so, the sweeping robot continues to move and proceeds to step S89. When the light detector of the cleaning robot does not detect the light emitted by the virtual wall, step S84 is performed. In step S89, the light detector of the sweeping robot detects The situation of the light emitted by the virtual wall indicates that the sweeping machine may have entered the restricted area at this time, and the sweeping robot must leave immediately.

在步驟S83中,當光偵測器偵測到虛擬牆發出的光線時,光偵測器會傳送一第一觸發信號給控制器,控制器在根據掃地機器人的設定以及該第一觸發信號決定要執行步驟S84或S89。在一實施例中,該第一觸發信號會被傳送到該控制器的一通用輸入輸出腳位(general purpose input/output pin,GPIO),且會改變該GPIO腳位的邏輯狀態。舉例來說,該第一觸發信號可能為一上緣觸發信號,且該GPIO腳位的預設邏輯狀態為邏輯低準位。因此當該GPIO腳位接收到該上緣觸發信號時,該GPIO腳位的邏輯狀態被改變為邏輯高準位。該GPIO腳位的邏輯狀態改變會觸發一中斷事件,控制器也可根據該中斷事件得知光偵測器已經偵測到虛擬牆發出的光線。 In step S83, when the photodetector detects the light emitted by the virtual wall, the photodetector transmits a first trigger signal to the controller, and the controller determines according to the setting of the cleaning robot and the first trigger signal. Step S84 or S89 is to be performed. In an embodiment, the first trigger signal is transmitted to a general purpose input/output pin (GPIO) of the controller, and the logic state of the GPIO pin is changed. For example, the first trigger signal may be an upper edge trigger signal, and the preset logic state of the GPIO pin is a logic low level. Therefore, when the GPIO pin receives the upper edge trigger signal, the logic state of the GPIO pin is changed to a logic high level. The logic state change of the GPIO pin triggers an interrupt event, and the controller can also know that the photodetector has detected the light emitted by the virtual wall according to the interrupt event.

在步驟S84中,掃地機器人停止移動,且該光偵測器被以順時鐘方向或逆時鐘方向旋轉。本實施例中光偵測器的結構或是運作方式可以參考第2a至2e圖,以及對應的說明。當該光偵測器從有偵測到虛擬牆的光線變成沒有偵測到虛擬牆光線時,控制器會求得該光偵測器的一旋轉角度。接著控制器會根據該旋轉角度決定掃地機器人的一旋轉方向。 In step S84, the cleaning robot stops moving, and the photodetector is rotated in a clockwise direction or a counterclockwise direction. For the structure or operation mode of the photodetector in this embodiment, reference may be made to the figures 2a to 2e, and corresponding descriptions. When the photodetector changes from the light detecting the virtual wall to the non-detection of the virtual wall light, the controller obtains a rotation angle of the photodetector. Then the controller determines a rotation direction of the cleaning robot according to the rotation angle.

在步驟S85中,掃地機器人以該旋轉方向被旋轉。在步驟S86中,控制器判斷掃地機器人的一指向性光偵測器是否有偵測到虛擬牆發出的光線。如果沒有的話,持續旋轉掃地機器人。如果有的話執行步驟S87。在步驟S87中, 掃地機器人停止旋轉。 In step S85, the cleaning robot is rotated in the rotation direction. In step S86, the controller determines whether a directional light detector of the cleaning robot detects the light emitted by the virtual wall. If not, continue to rotate the sweeping robot. If yes, go to step S87. In step S87, The sweeping robot stops rotating.

在步驟S88中,掃地機器人朝向虛擬牆移動。在掃地機器人移動的期間,如果指向性光偵測器偵測不到虛擬牆發出的光線,掃地機器人會停止移動,並且會以順時針方向或逆時針方向旋轉掃地機器人以對掃地機器人的移動方向進行校正。 In step S88, the cleaning robot moves toward the virtual wall. During the movement of the sweeping robot, if the directional light detector does not detect the light from the virtual wall, the sweeping robot stops moving and rotates the sweeping robot clockwise or counterclockwise to move the sweeping robot. Make corrections.

當掃地機器人接近虛擬牆,且掃地機器人與虛擬牆的距離小於一預定值時,掃地機器人前端的一碰撞感測器會發出一停止信號給掃地機器人的控制器。碰撞感測器設置在掃地機器人的前端,用以偵測掃地機器人的前方是否有障礙物。如果碰撞感測器偵測到一障礙物,掃地機器人會先判斷該障礙物是否就是虛擬牆。如果是的話,掃地機器人會停止前進,並且會轉以另一個方向繼續移動。如果掃地機器人判斷該障礙物不是虛擬牆,掃地機器人會先避開該障礙物,接著再回到原先移動的路徑上。 When the sweeping robot approaches the virtual wall and the distance between the sweeping robot and the virtual wall is less than a predetermined value, a collision sensor at the front end of the sweeping robot sends a stop signal to the controller of the sweeping robot. The collision sensor is disposed at the front end of the cleaning robot to detect whether there is an obstacle in front of the cleaning robot. If the collision sensor detects an obstacle, the sweeping robot first determines whether the obstacle is a virtual wall. If so, the sweeping robot will stop moving forward and will continue to move in the other direction. If the sweeping robot determines that the obstacle is not a virtual wall, the sweeping robot will first avoid the obstacle and then return to the original moving path.

當掃地機器人接近虛擬牆時,虛擬牆會發出一射頻信號或是一紅外線信號,使得掃地機器人可以得知掃地機器人已經非常接近虛擬牆。在另一個實施例中,可以將近場通信(Near Field Communication,NFC)裝置安裝在掃地機器人與虛擬牆上來達到相同的目的。當掃地機器人上的NFC裝置接收到來自虛擬牆上的NFC裝置所傳送的資料或信號時,這表示掃地機器人與虛擬牆已經非常接近,且掃地機器人應該要停止移動。 When the sweeping robot approaches the virtual wall, the virtual wall emits an RF signal or an infrared signal, so that the sweeping robot can know that the sweeping robot is very close to the virtual wall. In another embodiment, a Near Field Communication (NFC) device can be installed on the sweeping robot and the virtual wall to achieve the same purpose. When the NFC device on the cleaning robot receives the data or signal transmitted from the NFC device on the virtual wall, this means that the cleaning robot is already very close to the virtual wall, and the cleaning robot should stop moving.

第9圖為根據本發明之一掃地機器人的控制方法的另一實施例的流程圖。在步驟S901中,掃地機器人會根據一 預定的路徑移動。在步驟S902中,掃地機器人的控制器判斷掃地機器人的一光偵測器是否有偵測到光線。如果沒有的話,則掃地機器人繼續以預定的路徑移動。如果光偵測器偵測光線的話,則執行步驟S903,以判斷該光線是否為虛擬牆發出。因為虛擬牆發出的光線中會攜帶一編碼過的資訊或是經過調變過的資料,因此當光偵測器偵測到光線時,會去解碼光線中所攜帶的資訊或是對該光線進行解調變,以確認該光線是否為虛擬牆所發出。在本實施例中,光偵測器為一準全向式光偵測器。 Figure 9 is a flow chart showing another embodiment of a control method of a cleaning robot according to the present invention. In step S901, the cleaning robot will be based on one The scheduled path moves. In step S902, the controller of the cleaning robot determines whether a light detector of the cleaning robot detects light. If not, the sweeping robot continues to move in a predetermined path. If the photodetector detects the light, step S903 is performed to determine whether the light is emitted by the virtual wall. Because the light emitted by the virtual wall carries a coded information or a modulated data, when the light detector detects the light, it will decode the information carried in the light or perform the light. Demodulate to confirm whether the light is emitted by the virtual wall. In this embodiment, the photodetector is a quasi-omnidirectional photodetector.

在步驟S904中,掃地機器人的控制器會決定是否要針對光偵測器偵測到虛擬牆發出的光線的事件進行對應的動作,如離開該光線所涵蓋的區域。如果控制器決定回應,則執行步驟S902。如果控制器決定不回應,則執行步驟S910,且掃地機器人繼續移動。 In step S904, the controller of the cleaning robot determines whether to perform an action corresponding to the event that the photodetector detects the light emitted by the virtual wall, such as leaving the area covered by the light. If the controller decides to respond, step S902 is performed. If the controller decides not to respond, step S910 is performed and the sweeping robot continues to move.

在步驟S910中,掃地機器人的控制器判斷掃地機器人的光偵測器是否仍有偵測到虛擬牆發出的光線。如果有的話,則掃地機器人繼續移動,並繼續執行步驟S910。當掃地機器人的光偵測器偵測不到虛擬牆所發出的光線時,執行步驟S905。在步驟S910中,掃地機器人的光偵測器偵測不到虛擬牆所發出的光線的情況表示此時掃地機器可能已經進入限制區域內,掃地機器人必須要馬上離開。 In step S910, the controller of the cleaning robot determines whether the light detector of the cleaning robot still detects the light emitted by the virtual wall. If so, the sweeping robot continues to move and proceeds to step S910. When the light detector of the cleaning robot does not detect the light emitted by the virtual wall, step S905 is performed. In step S910, the light detector of the cleaning robot does not detect the light emitted by the virtual wall, indicating that the sweeping machine may have entered the restricted area at this time, and the sweeping robot must leave immediately.

在步驟S903中,當光偵測器偵測到虛擬牆發出的光線時,光偵測器會傳送一第一觸發信號給控制器,控制器在根據掃地機器人的設定以及該第一觸發信號決定要執行步驟S904或S910。在一實施例中,該第一觸發信號會被傳 送到該控制器的一通用輸入輸出腳位(general purpose input/output pin,GPIO),且會改變該GPIO腳位的邏輯狀態。舉例來說,該第一觸發信號可能為一上緣觸發信號,且該GPIO腳位的預設邏輯狀態為邏輯低準位。因此當該GPIO腳位接收到該上緣觸發信號時,該GPIO腳位的邏輯狀態被改變為邏輯高準位。該GPIO腳位的邏輯狀態改變會觸發一中斷事件,控制器也可根據該中斷事件得知光偵測器已經偵測到虛擬牆發出的光線。 In step S903, when the photodetector detects the light emitted by the virtual wall, the photodetector transmits a first trigger signal to the controller, and the controller determines according to the setting of the cleaning robot and the first trigger signal. Step S904 or S910 is to be performed. In an embodiment, the first trigger signal is transmitted A general purpose input/output pin (GPIO) is sent to the controller, and the logic state of the GPIO pin is changed. For example, the first trigger signal may be an upper edge trigger signal, and the preset logic state of the GPIO pin is a logic low level. Therefore, when the GPIO pin receives the upper edge trigger signal, the logic state of the GPIO pin is changed to a logic high level. The logic state change of the GPIO pin triggers an interrupt event, and the controller can also know that the photodetector has detected the light emitted by the virtual wall according to the interrupt event.

在步驟S905中,掃地機器人停止移動,且該光偵測器被以順時鐘方向或逆時鐘方向旋轉。本實施例中光偵測器的結構或是運作方式可以參考第2a至2e圖,以及對應的說明。當該光偵測器從有偵測到虛擬牆的光線變成沒有偵測到虛擬牆光線時,控制器會求得該光偵測器的一旋轉角度。接著控制器會根據該旋轉角度決定掃地機器人的一旋轉方向。 In step S905, the cleaning robot stops moving, and the photodetector is rotated in a clockwise direction or a counterclockwise direction. For the structure or operation mode of the photodetector in this embodiment, reference may be made to the figures 2a to 2e, and corresponding descriptions. When the photodetector changes from the light detecting the virtual wall to the non-detection of the virtual wall light, the controller obtains a rotation angle of the photodetector. Then the controller determines a rotation direction of the cleaning robot according to the rotation angle.

在步驟S906中,掃地機器人以該旋轉方向被旋轉。在步驟S907中,控制器判斷掃地機器人的一指向性光偵測器是否有偵測到虛擬牆發出的光線。如果沒有的話,持續旋轉掃地機器人。如果有的話執行步驟S908。在步驟S90中,掃地機器人停止旋轉。 In step S906, the cleaning robot is rotated in the rotation direction. In step S907, the controller determines whether a directional light detector of the cleaning robot detects the light emitted by the virtual wall. If not, continue to rotate the sweeping robot. If yes, step S908 is performed. In step S90, the cleaning robot stops rotating.

在步驟S909中,掃地機器人朝向虛擬牆移動。在掃地機器人移動的期間,如果指向性光偵測器偵測不到虛擬牆發出的光線,掃地機器人會停止移動,並且會以順時針方向或逆時針方向旋轉掃地機器人以對掃地機器人的移動方向進行校正。 In step S909, the cleaning robot moves toward the virtual wall. During the movement of the sweeping robot, if the directional light detector does not detect the light from the virtual wall, the sweeping robot stops moving and rotates the sweeping robot clockwise or counterclockwise to move the sweeping robot. Make corrections.

當掃地機器人接近虛擬牆,且掃地機器人與虛擬牆的距離小於一預定值時,掃地機器人前端的一碰撞感測器會發出一停止信號給掃地機器人的控制器。碰撞感測器設置在掃地機器人的前端,用以偵測掃地機器人的前方是否有障礙物。如果碰撞感測器偵測到一障礙物,掃地機器人會先判斷該障礙物是否就是虛擬牆。如果是的話,掃地機器人會停止前進,並且會轉以另一個方向繼續移動。如果掃地機器人判斷該障礙物不是虛擬牆,掃地機器人會先避開該障礙物,接著再回到原先移動的路徑上。 When the sweeping robot approaches the virtual wall and the distance between the sweeping robot and the virtual wall is less than a predetermined value, a collision sensor at the front end of the sweeping robot sends a stop signal to the controller of the sweeping robot. The collision sensor is disposed at the front end of the cleaning robot to detect whether there is an obstacle in front of the cleaning robot. If the collision sensor detects an obstacle, the sweeping robot first determines whether the obstacle is a virtual wall. If so, the sweeping robot will stop moving forward and will continue to move in the other direction. If the sweeping robot determines that the obstacle is not a virtual wall, the sweeping robot will first avoid the obstacle and then return to the original moving path.

當掃地機器人接近虛擬牆時,虛擬牆會發出一射頻信號或是一紅外線信號,使得掃地機器人可以得知掃地機器人已經非常接近虛擬牆。在另一個實施例中,可以將近場通信(Near Field Communication,NFC)裝置安裝在掃地機器人與虛擬牆上來達到相同的目的。當掃地機器人上的NFC裝置接收到來自虛擬牆上的NFC裝置所傳送的資料或信號時,這表示掃地機器人與虛擬牆已經非常接近,且掃地機器人應該要停止移動。 When the sweeping robot approaches the virtual wall, the virtual wall emits an RF signal or an infrared signal, so that the sweeping robot can know that the sweeping robot is very close to the virtual wall. In another embodiment, a Near Field Communication (NFC) device can be installed on the sweeping robot and the virtual wall to achieve the same purpose. When the NFC device on the cleaning robot receives the data or signal transmitted from the NFC device on the virtual wall, this means that the cleaning robot is already very close to the virtual wall, and the cleaning robot should stop moving.

第10圖為根據本發明之一掃地機器人的功能方塊示意圖。處理器1001根據控制程式1006來控制掃地機器人。掃地機器人包括一第一光偵測器1002以及一第二光偵測器1003。第一光偵測器1002為一準全向式光偵測器,可被第一旋轉馬達1007所轉動。當第一光偵測器偵測到光線且該光線為虛擬牆所發出時,處理器1001控制第一旋轉馬達1007以轉動第一光偵測器1002。當該第一光偵測器1002沒有偵測到虛擬牆發出的光線時,第一光偵測器被停止轉 動且處理器1001根據第一光偵測器1002的一旋轉角度決定掃地機器人的一旋轉方向。 Figure 10 is a functional block diagram of a cleaning robot according to the present invention. The processor 1001 controls the cleaning robot according to the control program 1006. The cleaning robot includes a first photodetector 1002 and a second photodetector 1003. The first photodetector 1002 is a quasi-omnidirectional photodetector that is rotatable by the first rotary motor 1007. When the first photodetector detects light and the light is emitted by the virtual wall, the processor 1001 controls the first rotating motor 1007 to rotate the first photodetector 1002. When the first photodetector 1002 does not detect the light emitted by the virtual wall, the first photodetector is stopped. The processor 1001 determines a rotation direction of the cleaning robot according to a rotation angle of the first photodetector 1002.

處理器1001根據該旋轉方向控制第二旋轉馬達1004以旋轉掃地機器人。當第二光偵測器1003偵測到虛擬牆發出的光線時,掃地機器人被停止轉動,且處理器1001控制移動馬達1005,讓掃地機器人朝虛擬牆方向移動。移動馬達1005用以使掃地機器人前進或後退。 The processor 1001 controls the second rotation motor 1004 to rotate the cleaning robot according to the rotation direction. When the second photodetector 1003 detects the light emitted by the virtual wall, the cleaning robot is stopped, and the processor 1001 controls the moving motor 1005 to move the cleaning robot toward the virtual wall. The moving motor 1005 is used to advance or retreat the cleaning robot.

第11圖為根據本發明之一掃地機器人的控制方法的另一實施例的示意圖。虛擬牆1105會發出一光線用以標示掃地機器人1101不能進入的一限制區域。該光線具有一第一邊界b1與一第二邊界b2。在時間點T1時,掃地機器人1101依照一預定路徑移動。在時間點T2時,準全向式光偵測器1102偵測到虛擬牆1105發出的光線的第一邊界b2。此時掃地機器人1101會停止移動,且準全向式光偵測器1102會以一順時鐘方式或一逆時鐘方向進行旋轉。 Figure 11 is a schematic view showing another embodiment of the control method of the cleaning robot according to the present invention. The virtual wall 1105 emits a light to indicate a restricted area that the cleaning robot 1101 cannot enter. The light has a first boundary b1 and a second boundary b2. At the time point T1, the cleaning robot 1101 moves in accordance with a predetermined path. At time T2, the quasi-omnidirectional photodetector 1102 detects the first boundary b2 of the light emitted by the virtual wall 1105. At this time, the cleaning robot 1101 stops moving, and the quasi-omnidirectional photodetector 1102 rotates in a clockwise manner or a counterclockwise direction.

當遮罩1104擋住了虛擬牆1105發出的光線,使得準全向式光偵測器1102無法偵測到光線。此時,掃地機器人1101內的一處理器會記錄目前遮罩1104的一目前位置,並根據遮罩1104的目前位置與其初始位置求得準全向式光偵測器1102的一第一旋轉角度。掃地機器人1101的處理器會根據該第一旋轉角度來決定掃地機器人1101的一旋轉方向。 When the mask 1104 blocks the light emitted by the virtual wall 1105, the quasi-omnidirectional photodetector 1102 cannot detect the light. At this time, a processor in the cleaning robot 1101 records a current position of the current mask 1104, and obtains a first rotation angle of the quasi-omnidirectional photodetector 1102 according to the current position of the mask 1104 and its initial position. . The processor of the cleaning robot 1101 determines a rotation direction of the cleaning robot 1101 according to the first rotation angle.

舉例來說,當該第一旋轉角度小於180度時,掃地機器人1101以逆時針方向進行旋轉。當該第一旋轉角度大於180度時,掃地機器人1101以順時針方向進行旋轉。 For example, when the first rotation angle is less than 180 degrees, the cleaning robot 1101 rotates in a counterclockwise direction. When the first rotation angle is greater than 180 degrees, the cleaning robot 1101 rotates in a clockwise direction.

接著,在時間點T3時,掃地機器人1101就會根據該旋轉方向進行旋轉,直到指向性光偵測器1103偵測到虛擬牆1105發出的光線時,掃地機器人1101才會停止旋轉。一般來說,當指向性光偵測器1103偵測到虛擬牆1105發出的光線時,此時通常都是指向性光偵測器1103的邊緣的感測元件偵測到虛擬牆1105發出的光線。因此當掃地機器人1101移動時,指向性光偵測器1103就很容易再次偵測不到光線,使得掃地機器人1101必須再次停止移動進行移動方向的校正。 Next, at time T3, the cleaning robot 1101 rotates according to the rotation direction until the directional light detector 1103 detects the light emitted by the virtual wall 1105, and the cleaning robot 1101 stops rotating. Generally, when the directional light detector 1103 detects the light emitted by the virtual wall 1105, the sensing element that is usually the edge of the directional light detector 1103 detects the light emitted by the virtual wall 1105. . Therefore, when the cleaning robot 1101 moves, the directional light detector 1103 can easily detect no light again, so that the cleaning robot 1101 must stop moving again to correct the moving direction.

為了解決這個缺點,在另一個實施方式中,掃地機器人1101的處理器會根據掃地機器人1101的旋轉角速度以及指向性光偵測器1103的尺寸,估計一延遲時間。當直到指向性光偵測器1103偵測到虛擬牆1105發出的光線時,掃地機器人1101不會馬上停止轉動,而是在經過該延遲時間後才會停止轉動。透過該延遲時間,可以使得虛擬牆1105發射出的光線對準指向性光偵測器1103的中央。 In order to solve this disadvantage, in another embodiment, the processor of the cleaning robot 1101 estimates a delay time based on the rotational angular velocity of the cleaning robot 1101 and the size of the directional light detector 1103. When the directional light detector 1103 detects the light emitted by the virtual wall 1105, the cleaning robot 1101 does not stop rotating immediately, but stops rotating after the delay time elapses. Through the delay time, the light emitted by the virtual wall 1105 can be aligned with the center of the directional light detector 1103.

另外,要注意的是在時間點T2與時間點T3的時候,掃地機器人1101並沒有移動。在時間點T2時,掃地機器人並不會移動也不會轉動,只有準全向式光偵測器1102被轉動而已。而在時間點T3時,掃地機器人1101會在原地轉動。雖然第4圖中,在時間點T2與時間點T3時,掃地機器人1101似乎位於不同的位置,但實際上,在上述兩個時間點的時候,掃地機器人1101的位置並沒有改變。 In addition, it is to be noted that the sweeping robot 1101 does not move at the time point T2 and the time point T3. At the time point T2, the sweeping robot does not move or rotate, and only the quasi-omnidirectional photodetector 1102 is rotated. At time T3, the cleaning robot 1101 will rotate in place. Although in FIG. 4, the cleaning robot 1101 seems to be located at a different position at the time point T2 and the time point T3, actually, at the above two time points, the position of the cleaning robot 1101 does not change.

此外,在時間點T3的時候,掃地機器人上的第一發射器1107a與/或第二發射器1107b會發射一信號1108給虛 擬牆1105上的一接收器1106。第一發射器1107a與第二發射器1107b可能為一光學信號發射器或是一聲學信號發射器。信號1108可能為一光學信號或是一聲學信號。當接收器1106接收到第一發射器1107a與/或第二發射器1107b所發出的信號時,表示掃地機器人1101是正對著虛擬牆1105。虛擬牆1105會透過其所發出的光線,傳遞一確認資訊給掃地機器人的指向性光偵測器1103或準全向式光偵測器1102,以告知掃地機器人1101內的控制器,掃地機器人1101目前的行進方向是正確的。 In addition, at time T3, the first transmitter 1107a and/or the second transmitter 1107b on the cleaning robot will transmit a signal 1108 to the virtual A receiver 1106 on the wall 1105 is intended. The first transmitter 1107a and the second transmitter 1107b may be an optical signal transmitter or an acoustic signal transmitter. Signal 1108 may be an optical signal or an acoustic signal. When the receiver 1106 receives the signal from the first transmitter 1107a and/or the second transmitter 1107b, it indicates that the cleaning robot 1101 is facing the virtual wall 1105. The virtual wall 1105 transmits a confirmation message to the directional light detector 1103 or the quasi-omnidirectional photodetector 1102 of the cleaning robot through the light emitted by the virtual wall 1105 to inform the controller in the cleaning robot 1101, the cleaning robot 1101. The current direction of travel is correct.

不過在另一個實施例中,掃地機器人1101於時間點T2與時間點T3的動作可以被整合為一個步驟。在時間點T2的時候,準全向式光偵測器1102以一預定方向進行旋轉,此時掃地機器人1101也同時也會以該預定方向進行旋轉。當該指向性光偵測器1103偵測到虛擬牆1105發射的光線時,掃地機器人1101停止旋轉。當掃地機器人1101停止旋轉時,準全向式光偵測器1102可以停止旋轉或是繼續旋轉。如果準全向式光偵測器1102繼續旋轉的話,掃地機器人1101的處理器會根據準全向式光偵測器1102的旋轉角度以估計虛擬牆1105發射的光線的方向且對掃地機器人1101的行進方向進行校正。在另一實施例中,當指向性光偵測器1103偵測到虛擬牆1105發射的光線時,準全向式光偵測器1102繼續旋轉且掃地機器人1101停止旋轉。掃地機器人1101的處理器會取得準全向式光偵測器1102在掃地機器人1101停止旋轉後旋轉的角度,並根據該角度估計掃地機器人1101的一旋轉角度,以校正掃地機 器人1101的行進方向。 However, in another embodiment, the actions of the cleaning robot 1101 at time point T2 and time point T3 may be integrated into one step. At the time point T2, the quasi-omnidirectional photodetector 1102 rotates in a predetermined direction, and at this time, the cleaning robot 1101 also rotates in the predetermined direction. When the directional light detector 1103 detects the light emitted by the virtual wall 1105, the cleaning robot 1101 stops rotating. When the cleaning robot 1101 stops rotating, the quasi-omnidirectional photodetector 1102 can stop rotating or continue to rotate. If the quasi-omnidirectional photodetector 1102 continues to rotate, the processor of the cleaning robot 1101 will estimate the direction of the light emitted by the virtual wall 1105 according to the rotation angle of the quasi-omnidirectional photodetector 1102 and to the sweeping robot 1101. The direction of travel is corrected. In another embodiment, when the directional light detector 1103 detects the light emitted by the virtual wall 1105, the quasi-omnidirectional photodetector 1102 continues to rotate and the cleaning robot 1101 stops rotating. The processor of the cleaning robot 1101 obtains an angle of rotation of the quasi-omnidirectional photodetector 1102 after the cleaning robot 1101 stops rotating, and estimates a rotation angle of the cleaning robot 1101 according to the angle to correct the sweeping machine. The direction of travel of the person 1101.

當掃地機器人1101往虛擬牆1105移動時,掃地機器人1101的處理器會記錄掃地機器人1101的移動路徑,並在掃地機器人1101的一地圖上標示該移動路徑,並畫出該限制區域。在另一實施例中,當掃地機器人1101的處理器已經確認了虛擬牆1105發射的光光線的方向時,該控制器可以在該地圖上標示該光線的位置,並畫出該限制區域。該地圖可能儲存在掃地機器人1101內的一記憶體或是一地圖資料庫。掃地機器人1101的控制器可以根據掃地機器人1101每次的運動來修正該地圖,並於地圖上標示出障礙物的位置。 When the cleaning robot 1101 moves toward the virtual wall 1105, the processor of the cleaning robot 1101 records the moving path of the cleaning robot 1101, marks the moving path on a map of the cleaning robot 1101, and draws the restricted area. In another embodiment, when the processor of the cleaning robot 1101 has confirmed the direction of the light ray emitted by the virtual wall 1105, the controller may mark the location of the ray on the map and draw the restricted area. The map may be stored in a memory or a map database within the cleaning robot 1101. The controller of the cleaning robot 1101 can correct the map according to each movement of the cleaning robot 1101, and mark the position of the obstacle on the map.

當掃地機器人1101接近虛擬牆1105,且掃地機器人1101與虛擬牆1105的距離小於一預定值時,掃地機器人1101前端的一碰撞感測器或一聲學感測器會發出一停止信號給掃地機器人1101的控制器。碰撞感測器或聲學感測器被設置在掃地機器人1101的前端,用以偵測掃地機器人1101的前方是否有障礙物。如果碰撞感測器或聲學感測器偵測到一障礙物,掃地機器人1101會先判斷該障礙物是否就是虛擬牆1105。如果是的話,掃地機器人1101會停止前進,並且會轉以另一個方向繼續前進。如果掃地機器人1101判斷該障礙物不是虛擬牆1105,掃地機器人1101會先避開該障礙物,接著再回到原先移動的路徑上。 When the cleaning robot 1101 approaches the virtual wall 1105, and the distance between the cleaning robot 1101 and the virtual wall 1105 is less than a predetermined value, a collision sensor or an acoustic sensor at the front end of the cleaning robot 1101 sends a stop signal to the cleaning robot 1101. Controller. A collision sensor or an acoustic sensor is disposed at the front end of the cleaning robot 1101 for detecting an obstacle in front of the cleaning robot 1101. If the collision sensor or the acoustic sensor detects an obstacle, the cleaning robot 1101 first determines whether the obstacle is the virtual wall 1105. If so, the sweeping robot 1101 will stop moving forward and will continue to move in the other direction. If the cleaning robot 1101 determines that the obstacle is not the virtual wall 1105, the cleaning robot 1101 will first avoid the obstacle and then return to the original moving path.

當掃地機器人1101接近虛擬牆1105時,虛擬牆1105會發出一射頻信號、一聲學信號或是一紅外線信號,使得掃地機器人1101可以得知掃地機器人1101已經非常接近 虛擬牆1105。在另一個實施例中,可以利用將近場通信(Near Field Communication,NFC)裝置安裝在掃地機器人1101與虛擬牆1105上來達到相同的目的。當掃地機器人1101上的NFC裝置接收到來自虛擬牆1105上的NFC裝置傳送的資料或信號時,這表示掃地機器人1101與虛擬牆1105已經非常接近,且掃地機器人1101應該要停止移動。 When the cleaning robot 1101 approaches the virtual wall 1105, the virtual wall 1105 emits an RF signal, an acoustic signal or an infrared signal, so that the cleaning robot 1101 can know that the cleaning robot 1101 is very close. Virtual wall 1105. In another embodiment, the Near Field Communication (NFC) device can be installed on the cleaning robot 1101 and the virtual wall 1105 to achieve the same purpose. When the NFC device on the cleaning robot 1101 receives the data or signal transmitted from the NFC device on the virtual wall 1105, this indicates that the cleaning robot 1101 is already in close proximity to the virtual wall 1105, and the cleaning robot 1101 should stop moving.

利用上述的方式,可以使得掃地機器人1101可以清潔虛擬牆1105所發出的光線附近的區域,而且掃地機器人1101也不會進入限制區域。此外,也可以利用這樣的方式讓掃地機人1101內的控制器描繪出一清潔區域地圖。爾後掃地機器人便可以依據該清潔區域地圖來移動,且可以更有效且更快速的完成清潔工作。 With the above manner, the cleaning robot 1101 can be cleaned of the area near the light emitted by the virtual wall 1105, and the cleaning robot 1101 does not enter the restricted area. In addition, the controller in the sweeper 1101 can also be used to draw a map of the cleaning area in this manner. The sweeping robot can then move according to the map of the cleaning area, and the cleaning work can be completed more efficiently and quickly.

第12圖為根據本發明之一掃地機器人的控制方法的另一實施例的示意圖。虛擬牆1205會發出一光線用以標示掃地機器人1201不能進入的一限制區域。該光線具有一第一邊界b1與一第二邊界b2。在時間點T1時,掃地機器人1201依照一預定路徑移動。在時間點T2時,準全向式光偵測器1202偵測到虛擬牆1205發出的光線的第一邊界b2。此時掃地機器人1201仍會以預定路徑繼續移動。在時間點T3時,準全向式光偵測器1202偵測不到虛擬牆1205發射出的光線,此時掃地機器人1201會停止移動,且準全向式光偵測器1202會以一順時鐘方式或一逆時鐘方向進行旋轉。 Figure 12 is a schematic view showing another embodiment of a control method of a cleaning robot according to the present invention. The virtual wall 1205 emits a light to indicate a restricted area that the cleaning robot 1201 cannot enter. The light has a first boundary b1 and a second boundary b2. At the time point T1, the cleaning robot 1201 moves in accordance with a predetermined path. At time T2, the quasi-omnidirectional photodetector 1202 detects the first boundary b2 of the light emitted by the virtual wall 1205. At this time, the cleaning robot 1201 will continue to move in the predetermined path. At time T3, the quasi-omnidirectional photodetector 1202 does not detect the light emitted by the virtual wall 1205. At this time, the cleaning robot 1201 stops moving, and the quasi-omnidirectional photodetector 1202 will follow Rotate in clock mode or in reverse clock direction.

當遮罩1204擋住了虛擬牆1205發出的光線,使得準全向式光偵測器1202無法偵測到光線。此時,掃地機器人 1201內的一處理器會記錄目前遮罩1204的一目前位置,並根據遮罩1204的目前位置與其初始位置求得準全向式光偵測器1202的一第一旋轉角度。掃地機器人1201的處理器會根據該第一旋轉角度來決定掃地機器人1201的一旋轉方向。 When the mask 1204 blocks the light emitted by the virtual wall 1205, the quasi-omnidirectional photodetector 1202 cannot detect the light. At this time, the sweeping robot A processor in 1201 records a current position of the current mask 1204 and determines a first angle of rotation of the quasi-omnidirectional photodetector 1202 based on the current position of the mask 1204 and its initial position. The processor of the cleaning robot 1201 determines a rotation direction of the cleaning robot 1201 according to the first rotation angle.

舉例來說,當該第一旋轉角度小於180度時,掃地機器人1201以逆時針方向進行旋轉。當該第一旋轉角度大於180度時,掃地機器人1201以順時針方向進行旋轉。 For example, when the first rotation angle is less than 180 degrees, the cleaning robot 1201 rotates in a counterclockwise direction. When the first rotation angle is greater than 180 degrees, the cleaning robot 1201 rotates in a clockwise direction.

接著,在時間點T4時,掃地機器人1201就會根據該旋轉方向進行旋轉,直到指向性光偵測器1203偵測到虛擬牆1205發出的光線時,掃地機器人1201才會停止旋轉。一般來說,當指向性光偵測器1203偵測到虛擬牆1205發出的光線時,此時通常都是指向性光偵測器1203的邊緣的感測元件偵測到虛擬牆1205發出的光線。因此當掃地機器人1201移動時,指向性光偵測器1203就很容易再次偵測不到光線,使得掃地機器人1201必須再次停止移動進行移動方向的校正。 Next, at the time point T4, the cleaning robot 1201 rotates according to the rotation direction, until the directional light detector 1203 detects the light emitted by the virtual wall 1205, the cleaning robot 1201 stops rotating. Generally, when the directional light detector 1203 detects the light emitted by the virtual wall 1205, the sensing element that is usually the edge of the directional light detector 1203 detects the light emitted by the virtual wall 1205. . Therefore, when the cleaning robot 1201 moves, the directional light detector 1203 can easily detect the light again, so that the cleaning robot 1201 must stop moving again to correct the moving direction.

為了解決這個缺點,在另一個實施方式中,掃地機器人1201的處理器會根據掃地機器人1201的旋轉角速度以及指向性光偵測器1203的尺寸,估計一延遲時間。當直到指向性光偵測器1203偵測到虛擬牆1205發出的光線時,掃地機器人1201不會馬上停止轉動,而是在經過該延遲時間後才會停止轉動。透過該延遲時間,可以使得虛擬牆1205發射出的光線對準指向性光偵測器1203的中央。 In order to solve this disadvantage, in another embodiment, the processor of the cleaning robot 1201 estimates a delay time according to the rotational angular velocity of the cleaning robot 1201 and the size of the directional light detector 1203. When the directional light detector 1203 detects the light emitted by the virtual wall 1205, the cleaning robot 1201 does not stop rotating immediately, but stops rotating after the delay time elapses. Through the delay time, the light emitted by the virtual wall 1205 can be aligned with the center of the directional light detector 1203.

另外,要注意的是在時間點T3與時間點T4的時候, 掃地機器人1201並沒有移動。在時間點T3時,掃地機器人並不會移動也不會轉動,只有準全向式光偵測器1202被轉動而已。而在時間點T4時,掃地機器人1201會在原地轉動。雖然第5圖中,在時間點T3與時間點T4時,掃地機器人1201似乎位於不同的位置,但實際上,在上述兩個時間點的時候,掃地機器人1201的位置並沒有改變。 In addition, it should be noted that at time point T3 and time point T4, The sweeping robot 1201 does not move. At the time point T3, the sweeping robot does not move or rotate, and only the quasi-omnidirectional photodetector 1202 is rotated. At the time point T4, the cleaning robot 1201 will rotate in place. Although in FIG. 5, at the time point T3 and the time point T4, the cleaning robot 1201 seems to be located at a different position, in fact, at the above two time points, the position of the cleaning robot 1201 does not change.

此外,在時間點T4的時候,掃地機器人上的第一發射器1207a與/或第二發射器1207b會發射一信號給虛擬牆1205上的一接收器1206。第一發射器1207a與第二發射器1207b可能為一光學信號發射器或是一聲學信號發射器。當接收器1206接收到第一發射器1207a與/或第二發射器1207b所發出的信號時,表示掃地機器人1201是正對著虛擬牆1205。虛擬牆1205會透過其所發出的光線,傳遞一確認資訊給掃地機器人的指向性光偵測器1203或準全向式光偵測器1202,以告知掃地機器人1201內的控制器,掃地機器人1201目前的行進方向是正確的。 In addition, at time T4, the first transmitter 1207a and/or the second transmitter 1207b on the cleaning robot will transmit a signal to a receiver 1206 on the virtual wall 1205. The first transmitter 1207a and the second transmitter 1207b may be an optical signal transmitter or an acoustic signal transmitter. When the receiver 1206 receives the signal from the first transmitter 1207a and/or the second transmitter 1207b, it indicates that the cleaning robot 1201 is facing the virtual wall 1205. The virtual wall 1205 transmits a confirmation message to the directional light detector 1203 or the quasi-omnidirectional light detector 1202 of the cleaning robot through the light emitted by the virtual wall 1205 to inform the controller in the cleaning robot 1201, the cleaning robot 1201. The current direction of travel is correct.

不過在另一個實施例中,掃地機器人1201於時間點T3與時間點T4的動作可以被整合為一個步驟。在時間點T3的時候,準全向式光偵測器1202以一預定方向進行旋轉,此時掃地機器人1201也同時也會以該預定方向進行旋轉。當該指向性光偵測器1203偵測到虛擬牆1205發射的光線時,掃地機器人1201停止旋轉。當掃地機器人1201停止旋轉時,準全向式光偵測器1202可以停止旋轉或是繼續旋轉。如果準全向式光偵測器1202繼續旋轉的話,掃地機器人1201的處理器會根據準全向式光偵測器1202的旋 轉角度以估計虛擬牆1205發射的光線的方向且對掃地機器人1201的行進方向進行校正。 However, in another embodiment, the actions of the cleaning robot 1201 at time point T3 and time point T4 may be integrated into one step. At the time point T3, the quasi-omnidirectional photodetector 1202 rotates in a predetermined direction, and at this time, the cleaning robot 1201 also rotates in the predetermined direction. When the directional light detector 1203 detects the light emitted by the virtual wall 1205, the cleaning robot 1201 stops rotating. When the cleaning robot 1201 stops rotating, the quasi-omnidirectional photodetector 1202 can stop rotating or continue to rotate. If the quasi-omnidirectional photodetector 1202 continues to rotate, the processor of the cleaning robot 1201 will rotate according to the quasi-omnidirectional photodetector 1202. The angle of rotation is used to estimate the direction of the light emitted by the virtual wall 1205 and to correct the direction of travel of the cleaning robot 1201.

當掃地機器人1201往虛擬牆1205移動時,掃地機器人1201的處理器會記錄掃地機器人1201的移動路徑,並在掃地機器人1201的一地圖上標示該移動路徑,並畫出該限制區域。在另一實施例中,當掃地機器人1201的處理器已經確認了虛擬牆1205發射的光光線的方向時,該控制器可以在該地圖上標示該光線的位置,並畫出該限制區域。該地圖可能儲存在掃地機器人1201內的一記憶體或是一地圖資料庫。掃地機器人1201的控制器可以根據掃地機器人1201每次的運動來修正該地圖,並於地圖上標示出障礙物的位置。 When the cleaning robot 1201 moves toward the virtual wall 1205, the processor of the cleaning robot 1201 records the moving path of the cleaning robot 1201, marks the moving path on a map of the cleaning robot 1201, and draws the restricted area. In another embodiment, when the processor of the cleaning robot 1201 has confirmed the direction of the light ray emitted by the virtual wall 1205, the controller may mark the location of the ray on the map and draw the restricted area. The map may be stored in a memory or a map database within the sweeping robot 1201. The controller of the cleaning robot 1201 can correct the map according to each movement of the cleaning robot 1201 and mark the position of the obstacle on the map.

當掃地機器人1201接近虛擬牆1205,且掃地機器人1201與虛擬牆1205的距離小於一預定值時,掃地機器人1201前端的一碰撞感測器或一聲學感測器會發出一停止信號給掃地機器人1201的控制器。碰撞感測器或聲學感測器被設置在掃地機器人1201的前端,用以偵測掃地機器人1201的前方是否有障礙物。如果碰撞感測器或聲學感測器偵測到一障礙物,掃地機器人1201會先判斷該障礙物是否就是虛擬牆1205。如果是的話,掃地機器人1201會停止前進,並且會轉以另一個方向繼續前進。如果掃地機器人1201判斷該障礙物不是虛擬牆1205,掃地機器人1201會先避開該障礙物,接著再回到原先移動的路徑上。 When the cleaning robot 1201 approaches the virtual wall 1205, and the distance between the cleaning robot 1201 and the virtual wall 1205 is less than a predetermined value, a collision sensor or an acoustic sensor at the front end of the cleaning robot 1201 sends a stop signal to the cleaning robot 1201. Controller. A collision sensor or an acoustic sensor is disposed at the front end of the cleaning robot 1201 to detect whether there is an obstacle in front of the cleaning robot 1201. If the collision sensor or the acoustic sensor detects an obstacle, the cleaning robot 1201 first determines whether the obstacle is the virtual wall 1205. If so, the sweeping robot 1201 will stop moving forward and will continue to move in the other direction. If the cleaning robot 1201 determines that the obstacle is not the virtual wall 1205, the cleaning robot 1201 will first avoid the obstacle and then return to the original moving path.

當掃地機器人1201接近虛擬牆1205時,虛擬牆1205會發出一射頻信號、一聲學信號或是一紅外線信號,使得 掃地機器人1201可以得知掃地機器人1201已經非常接近虛擬牆1205。在另一個實施例中,可以利用將近場通信(Near Field Communication,NFC)裝置安裝在掃地機器人1201與虛擬牆1205上來達到相同的目的。當掃地機器人1201上的NFC裝置接收到來自虛擬牆1205上的NFC裝置傳送的資料或信號時,這表示掃地機器人1201與虛擬牆1205已經非常接近,且掃地機器人1201應該要停止移動。 When the cleaning robot 1201 approaches the virtual wall 1205, the virtual wall 1205 emits a radio frequency signal, an acoustic signal or an infrared signal, so that The sweeping robot 1201 can know that the sweeping robot 1201 is already very close to the virtual wall 1205. In another embodiment, the Near Field Communication (NFC) device can be installed on the cleaning robot 1201 and the virtual wall 1205 to achieve the same purpose. When the NFC device on the cleaning robot 1201 receives the data or signal transmitted from the NFC device on the virtual wall 1205, this indicates that the cleaning robot 1201 is already very close to the virtual wall 1205, and the cleaning robot 1201 should stop moving.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及本發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。另外本發明的任一實施例或申請專利範圍不須達成本發明所揭露之全部目的或優點或特點。此外,摘要部分和標題僅是用來輔助專利文件搜尋之用,並非用來限制本發明之權利範圍。 However, the above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the present invention and the description of the present invention. All remain within the scope of the invention patent. In addition, any of the objects or advantages or features of the present invention are not required to be achieved by any embodiment or application of the invention. In addition, the abstract sections and headings are only used to assist in the search of patent documents and are not intended to limit the scope of the invention.

11、31、41、51、61、711、1101、1201‧‧‧掃地機器人 11, 31, 41, 51, 61, 711, 1101, 1201‧‧‧ sweeping robot

12、45、55、65、1105、1205‧‧‧虛擬牆 12, 45, 55, 65, 1105, 1205‧‧‧ virtual wall

13、32、42、52、62、712、1102、1202‧‧‧準全向式光偵測器 13, 32, 42, 52, 62, 712, 1102, 1202‧‧ ‧ quasi-omnidirectional photodetectors

14‧‧‧肋 14‧‧‧ rib

15、24‧‧‧光線 15, 24‧‧‧ rays

21、27‧‧‧全向式光偵測器 21, 27‧‧‧ Omnidirectional light detector

22、34、44、54、64、1104、1204‧‧‧遮罩 22, 34, 44, 54, 64, 1104, 1204‧‧ ‧ mask

23、28‧‧‧基座 23, 28‧‧‧ Pedestal

29‧‧‧垂直延伸部 29‧‧‧ Vertical extension

33、43、53、63、71、74、77、713、1103、1203‧‧‧指 向性光偵測器 33, 43, 53, 63, 71, 74, 77, 713, 1103, 1203‧‧ Directional light detector

72a、75a、78a‧‧‧第一遮光部 72a, 75a, 78a‧‧‧ first shade

72b、75b、78b‧‧‧第二遮光部 72b, 75b, 78b‧‧‧ second shade

73、79‧‧‧光偵測元件 73, 79‧‧‧Light detecting components

76a‧‧‧第一光偵測元件 76a‧‧‧First light detecting element

76b‧‧‧第二光偵測元件 76b‧‧‧Second light detecting element

710a‧‧‧第一發射器 710a‧‧‧First launcher

710b‧‧‧第二發射器 710b‧‧‧second launcher

714‧‧‧發射器 714‧‧‧transmitter

715‧‧‧碰撞感測器 715‧‧‧ collision sensor

716‧‧‧移動裝置 716‧‧‧Mobile devices

1001‧‧‧處理器 1001‧‧‧ processor

1002‧‧‧第一偵測器 1002‧‧‧First detector

1003‧‧‧第二偵測器 1003‧‧‧Second detector

1004‧‧‧第二旋轉馬達 1004‧‧‧Second rotary motor

1005‧‧‧移動馬達 1005‧‧‧Moving motor

1006‧‧‧程式 1006‧‧‧Program

1007‧‧‧第一旋轉馬達 1007‧‧‧First rotating motor

1106、1206‧‧‧接收器 1106, 1206‧‧‧ Receiver

1107a、1207a‧‧‧第一發射器 1107a, 1207a‧‧‧ first launcher

1107b、1207b‧‧‧第二發射器 1107b, 1207b‧‧‧ second transmitter

1108、1208‧‧‧信號 1108, 1208‧‧‧ signals

第1圖為根據本發明之一掃地機器人與一虛擬牆的一實施例的示意圖。 Figure 1 is a schematic illustration of an embodiment of a sweeping robot and a virtual wall in accordance with the present invention.

第2a圖為根據本發明之一準全向式光偵測器的一實施例的一上視圖。 Figure 2a is a top view of an embodiment of a quasi-omnidirectional photodetector in accordance with the present invention.

第2b圖為第2a圖的準全向式光偵測器的一實施例的一平視圖。 Figure 2b is a plan view of an embodiment of a quasi-omnidirectional photodetector of Figure 2a.

第2c與第2d圖為利用本發明之一準全向式光偵測器來估計一光線的入射角度的示意圖。 Figures 2c and 2d are schematic diagrams for estimating the angle of incidence of a ray using a quasi-omnidirectional photodetector of the present invention.

第2e圖為根據本發明之一準全向式光偵測器的另一實施例的示意圖。 Figure 2e is a schematic illustration of another embodiment of a quasi-omnidirectional photodetector in accordance with the present invention.

第3圖為根據本發明之一掃地機器人的一實施例的示意圖。 Figure 3 is a schematic illustration of an embodiment of a sweeping robot in accordance with the present invention.

第4圖為根據本發明之一掃地機器人的控制方法的一實施例的示意圖。 Fig. 4 is a view showing an embodiment of a control method of a cleaning robot according to the present invention.

第5圖為根據本發明之一掃地機器人的控制方法的另一實施例的示意圖。 Fig. 5 is a schematic view showing another embodiment of a control method of a cleaning robot according to the present invention.

第6圖為根據本發明之一掃地機器人的控制方法的另一實施例的示意圖。 Figure 6 is a schematic view showing another embodiment of a control method of a cleaning robot according to the present invention.

第7a圖為根據本發明之一指向性光偵測器的一實施例的示意圖。 Figure 7a is a schematic illustration of an embodiment of a directional light detector in accordance with the present invention.

第7b圖為根據本發明之一指向性光偵測器的另一實施例的示意圖。 Figure 7b is a schematic illustration of another embodiment of a directional light detector in accordance with the present invention.

第7c圖為根據本發明之一指向性光偵測器的另一實施例的示意圖。 Figure 7c is a schematic illustration of another embodiment of a directional light detector in accordance with the present invention.

第7d圖為根據本發明之一掃地機器人的一實施例的示意圖。 Figure 7d is a schematic view of an embodiment of a sweeping robot in accordance with the present invention.

第8圖為根據本發明之一掃地機器人的控制方法的另一實施例的流程圖。 Figure 8 is a flow chart showing another embodiment of a control method of a cleaning robot according to the present invention.

第9圖為根據本發明之一掃地機器人的控制方法的另一實施例的流程圖。 Figure 9 is a flow chart showing another embodiment of a control method of a cleaning robot according to the present invention.

第10圖為根據本發明之一掃地機器人的功能方塊示意圖。 Figure 10 is a functional block diagram of a cleaning robot according to the present invention.

第11圖為根據本發明之一掃地機器人的控制方法的另一實施例的示意圖。 Figure 11 is a schematic view showing another embodiment of the control method of the cleaning robot according to the present invention.

第12圖為根據本發明之一掃地機器人的控制方法的另一實施例的示意圖。 Figure 12 is a schematic view showing another embodiment of a control method of a cleaning robot according to the present invention.

31‧‧‧掃地機器人 31‧‧‧Sweeping robot

32‧‧‧準全向式光偵測器 32‧‧‧Quasi-omnidirectional light detector

33‧‧‧指向性光偵測器 33‧‧‧Directive Light Detector

34‧‧‧遮罩 34‧‧‧ mask

Claims (18)

一種掃地機器人的控制方法,適用於具有一準全向式光偵測器與一指向性光偵測器的一掃地機器人,包括:當該準全向式光偵測器偵測一光線時,轉動該準全向式光偵測器;當該準全向式光偵測器偵測不到該光線時,停止轉動該準全向式光偵測器並估計一旋轉角度;根據該旋轉角度決定一旋轉方向;根據該旋轉方向旋轉該掃地機器人;以及當該指向性光偵測器偵測到該光線時,停止轉動該掃地機器人。 A method for controlling a sweeping robot is applicable to a sweeping robot having a quasi-omnidirectional photodetector and a directional light detector, comprising: when the quasi-omnidirectional photodetector detects a light, Rotating the quasi-omnidirectional light detector; when the quasi-omnidirectional photodetector detects the light, stopping rotating the quasi-omnidirectional photodetector and estimating a rotation angle; according to the rotation angle Determining a rotation direction; rotating the cleaning robot according to the rotation direction; and stopping the rotation of the cleaning robot when the directional light detector detects the light. 如申請專利範圍第1項所述之掃地機器人的控制方法,更包括:當偵測到該光線時,判斷該光線是否由一虛擬牆所發出。 The method for controlling a cleaning robot according to claim 1, further comprising: determining whether the light is emitted by a virtual wall when the light is detected. 如申請專利範圍第1項所述之掃地機器人的控制方法,其中當該旋轉角度小於180度時,該旋轉方向為一逆時針方向,且當該旋轉角度大於180度時,該旋轉方向為一順時針方向。 The control method of the cleaning robot according to claim 1, wherein when the rotation angle is less than 180 degrees, the rotation direction is a counterclockwise direction, and when the rotation angle is greater than 180 degrees, the rotation direction is one Clockwise direction. 如申請專利範圍第1項所述之掃地機器人的控制方法,更包括:當該指向性光偵測器偵測到該光線時,將該準全向式光偵測器的一遮罩固定在該準全向式光偵測器的後方。 The method for controlling a cleaning robot according to claim 1, further comprising: when the directional light detector detects the light, fixing a mask of the quasi-omnidirectional photodetector The rear of the quasi-omnidirectional photodetector. 如申請專利範圍第1項所述之掃地機器人的控制方法,更包括: 該掃地機器人沿著該光線向一虛擬牆移動。 For example, the control method of the cleaning robot described in claim 1 of the patent scope further includes: The sweeping robot moves along the light toward a virtual wall. 如申請專利範圍第5項所述之掃地機器人的控制方法,其中當該掃地機器人沿著該光線向該虛擬牆移動時,若該指向性光偵測器接收不到該光線,則以一預設旋轉方向旋轉該掃地機器人,且當該指向性光偵測器偵測到該光線時才停止旋轉該掃地機器人。 The control method of the cleaning robot according to claim 5, wherein when the cleaning robot moves along the light to the virtual wall, if the directional light detector does not receive the light, The rotating robot is rotated in the rotation direction, and the cleaning robot is stopped when the directional light detector detects the light. 如申請專利範圍第5項所述之掃地機器人的控制方法,更包括:當該掃地機器人沿著該光線向該虛擬牆移動時,如果該指向性光偵測器接收不到該光線,停止移動該掃地機器人;轉動該準全向式光偵測器以決定一第一旋轉方向;根據該第一旋轉方向轉動該掃地機器人;以及當該指向性光偵測器偵測到該光線時,停止轉動該掃地機器人並使得該掃地機器人往前直線移動。 The control method of the cleaning robot according to claim 5, further comprising: when the cleaning robot moves along the light to the virtual wall, if the directional light detector does not receive the light, stop moving a sweeping robot; rotating the quasi-omnidirectional light detector to determine a first direction of rotation; rotating the sweeping robot according to the first direction of rotation; and stopping when the directional light detector detects the light The sweeping robot is rotated and the sweeping robot moves straight ahead. 如申請專利範圍第1項所述之掃地機器人的控制方法,其中該準全向式光偵測器包括一光偵測器與一肋,該肋使偵測器在一特定方向無法接收或發射訊號。 The method for controlling a cleaning robot according to claim 1, wherein the quasi-omnidirectional photodetector comprises a photodetector and a rib, the rib preventing the detector from receiving or transmitting in a specific direction. Signal. 一種掃地機器人的控制方法,適用於具有一準全向式光偵測器與一指向性光偵測器的一掃地機器人,包括:透過該準全向式光偵測器偵測一光線;當該準全向式光偵測器第一次偵測到該光線時,該掃地機器人繼續移動;當該準全向式光偵測器偵測不到該光線時,停止轉動該準全向式光偵測器並估計一旋轉角度; 根據該旋轉角度決定一旋轉方向;根據該旋轉方向旋轉該掃地機器人;以及當該指向性光偵測器偵測到該光線時,停止轉動該掃地機器人。 A method for controlling a sweeping robot is applicable to a sweeping robot having a quasi-omnidirectional light detector and a directional light detector, comprising: detecting a light through the quasi-omnidirectional light detector; When the quasi-omnidirectional photodetector detects the light for the first time, the sweeping robot continues to move; when the quasi-omnidirectional photodetector detects the light, the quasi-omnidirectional stop is stopped. a photodetector and estimating a rotation angle; Determining a rotation direction according to the rotation angle; rotating the cleaning robot according to the rotation direction; and stopping the rotation of the cleaning robot when the directional light detector detects the light. 如申請專利範圍第9項所述之掃地機器人的控制方法,更包括:當偵測到該光線時,判斷該光線是否由一虛擬牆所發出。 The method for controlling a cleaning robot according to claim 9, further comprising: determining whether the light is emitted by a virtual wall when the light is detected. 如申請專利範圍第9項所述之掃地機器人的控制方法,其中當該旋轉角度小於180度時,該旋轉方向為一逆時針方向,且當該旋轉角度大於180度時,該旋轉方向為一順時針方向。 The control method of the cleaning robot according to claim 9, wherein when the rotation angle is less than 180 degrees, the rotation direction is a counterclockwise direction, and when the rotation angle is greater than 180 degrees, the rotation direction is one Clockwise direction. 如申請專利範圍第11項所述之掃地機器人的控制方法,更包括:當該指向性光偵測器偵測到該光線時,將該準全向式光偵測器的一遮罩固定在該準全向式光偵測器的後方。 The method for controlling a cleaning robot according to claim 11, further comprising: when the directional light detector detects the light, fixing a mask of the quasi-omnidirectional photodetector The rear of the quasi-omnidirectional photodetector. 如申請專利範圍第9項所述之掃地機器人的控制方法,更包括:該掃地機器人沿著該光線向一虛擬牆移動。 The control method of the cleaning robot according to claim 9, further comprising: the cleaning robot moving along the light to a virtual wall. 如申請專利範圍第13項所述之掃地機器人的控制方法,其中當該掃地機器人沿著該光線向該虛擬牆移動時,若該指向性光偵測器接收不到該光線,則以一預設旋轉方向旋轉該掃地機器人,且當該指向性光偵測器偵測到該光線時才停止旋轉該掃地機器人。 The control method of the cleaning robot according to claim 13, wherein when the cleaning robot moves along the light to the virtual wall, if the directional light detector does not receive the light, The rotating robot is rotated in the rotation direction, and the cleaning robot is stopped when the directional light detector detects the light. 如申請專利範圍第13項所述之掃地機器人的控制 方法,更包括:當該掃地機器人沿著該光線向該虛擬牆移動時,如果該指向性光偵測器接收不到該光線,停止移動該掃地機器人;轉動該準全向式光偵測器以決定一第一旋轉方向;根據該第一旋轉方向轉動該掃地機器人;以及當該指向性光偵測器偵測到該光線時,停止轉動該掃地機器人並使得該掃地機器人往前直線移動。 Control of the sweeping robot as described in item 13 of the patent application scope The method further includes: when the cleaning robot moves along the light to the virtual wall, if the directional light detector does not receive the light, stop moving the cleaning robot; and rotate the quasi-omnidirectional light detector Determining a first rotation direction; rotating the cleaning robot according to the first rotation direction; and when the directional light detector detects the light, stopping rotating the cleaning robot and moving the cleaning robot forward. 一種掃地機器人,包括:一非全向性偵測器,用以偵測一無線信號;以及一指向性偵測器,用以偵測該無線信號,其中:當該非全向性偵測器偵測到該無線信號時,該非全向性偵測器以決定一旋轉方向;當該旋轉方向被決定時,該掃地機器人被以該旋轉方向進行旋轉,直到該指向性偵測器偵測到該無線信號時,該掃地機器人才被停止旋轉。 A sweeping robot includes: a non-omnidirectional detector for detecting a wireless signal; and a directional detector for detecting the wireless signal, wherein: the non-omnidirectional detector detects When the wireless signal is detected, the non-omnidirectional detector determines a direction of rotation; when the direction of rotation is determined, the sweeping robot is rotated in the direction of rotation until the directional detector detects the direction The sweeping robot is stopped when the wireless signal is applied. 如申請專利範圍第16項所述之掃地機器人,更包括:一控制器,用以接收該非全向性偵測器的一第一偵測結果與該指向性偵測器的一第二偵測結果:一第一旋轉馬達,受控於該控制器,用以旋轉該非全向性偵測器;以及一第二旋轉馬達,受控於該控制器,用以旋轉該掃地機器人。 The cleaning robot of claim 16, further comprising: a controller for receiving a first detection result of the non-omnidirectional detector and a second detection of the directivity detector Result: a first rotary motor controlled by the controller for rotating the non-omnidirectional detector; and a second rotary motor controlled by the controller for rotating the cleaning robot. 如申請專利範圍第17項所述之掃地機器人,更包括一移動馬達,受控於該控制器,用以控制該掃地機器人 前進或後退。 The cleaning robot according to claim 17, further comprising a moving motor controlled by the controller for controlling the cleaning robot Move forward or backward.
TW101136167A 2012-02-16 2012-10-01 Control method for cleaning robots TWI486140B (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201210505328.XA CN103251359B (en) 2012-02-16 2012-11-30 Control method of sweeping robot
JP2013025860A JP6085987B2 (en) 2012-02-16 2013-02-13 Cleaning robot control method and cleaning robot
DE201310101564 DE102013101564A1 (en) 2012-02-16 2013-02-15 CONTROL PROCEDURE FOR CLEANING ROBOT
US13/768,531 US9014855B2 (en) 2012-02-16 2013-02-15 Control method for cleaning robots

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201261599690P 2012-02-16 2012-02-16

Publications (2)

Publication Number Publication Date
TW201334750A true TW201334750A (en) 2013-09-01
TWI486140B TWI486140B (en) 2015-06-01

Family

ID=49627206

Family Applications (6)

Application Number Title Priority Date Filing Date
TW101126911A TW201334747A (en) 2012-02-16 2012-07-26 Control method for cleaning robots
TW101128716A TWI499400B (en) 2012-02-16 2012-08-09 Control method for cleaning robots
TW101134222A TWI597038B (en) 2012-02-16 2012-09-19 Cleaning robot and charging system
TW101135041A TWI529507B (en) 2012-02-16 2012-09-25 Charging station and charging system
TW101136167A TWI486140B (en) 2012-02-16 2012-10-01 Control method for cleaning robots
TW101139410A TWI597039B (en) 2012-02-16 2012-10-25 Control method for cleaning robots

Family Applications Before (4)

Application Number Title Priority Date Filing Date
TW101126911A TW201334747A (en) 2012-02-16 2012-07-26 Control method for cleaning robots
TW101128716A TWI499400B (en) 2012-02-16 2012-08-09 Control method for cleaning robots
TW101134222A TWI597038B (en) 2012-02-16 2012-09-19 Cleaning robot and charging system
TW101135041A TWI529507B (en) 2012-02-16 2012-09-25 Charging station and charging system

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW101139410A TWI597039B (en) 2012-02-16 2012-10-25 Control method for cleaning robots

Country Status (1)

Country Link
TW (6) TW201334747A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104757912A (en) * 2014-12-10 2015-07-08 深圳市银星智能科技股份有限公司 Intelligent floor-sweeping robot
TWI602534B (en) * 2015-11-16 2017-10-21 Sharp Kk Self-propelled electronic machine and walking method of self-propelled electronic machine
TWI645276B (en) * 2017-08-30 2018-12-21 世擘股份有限公司 Automatic charging method and cleaning robot

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102412747B1 (en) * 2014-02-28 2022-06-27 삼성전자주식회사 Cleaning robot and remote controller therein
TWI505801B (en) * 2014-05-09 2015-11-01 Kinpo Elect Inc Indoor robot and method for indoor robot positioning
CN106323230B (en) * 2015-06-30 2019-05-14 芋头科技(杭州)有限公司 A kind of obstacle recognition system and obstacle recognition method
CN107437830B (en) 2016-05-27 2021-01-01 华硕电脑股份有限公司 Automatic walking device and control method thereof
TWI600991B (en) * 2016-05-27 2017-10-01 華碩電腦股份有限公司 Automatic walking device and control method thereof
KR20180021595A (en) * 2016-08-22 2018-03-05 엘지전자 주식회사 Moving Robot and controlling method
CN108879807A (en) * 2017-07-10 2018-11-23 北京石头世纪科技有限公司 Charging pile and the application charging pile seek piling method and charge control system
TWI665068B (en) * 2018-02-06 2019-07-11 世擘股份有限公司 Automatic cleaning device and automatic charging method
TWI675528B (en) 2018-06-28 2019-10-21 廣達電腦股份有限公司 Robotic system capable of facilitating return alignment
CN111480131B (en) * 2018-08-23 2024-01-12 日本精工株式会社 Bicycle device, travel control method for bicycle device, and travel control program
TWI683197B (en) * 2019-03-19 2020-01-21 東元電機股份有限公司 System for calibrating map data configured for mobile platform

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5995884A (en) * 1997-03-07 1999-11-30 Allen; Timothy P. Computer peripheral floor cleaning system and navigation method
US6690134B1 (en) * 2001-01-24 2004-02-10 Irobot Corporation Method and system for robot localization and confinement
WO2002074150A1 (en) * 2001-03-16 2002-09-26 Vision Robotics Corporation Autonomous mobile canister vacuum cleaner
JP2007164409A (en) * 2005-12-13 2007-06-28 Ihi Aerospace Co Ltd Self-position specifying method for mobile object
JP2008084007A (en) * 2006-09-27 2008-04-10 Funai Electric Co Ltd Self-propelled apparatus charging system
JP2008139992A (en) * 2006-11-30 2008-06-19 Funai Electric Co Ltd Self-propelled device and self-propelled device guiding system
JP2008198057A (en) * 2007-02-15 2008-08-28 Funai Electric Co Ltd Self-propelled device guide system
CN105769062A (en) * 2010-12-30 2016-07-20 美国iRobot公司 Debris monitoring

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104757912A (en) * 2014-12-10 2015-07-08 深圳市银星智能科技股份有限公司 Intelligent floor-sweeping robot
TWI602534B (en) * 2015-11-16 2017-10-21 Sharp Kk Self-propelled electronic machine and walking method of self-propelled electronic machine
TWI645276B (en) * 2017-08-30 2018-12-21 世擘股份有限公司 Automatic charging method and cleaning robot
US10736480B2 (en) 2017-08-30 2020-08-11 Ibot Robotic Co. Ltd. Automatic charging method and cleaning robot

Also Published As

Publication number Publication date
TW201334748A (en) 2013-09-01
TW201334747A (en) 2013-09-01
TWI499400B (en) 2015-09-11
TWI529507B (en) 2016-04-11
TWI597039B (en) 2017-09-01
TW201334751A (en) 2013-09-01
TW201335728A (en) 2013-09-01
TWI486140B (en) 2015-06-01
TW201334749A (en) 2013-09-01
TWI597038B (en) 2017-09-01

Similar Documents

Publication Publication Date Title
TWI486140B (en) Control method for cleaning robots
JP6264631B2 (en) Cleaning robot control method and cleaning robot
JP6085987B2 (en) Cleaning robot control method and cleaning robot
CN111603094B (en) Cleaning robot and remote controller
US20210393099A1 (en) Mobile device docking method and mobile device
US9687130B2 (en) Control method for cleaning robots
TWI424296B (en) Guidance device and operation system utilizing the same
KR102070282B1 (en) Cleaner and controlling method thereof
JP2013168151A (en) Cleaning robot and charging system
CN103941735A (en) Floor cleaning robot and method for controlling robot to avoid obstacle
CN103941306A (en) Cleaning robot and method for controlling same to avoid obstacle
EP3795051B1 (en) Cleaner and method for controlling same
US11960296B2 (en) Method and apparatus for autonomous mobile device
KR102293657B1 (en) Moving Robot
KR20100123581A (en) Mobile robot system and control method thereof
CN105534413A (en) Control method of dust removal device
CN105559704A (en) Control method for dust collection device
JP7282668B2 (en) Autonomous vacuum cleaner
JP6942102B2 (en) Self-propelled vacuum cleaner
CN105662283A (en) Dust removal device