TW201329495A - Optical system with microelectromechanical system image focus actuator - Google Patents
Optical system with microelectromechanical system image focus actuator Download PDFInfo
- Publication number
- TW201329495A TW201329495A TW101139335A TW101139335A TW201329495A TW 201329495 A TW201329495 A TW 201329495A TW 101139335 A TW101139335 A TW 101139335A TW 101139335 A TW101139335 A TW 101139335A TW 201329495 A TW201329495 A TW 201329495A
- Authority
- TW
- Taiwan
- Prior art keywords
- optical
- lens
- lenses
- imaging system
- object side
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
Description
本發明大體而言係關於成像光學器件,且更特定而言係關於一種緊湊光學透鏡系統,其具有用於聚焦該光學透鏡系統之微機電系統(MEMS)致動器。 The present invention relates generally to imaging optics, and more particularly to a compact optical lens system having a microelectromechanical system (MEMS) actuator for focusing the optical lens system.
本申請案主張於2011年10月24日提出申請且標題為「OPTICAL SYSTEM WITH MICROELECTROMECHANICAL SYSTEM IMAGE FOCUS ACTUATOR」之美國臨時專利申請案序列號第61/550,789號之權益。以上提及之申請案全文以引用方式併入本文中。 The present application claims the benefit of U.S. Provisional Patent Application Serial No. 61/550,789, filed on Oct. 24, 2011, which is incorporated herein by reference. The above-referenced application is hereby incorporated by reference in its entirety.
結合光學製作技術之進步,對光學器件及光學器件之應用已變得為數眾多。光學技術之一項令人關注的進步係微透鏡以及在一毫米或微米尺度或更小尺度上之其他光學組件之製作。與通常在公分或更大尺度上之傳統光學元件相比,微光學器件已使得光學系統與小於傳統望遠鏡、顯微鏡、相機及諸如此類之器件相容。 Combined with advances in optical fabrication technology, the use of optical devices and optical devices has become numerous. One of the interesting advances in optical technology is the fabrication of microlenses and other optical components on a millimeter or micrometer scale or smaller. Micro-optical devices have made optical systems compatible with smaller than conventional telescopes, microscopes, cameras, and the like, as compared to conventional optical components, typically on the centimeters or larger scale.
促進微光學器件之製作之一項機制係晶圓級光學器件。晶圓級光學器件係一種使得能夠使用類似於半導體製造之技術來設計及製造光學組件之製作技術。該技術大體而言可以不同大小尺度(例如,毫米、微米等等)來比例縮放。此外,晶圓級光學器件可產生單元件以及多元件光學結構,從而產生透鏡元件之精確對準堆疊。晶圓級光學器件之最終結果提供有成本效益、小型化光學組件,其達成光 學系統之減小的外觀尺寸。此等光學系統可用於各種各樣的小器件或小型器件,包含用於行動電話之攝影機模組、監控(surveillance)設備、小型視訊攝影機及諸如此類。 One mechanism that facilitates the fabrication of micro-optical devices is wafer-level optics. Wafer-level optics is a fabrication technique that enables the design and fabrication of optical components using techniques similar to semiconductor fabrication. The technique can be scaled generally in different size scales (eg, millimeters, micrometers, etc.). In addition, wafer level optics can produce single element and multi-element optical structures, resulting in a precisely aligned stack of lens elements. The end result of wafer-level optics provides a cost-effective, compact optical component that achieves light The reduced appearance size of the system. These optical systems can be used in a wide variety of small devices or small devices, including camera modules for mobile phones, surveillance devices, small video cameras, and the like.
儘管晶圓級光學器件係用於製作小的光學組件之一相對近期技術,但某些傳統製作技術亦已適用於小尺度光學製作。例如,可採用包含注入模製及其他之塑膠製作技術來製造小尺度光學組件。進一步地,玻璃製作技術已適合於小型化光學組件,為小尺度器件提供高品質光學表面。 While wafer-level optics are one of the relatively recent technologies used to make small optical components, some traditional fabrication techniques have also been applied to small-scale optical fabrication. For example, small scale optical components can be fabricated using injection molding and other plastic fabrication techniques. Further, glass fabrication techniques have been adapted to miniaturize optical components to provide high quality optical surfaces for small scale devices.
除光學元件以外,數位成像感測器之小型化亦已促進影像擷取與記錄器件之不斷小型化。影像感測器之改良已利用微尺度實體動畫且以高信雜比及不斷降低之成本來提供高解析度影像偵測器。結合微光學器件,諸如晶圓級光學組件,小的、相對廉價之數位擷取與記錄器件可匹配或超過利用僅上一個十年之傳統光學器件之相對昂貴但極高品質之攝像機系統之能力。儘管現代微光學器件之品質極高,但一項持續性限制係小型光學系統之變焦能力。一項解決方案係引入數位變焦,其犧牲光學解析度以放大一影像。對於高解析度感測器而言,此通常為傳統光學變焦能力提供一適合替代。然而,光學變焦提供數位變焦不能達成之優點。 In addition to optical components, the miniaturization of digital imaging sensors has also contributed to the continued miniaturization of image capture and recording devices. Improvements in image sensors have utilized micro-scale physical animation to provide high-resolution image detectors with high signal-to-noise ratios and ever-decreasing costs. In combination with micro-optical devices, such as wafer-level optical components, the ability of small, relatively inexpensive digital capture and recording devices to match or exceed the relatively expensive but extremely high quality camera systems utilizing conventional optics of only a decade ago . Despite the high quality of modern micro-optics, a constant limitation is the zoom capability of small optical systems. One solution is to introduce a digital zoom that sacrifices optical resolution to magnify an image. For high resolution sensors, this typically provides a suitable alternative to conventional optical zoom capabilities. However, optical zoom offers the advantage that digital zoom cannot be achieved.
舉例而言,所揭示標的物之發明人建議,具有帶光學自動聚焦能力之一小型光學系統將係所期望的。另外,達成近聚焦之此一光學系統將係所期望的。 For example, the inventors of the disclosed subject matter suggest that a small optical system having one with optical autofocus capability would be desirable. In addition, an optical system that achieves near focusing will be desirable.
下文呈現對一或多項態樣之一簡化摘要,以便提供對此等態樣之一基本瞭解。此摘要並非對所有所涵蓋態樣之廣泛概述,且既不意欲識別所有態樣之關鍵或重要元件、亦不意欲劃定任何或所有態樣之範疇。其唯一目的係以一經簡化形式呈現一或多項態樣之某些概念來作為下文所呈現之更詳細說明之一前序。 A simplified summary of one or more aspects is presented below to provide a basic understanding of one of these aspects. This summary is not an extensive overview of all aspects of the invention, and is not intended to identify the critical or critical elements of all aspects, and is not intended to define any or all aspects. Its sole purpose is to present some concepts of one or more embodiments
本發明揭示內容之特定態樣提供一種小型化光學系統。在某些態樣中,該小型化光學系統可包括一經注入模製之光學系統。在進一步態樣中,該小型化光學系統可係包括五個光學組件之一自動聚焦光學系統。在又其他態樣中,該小型化光學系統可係一自動聚焦光學系統,其採用一微機電系統(MEMS)致動器以達成該光學系統之聚焦。 A particular aspect of the present disclosure provides a miniaturized optical system. In some aspects, the miniaturized optical system can include an injection molded optical system. In a further aspect, the miniaturized optical system can be an autofocus optical system comprising one of five optical components. In still other aspects, the miniaturized optical system can be an autofocus optical system that employs a microelectromechanical system (MEMS) actuator to achieve focus of the optical system.
在本發明揭示內容之一或多個其他態樣中,提供一種採用一MEMS致動器以達成近聚焦之光學系統。在一項此態樣中,近聚焦可包括一實質上10 cm物件距離。進一步地,根據其他態樣,該光學系統可經組態以藉由調整該光學系統之一子組光學組件之位置來達成近聚焦及無窮遠聚焦。在特定態樣中,該子組光學組件可包括光學系統之一單個光學組件。在至少一個此態樣中,該單個光學組件可係沿該光學系統之一光學軸最接近於正由該光學系統成像之一物件之一透鏡(稱為一物件側透鏡)。在此(等)態樣中,該MEMS致動器可經組態以:將該光學系統之物件側透鏡位移經組態以將在無窮遠處之一物件聚焦至與該光學系統相關聯之一影像感測器上之一第一距離,及將該物件 側透鏡位移經組態以將一近物件(例如,距該物件側透鏡實質上10 cm之一物件)聚焦至該影像感測器上之一第二距離。 In one or more other aspects of the present disclosure, an optical system employing a MEMS actuator to achieve near focus is provided. In one aspect, the near focus can include a substantially 10 cm object distance. Further, according to other aspects, the optical system can be configured to achieve near focus and infinity focusing by adjusting the position of a subset of optical components of the optical system. In a particular aspect, the subset of optical components can include a single optical component of one of the optical systems. In at least one such aspect, the single optical component can be along one of the optical axes of the optical system closest to one of the lenses (referred to as an object side lens) that is being imaged by the optical system. In this (equal) aspect, the MEMS actuator can be configured to: position the object side lens of the optical system configured to focus an object at infinity to be associated with the optical system a first distance on an image sensor and the object The side lens displacement is configured to focus a near object (eg, an object substantially 10 cm from the object side lens) to a second distance on the image sensor.
根據一或多項額外態樣,本文所揭示之一自動聚焦光學系統可經組態以包含一孔徑光闌。在一特定態樣中,該自動聚焦光學系統可包括經注入模製之塑膠透鏡,而在其他態樣中,該自動聚焦光學系統可包括晶圓級光學透鏡、玻璃透鏡或其一適合組合。在另一態樣中,該孔徑光闌可定位於該光學系統之物件側透鏡之一物件側上。在一項替代態樣中,一MEMS致動器可經組態以移動該光學系統之一子組光學組件以聚焦一物件,同時將該孔徑光闌維持於沿該光學系統之一光學軸之一固定位置中。在另一替代態樣中,該MEMS致動器可替代地經組態以相對於該光學軸移動該子組光學組件及該孔徑光闌兩者,以聚焦該物件。 One of the autofocus optical systems disclosed herein can be configured to include an aperture stop in accordance with one or more additional aspects. In a particular aspect, the autofocus optical system can include an injection molded plastic lens, while in other aspects, the autofocus optical system can include a wafer level optical lens, a glass lens, or a suitable combination thereof. In another aspect, the aperture stop can be positioned on an object side of the object side lens of the optical system. In an alternative aspect, a MEMS actuator can be configured to move a subset of optical components of the optical system to focus an object while maintaining the aperture stop along an optical axis of the optical system In a fixed position. In another alternative, the MEMS actuator can alternatively be configured to move both the subset of optical components and the aperture stop relative to the optical axis to focus the object.
根據又其他態樣,揭示一種包括複數個光學組件之自動聚焦光學系統。在某些此等態樣中,該複數個光學組件可包括將大量光學功率提供至該光學系統之一物件側透鏡。在至少一個此態樣中,該物件側透鏡可構成該光學系統之經組合焦距之實質上一半或大於一半。在另一態樣中,該物件側透鏡可構成該光學系統之該經組合焦距之實質上四分之三或更多。在一特定態樣中,一MEMS致動器連接至該物件側透鏡,且經組態以將該物件側透鏡位移經組態以聚焦在無窮遠處之一物件之一第一距離,及經組態以聚焦接近於該光學系統之一物件之一第二距離。根據一項特定 實施例,該光學系統之物件側透鏡之焦距與一經組合焦距之一比率可隨沿該光學系統之一光學軸之該第一距離及該第二距離之一量度差而變。 According to still other aspects, an autofocus optical system including a plurality of optical components is disclosed. In some such aspects, the plurality of optical components can include providing a plurality of optical powers to one of the object side lenses of the optical system. In at least one such aspect, the object side lens can comprise substantially half or more than half of the combined focal length of the optical system. In another aspect, the object side lens can comprise substantially three-quarters or more of the combined focal length of the optical system. In a particular aspect, a MEMS actuator is coupled to the object side lens and configured to shift the object side lens configuration to focus at a first distance of one of the objects at infinity, and The configuration is to focus on a second distance that is close to one of the objects of the optical system. According to a specific In an embodiment, a ratio of a focal length of the object side lens of the optical system to a combined focal length may vary with a difference in the first distance along the optical axis of the optical system and the second distance.
根據額外態樣,本發明揭示內容提供一種包括五個光學透鏡之微光學系統。在一項此態樣中,該五個光學透鏡之一物鏡可經組態以供應該五個光學透鏡之所有正折射能力。於此態樣中,其餘四個透鏡具有一組合的淨負折射能力。在至少一項特定態樣中,其餘四個透鏡可具有各別負折射能力,從而具有一組合的淨負折射能力。根據一替代或額外態樣,該五個光學透鏡中之一第三透鏡可具有一凸面物件側表面及一凹面影像側表面。作為又一替代或額外態樣,該五個光學透鏡中之一第四透鏡與該五個光學透鏡中之一第五透鏡之間的一間距可係光學系統之透鏡之間的一最大間距。在另一態樣中,該微光學系統可係一自動聚焦系統,其中該五個光學透鏡之一子組可沿一光學軸移動以改善該光學系統之一聚焦。在一項特定態樣中,該五個光學透鏡之該子組可包括該物鏡,且該子組可藉由一MEMS致動器而移動。 According to additional aspects, the present disclosure provides a micro-optic system comprising five optical lenses. In one aspect, one of the five optical lenses can be configured to supply all of the positive refractive power of the five optical lenses. In this aspect, the remaining four lenses have a combined net negative refractive power. In at least one particular aspect, the remaining four lenses may have respective negative refractive powers to have a combined net negative refractive power. According to an alternative or additional aspect, one of the five optical lenses may have a convex object side surface and a concave image side surface. As a further alternative or additional aspect, a spacing between one of the five optical lenses and one of the five optical lenses may be a maximum spacing between the lenses of the optical system. In another aspect, the micro-optic system can be an autofocus system wherein a subset of the five optical lenses are movable along an optical axis to improve focus of one of the optical systems. In a particular aspect, the subset of the five optical lenses can include the objective lens, and the subset can be moved by a MEMS actuator.
在本發明揭示內容之進一步態樣中,提供一種包括五個光學透鏡之微光學系統。該五個光學透鏡可配置成複數個透鏡群組,每一透鏡群組包括該五個光學透鏡之各別子組。每一群組包括等於或小於該複數個光學群組之間的一(或多個)距離之透鏡間距離。在又一態樣中,該複數個透鏡群組中之至少一者內之每一透鏡包括具有一凹面部分及 一凸面部分兩者之至少一個光學表面。在一特定態樣中,該微光學系統之一有效焦距回應於沿該五個光學透鏡之一第一透鏡之一光學軸之一位置改變而變化,且在一替代或額外態樣中,該微光學系統之一後焦距回應於沿該第一透鏡之光學軸之位置改變而保持實質上相同。 In a further aspect of the present disclosure, a micro-optic system comprising five optical lenses is provided. The five optical lenses can be configured as a plurality of lens groups, each lens group including a respective subset of the five optical lenses. Each group includes an inter-lens distance equal to or less than one (or more) distances between the plurality of optical groups. In still another aspect, each of the plurality of lens groups includes a concave portion and At least one optical surface of both of the convex portions. In a particular aspect, an effective focal length of the micro-optic system changes in response to a change in position along one of the optical axes of one of the five optical lenses, and in an alternative or additional aspect, One of the back focal lengths of the micro-optic system remains substantially the same in response to a change in position along the optical axis of the first lens.
為達成上述及相關目的,該一個或多項態樣包括在下文中將全面闡述並在申請專利範圍中特別指出之特徵。下文說明及附圖詳細陳述該一或多項態樣中之某些說明性態樣。然而,該等態樣僅指示各種其中可採用各態樣之原理之各種方式中之幾種方式,且該等所闡述態樣意欲包含所有此等態樣及其等效態樣。 To achieve the above and related ends, the one or more aspects include the features which are set forth in the Detailed Description, and which are particularly pointed out in the claims. Certain illustrative aspects of the one or more aspects are described in detail in the following description and the drawings. These aspects are indicative, however, of but a few of the various aspects of the various embodiments thereof,
現在將參照圖式來闡述各種態樣,在所有圖式中,使用相同之元件符號來指代相同之元件。在下文說明中,出於闡釋目的,陳述諸多特定細節以便提供對一個或多項態樣之透徹理解。然而,顯而易見,可在無此等特定細節之情況下實踐此(等)態樣。在其他例項中,以方塊圖形式展示眾所周知之結構及器件,以便促進描述一或多項態樣。 Various aspects will now be described with reference to the drawings, in which the same elements are used to refer to the same elements. In the following description, for the purposes of illustration However, it will be apparent that this aspect can be practiced without such specific details. In other instances, well-known structures and devices are shown in block diagram form in order to facilitate describing one or more aspects.
另外,應顯而易見,本文之教示可體現為各種各樣之形式,且本文所揭示之特定結構或功能僅係代表性的。基於本文之教示,熟習此項技術者應瞭解,所揭示之態樣可獨立於其他態樣來實施,且可以各種方式組合此等態樣中之兩個或兩個以上態樣。舉例而言,可使用任一數目個本文所陳述態樣來實施一裝置及/或實踐一方法。另外,可使 用除本文所陳述態樣中之一或多項態樣以外或不同於本文所陳述態樣中之一或多項態樣之其他結構及/或功能來實施一裝置及/或實踐一方法。作為一實例,在經由緊湊固定位置之光學透鏡配置來提供高解析度光學成像之上下文中闡述本文所揭示之諸多裝置及透鏡系統。熟習此項技術者應瞭解,類似技術可應用於其他光學透鏡架構。舉例而言,本文所使用之透鏡配置可用於機械聚焦或自動聚焦系統中,藉以相對於影像平面自動位移或人工位移該光學配置。 In addition, it should be apparent that the teachings herein may be embodied in a variety of forms and that the specific structures or functions disclosed herein are merely representative. Based on the teachings herein, those skilled in the art will appreciate that the disclosed aspects can be implemented independently of other aspects and that two or more of these aspects can be combined in various ways. For example, any number of the aspects set forth herein can be used to implement a device and/or practice a method. In addition, it can A device and/or a method of practice may be implemented by other structures and/or functions in addition to or in addition to one or more of the aspects set forth herein. As an example, the various devices and lens systems disclosed herein are set forth in the context of providing high resolution optical imaging via a compact fixed position optical lens configuration. Those skilled in the art will appreciate that similar techniques can be applied to other optical lens architectures. For example, the lens configuration used herein can be used in a mechanical focus or autofocus system whereby the optical configuration is automatically displaced or manually displaced relative to the image plane.
在本發明揭示內容之至少一項態樣中,提供一種光學成像系統。該光學成像系統可包括一第一透鏡群組及一第二透鏡群組。該光學成像系統可藉由沿該光學成像系統之一光學軸相對於第二透鏡群組重新定位該第一透鏡群組來聚焦。在本發明揭示內容之至少一項態樣中,該第二透鏡群組包含該光學成像系統之一影像感測器。在本發明揭示內容之特定態樣中,該第一透鏡群組可包括一單個透鏡。例如,該單個透鏡可包含一物件側透鏡,其係最接近於光學成像系統之一物件側之一光學元件。 In at least one aspect of the present disclosure, an optical imaging system is provided. The optical imaging system can include a first lens group and a second lens group. The optical imaging system can be focused by repositioning the first lens group relative to a second lens group along an optical axis of the optical imaging system. In at least one aspect of the present disclosure, the second lens group includes an image sensor of the optical imaging system. In a particular aspect of the present disclosure, the first lens group can include a single lens. For example, the single lens can include an object side lens that is closest to one of the optical elements of one of the object side of the optical imaging system.
現在參照圖式,圖1繪示根據本發明揭示內容之態樣之一實例性光學系統100之一方塊圖。系統100包括橫向於一光學軸104定位之光學元件102之一配置。如本文所利用,一光學元件係指對至少部分地在可見光譜內之電磁輻射(例如,包含大致400奈米[nm]至700奈米之波長)至少部分地透明之一單片折射或反射材料。適合材料之實例包含: 經研磨且經拋光玻璃、經模製玻璃或根據一複製模製製程形成之玻璃、晶圓級光學器件(WLO)、經注入模製之塑膠、在一光學基板上形成之經蝕刻微光學器件或諸如此類。另外,一光學元件將具有至少一個折射或反射表面。本文中所利用之一光學元件之一項實例係一光學透鏡。一光學透鏡係包括以下各項之一光學元件:兩個相對之折射表面,及該等相對表面之間的界定該透鏡之一外徑(針對一圓形透鏡)或周長之一邊緣,及該透鏡之一邊緣厚度。光學透鏡之一典型配置包含至少大體橫向於一軸(光學軸104)之一系列透鏡102。然而,應瞭解,可存在與本發明揭示內容相一致之其他可能配置。在本文中將一「透鏡組件」定義為:(A)一單個透鏡元件,其與任一毗鄰透鏡元件間隔開以使得在計算各別透鏡元件之影像形成性質時不能忽略該間距,或(B)兩個或兩個以上透鏡元件,其毗鄰透鏡表面完全整體接觸或如此緊密以使得毗鄰透鏡表面之間的任何間距小到在計算該兩個或兩個以上透鏡元件之影像形成性質時可忽略該(等)間距。因此,某些透鏡元件亦可係透鏡組件,且術語「透鏡元件」及「透鏡組件」並非相互排斥之術語。另外,應瞭解,術語「光學組件」在本文中用於指代具有關於成像光學系統之顯著性質之一超集合之物項,且包含諸如透鏡元件及透鏡組件之光學元件以及包含但不限於孔徑光闌之各種光學光闌,但亦可包含各種其他物項,諸如一薄膜、一帶通濾波器、一低通或高通濾波器、一偏光濾波器、一鏡子等等。 Referring now to the drawings, FIG. 1 is a block diagram of an exemplary optical system 100 in accordance with an aspect of the present disclosure. System 100 includes one configuration of optical elements 102 positioned transverse to an optical axis 104. As used herein, an optical element refers to a sheet that is at least partially transparent or at least partially transparent to electromagnetic radiation (eg, comprising a wavelength of approximately 400 nanometers [nm] to 700 nanometers) in the visible spectrum. material. Examples of suitable materials include: Polished and polished glass, molded glass or glass formed according to a replication molding process, wafer level optical device (WLO), injection molded plastic, etched micro-optical device formed on an optical substrate Or something like that. Additionally, an optical component will have at least one refractive or reflective surface. An example of one of the optical elements utilized herein is an optical lens. An optical lens system comprising one of: two opposing refractive surfaces, and an edge between the opposing surfaces defining one of the outer diameters of the lens (for a circular lens) or a perimeter, and the lens One of the edge thicknesses. A typical configuration of an optical lens includes a series of lenses 102 that are at least substantially transverse to an axis (optical axis 104). However, it should be understood that there are other possible configurations consistent with the disclosure of the present invention. A "lens assembly" is defined herein as: (A) a single lens element that is spaced apart from any adjacent lens element such that the spacing cannot be ignored when calculating the image forming properties of the individual lens elements, or (B) Two or more lens elements that are completely in solid contact adjacent the lens surface or so tight that any spacing between adjacent lens surfaces is small enough to be negligible in calculating the image formation properties of the two or more lens elements The (equal) spacing. Therefore, some lens elements may also be lens components, and the terms "lens element" and "lens assembly" are not mutually exclusive terms. In addition, it should be understood that the term "optical component" is used herein to refer to an item having a superset of one of the salient properties of an imaging optical system, and including optical elements such as lens elements and lens assemblies, and including but not limited to apertures. Various optical apertures of the aperture, but may also include various other items such as a film, a bandpass filter, a low pass or high pass filter, a polarizing filter, a mirror, and the like.
入射光學元件102之左側或物件側之光可與各別元件(102)順序地相互作用且出射元件102之右側或影像側,朝向一光學感測器106。應瞭解,與光學元件102之左側相互作用之光並非皆將被透射至感測器106;某些光可被各別元件(102)反射掉,某些光可被散射離開光學軸104且被吸收(例如,由一光學光闌-未繪示),及諸如此類。然而,大體而言,光學元件102將在該等元件之一側(例如,左側)上接收來自一物件之光,且在該等元件之一相反側(例如,在右側上)形成該物件之一實像。該實像將沿光學軸104距光學元件102某一距離(稱為一像距(ID))形成。應注意,ID主要取決於一對應物件距離(OD-物件與光學元件102之間沿光學軸104的距離)及經組合光學元件102之一折射能力或光學功率。 Light on the left or object side of the incident optical element 102 can sequentially interact with the respective elements (102) and on the right or image side of the exit element 102, toward an optical sensor 106. It will be appreciated that not all of the light interacting with the left side of the optical element 102 will be transmitted to the sensor 106; some of the light may be reflected off by the individual elements (102), some of which may be scattered away from the optical axis 104 and Absorption (for example, by an optical stop - not shown), and the like. In general, however, optical element 102 will receive light from an object on one side of the elements (eg, the left side) and form the object on the opposite side of one of the elements (eg, on the right side) A real image. The real image will be formed along the optical axis 104 a distance from the optical element 102 (referred to as an image distance (ID)). It should be noted that the ID is primarily dependent on a corresponding object distance (OD - the distance between the object and the optical element 102 along the optical axis 104) and the refractive power or optical power of one of the combined optical elements 102.
感測器106可係包括電-光感測器或像素之一多維陣列(例如,一個二維陣列)之一數位器件。此一器件之實例可包含:一電荷耦合器件(CCD)陣列、或一互補金屬氧化物半導體(CMOS)陣列或光學感測器之某一其他適合陣列。此陣列之每一電-光感測器或像素經組態以當用光照射時輸出一電信號。此外,該電信號之一電流量與照射該像素之光之能量密度直接相關。相應地,藉由收集來自該陣列之每一像素之輸出電流位準,感測器106可以數位方式重現照射感測器106之光之一個二維輻射能量圖案。另外,在將感測器106之像素表面或感測器平面放置於上文提及之ID處之情形中,所產生之二維輻射能量圖案係由光學元 件102產生之一光學實像之圖案。相應地,感測器106可用於以數位方式重現彼影像。由感測器106產生之一數位影像之解析度取決於感測器106之一主動陣列內之像素數目。另外,光學系統100可包括光學元件102與影像感測器106之間的一蓋板,如圖1所繪示。 The sensor 106 can be a digital device including an electro-optical sensor or a multi-dimensional array of pixels (eg, a two-dimensional array). Examples of such a device can include: a charge coupled device (CCD) array, or a complementary metal oxide semiconductor (CMOS) array or some other suitable array of optical sensors. Each electro-optic sensor or pixel of the array is configured to output an electrical signal when illuminated with light. Moreover, the amount of current in one of the electrical signals is directly related to the energy density of the light that illuminates the pixel. Accordingly, by collecting the output current level from each pixel of the array, the sensor 106 can digitally reproduce a two-dimensional radiant energy pattern of the light illuminating the sensor 106. In addition, in the case where the pixel surface or the sensor plane of the sensor 106 is placed at the ID mentioned above, the generated two-dimensional radiant energy pattern is composed of optical elements. Piece 102 produces a pattern of optical real images. Accordingly, the sensor 106 can be used to reproduce the image in a digital manner. The resolution of one of the digital images produced by sensor 106 depends on the number of pixels in the active array of one of sensors 106. In addition, the optical system 100 can include a cover between the optical component 102 and the image sensor 106, as shown in FIG.
如對光學系統100之繪示,光學元件102可包括五個光學透鏡,自光學元件102之物件側至光學元件102之一影像側包含透鏡L1、透鏡L2、透鏡L3、透鏡L4及透鏡L5。如所繪示,透鏡L1係具有正光學功率之一雙凸透鏡,分別具有凸面物件側R1及凸面影像側表面R2。另外,透鏡L1可相對於透鏡L2、L3、L4及L5具有一相對強的正光學功率。在至少一項態樣中,透鏡L1可相對於透鏡L2、L3、L4及L5之一組合具有一相對強的正光學功率。在一特定態樣中,透鏡L1可提供光學元件102之經組合焦距之至少約一半或更多。在一替代態樣中,透鏡L1可提供光學元件102之經組合焦距之實質上約四分之三或更多。在相關態樣中,物件側透鏡之光學功率(L1power)可係光學元件102之經組合光學功率之約1.25倍(例如,L1power 1.25*(L1power+L2power+L3power+L4power+L5power)。在一特定態樣中,一孔徑光闌A1可定位於透鏡L1之一物件側處或前面。在下文更詳細地闡述孔徑光闌A1。 As shown in the optical system 100, the optical element 102 can include five optical lenses, from the object side of the optical element 102 to the image side of the optical element 102 including a lens L1, a lens L2, a lens L3, a lens L4, and a lens L5. As shown, the lens L1 is a lenticular lens having a positive optical power, and has a convex object side R1 and a convex image side surface R2, respectively. Additionally, lens L1 can have a relatively strong positive optical power relative to lenses L2, L3, L4, and L5. In at least one aspect, lens L1 can have a relatively strong positive optical power with respect to one of lenses L2, L3, L4, and L5. In a particular aspect, lens L1 can provide at least about half or more of the combined focal length of optical element 102. In an alternate aspect, lens L1 can provide substantially three-quarters or more of the combined focal length of optical element 102. In a related aspect, the optical power (L1 power ) of the object side lens may be about 1.25 times the combined optical power of the optical element 102 (eg, L1 power) 1.25* (L1 power + L2 power + L3 power + L4 power + L5 power ). In a particular aspect, an aperture stop A1 can be positioned at or in front of one of the object sides of lens L1. The aperture stop A1 is explained in more detail below.
透鏡L2可具有一總的負光學功率。進一步地,在一項態樣中,透鏡L2可具有一微凹面物件側表面R3。在一替代態樣中,物件側表面R3可係平坦的,無任何光學功率。作為 又一替代態樣,物件側表面R3可係微凸面。透鏡L2之一影像側表面R4可具有凹面曲率。此外,透鏡L2可經組態以便為光學系統100提供色差校正。在至少一項態樣中,透鏡L2可為光學系統100提供大部分色差校正。 Lens L2 can have a total negative optical power. Further, in one aspect, the lens L2 may have a micro concave surface side surface R3. In an alternative aspect, the object side surface R3 can be flat without any optical power. As In still another alternative, the object side surface R3 may be a micro convex surface. One of the image side surfaces R4 of the lens L2 may have a concave curvature. Additionally, lens L2 can be configured to provide chromatic aberration correction for optical system 100. In at least one aspect, lens L2 can provide most of the chromatic aberration correction for optical system 100.
透鏡L3包括一物件側表面R5及一影像側表面R6。在特定態樣中,物件側表面R5可係微凹面。此外,影像側表面R6可係凸面。在一特定態樣中,透鏡L3可具有一正光學功率。 The lens L3 includes an object side surface R5 and an image side surface R6. In a specific aspect, the object side surface R5 may be a micro concave surface. Further, the image side surface R6 may be convex. In a particular aspect, lens L3 can have a positive optical power.
透鏡L4包括一物件側表面R7及一影像側表面R8。物件側表面R7可在接近光學軸104處具有凸面曲率。此外,在本發明揭示內容之至少一項態樣中,物件側表面R7可在較遠離光學軸104處轉變至凹面。此外,影像側表面R8可係實質上平坦的,在接近光學軸104處具有極少或完全不具有光學功率,且在遠離光學軸104處轉變至凸面曲率。在一替代態樣中,影像側表面R8可在接近光學軸104處為凸面,針對低或中等視場角具有顯著的光學功率,以及在遠離光學軸104處為凹面。在一特定態樣中,透鏡L4可針對低視場角(例如,0度與約12度至15度之間的視場角)具有正功率。在另一態樣中,透鏡L4可針對中等視場角(例如,約12度至15度與約22度至25度之間的視場角)具有小的正光學功率、小的負光學功率或實質上零光學功率。在又一態樣中,透鏡L4可針對高視場角(例如,約22度至25度與約33度或33度以上(最高為光學系統100之一最大接受視場角)之間的視場角)具有小的正光學功率、小的負光學功率 或實質上零光學功率。 The lens L4 includes an object side surface R7 and an image side surface R8. The object side surface R7 may have a convex curvature near the optical axis 104. Moreover, in at least one aspect of the present disclosure, the article side surface R7 can transition to a concave surface at a distance from the optical axis 104. Moreover, the image side surface R8 can be substantially flat with little or no optical power near the optical axis 104 and transition to a convex curvature away from the optical axis 104. In an alternate aspect, image side surface R8 may be convex near optical axis 104, significant optical power for low or medium field of view, and concave away from optical axis 104. In a particular aspect, lens L4 can have a positive power for a low field of view angle (eg, an angle of view between 0 degrees and about 12 degrees to 15 degrees). In another aspect, lens L4 can have a small positive optical power, a small negative optical power for a medium field of view angle (eg, an angle of view between about 12 degrees and 15 degrees and between about 22 and 25 degrees) Or substantially zero optical power. In yet another aspect, lens L4 can be viewed for a high angle of view (eg, between about 22 degrees and 25 degrees and about 33 degrees or more (up to a maximum of one of optical system 100). Field angle) with small positive optical power, small negative optical power Or substantially zero optical power.
透鏡L5包括一物件側表面R9及一影像側表面R10。物件側表面R9可針對低及中等視場角具有凹面曲率。在至少一項態樣中,物件側表面R9可針對高視場角轉變至微凹面曲率或無曲率。影像側表面R10可在接近光學軸104處係凹面。此外,如所繪示,影像側表面R10可針對中等及高視場角自凹面轉變至凸面。 The lens L5 includes an object side surface R9 and an image side surface R10. The object side surface R9 may have a concave curvature for low and medium angles of view. In at least one aspect, the object side surface R9 can transition to a micro concave surface curvature or no curvature for a high angle of view. The image side surface R10 may be concave near the optical axis 104. In addition, as illustrated, the image side surface R10 can be converted from a concave surface to a convex surface for medium and high angles of view.
如所繪示,光學元件102可在各別透鏡L1、L2、L3、L4及L5之間具有各別間隔(例如,空氣間距)。在至少一項所揭示實施例中,與透鏡L3與透鏡L4之間的一第三正軸距離相比,透鏡L1與透鏡L2之間的一第一正軸距離可係實質上小的。在另一實施例中,與透鏡L2與透鏡L3之間的一第二正軸距離、及透鏡L4與透鏡L5之間的一第四正軸距離以及第三正軸距離相比,第一正軸距離可係實質上小的。在至少一項實施例中,至少與第一正軸距離相比較,第二、第三及第四正軸距離可在量值上實質上類似。在其他實施例中,無需存在第一、第二、第三及第四正軸距離之間的此等關係。例如,可替代地存在第一、第二、第三及第四正軸距離之間的其他關係。 As illustrated, optical element 102 can have separate spacing (eg, air spacing) between respective lenses L1, L2, L3, L4, and L5. In at least one disclosed embodiment, a first positive-axis distance between lens L1 and lens L2 can be substantially small compared to a third positive-axis distance between lens L3 and lens L4. In another embodiment, compared with a second positive-axis distance between the lens L2 and the lens L3, and a fourth positive-axis distance between the lens L4 and the lens L5, and the third positive-axis distance, the first positive The shaft distance can be substantially small. In at least one embodiment, the second, third, and fourth positive-axis distances can be substantially similar in magnitude compared to at least the first positive-axis distance. In other embodiments, there is no need to have such relationships between the first, second, third, and fourth positive axis distances. For example, there may alternatively be other relationships between the first, second, third, and fourth positive axis distances.
在本發明揭示內容之至少一項態樣中,一MEMS致動器可至少連接至透鏡L1。該MEMS致動器可經組態以沿光學軸104重新定位透鏡L1以便以不同物件距離來聚焦物件。作為一項實例,MEMS致動器可改變透鏡L1與透鏡L2之間的第一距離以便以不同物件距離來聚焦物件。在至少一項 態樣中,該MEMS致動器可在距透鏡L2一距離D10cm 110處定位透鏡L1,以將距光學軸104上之孔徑光闌A1之一位置實質上10公分(cm)之一物件之一影像聚焦至感測器106上。 In at least one aspect of the present disclosure, a MEMS actuator can be coupled to at least lens L1. The MEMS actuator can be configured to reposition the lens L1 along the optical axis 104 to focus the object at different object distances. As an example, a MEMS actuator can change the first distance between lens Ll and lens L2 to focus the object at different object distances. In at least one aspect, the MEMS actuator can position lens L1 at a distance D 10 cm 110 from lens L2 to position substantially one centimeter (cm) from one of aperture stop A1 on optical axis 104. One of the images of one of the objects is focused onto the sensor 106.
根據進一步態樣,孔徑光闌A1可相對於光學軸104固定。在另一態樣中,孔徑光闌A1可相對於透鏡L1之一位置固定。在後一態樣中,當聚焦一物件之一影像時,可藉由一MEMS致動器使孔徑光闌A1結合透鏡L1一起移動。根據又其他態樣,該MEMS致動器可經組態以沿著光學軸104單獨地或結合孔徑光闌A1一起移動透鏡L1一總距離。在一特定態樣中,該總距離可在其一端處聚焦在無窮遠處之一物件之一影像,且在其一相對端處聚焦距孔徑光闌A1實質上為10 cm之一物件之一影像。如本文所利用,在無窮遠處之一物件包含滿足在光學成像科學領域習知之平軸近似之一物件距離。廣義而言,平軸近似係指一物件處於使得包在一第一光學光線(其與光學軸104平行)與一第二光學光線(其源於該物件上最遠離該光學軸之一點處且在孔徑光闌A1處通過光學軸104)之間的一角度實質上為零度之一距離處。在又一態樣中,透鏡L1可具有至少部分地隨總距離之一量值而變之一焦距。在又其他態樣中,透鏡L1之焦距與光學元件102之一經組合焦距之一比率可至少部分地隨總距離之量值而變。 According to a further aspect, the aperture stop A1 can be fixed relative to the optical axis 104. In another aspect, the aperture stop A1 can be fixed relative to one of the lenses L1. In the latter aspect, when focusing on an image of an object, the aperture stop A1 can be moved together with the lens L1 by a MEMS actuator. According to still other aspects, the MEMS actuator can be configured to move the lens L1 a total distance along the optical axis 104 alone or in conjunction with the aperture stop A1. In a particular aspect, the total distance may be focused at one end of the image at one of the objects at infinity, and at one of its opposite ends, one of the objects at a distance of substantially 10 cm from the aperture stop A1 is focused. image. As utilized herein, an object at infinity contains one of the object axis distances that satisfies the well-known approximation in the field of optical imaging science. Broadly speaking, a flat axis approximation refers to an object being such that it is wrapped in a first optical ray (which is parallel to the optical axis 104) and a second optical ray (which originates from a point on the object that is furthest from the optical axis and An angle between the optical axes 104) at the aperture stop A1 is substantially one of a distance of zero degrees. In yet another aspect, lens L1 can have a focal length that varies at least partially as a function of the total distance. In still other aspects, the ratio of the focal length of lens L1 to the combined focal length of one of optical elements 102 can vary, at least in part, by the magnitude of the total distance.
由於感測器106之像素陣列產生一實像之一電子重現,因此由感測器106產生之呈電信號形式之資料(及本文所揭 示之其他感測器)可保存至記憶體、投影至一顯示器(例如,數位顯示螢幕)以供觀看、在軟體中進行編輯及諸如此類。因此,光學系統100之至少一項應用係結合包括一數位顯示器之一數位相機或視訊攝影機。此外,光學系統100及包含於本發明揭示內容中之其他光學系統可結合一電子器件之一相機模組來實施。此一電子器件可包含大量消費型、商貿型或工業型器件。實例包含:消費型電子器件,包含:一蜂巢式電話、智慧電話、膝上型電腦、小筆電、PDA、電腦監視器、電視、平板電視及諸如此類;監控或監視設備,包含商貿型設備(例如,ATM攝影機、銀行櫃員機窗口攝影機、便利商店攝影機、倉庫攝影機及諸如此類)、個人監控設備(例如,筆式攝影機、鏡片式攝影機、紐扣式攝影機等等)或工業型監控設備(例如,機場攝影機、貨物車場攝影機、鐵路貨場攝影機及諸如此類)。例如,在消費型電子器件中,由於光學系統100可包括具有約為數毫米或更小之實體尺寸之光學組件,且由於光學元件102中之至少某些光學元件可具有一固定位置,因此系統100及其他所揭示系統非常適合於各種類型之迷你或微攝影機模組。然而,應瞭解,所揭示系統不限於此特定應用;相反,熟習此項技術者已知或藉助於本文所提供之上下文已知之其他應用皆包含於本發明揭示內容之範疇內。 Since the pixel array of the sensor 106 generates an electronic representation of a real image, the information generated by the sensor 106 in the form of an electrical signal (and disclosed herein) Other sensors shown can be saved to memory, projected to a display (eg, a digital display screen) for viewing, editing in software, and the like. Thus, at least one application of optical system 100 incorporates a digital camera or video camera that includes a digital display. In addition, optical system 100 and other optical systems included in the present disclosure can be implemented in conjunction with a camera module of an electronic device. This electronic device can contain a large number of consumer, commercial or industrial devices. Examples include: consumer electronics, including: a cellular phone, smart phone, laptop, laptop, PDA, computer monitor, TV, flat-panel TV, and the like; monitoring or monitoring equipment, including business-oriented equipment ( For example, ATM cameras, bank teller window cameras, convenience store cameras, warehouse cameras, and the like), personal monitoring devices (eg, pen cameras, lens cameras, button cameras, etc.) or industrial monitoring devices (eg, airport cameras) , cargo yard cameras, railway yard cameras and the like). For example, in a consumer electronic device, since optical system 100 can include optical components having a physical size of on the order of a few millimeters or less, and since at least some of the optical components 102 can have a fixed position, system 100 And other disclosed systems are well suited for various types of mini or micro camera modules. However, it should be understood that the disclosed system is not limited to this particular application; rather, other applications known to those skilled in the art or known by the context provided herein are included within the scope of the present disclosure.
圖2圖解說明根據本發明揭示內容之額外態樣之一實例性光學成像系統200之一圖式。光學成像系統200可包括橫 向於一光學軸204配置之一組光學元件202。此外,光學元件202可經組態以將一影像聚焦至位於距光學成像系統200之一孔徑光闌A1實質上無窮遠處之一物件之一影像平面206上。在至少一項態樣中,光學元件202可實質上類似於上文圖1之光學元件102,但透鏡L1與透鏡L2之間的第一距離除外。特定而言,光學成像系統200中之此第一距離可係經組態以聚焦上文所論述之定位於實質上無窮遠處之物件之一距離DINFINITY 210。此外,如上文在圖1處所闡述,在一項態樣中,孔徑光闌A1可相對於光學軸204固定於適當位置。在一替代態樣中,孔徑光闌A1可相對於透鏡L1固定於適當位置,且沿著光學軸204與透鏡L2一起移動。 2 illustrates one diagram of an exemplary optical imaging system 200 in accordance with an additional aspect of the present disclosure. Optical imaging system 200 can include a set of optical elements 202 disposed transverse to an optical axis 204. Additionally, optical component 202 can be configured to focus an image onto image plane 206 of one of the objects at substantially infinity from aperture stop A1 of optical imaging system 200. In at least one aspect, optical element 202 can be substantially similar to optical element 102 of Figure 1 above, with the exception of the first distance between lens L1 and lens L2. In particular, this first distance in optical imaging system 200 can be configured to focus on one of the objects discussed above that is located at substantially infinity distance D INFINITY 210. Moreover, as explained above at Figure 1, in one aspect, the aperture stop A1 can be fixed in position relative to the optical axis 204. In an alternate aspect, the aperture stop A1 can be fixed in position relative to the lens L1 and move along with the lens L2 along the optical axis 204.
應瞭解,光學元件102及202之透鏡L1至L5之表面R1至R10(以及貫穿本發明揭示內容闡述之其他光學表面)可係為不同形狀。在一項態樣中,該等表面中之一或多者可係球形表面。在其他態樣中,該等表面中之一或多者可係錐形表面。在又其他態樣中,該等表面中之一或多者可係根據一適合的非球面方程式之非球面表面,諸如下列平滑非球面方程式:,其中z係自該非球面透鏡表面上在一徑向距離處之一點繪製之一線之下垂高度(以mm為單位),Y自光學軸至非球面表面頂點之切向平面,C係光學軸上之非球面透鏡表面之曲率,Y係距光學 軸之徑向距離(以mm為單位),K係錐形常數,且Ai係第i個非球面係數,其中在偶數數字i上求和。然而,此等態樣並不視為限定本發明揭示內容之範疇。相反,各種表面可係奇次非球面,或具有包括偶次係數及奇次係數之一非球面方程式。 It will be appreciated that the surfaces R1 to R10 of the lenses L1 to L5 of the optical elements 102 and 202 (and other optical surfaces as illustrated throughout the present disclosure) may be of different shapes. In one aspect, one or more of the surfaces may be a spherical surface. In other aspects, one or more of the surfaces may be a tapered surface. In still other aspects, one or more of the surfaces may be aspherical surfaces according to a suitable aspheric equation, such as the following smooth aspheric equation: Where z is a line from a point at a radial distance on the surface of the aspherical lens at a radial distance (in mm), Y from the optical axis to the tangential plane of the aspherical surface apex, on the C-axis The curvature of the surface of the aspherical lens, the radial distance of Y from the optical axis (in mm), the K-cone constant, and A i is the i-th aspheric coefficient, which is summed over the even number i. However, such aspects are not to be considered as limiting the scope of the present disclosure. Conversely, the various surfaces may be odd-order aspherical or have an aspheric equation including one-order coefficients and odd-numbered coefficients.
除上文以外,亦應瞭解,光學元件102及202之透鏡(及貫穿本發明揭示內容提供之各種其他光學系統之光學透鏡)可由各種適合類型之透明材料製成,且根據用於產生一光學品質表面之各種適合製程來形成。在一項態樣中,透鏡L1至L5可係經研磨及拋光之玻璃,其中該玻璃經選擇以具有導致經組合透鏡L1至L5之一所期望有效焦距之一折射率。在另一態樣中,該透鏡可係一光學品質經注入模製之塑膠(或藉由另一適合方法形成之光學品質之塑膠),其中該塑膠具有適合於提供所期望之有效焦距之一折射率。在至少一項其他態樣中,透鏡L1至透鏡L5可藉助類似於用於蝕刻半導體晶片(例如,固態記憶體晶片、資料處理晶片)之光微影蝕刻製程之一光微影蝕刻製程而自一透明玻璃、晶體或其他適合結構(例如,二氧化矽-SiO2晶圓)蝕刻。在一特定態樣中,光學元件102及光學元件202可根據下文表1至表9之光學規定來闡述。 In addition to the above, it should be understood that the lenses of optical elements 102 and 202 (and the optical lenses of various other optical systems provided throughout the present disclosure) can be made from a variety of suitable types of transparent materials, and are used to produce an optical A variety of quality surfaces are suitable for the process to form. In one aspect, lenses L1 through L5 can be ground and polished glass, wherein the glass is selected to have a refractive index that results in one of the desired effective focal lengths of one of combined lenses L1 through L5. In another aspect, the lens can be an optically quality molded plastic (or an optical quality plastic formed by another suitable method), wherein the plastic has one of the desired effective focal lengths Refractive index. In at least one other aspect, lens L1 through lens L5 can be self-photolithographically etched by a photolithographic etching process similar to that used to etch semiconductor wafers (eg, solid state memory wafers, data processing wafers). A transparent glass, crystal or other suitable structure (eg, ceria-SiO 2 wafer) is etched. In a particular aspect, optical component 102 and optical component 202 can be illustrated in accordance with the optical specifications of Tables 1 through 9 below.
表1提供用於光學成像系統100及200之一實施例之一般光學資訊。表2針對八個不同光學場提供在影像感測器106 或影像感測器206處量測之沿y軸之影像高度,且提供各別場之權數。表3包含表2中所指示之八個場之漸暈資料。表4繪示在圖1及圖2處繪示之在光學成像系統100及200中追蹤之各別光線之波長。表5提供針對光學元件102及光學元件202之透鏡之一般光學表面特性之一摘要,包含表面類型、曲率半徑、厚度、材料(來自標準玻璃及塑膠目錄)、直徑、錐形常數及關於漸暈之註解。表6闡述針對表5之表面之平滑非球面係數,而表7提供針對彼等表面之邊緣厚度資訊。表8提供針對在表2處識別之光學場之多個波長之折射率資料。表9及表9A提供針對彼等相同波長及光學場之焦距比數資料。 Table 1 provides general optical information for one embodiment of optical imaging systems 100 and 200. Table 2 is provided in image sensor 106 for eight different optical fields. Or the image height along the y-axis measured by the image sensor 206, and the weights of the respective fields are provided. Table 3 contains the vignetting data for the eight fields indicated in Table 2. Table 4 illustrates the wavelengths of the individual rays tracked in optical imaging systems 100 and 200, depicted in Figures 1 and 2. Table 5 provides a summary of the general optical surface characteristics of the lenses for optical element 102 and optical element 202, including surface type, radius of curvature, thickness, material (from standard glass and plastic catalogs), diameter, cone constant, and vignetting Annotation. Table 6 illustrates the smooth aspheric coefficients for the surface of Table 5, while Table 7 provides information on the edge thickness for their surfaces. Table 8 provides refractive index data for multiple wavelengths of the optical field identified at Table 2. Tables 9 and 9A provide information on the focal length ratios for the same wavelength and optical field.
圖3圖解說明根據本發明揭示內容之進一步態樣之一實例性經注入模製之塑膠光學系統300(亦稱為系統300)之一圖式。系統300可由多個經注入模製之塑膠組件形成。在一項實施例中,透鏡L1、L2、L3、L4及L5中之兩個或兩個以上透鏡可由一單個模製件形成。在其他實施例中,各別透鏡可由單獨模製件形成且如所繪示在模製之後裝配起來。在其他態樣中,透鏡L1、L2、L3、L4及L5之形成可由另一光學製作技術所致,諸如晶圓級光學器件製作。在至少一項所揭示態樣中,系統300可實質上類似於光學成像系統100。在另一態樣中,系統300可實質上類似於光學成像系統200。根據又其他態樣,系統300可包括經組態以沿光學軸302位移透鏡L1以達成在系統300之一影像平面304處聚焦之MEMS硬體。在一特定實施例中,系統300可 包括透鏡L1之透鏡表面R1及R2、透鏡L2之表面R3及R4、透鏡L3之表面R5及R6、透鏡L4之表面R7及R8及透鏡L5之表面R9及R10,其皆實質上類似於上文在圖1處所闡述之表面R1至R10。 3 illustrates a diagram of an exemplary injection molded plastic optical system 300 (also referred to as system 300) in accordance with a further aspect of the present disclosure. System 300 can be formed from a plurality of injection molded plastic components. In one embodiment, two or more of the lenses L1, L2, L3, L4, and L5 may be formed from a single molded piece. In other embodiments, the individual lenses may be formed from separate molded parts and assembled as molded after molding. In other aspects, the formation of lenses L1, L2, L3, L4, and L5 can be caused by another optical fabrication technique, such as wafer level optics fabrication. In at least one of the disclosed aspects, system 300 can be substantially similar to optical imaging system 100. In another aspect, system 300 can be substantially similar to optical imaging system 200. According to still other aspects, system 300 can include a MEMS hardware configured to shift lens L1 along optical axis 302 to achieve focus at one of image planes 304 of system 300. In a particular embodiment, system 300 can The lens surfaces R1 and R2 of the lens L1, the surfaces R3 and R4 of the lens L2, the surfaces R5 and R6 of the lens L3, the surfaces R7 and R8 of the lens L4, and the surfaces R9 and R10 of the lens L5 are substantially similar to the above. Surfaces R1 to R10 set forth in Figure 1.
圖4圖解說明針對如本文所闡述之一光學成像系統之場曲率及F-Tan(θ)失真(在下文稱為失真)之一圖式。特定而言,圖4圖解說明針對可與上文圖1之光學成像系統100對應之一物件距離為10 cm之場曲率及失真。該等場曲率及失真圖表利用分別具有波長為0.470、0.510、0.555、0.610及0.650 μm之五個波長,且具有一最大視場角為33.391度。左側圖表繪示在一光學成像系統之一影像平面處沿一y軸之以毫米為單位之場曲率。場曲率資料係針對徑向光線(在圖4上描繪為「S」)及切向光線(在圖4上描繪為「T」)來繪示。如自圖表顯而易見,場曲率在大部分影像平面上針對徑向光線最小,且場曲率對於大部分影像平面而言針對切向光線在幾微米內,及在影像平面之外部邊緣處(高y值)為數微米。 4 illustrates one of a field curvature and F-Tan (θ) distortion (hereinafter referred to as distortion) for an optical imaging system as set forth herein. In particular, FIG. 4 illustrates field curvature and distortion for a distance of 10 cm from an object that may correspond to optical imaging system 100 of FIG. 1 above. The field curvature and distortion plots utilize five wavelengths having wavelengths of 0.470, 0.510, 0.555, 0.610, and 0.650 μm, respectively, and have a maximum field of view of 33.391 degrees. The graph on the left shows the field curvature in millimeters along a y-axis at one of the image planes of an optical imaging system. The field curvature data is plotted for radial rays (depicted as "S" in Figure 4) and tangential rays (depicted as "T" in Figure 4). As is apparent from the graph, the field curvature is the smallest for radial rays on most image planes, and the field curvature is within a few microns for tangential rays for most image planes and at the outer edge of the image plane (high y values) ) is a few microns.
在右手側上之失真圖表亦包含針對以上五個波長之曲線。將該失真資料在光學軸處歸一至0%。貫穿整個影像平面,失真小於約1.5%且針對低視場角小於1%。 The distortion chart on the right hand side also contains curves for the above five wavelengths. The distortion data is normalized to 0% at the optical axis. Throughout the image plane, the distortion is less than about 1.5% and less than 1% for low field of view.
圖5繪示針對聚焦在無窮遠處之一物件之一光學成像系統之場曲率及失真之一圖式。因此,圖5之圖表可與上文圖2之光學成像系統200對應。圖5之場曲率及失真採用針對與圖4相同之波長、針對一最大視場角為34.897度之圖 表。場曲率包含針對所指示波長之徑向光線(S)以及針對彼等相同波長之切向光線(T)之線。如所繪示,針對在10cm處之一對焦物件之場曲率係在約+/- 50微米內。 Figure 5 illustrates one of the curvatures and distortions of the field for an optical imaging system of one of the objects focused at infinity. Thus, the graph of FIG. 5 can correspond to optical imaging system 200 of FIG. 2 above. The field curvature and distortion of Figure 5 are for the same wavelength as Figure 4, for a maximum field of view angle of 34.897 degrees. table. The field curvature contains radial rays (S) for the indicated wavelengths and lines of tangential rays (T) for the same wavelength. As depicted, the field curvature for one of the focusing objects at 10 cm is within about +/- 50 microns.
在無窮遠處之失真變化與針對圖4之10 cm圖表相比稍微大一些。同樣將失真在光學軸上歸一至0%。該失真介於自中等視場角之約0.5%至約影像平面邊緣處之約負1.5%之間的範圍內。針對所有視場角之總失真係約2%。 The distortion variation at infinity is slightly larger than the 10 cm chart for Figure 4. The distortion is also normalized to 0% on the optical axis. The distortion ranges from about 0.5% of the medium field of view to about 1.5% of the image plane edge. The total distortion for all field of view is about 2%.
圖6圖解說明針對如本文所闡述之一光學成像系統之主要橫向色差(lateral color)之一圖表。特定而言,圖6之主要橫向色差圖表係針對在10 cm物件距離處之一對焦物件,且因此可與上文圖1之光學成像系統100對應。主要橫向色差圖表之最大場係2.9560 mm,且波長介於0.4700 μm與0.6500 μm之間的範圍內。如所繪示,橫向色差變化針對小視場角完全在0.5微米內,針對中等視場角變化至恰好大於負1微米,且針對較高視場角變得大到約負1.5微米。總失真對於影像平面而言保持低於2微米。 Figure 6 illustrates a graph of one of the major lateral colors for an optical imaging system as set forth herein. In particular, the primary lateral chromatic aberration graph of FIG. 6 is for a focusing object at one of the 10 cm object distances, and thus may correspond to optical imaging system 100 of FIG. 1 above. The maximum lateral chromatic aberration chart has a maximum field of 2.9560 mm and a wavelength between 0.4700 μm and 0.6500 μm. As depicted, the lateral chromatic aberration change is completely within 0.5 microns for a small field of view, is just greater than minus 1 micron for a medium field of view angle, and becomes as large as about minus 1.5 microns for a higher field of view. The total distortion remains below 2 microns for the image plane.
圖7圖解說明針對在無窮遠處之一對焦物件之基本橫向色差之一圖表。相應地,圖7可與上文圖2之光學成像系統200對應。類似於圖6,針對0.4700 μm與0.6500 μm之間的波長,最大場為2.9560 mm。針對低及中等視場角,主要橫向色差保持在約0.5微米處或低於約二分之一微米。主要橫向色差僅在較大視場角處超過二分之一微米,在影像平面之一邊緣處達到恰好大於約二微米之一峰值。 Figure 7 illustrates a graph of one of the fundamental lateral chromatic aberrations for a focusing object at one of infinity. Accordingly, FIG. 7 may correspond to optical imaging system 200 of FIG. 2 above. Similar to Figure 6, for a wavelength between 0.4700 μm and 0.6500 μm, the maximum field is 2.9560 mm. For low and medium field of view, the primary lateral chromatic aberration is maintained at or below about one-half micron. The major lateral chromatic aberration is only over one-half micron at a larger field of view, reaching a peak at exactly one of about two microns at one edge of the image plane.
圖8圖解說明在本文所闡述之一光學成像系統之一影像 平面處之數個橫向光線扇形圖。特定而言,圖8之橫向光線扇形圖與在10 cm物件距離處之一對焦物件對應,且因此可對應於上文圖1之光學成像系統100。該等橫向光線扇形圖針對各種影像高度繪示沿一垂直軸之橫向光線誤差(ey)及沿水平軸之光瞳直徑(Py)。較平坦之繪圖指示最佳效能及最小誤差,而沿垂直軸之較大偏差指示較大的橫向光線誤差。如圖8所繪示,橫向光線誤差在接近光學軸處(小影像高度)最小,且隨影像高度而大體增加。比例分別沿x軸及y軸介於正25微米至負25微米之間的範圍內。橫向光線扇形圖包含0.470與0.650 μm之間的波長。 Figure 8 illustrates several transverse ray sectors at one of the image planes of one of the optical imaging systems set forth herein. In particular, the lateral ray pie chart of FIG. 8 corresponds to one of the focusing objects at a distance of 10 cm, and thus may correspond to optical imaging system 100 of FIG. 1 above. The transverse ray sectors plot the lateral ray error (e y ) along a vertical axis and the pupil diameter (P y ) along the horizontal axis for various image heights. A flatter drawing indicates the best performance and minimum error, while a large deviation along the vertical axis indicates a large lateral ray error. As shown in Figure 8, the lateral ray error is minimal near the optical axis (small image height) and generally increases with image height. The ratios are in the range of between 25 microns and minus 25 microns along the x-axis and the y-axis, respectively. The transverse ray pie chart contains wavelengths between 0.470 and 0.650 μm.
圖9繪示針對在無窮遠處之一對焦物件之數個橫向光線扇形圖,且因此可對應於上文圖2之光學成像系統200。類似於圖8,該等繪圖展現在接近光學軸處之最小誤差,及在所有視場角處針對小光瞳直徑之大體小誤差。在較高視場角及特定而言較高光瞳直徑處,橫向光線誤差增加。大體而言,針對在無窮遠處之物件之橫向光線誤差小於針對在10 cm處之物件。 9 illustrates a number of lateral ray sectors for a focusing object at infinity, and thus may correspond to optical imaging system 200 of FIG. 2 above. Similar to Figure 8, the plots show the smallest error near the optical axis and a large small error for the small pupil diameter at all field angles. At higher field angles and, in particular, higher pupil diameters, lateral ray errors increase. In general, the lateral ray error for objects at infinity is less than for objects at 10 cm.
現在參照圖式,圖10繪示針對在10 cm處之一物件之一光學系統1000之一剖視圖,其包括相對於一光學軸1004以一相似方式定位之光學元件1002之一配置。入射光學元件1002之左側或物件側之光可與各別元件1002順序地相互作用且出射元件1002之右側或影像側,朝向一影像感測器1006。實像將沿光學軸1004距光學元件1002某一距離(稱為一像距(ID))形成。應注意,ID主要取決於一對應物件距 離(OD-物件與光學元件1002之間沿光學軸1004的距離)及經組合光學元件102之一折射能力或光學功率。 Referring now to the drawings, FIG. 10 depicts a cross-sectional view of an optical system 1000 for one of the items at 10 cm, including one configuration of optical elements 1002 positioned in a similar manner relative to an optical axis 1004. Light on the left or object side of the incident optical component 1002 can sequentially interact with the respective component 1002 and exit to the right or image side of the component 1002 toward an image sensor 1006. The real image will be formed along the optical axis 1004 a distance (referred to as an image distance (ID)) from the optical element 1002. It should be noted that the ID mainly depends on the distance of a corresponding object. The distance between the OD-object and the optical element 1002 along the optical axis 1004 and the refractive power or optical power of one of the combined optical elements 102.
感測器1006可係包括電-光感測器或像素之一多維陣列(例如,一個二維陣列)之一數位器件,該多維陣列可包含一CCD陣列或一CMOS陣列等等。由感測器1006產生之一數位影像之解析度取決於感測器平面陣列1008內之像素數目,該像素數目又取決於像素面積及總陣列面積。因此,舉例而言,對於每側大致1.4微米(1.96平方微米)之相對方形像素而言,一0.4 cm2之感測器陣列可包括多達8.1百萬像素(Mp)。換言之,此一感測器將具有約8 Mp之解析度。由於該像素陣列產生一實像之一電子重現,因此可將感測器1006以電信號形式產生之資料保存至記憶體、投影至一顯示器以供觀看(例如,數位顯示螢幕)、在軟體中編輯及諸如此類。 The sensor 1006 can comprise a multi-dimensional device of an electro-optical sensor or a multi-dimensional array of pixels (eg, a two-dimensional array), which can include a CCD array or a CMOS array or the like. The resolution of a digital image produced by sensor 1006 depends on the number of pixels in sensor planar array 1008, which in turn depends on the pixel area and the total array area. Thus, for example, for a relatively square pixel of approximately 1.4 microns (1.96 square microns) per side, a 0.4 cm 2 sensor array can include up to 8.1 megapixels (Mp). In other words, this sensor will have a resolution of about 8 Mp. Since the pixel array generates an electronic reproduction of a real image, the data generated by the sensor 1006 in the form of an electrical signal can be saved to the memory, projected to a display for viewing (for example, a digital display screen), in the software. Edit and so on.
應瞭解,圖10中繪示之光學成像配置1000(及本文所揭示之其他光學成像系統)並非按比例繪製。例如,透鏡厚度、位置及高度無需與實際大小成正確比例繪示。相反,配置1002意欲提供一成像系統之一視覺上下文以輔助本文所揭示之其他態樣之概念理解。 It should be appreciated that the optical imaging configuration 1000 (and other optical imaging systems disclosed herein) illustrated in FIG. 10 is not drawn to scale. For example, the lens thickness, position, and height need not be plotted in the correct ratio to the actual size. Rather, configuration 1002 is intended to provide a visual context for an imaging system to aid in the conceptual understanding of other aspects disclosed herein.
光學系統1000包括一第一透鏡L1、一第二透鏡L2、一第三透鏡L3、一第四透鏡L4及一第五透鏡L5,其中心皆在一光學軸104上。該等透鏡係自物件側開始至影像側編號。因此,透鏡L1最接近於物件,且透鏡L5最接近於影像。孔隙A1可嵌入至透鏡L1中,或可實體固定至L1。相 應地,於此實施例中,孔隙A1並不相對於透鏡L1移動。在該揭示內容之某些態樣中,孔隙A1可具有一50 μm深度。 The optical system 1000 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5, both of which are centered on an optical axis 104. These lenses are numbered from the object side to the image side. Therefore, the lens L1 is closest to the object, and the lens L5 is closest to the image. The aperture A1 may be embedded in the lens L1 or may be physically fixed to L1. phase In the embodiment, the aperture A1 does not move relative to the lens L1. In some aspects of the disclosure, the aperture A1 can have a depth of 50 μm.
透鏡L1至L5各自具有兩個相對之折射表面。各別表面之一曲率半徑由字母「R」後跟一表面編號來標識,以透鏡L1之物件側表面開始。因此,自物件側至影像側之該等表面依次為:透鏡L1之物件側表面R1及影像側表面R2、透鏡L2之物件側表面R3及影像側表面R4、透鏡L3之物件側表面R5及影像側表面R6、透鏡L4之物件側表面R7及影像側表面R8以及透鏡L5之物件側表面R9及影像側表面R10。該等各別表面識別符(R1、R2、R3、...、R10)亦用於表示各別表面之曲率半徑。另外,折射率ni標識與第i個表面相關聯之透鏡介質之折射率,且v_di係與該第i個表面相關聯之透鏡媒體之阿貝數(Abbe number)。 The lenses L1 to L5 each have two opposing refractive surfaces. The radius of curvature of one of the respective surfaces is identified by the letter "R" followed by a surface number, starting with the object side surface of the lens L1. Therefore, the surfaces from the object side to the image side are, in order, the object side surface R1 and the image side surface R2 of the lens L1, the object side surface R3 of the lens L2, the image side surface R4, the object side surface R5 of the lens L3, and the image. The side surface R6, the object side surface R7 and the image side surface R8 of the lens L4, and the object side surface R9 and the image side surface R10 of the lens L5. The respective surface identifiers (R1, R2, R3, ..., R10) are also used to indicate the radius of curvature of the respective surfaces. Additionally, the refractive index n i identifies the refractive index of the lens medium associated with the i-th surface, and v_di is the Abbe number of the lens media associated with the i-th surface.
透鏡L1可具有一大的正折射能力,其中光學表面R1及R2兩者皆為凸面。如本文中所使用,術語大折射能力或小折射能力(無論正或負)皆意指相對於一特定光學系統之其他透鏡。因此,例如,提及透鏡L1具有大的正折射能力暗示:與光學系統1000之其他正能力透鏡相比,透鏡L1具有大於平均正折射能力之折射能力。相反地,針對光學系統1000具有小的正折射能力之一透鏡將具有小於平均正折射能力之折射能力。 Lens L1 can have a large positive refractive power, wherein both optical surfaces R1 and R2 are convex. As used herein, the term large refractive power or small refractive power (whether positive or negative) refers to other lenses relative to a particular optical system. Thus, for example, reference to lens L1 having a large positive refractive power implies that lens L1 has a refractive power greater than the average positive refractive power compared to other positive power lenses of optical system 1000. Conversely, one lens that has a small positive refractive power for optical system 1000 will have a refractive power that is less than the average positive refractive power.
在一實施例中,L1可相對於透鏡L2至L5及感測器平面1008移動。可使用MEMS或其他適當致動器達成移動。於 此實施例中,L2至L5保持相對於影像感測器平面1008及影像感測器1006固定。在該揭示內容之某些態樣中,L1之移動範圍係100 μm左右。L1之移動允許光學系統1000維持對在各種距離處之物件之聚焦。在圖10中,光學系統1000對距該光學系統10 cm之一距離處之一物件聚焦。在圖2中,光學系統1100對在光學無窮遠處之一物件聚焦。 In an embodiment, L1 is movable relative to lenses L2 through L5 and sensor plane 1008. Movement can be achieved using MEMS or other suitable actuators. to In this embodiment, L2 to L5 remain fixed relative to the image sensor plane 1008 and the image sensor 1006. In some aspects of the disclosure, the range of motion of L1 is about 100 μm. The movement of L1 allows the optical system 1000 to maintain focus on objects at various distances. In Figure 10, optical system 1000 focuses an object at a distance of 10 cm from the optical system. In Figure 2, optical system 1100 focuses on one of the objects at optical infinity.
在某些實施例中,在L1之折射能力與對在各種距離處之物件聚焦所要求之運動範圍之間存在一相反關係。具有一較高能力之一L1要求一較短移動範圍以對在各種距離處之物件聚焦,且反之亦然。根據該揭示內容之某些態樣,在光學軸處之透鏡L1與L2之間的軸向間隙或距離係125 μm左右,其中在通光孔隙處一間隙約為170 μm。 In some embodiments, there is an inverse relationship between the refractive power of L1 and the range of motion required to focus objects at various distances. One of the higher capabilities, L1, requires a shorter range of motion to focus on objects at various distances, and vice versa. According to some aspects of the disclosure, the axial gap or distance between the lenses L1 and L2 at the optical axis is about 125 μm, with a gap of about 170 μm at the light-passing aperture.
L2可具有一彎月形狀(在接近光學軸處比遠離光學軸處具有較小厚度),其中光學表面R3為凸面,且光學表面R4為凹面。在該揭示內容之某些態樣中,透鏡L2提供光學系統1000之大部分色度校正且具有負折射能力。透鏡L3可在接近光學軸1004處為雙凸面,乃因光學表面R5在接近光學軸1004處為凸面且在遠離光學軸1004處為凹面,且影像側光學表面R6為凸面。根據該揭示內容之某些態樣,透鏡L3可具有一正折射能力。在某些實施例中,L2可安裝至L3上,以使得L2固定至L2,且L2不接觸沿光學軸1004配置光學系統1000之透鏡L1至L5之一光學鏡筒。 L2 may have a meniscus shape (having a smaller thickness near the optical axis than away from the optical axis), wherein the optical surface R3 is convex and the optical surface R4 is concave. In some aspects of this disclosure, lens L2 provides most of the chromaticity correction of optical system 1000 and has a negative refractive power. Lens L3 may be biconvex at near optical axis 1004 because optical surface R5 is convex near optical axis 1004 and concave at away from optical axis 1004, and image side optical surface R6 is convex. According to certain aspects of the disclosure, lens L3 can have a positive refractive power. In some embodiments, L2 can be mounted to L3 such that L2 is fixed to L2, and L2 does not contact one of the lenses L1 through L5 of optical system 1000 disposed along optical axis 1004.
透鏡L4具有一凹面物件側光學表面R7,及一凸面形影像側光學表面R8。透鏡L5可係彎月形,具有在接近光學軸 1004處之一凸面光學表面R9及在接近光學軸104處為凹面之光學表面R10。 The lens L4 has a concave object side optical surface R7 and a convex image side optical surface R8. Lens L5 can be meniscus shaped, with near optical axis One of the convex optical surfaces R9 at 1004 and the optical surface R10 that is concave near the optical axis 104.
應瞭解,表面R1至R10(以及貫穿本發明揭示內容闡述之其他光學表面,包含用於系統200之光學表面)可係為不同形狀。在一項態樣中,該等表面中之一或多者可係球面表面。在其他態樣中,該等表面中之一或多者可係錐形表面。在又其他態樣中,該等表面中之一或多者可係根據一適合的非球面方程式之非球面表面,諸如下列平滑非球面方程式:,其中z係自該非球面透鏡表面上在一徑向距離處之一點繪製之一線之下垂高度(以mm為單位),Y自光學軸至非球面表面頂點之切向平面,C係光學軸上之非球面透鏡表面之曲率,Y係距光學軸之徑向距離(以mm為單位),K係錐形常數,且Ai係第i個非球面係數,其中在偶數數字i上求和。然而,此等態樣並不視為限定本發明揭示內容之範疇。相反,各種表面可係不規則非球面,或具有包括平滑係數及不規則係數之一非球面方程式。 It will be appreciated that surfaces R1 through R10 (and other optical surfaces as illustrated throughout the present disclosure, including optical surfaces for system 200) may be of different shapes. In one aspect, one or more of the surfaces may be a spherical surface. In other aspects, one or more of the surfaces may be a tapered surface. In still other aspects, one or more of the surfaces may be aspherical surfaces according to a suitable aspheric equation, such as the following smooth aspheric equation: Where z is a line from a point at a radial distance on the surface of the aspherical lens at a radial distance (in mm), Y from the optical axis to the tangential plane of the aspherical surface apex, on the C-axis The curvature of the surface of the aspherical lens, the radial distance of Y from the optical axis (in mm), the K-cone constant, and A i is the i-th aspheric coefficient, which is summed over the even number i. However, such aspects are not to be considered as limiting the scope of the present disclosure. Instead, the various surfaces may be irregular aspherical surfaces or have an aspheric equation including one of a smoothing coefficient and an irregularity coefficient.
除上文以外,亦應瞭解,光學系統1000之透鏡L1至L5(及光學系統1100之光學透鏡)可由各種適合類型之透明材料製成,根據明於產生一光學品質表面之各種適合製程形成。在一項態樣中,透鏡L1至L5可係經研磨及拋光之玻璃,其中玻璃經選擇以具有導致經組合透鏡L1至L5之一所 期望有效焦距之一折射率。在另一態樣中,該透鏡可係一光學品質經注入模製之塑膠(或藉由另一適合方法形成之光學品質之塑膠),其中該塑膠具有適合於提供所期望之有效焦距之一折射率。在至少一項其他態樣中,透鏡L1至透鏡L5可藉助類似於用於蝕刻半導體晶片(例如,固態記憶體晶片、資料處理晶片)之光微影蝕刻製程之一光微影蝕刻製程而自一透明玻璃、晶體或其他適合結構(例如,二氧化矽-SiO2晶圓)蝕刻。 In addition to the above, it should also be appreciated that lenses L1 through L5 of optical system 1000 (and optical lenses of optical system 1100) can be formed from a variety of suitable types of transparent materials, depending on various suitable processes for producing an optical quality surface. In one aspect, lenses L1 through L5 can be ground and polished glass, wherein the glass is selected to have a refractive index that results in one of the desired effective focal lengths of one of combined lenses L1 through L5. In another aspect, the lens can be an optically quality molded plastic (or an optical quality plastic formed by another suitable method), wherein the plastic has one of the desired effective focal lengths Refractive index. In at least one other aspect, lens L1 through lens L5 can be self-photolithographically etched by a photolithographic etching process similar to that used to etch semiconductor wafers (eg, solid state memory wafers, data processing wafers). A transparent glass, crystal or other suitable structure (eg, ceria-SiO 2 wafer) is etched.
根據各種態樣,透鏡L1、L2、L3、L4及L5可由塑膠製成(例如,APL5014、OKP4HT或ZE-330R或具有類似折射率及阿貝數之另一適合塑膠,或其一適合組合)。在一項特定態樣中,透鏡L1、L3及L5由一種塑膠(例如,APL5014)製成,而透鏡L2及L4由不同塑膠(例如,分別為OKP4HT及ZE-330R)製成。然而,應瞭解,在其他態樣中,該等透鏡可係為替代地具有類似阿貝數或折射率之其他材料。 According to various aspects, the lenses L1, L2, L3, L4 and L5 can be made of plastic (for example, APL5014, OKP4HT or ZE-330R or another suitable plastic having a similar refractive index and Abbe number, or a suitable combination thereof) . In one particular aspect, lenses L1, L3, and L5 are made of a plastic (eg, APL5014), while lenses L2 and L4 are made of different plastics (eg, OKP4HT and ZE-330R, respectively). However, it should be understood that in other aspects, the lenses may alternatively be other materials having an Abbe number or refractive index.
現在轉至圖11,展示根據本發明揭示內容之態樣在無窮遠處聚焦之一樣本光學系統之一剖面。圖11之光學系統1100類似於光學系統100,但與在10 cm處不同,光學系統1100對在無窮遠處之一物件聚焦。光學系統1100與光學系統1000之間的一差異係:L1相對於透鏡L2至L5定位於距感測器1106一不同距離處。 Turning now to Figure 11, a cross section of one of the sample optical systems is shown at infinity in accordance with the teachings of the present invention. The optical system 1100 of Figure 11 is similar to the optical system 100, but unlike at 10 cm, the optical system 1100 focuses on one of the objects at infinity. A difference between the optical system 1100 and the optical system 1000 is that L1 is positioned at a different distance from the sensor 1106 relative to the lenses L2 through L5.
根據本發明揭示內容之一項特定態樣,在以下表10至表13中提供各別透鏡L1、L2、L3、L4及L5之一規定。表10 列出各別透鏡之一般透鏡資料,且表11列出包含以下各項之表面資料:接近光學軸之曲率半徑(R)(以mm為單位)、表面之間的距離、各別透鏡之直徑及各別透鏡之材料。此外,表12針對表11之非球面表面提供用於以上方程式(1)之i=2、4、6、8、10、12、14、16之非球面常數Ai,其中索引「i」由「r」標識(例如,如在自ZEMAX Development Corporation可獲得之光學設計軟體程式ZEMAX中所產生)。表13提供第i個透鏡針對一組波長之折射率ni。表14提供一定範圍之場對影像高度,表15提供光學系統1000及1100之漸暈資訊,表16提供用於圖10及圖11之光線追蹤之波長及權數,表17提供光學系統1000及1100之表面資料,包含半徑、厚度、材料、直徑及錐形常數。另外,表18提供光學系統1000及1100之邊緣厚度資訊。 In accordance with a particular aspect of the present disclosure, one of the individual lenses L1, L2, L3, L4, and L5 is provided in Tables 10 through 13 below. Table 10 lists the general lens data for each lens, and Table 11 lists the surface data for the following: radius of curvature (R) near the optical axis (in mm), distance between surfaces, individual lenses The diameter and the material of the individual lenses. Further, Table 12 provides the aspheric constant A i for i = 2, 4, 6, 8, 10, 12, 14, 16 of the above equation (1) for the aspherical surface of Table 11, wherein the index "i" is The "r" logo (for example, as produced in the optical design software program ZEMAX available from ZEMAX Development Corporation). Table 13 provides the refractive index n i of the ith lens for a set of wavelengths. Table 14 provides a range of field-to-image heights, Table 15 provides vignetting information for optical systems 1000 and 1100, Table 16 provides wavelengths and weights for ray tracing for Figures 10 and 11, and Table 17 provides optical systems 1000 and 1100. Surface data, including radius, thickness, material, diameter, and cone constant. Additionally, Table 18 provides edge thickness information for optical systems 1000 and 1100.
圖12圖解說明針對光學組態1002之場曲率及失真之一圖表。進一步地,該等場曲率及失真值係針對介於自0.470 μm至0.650 μm之範圍內之數個波長來顯示。場曲率針對低視場角針對此等波長而在約10微米內,且甚至在影像平面之周邊處小於100微米。此外,失真完全在2%與負2%之範圍內。如熟習此項技術者將顯而易見,像差由本發明光學配置1002完全補償。 FIG. 12 illustrates a graph of one of field curvature and distortion for optical configuration 1002. Further, the field curvature and distortion values are displayed for a number of wavelengths ranging from 0.470 μm to 0.650 μm. The field curvature is within about 10 microns for these wavelengths for a low field of view, and even less than 100 microns at the periphery of the image plane. In addition, the distortion is completely in the range of 2% and minus 2%. As will be apparent to those skilled in the art, the aberrations are fully compensated by the optical configuration 1002 of the present invention.
圖13圖解說明針對光學組態1102之場曲率及失真之一圖 表。進一步地,該等場曲率及失真值係針對介於自0.470 μm至0.650 μm之範圍內之數個波長來顯示。場曲率完全在+/-100微米之範圍內,且失真完全在2%與負2%之範圍內。如熟習此項技術者將顯而易見,像差由本發明光學配置1102完全補償。 Figure 13 illustrates one of the curvatures and distortions of the field for optical configuration 1102. table. Further, the field curvature and distortion values are displayed for a number of wavelengths ranging from 0.470 μm to 0.650 μm. The field curvature is completely in the range of +/- 100 microns and the distortion is completely in the range of 2% and minus 2%. As will be apparent to those skilled in the art, the aberrations are fully compensated by the optical configuration 1102 of the present invention.
圖14繪示光學配置1002之橫向色差之一圖表。該圖表之一最大場係2.8560 mm。另外,橫向色差曲線在自0.470 μm至0.650 μm之一波長範圍上。在10 cm處之一對焦物件之主要橫向色差係約-3.5 μm,如該圖表所繪示。 14 is a graph showing one of lateral chromatic aberrations of optical configuration 1002. One of the charts has a maximum field of 2.8560 mm. In addition, the lateral chromatic aberration curve is in a range from 0.470 μm to 0.650 μm. The main lateral chromatic aberration of the focusing object at 10 cm is about -3.5 μm, as shown in the chart.
圖15繪示針對在無窮遠處之一對焦物件之光學配置1102之橫向色差之一圖表。該圖表之一最大場為2.8560 mm。另外,橫向色差曲線在自0.470 μm至0.650 μm之一波長範圍上。在無窮遠處之對焦物件之主要橫向色差係約+0.8微米。 15 is a graph showing one of lateral chromatic aberrations for an optical configuration 1102 of a focusing object at infinity. One of the charts has a maximum field of 2.8560 mm. In addition, the lateral chromatic aberration curve is in a range from 0.470 μm to 0.650 μm. The main lateral chromatic aberration of the focusing object at infinity is about +0.8 microns.
圖16及圖17分別繪示光學配置1002及1102之橫向光線扇形圖。該等橫向光線扇形圖繪示針對光瞳直徑Py及Px沿y軸及x軸之橫向像差(ey及ex)。該等橫向光線扇形圖係在影像高度0.000 mm(1600與1700)、0.5710 mm(1602與1702)、1.1420 mm(1604與1704)、1.7140 mm(1606與1706)、2.2850 mm(1608與1708)、2.5700 mm(1610與1710)及2.8560 mm(1612與1712)處做出。該等繪圖大體在光學成像之可接受範圍內,且相應地,光學配置1002及1102具有好的成像品質。 16 and 17 illustrate lateral ray fan diagrams of optical configurations 1002 and 1102, respectively. The transverse ray sectors depict lateral aberrations (e y and e x ) along the y-axis and the x-axis for the pupil diameters P y and P x . The transverse ray sectors are at 0.000 mm (1600 and 1700), 0.5710 mm (1602 and 1702), 1.1420 mm (1604 and 1704), 1.7140 mm (1606 and 1706), 2.2850 mm (1608 and 1708), Made at 2.5700 mm (1610 and 1710) and 2.8560 mm (1612 and 1712). These plots are generally within acceptable ranges for optical imaging, and accordingly, optical configurations 1002 and 1102 have good imaging quality.
圖18圖解說明根據本發明揭示內容之替代態樣針對一光 學系統1800之一實例性光線圖之一圖式。系統1800包括光學元件1802之一配置。光學光線繪示為在光學系統1800之一視場內與光學元件1802相互作用。正軸光線聚焦至光學軸上在與光學元件1802相關聯之一影像平面或焦平面處,且源於較大視場角之光線繪示為在距光學軸較遠距離處會聚於影像平面處。 Figure 18 illustrates an alternative aspect of the disclosure in accordance with the present invention for a light One of the example ray diagrams of one of the systems 1800. System 1800 includes one configuration of optical elements 1802. The optical ray is depicted as interacting with optical element 1802 within a field of view of optical system 1800. The positive-axis ray is focused onto the optical axis at an image plane or focal plane associated with the optical element 1802, and the ray originating from the larger field of view is depicted as converge at the image plane at a greater distance from the optical axis .
光學元件1802之一最左側係光學系統1800之一物件側,且光學元件1802之一最右側係光學系統1800之一影像側。當光學元件1802正確地對焦時,該物件之一實像形成於光學元件1802之影像平面處。在本發明揭示內容之至少一項態樣中,光學系統1800可包括一可變焦距光學系統,其中一子組光學元件1802可沿光學軸移動以將一物件之一影像對焦於影像平面處。在特定態樣中,該子組光學元件1802之一組位置可與使各別影像在影像平面處對焦之一組物件距離對應。換言之,當該子組光學元件1802定位於該組位置中之一者處時,在該組物件距離中之一對應者處之一物件將在影像平面處對焦。如下文圖18及圖19所繪示之光學元件1802之一部分圖解說明一實例性配置,其中系統1800之光學元件係在將位於無窮遠處之一物件聚焦至影像平面上之一位置中。如下文圖23及圖24所繪示之光學元件1802之一位置圖解說明一實例性配置,其中光學元件係在將一近場物件聚焦至影像平面上之一位置中。 One of the optical elements 1802 is on the object side of one of the leftmost optical systems 1800, and one of the optical elements 1802 is on the image side of one of the optical systems 1800. When the optical element 1802 is properly focused, a real image of the object is formed at the image plane of the optical element 1802. In at least one aspect of the present disclosure, optical system 1800 can include a variable focus optical system in which a subset of optical elements 1802 can be moved along an optical axis to focus an image of an object at an image plane. In a particular aspect, a set of positions of the subset of optical elements 1802 can correspond to a set of object distances that cause the respective images to focus at the image plane. In other words, when the subset of optical elements 1802 are positioned at one of the set of positions, one of the objects at one of the set of object distances will be in focus at the image plane. One portion of optical component 1802, as illustrated in Figures 18 and 19 below, illustrates an exemplary configuration in which the optical component of system 1800 is in a position that focuses one of the objects at infinity onto a plane of the image. One example of the position of optical element 1802, as depicted in Figures 23 and 24 below, illustrates an exemplary configuration in which the optical element is in a position to focus a near field object onto the image plane.
圖19繪示包括根據本發明揭示內容之額外態樣之光學元件及光學表面之一實例性光學系統1900之一圖式。光學系 統1900可實質上類似於光學系統1800。如所繪示,光學系統1900經組態以聚焦位於遠場中(例如,在無窮遠處)之一物件之一影像。 19 illustrates an illustration of an exemplary optical system 1900 that includes an optical component and an optical surface in accordance with additional aspects of the present disclosure. Optical system System 1900 can be substantially similar to optical system 1800. As illustrated, the optical system 1900 is configured to focus an image of one of the objects located in the far field (eg, at infinity).
光學系統1900可包括沿一光學軸1904定中心之一組光學元件1902。光學元件1902可經組態以聚焦可由一感測器1908擷取之一影像。或測器1908可包括位於感測器1908之一影像平面處之光敏像素之一多維陣列。該等光敏像素可回應於由光學元件1902在感測器1908上聚焦之電-磁能量(例如,光)而輸出電信號。此外,該等電信號可具有與該電-磁能量之光學特性相關之特性。此等電信號可用於重現由光學元件1902聚焦且由感測器1908擷取之影像,如本文所闡述或此項技術中已知。光學系統1900亦可包括用於感測器1908之一蓋板1906。蓋板可保護感測器1908之光敏像素免受灰塵或原本可能吸收或散射光學元件1902所聚焦之電-磁能量藉此使影像失真之其他顆粒。 Optical system 1900 can include a set of optical elements 1902 centered along an optical axis 1904. Optical component 1902 can be configured to focus an image that can be captured by a sensor 1908. The detector 1908 can include a multi-dimensional array of light sensitive pixels located at one of the image planes of the sensor 1908. The photosensitive pixels can output an electrical signal in response to electro-magnetic energy (eg, light) focused by the optical element 1902 on the sensor 1908. Moreover, the electrical signals can have characteristics related to the optical properties of the electro-magnetic energy. These electrical signals can be used to reproduce an image that is focused by optical element 1902 and captured by sensor 1908, as is described herein or known in the art. Optical system 1900 can also include a cover plate 1906 for one of sensors 1908. The cover plate protects the photosensitive pixels of sensor 1908 from dust or other particles that would otherwise absorb or scatter the electro-magnetic energy that is focused by optical element 1902 thereby distorting the image.
光學元件1902可包括五個光學透鏡,包含透鏡L1、透鏡L2、透鏡L3、透鏡L4及透鏡L5(統稱為透鏡L1至L5)。該等光學透鏡係自左(光學系統1900之物件側)至右(光學系統1900之影像側)編號。因此,最左側透鏡L1在本文中亦稱為物件側透鏡。另一選擇係,透鏡L1可稱為光學系統1900之一物鏡。 The optical element 1902 may include five optical lenses including a lens L1, a lens L2, a lens L3, a lens L4, and a lens L5 (collectively referred to as lenses L1 to L5). The optical lenses are numbered from the left (the object side of the optical system 1900) to the right (the image side of the optical system 1900). Therefore, the leftmost lens L1 is also referred to herein as an object side lens. Alternatively, lens L1 may be referred to as an objective lens of optical system 1900.
如所繪示,透鏡L1係具有正光學功率之一雙凸面透鏡,且具有一凸面物件側表面R1及凸面影像側表面R2。此外,相對於光學元件1902之透鏡L2、L3、L4及L5,透鏡 L1可具有一強的光學功率。在特定態樣中,與透鏡L2、L3、L4或L5中之任一者相比,透鏡L1可具有較大的正光學功率。在又一態樣中,與透鏡L2、L3、L4及L5之任一子組相比,L1可具有較大的正光學功率。在至少一項替代或額外態樣中,與透鏡L2、L3、L4及L5之組合相比,透鏡L1可具有較大的正光學功率。如所繪示,一孔徑光闌A1可位於透鏡L1之物件側表面R1周圍。 As shown, the lens L1 is a biconvex lens having a positive optical power and has a convex object side surface R1 and a convex image side surface R2. In addition, the lens L2, L3, L4, and L5 with respect to the optical element 1902, the lens L1 can have a strong optical power. In a particular aspect, lens L1 can have a greater positive optical power than any of lenses L2, L3, L4, or L5. In yet another aspect, L1 can have a greater positive optical power than any of the subsets of lenses L2, L3, L4, and L5. In at least one alternative or additional aspect, lens L1 can have a greater positive optical power than the combination of lenses L2, L3, L4, and L5. As shown, an aperture stop A1 can be positioned around the object side surface R1 of the lens L1.
透鏡2可係具有一負光學功率之一透鏡。透鏡L2可具有一物件側表面R3及一影像側表面R4。在本發明揭示內容之某些態樣中,表面R3可係微凸面。在其他態樣中,表面R3可係實質上平坦的,無任何顯著光學功率。在本發明揭示內容之又其他態樣中,表面R3可具有一複合曲率,其針對表面R3之一子組光瞳半徑(例如,距光學軸1904之一定範圍之距離)為凸面,且針對表面R3之一不同子組光瞳半徑為凹面。作為一實例,表面R3可自光學軸1904至一第一光瞳半徑具有一凹面曲率,且可自該第一光瞳半徑至一第二光瞳半徑具有一凸面曲率,其中該第二光瞳半徑大於該第一光瞳半徑。一影像側表面R4可具有一凹面曲率,提供透鏡L2之大部分負光學功率。 Lens 2 can be a lens having a negative optical power. The lens L2 may have an object side surface R3 and an image side surface R4. In some aspects of the present disclosure, surface R3 may be micro-convex. In other aspects, surface R3 can be substantially flat without any significant optical power. In still other aspects of the present disclosure, surface R3 can have a composite curvature that is convex for a subset of the surface radius of surface R3 (eg, a range of distances from optical axis 1904), and for the surface One of the different subgroups of R3 has a pupil radius that is concave. As an example, the surface R3 may have a concave curvature from the optical axis 1904 to a first pupil radius, and may have a convex curvature from the first pupil radius to a second pupil radius, wherein the second aperture The radius is greater than the radius of the first pupil. An image side surface R4 can have a concave curvature that provides most of the negative optical power of lens L2.
透鏡L3可係一彎月形透鏡,具有朝向透鏡L3之物件側之一凸面曲率。如所繪示,透鏡L3包括一物件側表面R5及影像側表面R6。物件側表面R5可具有凸面曲率。在特定態樣中,物件側表面R5之凸度在接近光學軸1904處可比在接近透鏡L3之一周邊處強。換言之,物件側表面R5之一曲率 半徑可隨物件側表面R5之光瞳半徑增加而增加,且在至少一項態樣中,在接近透鏡L3之周邊處變得無窮大。影像側表面R6可具有凹面曲率。在至少一項態樣中,影像側表面R6之一半徑可隨透鏡L3之光瞳半徑增加而增加。在一替代或另外態樣中,影像側表面R6可在接近透鏡L3之周邊處為凸面。 The lens L3 may be a meniscus lens having a convex curvature toward the object side of the lens L3. As shown, the lens L3 includes an object side surface R5 and an image side surface R6. The object side surface R5 may have a convex curvature. In a particular aspect, the convexity of the object side surface R5 may be stronger near the optical axis 1904 than near one of the lenses L3. In other words, the curvature of one of the side surfaces R5 of the object The radius may increase as the pupil radius of the object side surface R5 increases, and in at least one aspect, becomes infinite near the periphery of the lens L3. The image side surface R6 may have a concave curvature. In at least one aspect, the radius of one of the image side surfaces R6 may increase as the pupil radius of the lens L3 increases. In an alternative or additional aspect, the image side surface R6 may be convex near the periphery of the lens L3.
透鏡L4包括一物件側表面R7及一影像側表面R8。透鏡L4可係朝向光學元件1902之影像側之一彎月形透鏡。另外,透鏡L4可具有弱的正光學功率。在一項替代或另外態樣中,與透鏡L4之一周邊相比,在接近光學軸1904處透鏡L4之正功率可較大,而在其他態樣中,該正功率可在影像側表面R8之表面上實質上恆定。 The lens L4 includes an object side surface R7 and an image side surface R8. Lens L4 can be directed toward one of the meniscus lenses on the image side of optical element 1902. Additionally, lens L4 can have a weak positive optical power. In an alternative or alternative aspect, the positive power of lens L4 may be greater near the optical axis 1904 than at the periphery of one of the lenses L4, while in other aspects, the positive power may be at the image side surface R8. The surface is substantially constant.
透鏡L5包括一物件側表面R9及一影像側表面R10。物件側表面R9可針對低及中等視場角具有凹面曲率,且在較高視場角處具有減小的曲率。影像側表面R10可在接近光學軸1904處為凹面,進一步地,影像側表面R10可針對中等及高視場角而自凹面轉變至凸面。 The lens L5 includes an object side surface R9 and an image side surface R10. The object side surface R9 may have a concave curvature for low and medium angles of view and a reduced curvature at higher angles of view. The image side surface R10 may be concave near the optical axis 1904. Further, the image side surface R10 may be changed from a concave surface to a convex surface for medium and high angles of view.
光學元件1902可在各別透鏡L1、L2、L3、L4與L5之間具有各別間距(空氣間隙)。在一特定態樣中,透鏡L4與透鏡L5之間的一正軸空氣距離可係透鏡L1至L5當中的一組空氣距離中之一最大者。在一替代或另外態樣中,透鏡L3與透鏡L4之間的一空氣距離可係透鏡L1至L5當中的該組空氣距離中之一第二大者。 The optical element 1902 can have respective pitches (air gaps) between the respective lenses L1, L2, L3, L4, and L5. In a particular aspect, a positive axis air distance between lens L4 and lens L5 can be one of the largest of a set of air distances among lenses L1 through L5. In an alternative or alternative aspect, an air distance between lens L3 and lens L4 may be the second largest of the set of air distances among lenses L1 through L5.
在本發明揭示內容之又一態樣中,一致動器可連接至一子組光學元件1902。在一項實例中,該致動器可係一 MEMS致動器,而在其他態樣中,該致動器可係此項技術中已知的另一類型之致動器。該致動器可經組態以沿光學軸1904重新定位該子組光學透鏡。重新定位該子組光學透鏡可致使在不同物件距離處之物件之影像對焦於光學系統1900之感測器1908處。在特定態樣中,光學透鏡1902可經組態以將位於遠場(例如,無窮遠、...)中之一物件之一影像聚焦至感測器1908上。根據另一態樣,重新定位該子組光學元件1902以將位於近場中之一物件對焦於感測器1908處。在一特定態樣中,該子組光學元件可包含透鏡L1,且透鏡L1可如圖19所繪示由MEMS致動器定位以使位於無窮遠處之一物件對焦於感測器1908處,且可如圖23所繪示由MEMS致動器定位以使在實質上12.8公分(cm)之一物件距離處之一物件對焦於感測器1908處。 In yet another aspect of the present disclosure, an actuator can be coupled to a subset of optical elements 1902. In an example, the actuator can be one The MEMS actuator, while in other aspects, the actuator can be another type of actuator known in the art. The actuator can be configured to reposition the subset of optical lenses along the optical axis 1904. Repositioning the subset of optical lenses can cause images of objects at different object distances to focus on the sensor 1908 of the optical system 1900. In a particular aspect, optical lens 1902 can be configured to focus an image of one of the objects located in the far field (eg, infinity, ...) onto sensor 1908. According to another aspect, the subset of optical elements 1902 are repositioned to focus an object located in the near field at the sensor 1908. In a particular aspect, the subset of optical elements can include a lens L1, and the lens L1 can be positioned by the MEMS actuator as illustrated in FIG. 19 such that one of the objects at infinity is focused at the sensor 1908, And the MEMS actuator can be positioned as shown in FIG. 23 such that one of the objects at one of the object distances of substantially 12.8 centimeters (cm) is focused at the sensor 1908.
在又一態樣中,孔徑光闌A1可相對於光學軸1904固定。在另一態樣中,孔徑光闌A1可相對於透鏡L1之一位置固定。在後一態樣中,當將一物件之一影像聚焦至感測器1908上時,可藉由一MEMS致動器使孔徑光闌A1與透鏡L1一起移動。根據又其他態樣,該MEMS致動器可經組態以沿光學軸1904單獨地或結合孔徑光闌A1一起移動透鏡L1一總距離。該總距離可在其一端處將在無窮遠處之一物件之一影像聚焦於感測器1908上,且在其另一端處將在實質上12.8 cm之一物件距離處之一物件之一影像聚焦於感測器1908處。 In yet another aspect, the aperture stop A1 can be fixed relative to the optical axis 1904. In another aspect, the aperture stop A1 can be fixed relative to one of the lenses L1. In the latter aspect, when an image of an object is focused onto the sensor 1908, the aperture stop A1 can be moved with the lens L1 by a MEMS actuator. According to still other aspects, the MEMS actuator can be configured to move the lens L1 a total distance along the optical axis 1904 alone or in conjunction with the aperture stop A1. The total distance may focus one of the objects at one end of the object at one end on the sensor 1908 and at the other end one of the objects at one of the object distances of substantially 12.8 cm Focusing on sensor 1908.
透鏡L1至L5可係為各種適合類型之適合光學透明材料,且根據用於產生一光學品質表面之一(或多個)適合方法形 成。在一項態樣中,透鏡L1至L5可係經研磨或拋光之玻璃,其中該玻璃經選擇以具有導致經組合透鏡L1至L5之一所期望有效焦距之一折射率。在另一態樣中,該透鏡可係一光學品質經注入模製之塑膠(或藉由另一適合製作方法形成之光學品質之塑膠),其中該塑膠具有適合於提供所期望焦距之一折射率。在另一(或多個)態樣中,透鏡L1至L5可藉助類似於用於蝕刻半導體晶片之光微影蝕刻製程之一光微影蝕刻製程而自一透明玻璃、晶體或其他適合結構蝕刻。在一(或多個)特定態樣中,透鏡L1至L5可係為不同的玻璃、塑膠或適合的光學透明介質,藉由以上或類似之適合製作技術中之一或多者(注意,蓋板1908係一虛構材料)。在又一態樣中,光學元件1902可根據表19至表27A之光學規定來闡述。 Lenses L1 to L5 may be of a suitable type suitable for optically transparent materials and may be shaped according to one or more suitable methods for producing an optical quality surface. to make. In one aspect, lenses L1 through L5 can be ground or polished glass, wherein the glass is selected to have a refractive index that results in one of the desired effective focal lengths of one of combined lenses L1 through L5. In another aspect, the lens can be an optically quality molded plastic (or an optical quality plastic formed by another suitable method), wherein the plastic has a refractive index suitable for providing a desired focal length. rate. In another aspect(s), the lenses L1 through L5 may be etched from a transparent glass, crystal or other suitable structure by a photolithographic etching process similar to that used to etch semiconductor wafers. . In one (or more) specific aspects, the lenses L1 to L5 may be of different glass, plastic or suitable optically transparent medium, by one or more of the above or similar suitable fabrication techniques (note that the cover Plate 1908 is a fictional material). In yet another aspect, optical element 1902 can be illustrated in accordance with the optical specifications of Tables 19 through 27A.
表19提供分別針對圖18及圖19之光學系統1800、1900之一實施例之大體光學資訊。表20提供針對一組光學場在影像感測器1906處量測之沿y軸之影像高度以及各別場之各別權數。表21包含針對表20之該組光學場之漸暈資料。表22繪示在圖18處繪示之光學成像系統1800中追蹤之各別光線之波長。表23提供針對光學元件1902之透鏡之一般光學表面特性之一摘要,包含表面類型、曲率半徑、厚度、材料(來自標準玻璃及塑膠目錄;注意,為覆蓋玻璃1908使用一虛擬材料)、直徑、錐形常數及可用註解。表24描述針對表23之表面之非球面係數,而表25提供針對彼等表面之邊緣厚度資訊。表26提供針對表20處所識別之光學場之多個波長之折射率資料。表27及表27A提供彼等相同波長及光學場之焦距比數資料。 Table 19 provides general optical information for one of the optical systems 1800, 1900 of Figures 18 and 19, respectively. Table 20 provides the image height along the y-axis measured at image sensor 1906 for a set of optical fields and the respective weights for the respective fields. Table 21 contains vignetting data for the set of optical fields of Table 20. Table 22 illustrates the wavelengths of the individual rays tracked in the optical imaging system 1800 depicted at FIG. Table 23 provides an abstract of the general optical surface characteristics of the lens for optical element 1902, including surface type, radius of curvature, thickness, material (from standard glass and plastic catalogs; note that a dummy material is used for cover glass 1908), diameter, Cone constants and available annotations. Table 24 describes the aspheric coefficients for the surface of Table 23, while Table 25 provides information on the edge thickness for their surfaces. Table 26 provides refractive index data for multiple wavelengths of the optical field identified at Table 20. Table 27 and Table 27A provide data on the focal length ratios of the same wavelengths and optical fields.
圖20繪示針對以上圖18及圖19之光學系統1800、1900之場曲率及失真之一圖式。特定而言,圖20中繪示之場曲率及失真與經組態以將在無窮遠處之一物件之一影像聚焦至感測器1906上之光學元件1902對應。該等場曲率及失真圖表利用五個波長,分別包含0.436 μm、0.486 μm、0.546 μm、0.588 μm及0.656 μm。此外,藉助一最大場為35.543度來追蹤該等光線。左手圖表繪示在一光學成像系統之一影像平面處沿一y軸以毫米為單位之場曲率。場曲率係針對徑向光線(由一「S」描繪)及切向光線(由一「T」描繪)。在所利用波長上之場曲率之範圍對於徑向及切向光線而言皆在幾微米內。在圖20之右手側上之失真圖表亦包含針對以上五個波長之曲線。將該失真資料在光學軸處歸一至0%。貫穿該影像平面,失真小於約-1%,且針對中等至低視場角低於約+/-0.5%。 20 is a diagram showing one of field curvature and distortion for the optical systems 1800, 1900 of FIGS. 18 and 19 above. In particular, the field curvature and distortion depicted in FIG. 20 corresponds to optical element 1902 that is configured to focus an image of one of the objects at infinity onto sensor 1906. The field curvature and distortion charts utilize five wavelengths, including 0.436 μm, 0.486 μm, and 0.546, respectively. Μm, 0.588 μm and 0.656 μm. In addition, the light is tracked by a maximum field of 35.543 degrees. The left hand graph shows the field curvature in millimeters along a y-axis at one of the image planes of an optical imaging system. The field curvature is for radial rays (depicted by an "S") and tangential rays (depicted by a "T"). The range of field curvature at the wavelengths utilized is within a few microns for both radial and tangential rays. The distortion chart on the right hand side of Figure 20 also contains curves for the above five wavelengths. The distortion data is normalized to 0% at the optical axis. Throughout the image plane, the distortion is less than about -1% and is less than about +/- 0.5% for medium to low field of view.
圖21圖解說明針對一組波長之縱向像差之一圖式。圖21之縱向像差與經組態以將位於無窮遠處之一物件成像至感測器1906上之光學元件1902相關。所列舉波長包含0.436 μm、0.486 μm、0.546 μm、0.588 μm及0.656 μm。該圖表繪出針對一光瞳半徑0.9 mm針對增加之視場角以毫米為單位之縱向像差。在低視場角處,縱向像差大體為正且小於約0.02毫米。在高視場角處,縱向像差更多地為負且大體小於約0.03毫米。圖21之縱向像差圖表指示:光學元件1902針對所識別波長提供相當良好之像差校正。 Figure 21 illustrates one of the longitudinal aberrations for a set of wavelengths. The longitudinal aberration of FIG. 21 is associated with optical element 1902 that is configured to image an object at infinity onto sensor 1906. The listed wavelengths include 0.436 μm, 0.486 μm, 0.546 μm, 0.588 μm, and 0.656 μm. The chart plots longitudinal aberrations in millimeters for an increased field of view with a radius of 0.9 mm. At low angles of view, the longitudinal aberrations are generally positive and less than about 0.02 mm. At high viewing angles, the longitudinal aberrations are more negative and substantially less than about 0.03 mm. The longitudinal aberration diagram of Figure 21 indicates that optical element 1902 provides fairly good aberration correction for the identified wavelength.
圖22繪示針對以上圖19之光學元件1902之橫向色差之一圖表。相應地,該橫向色差圖表與經組態以將位於無窮遠處之一物件之一影像聚焦至感測器1906上之光學元件1902相關。該橫向色差圖表之最大場為3.3920毫米,且該橫向色差圖表之波長介於0.4358 μm至0.6563 μm之間的範圍內。另外,資料以0.546100 μm為參考。對於多數視場角 而言,橫向色差皆在約+/-0.5微米內。在高視場角處,較低波長展現約-1微米或更大之橫向色差,且較高波長展現約1微米之橫向色差。 22 is a graph showing one of lateral chromatic aberrations for optical element 1902 of FIG. 19 above. Accordingly, the lateral chromatic aberration diagram is associated with optical element 1902 that is configured to focus an image of one of the objects at infinity onto sensor 1906. The maximum field of the lateral chromatic aberration diagram is 3.3920 mm, and the wavelength of the lateral chromatic aberration diagram is in the range between 0.4358 μm and 0.6563 μm. In addition, the data is referenced to 0.546100 μm. For most field of view For example, the lateral chromatic aberration is within about +/- 0.5 microns. At high field of view, the lower wavelength exhibits a lateral chromatic aberration of about -1 micron or greater, and the higher wavelength exhibits a lateral chromatic aberration of about 1 micron.
圖23圖解說明根據本發明揭示內容之又其他態樣之一實例性光學系統2300之一圖式。光學系統2300可包括一組光學元件2302,如所繪示。在本發明揭示內容之至少一項態樣中,光學元件2302可包括實質上類似於以上圖18及圖19之光學元件1802及1902但具有一不同聚焦位置之一組透鏡。具體而言,一子組光學元件2302可以適合於將一近場物件之一影像聚焦於光學元件2302之一影像平面處之一方式定位。如所繪示,針對光學元件2302之近場物件位置為12.8 cm。藉由將該子組光學元件2302重新定位於由圖23繪示之位置與圖19之光學元件1902之位置之間,光學系統2300可聚焦該近場物件與在無窮遠處之一物件之間的不同物件距離。 23 illustrates one diagram of an example optical system 2300 in accordance with still other aspects of the present disclosure. Optical system 2300 can include a set of optical elements 2302, as depicted. In at least one aspect of the present disclosure, optical element 2302 can comprise a group of lenses that are substantially similar to optical elements 1802 and 1902 of Figures 18 and 19 above but have a different focus position. In particular, a subset of optical elements 2302 can be adapted to position one of the near field objects in one of the image planes of the optical element 2302. As shown, the near field object position for optical element 2302 is 12.8 cm. By repositioning the subset of optical elements 2302 between the position depicted in Figure 23 and the position of the optical element 1902 of Figure 19, the optical system 2300 can focus the near field object and one of the objects at infinity Different object distances.
光學系統2300圖解說明表示以離散視場角入射至光學元件2302上之光之一組光線扇形。藉由會聚於光學系統2300之一光學軸處在光學元件2302之一影像平面處之光線來繪示一視場角0。以增加之距光學軸之距離會聚於影像平面上之點處之光表示以對應較大視場角交會光學元件2302之光線。 Optical system 2300 illustrates a set of ray sectors that represent light incident on optical element 2302 at discrete field angles. A field of view angle 0 is plotted by concentrating light at one of the optical axes of optical element 2302 at one of the optical axes of optical system 2300. Light that converges at a point on the image plane at an increased distance from the optical axis represents light that intersects the optical element 2302 at a corresponding angle of view.
圖24繪示根據本發明揭示內容之又其他態樣之一實例性光學系統2400之一圖式。光學系統2400描繪圖23之光學系統2300之光學透鏡及相關聯光學表面。進一步地,在至少 一項態樣中,光學系統2300之光學透鏡及相關聯光學表面可實質上類似於上文圖18及圖19之光學系統1800及1900之光學透鏡及光學表面。光學系統2400可與光學系統1800及1900之不同之處在於:光學元件2402可經組態以將位於實質上12.8 cm處之一物件之一影像聚焦於一感測器2408處。光學系統2400及光學元件2402之其他態樣包含透鏡L1之光學表面R1及R2、透鏡L2之光學表面R3及R4、透鏡L3之光學表面R5及R6、透鏡L4之光學表面R7及R8以及透鏡L5之光學表面R9及R10。進一步地,感測器2408及覆蓋玻璃2406可實質上類似於光學系統1900之感測器1906及覆蓋玻璃1908。 24 is a diagram of one example optical system 2400 in accordance with still other aspects of the present disclosure. Optical system 2400 depicts the optical lens and associated optical surface of optical system 2300 of FIG. Further, at least In one aspect, the optical lens and associated optical surface of optical system 2300 can be substantially similar to the optical lenses and optical surfaces of optical systems 1800 and 1900 of Figures 18 and 19 above. Optical system 2400 can differ from optical systems 1800 and 1900 in that optical component 2402 can be configured to focus an image of one of the objects at substantially 12.8 cm at a sensor 2408. Other aspects of the optical system 2400 and the optical element 2402 include the optical surfaces R1 and R2 of the lens L1, the optical surfaces R3 and R4 of the lens L2, the optical surfaces R5 and R6 of the lens L3, the optical surfaces R7 and R8 of the lens L4, and the lens L5. Optical surfaces R9 and R10. Further, the sensor 2408 and the cover glass 2406 can be substantially similar to the sensor 1906 and the cover glass 1908 of the optical system 1900.
根據本發明揭示內容之一特定態樣,光學元件2402包括一物鏡-透鏡L1,其連接至一致動器(例如,MEMS致動器、...)以促進光學系統2400之自動聚焦。在圖24所繪示之光學元件2402之配置中,且特定而言在透鏡L1與透鏡L2之間的一空氣距離distancenear,光學元件2402經組態以將在一物件距離12.8 cm處之一物件之一實像聚焦至感測器2408上。藉由將透鏡L1移動至藉由圖19之光學元件1902繪示之一位置中(其中透鏡L1與透鏡L2之間的空氣距離係一distancefar),則光學系統2400可經組態以替代地聚焦在無窮遠處之一物件之一影像。在本發明揭示內容之至少一項替代或額外態樣中,透鏡L1可經重新定位以改變distancenear與distancefar之間的空氣距離,藉此將位於12.8 cm與無窮遠之間的點處之一物件之一影像聚焦於感測器 2408處。光學元件2402可具有藉由表28至表31A之光學特性闡述之影像特性。 In accordance with one particular aspect of the present disclosure, optical element 2402 includes an objective lens-lens L1 coupled to an actuator (eg, a MEMS actuator, ...) to facilitate autofocusing of optical system 2400. In the configuration depicted in FIG. 24 of 2402 of the optical element, and in particular to a air space between the lens L1 and lens L2 from the distance near, the optical element 2402 configured by one to 12.8 cm at the distance of an object in A real image of the object is focused onto the sensor 2408. By moving lens L1 into a position depicted by optical element 1902 of FIG. 19 (where the air distance between lens L1 and lens L2 is a distance far ), optical system 2400 can be configured to alternatively Focus on an image of one of the objects at infinity. In at least one alternative or additional aspect of the present disclosure, lens L1 can be repositioned to change the air distance between distance near and distance far , whereby it will be at a point between 12.8 cm and infinity An image of an object is focused at sensor 2408. Optical element 2402 can have image characteristics as illustrated by the optical characteristics of Tables 28 through 31A.
表28至表31A包括不同於光學系統1900之光學系統2400之光學特性及影像特性。表28提供光學系統2400之實施例之一般光學資訊。表29包含針對表20之該組光學場之漸暈資料。表30提供針對光學元件2402之透鏡之一般光學特性 之一摘要,包含表面類型、曲率半徑、厚度、材料(來自標準玻璃及塑膠目錄,包含用於覆蓋玻璃2408之一虛擬材料)、直徑、錐形常數及可用註解。表31及表31A提供針對所識別波長及光學場之焦距比數資料。 Tables 28 to 31A include optical characteristics and image characteristics of the optical system 2400 different from the optical system 1900. Table 28 provides general optical information for an embodiment of optical system 2400. Table 29 contains vignetting data for the set of optical fields of Table 20. Table 30 provides general optical characteristics of the lens for optical element 2402 One summary, including surface type, radius of curvature, thickness, material (from standard glass and plastic catalogs, including virtual material used to cover one of the glass 2408), diameter, cone constant, and available annotations. Table 31 and Table 31A provide information on the focal length ratios for the identified wavelengths and optical fields.
圖25圖解說明針對以上圖24之光學系統2400之場曲率及失真之一圖式。針對該等場曲率及失真圖表採用之波長包含0.436 μm、0.486 μm、0.546 μm、0.588 μm及0.656 μm。經追蹤以產生此等圖表之光線以視場角為單位,其中一最大場為34.188度。針對切向光線及徑向光線兩者之場曲率大體為正且針對所有視場角小於約0.05 mm。失真針對中等至低視場角小於約1%,且在高視場角處增加至約1.6%。 Figure 25 illustrates one of the curvatures and distortions of the field for the optical system 2400 of Figure 24 above. The wavelengths used for these curvature and distortion plots are 0.436 μm, 0.486 μm, 0.546 μm, 0.588 μm, and 0.656 μm. The rays that are tracked to produce these graphs are in field of view, with a maximum field of 34.188 degrees. The field curvature for both tangential and radial rays is generally positive and less than about 0.05 mm for all field angles. The distortion is less than about 1% for medium to low field of view and increases to about 1.6% at high field of view.
圖26圖解說明針對光學系統2400之縱向像差之一圖式。該縱向像差圖表係針對五個波長提供,包含0.436 μm、0.486 μm、0.546 μm、0.588 μm及0.656 μm。該圖表繪出針對光瞳半徑0.9 mm針對增加之視場角以毫米為單位之縱向像差。在低視場角處,縱向像差大體為正且小於約0.04毫米。在較高視場角處,縱向像差針對不同視場角而介於正與負之間的範圍內,且大體在正0.03毫米與約負0.035毫米之間。 FIG. 26 illustrates one of the longitudinal aberrations for optical system 2400. The longitudinal aberration diagram is provided for five wavelengths, including 0.436 μm, 0.486 μm, 0.546 μm, 0.588 μm, and 0.656 μm. The chart plots longitudinal aberrations in millimeters for an increased field of view with a pupil radius of 0.9 mm. At low angles of view, the longitudinal aberrations are generally positive and less than about 0.04 mm. At higher angles of view, longitudinal aberrations are in the range between positive and negative for different angles of view, and are generally between 0.03 mm and about minus 0.035 mm.
圖27繪示針對以上圖24之光學元件2402之橫向色差之一圖式。該橫向色差圖表與經組態以將位於約12.8 cm處之一物件之一影像聚焦至感測器2406上之光學元件2402相關。橫向色差圖表之最大場為3.3920毫米,且針對該圖表 採用之波長介於自0.4358 μm至0.6563 μm之間的範圍內。另外,資料以0.546100 μm為參考。針對所有視場角,橫向色差小於約+3微米且大於約-1微米。在低及中等視場角處,橫向色差介於約+1微米與約-0.25微米之間的範圍內。 27 is a diagram showing one of lateral chromatic aberrations for the optical element 2402 of FIG. 24 above. The lateral color difference chart is associated with optical element 2402 that is configured to focus an image of one of the objects at about 12.8 cm onto sensor 2406. The maximum field of the lateral chromatic aberration chart is 3.3920 mm and is for the chart The wavelengths used range from 0.4358 μm to 0.6563 μm. In addition, the data is referenced to 0.546100 μm. The lateral chromatic aberration is less than about +3 microns and greater than about -1 micron for all fields of view. At low and medium field angles, the lateral chromatic aberration is in the range between about +1 micrometer and about -0.25 micrometer.
圖28A至圖28D圖解說明根據本發明揭示內容之一或多項額外態樣之一實例性光學系統。在圖28A處將該光學系統繪示為在左上部,呈將在無窮遠處之一物件之一影像聚焦至該光學系統之一感測器上之一組態。圖29A至圖29D圖解說明呈將一近場物件之一影像聚焦至該光學系統之感測器上之一組態之實例性光學系統。後一組態可(例如)藉由增加最接近於光學系統之物件側之第一最左側透鏡與較接近於該光學系統之物件側上之第二透鏡之間的一空氣距離而達成。 28A-28D illustrate an exemplary optical system in accordance with one or more additional aspects of the present disclosure. The optical system is depicted at the upper left in Figure 28A as a configuration that focuses one of the objects at infinity onto one of the sensors of the optical system. 29A-29D illustrate an example optical system in a configuration that focuses one of a near field object onto a sensor of the optical system. The latter configuration can be achieved, for example, by increasing the air distance between the first leftmost lens closest to the object side of the optical system and the second lens on the object side closer to the optical system.
大體而言,該光學系統自一物件側至影像側包括五個透鏡,包含:透鏡L1(亦稱為一物鏡)、透鏡L2、透鏡L3、透鏡L4及透鏡L5(統稱為透鏡L1至L5)。此外,圖28A至圖28D之光學系統可包括兩個或兩個以上透鏡群組,至少部分地定義於該兩個或兩個以上透鏡群組之各別透鏡之間的一正軸透鏡間空氣距離上。作為一實例,該光學系統之五個透鏡可配置成兩個透鏡群組,該等透鏡群組中之一第一者自該光學系統之物件側起包括一第一透鏡、第二透鏡及第三透鏡,且其中該等透鏡群組中之第二者自該光學系統之物件側起包括一第四透鏡及第五透鏡。該等透鏡群組可經約束以在透鏡之間具有小於第一透鏡群組與第二透鏡群 組之間的一正軸空氣距離之正軸空氣距離。 In general, the optical system includes five lenses from an object side to an image side, including: a lens L1 (also referred to as an objective lens), a lens L2, a lens L3, a lens L4, and a lens L5 (collectively referred to as lenses L1 to L5). . In addition, the optical system of FIGS. 28A-28D may include two or more lens groups, at least partially defined between a positive-axis lens space between respective lenses of the two or more lens groups. Distance. As an example, the five lenses of the optical system may be configured as two lens groups, and one of the first lens groups includes a first lens, a second lens, and a first object from the object side of the optical system. A three lens, and wherein a second one of the groups of lenses comprises a fourth lens and a fifth lens from an object side of the optical system. The groups of lenses can be constrained to have less than the first lens group and the second lens group between the lenses The positive axis air distance from a positive axis air distance between the groups.
圖28B至圖28D圖解說明針對圖28A之光學系統之影像特性,該光學系統經組態以將在無窮遠處之一物件之一影像聚焦於該光學系統之一感測器上(遠場聚焦組態)。圖29B至圖29D圖解說明針對圖29A之光學系統之影像特性,該光學系統經組態以將一近場物件聚焦於該感測器上(近場聚焦組態)。圖28B繪示針對該遠場聚焦組態、針對約0.47微米與約0.65微米之間的波長、藉助大於約32度之一最大場之場曲率及失真之一圖表。圖28C圖解說明針對遠場組態、以上述波長且針對約0.991 mm之一光瞳半徑之縱向像差之一圖表,且圖28D繪示針對此組態、具有約2.956毫米之一最大場、具有以波長約0.555微米為參考之資料之橫向色差之一圖表。 28B-28D illustrate image characteristics for the optical system of FIG. 28A configured to focus an image of one of the objects at infinity onto one of the optical systems (far field focus) configuration). Figures 29B-29D illustrate image characteristics for the optical system of Figure 29A that is configured to focus a near field object onto the sensor (near field focus configuration). Figure 28B is a graph of one of field curvature and distortion for a maximum field of greater than about 32 degrees for a wavelength between about 0.47 microns and about 0.65 microns for the far field focusing configuration. 28C illustrates a graph of longitudinal aberrations for a far field configuration at the above wavelengths and for a pupil radius of about 0.991 mm, and FIG. 28D illustrates one of the maximum fields of about 2.956 mm for this configuration, A graph of lateral chromatic aberration with data referenced to a wavelength of about 0.555 microns.
圖29B圖解說明針對在圖29A處繪示之光學系統之近場組態之場曲率及失真。該場曲率及失真針對約0.470微米與約0.650微米之間的波長具有約34.51度之一最大場。圖29C繪示針對該近場組態藉助約0.991毫米之光瞳半徑以及約0.470微米、0.510微米、0.555微米、0.610微米及0.650微米之波長之縱向像差。圖29D圖解說明針對近場組態藉助約2.9560毫米之一最大場且藉助以波長0.555微米為參考之資料之橫向色差之一圖表。圖28A及圖29A之光學系統係藉由下文表32至表40A所提供之光學特性及影像特性來闡述。 Figure 29B illustrates field curvature and distortion for a near field configuration of the optical system depicted at Figure 29A. The field curvature and distortion have a maximum field of about 34.51 degrees for wavelengths between about 0.470 microns and about 0.650 microns. 29C illustrates longitudinal aberrations for the near field configuration with a pupil radius of about 0.991 millimeters and wavelengths of about 0.470 micrometers, 0.510 micrometers, 0.555 micrometers, 0.610 micrometers, and 0.650 micrometers. Figure 29D illustrates a graph of lateral chromatic aberration for a near field configuration with a maximum field of about 2.9560 mm and with reference to data at a wavelength of 0.555 microns. The optical system of Figures 28A and 29A is illustrated by the optical and image characteristics provided by Tables 32 through 40A below.
表32至表40A提供針對圖28A之具有一遠場聚焦組態之 光學系統之光學特性及影像特性。表32提供針對此光學系統之一般光學資訊。表33針對一組光學場及針對該等各別光學場之各別權數提供在該光學系統之一影像感測器處量測之沿y軸之影像高度。表34包含針對表33之該組光學場之漸暈資料。表35繪示在圖28中之光學成像系統中追蹤之各別光學之波長。表36提供針對此光學系統之透鏡之一般光學表面特性之一摘要,包含表面類型、曲率半徑、厚度、材料(來自標準玻璃及塑膠目錄)、直徑、錐形常數及可用註解。表37闡述針對表35之表面之非球面係數,而表38提供針對彼等表面之邊緣厚度資訊。表39提供針對多個波長及所列舉光學場之折射率資料。表40及表40A提供針對彼等相同波長及光學場之焦距比數資料。 Tables 32 through 40A provide a far field focus configuration for Figure 28A. Optical properties and image characteristics of optical systems. Table 32 provides general optical information for this optical system. Table 33 provides the image height along the y-axis measured at one of the image sensors of the optical system for a set of optical fields and for individual weights for the respective optical fields. Table 34 contains vignetting data for the set of optical fields of Table 33. Table 35 illustrates the wavelengths of the individual optics tracked in the optical imaging system of Figure 28. Table 36 provides an overview of the general optical surface characteristics of lenses for this optical system, including surface type, radius of curvature, thickness, material (from standard glass and plastic catalogs), diameter, cone constant, and available annotations. Table 37 sets forth the aspheric coefficients for the surfaces of Table 35, while Table 38 provides information on the edge thickness for their surfaces. Table 39 provides refractive index data for multiple wavelengths and the listed optical fields. Table 40 and Table 40A provide information on the focal length ratios for the same wavelength and optical field.
如本文中使用,措辭「實例性」意欲意指用作一實例、例項或圖解說明。在本文中闡述為「實例性」之任何態樣或設計未必應視為較其他態樣或設計為佳或有利。而是,使用措辭實施性意欲以一具體方式來呈現概念。如本申請案中所使用,術語「或」意欲意指一包容性「或」而非一排他性「或」。亦即,除非另有規定,或根據上下文顯而易見,否則「X採用A或B」意欲意指固有包容性排列中之任一者。亦即,若X採用A、X採用B、或X採用A及B兩者,則在上述例項中之任一例項下皆滿足「X採用A或B」。另外,本申請案及隨附專利申請範圍中所使用之冠詞「一」及「一個」應大體視為意指「一或多個」,除非另外指出或根據上下文顯而易見指代一單數形式。 The word "exemplary" is used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as "example" is not necessarily considered to be preferred or advantageous over other aspects or designs. Rather, the use of wording is intended to present a concept in a specific manner. As used in this application, the term "or" is intended to mean an inclusive "or" rather than an exclusive "or". That is, unless otherwise specified, or apparent from the context, "X employs A or B" is intended to mean any of the inherently inclusive permutations. That is, if X adopts A, X adopts B, or X adopts both A and B, then "X employs A or B" is satisfied under any of the above examples. And "an" and "an" and "an"
此外,與本文所闡述之所揭示光學系統相關聯之電子系統之各部分可包含或由以下各項組成:基於人工智慧或知識或規則之組件、子組件、處理程序、構件、方法或機構(例如,支援向量機、神經網路、專家系統、貝葉斯信任網路、模糊邏輯、資料融合引擎、分類器...)。除其他以外且除本文中已闡述以外,此等組件亦可使藉以執行以使該等系統及方法之部分更具適應性以及更高效且更智慧之某些機構或處理程序自動化。例如,此等組件可使如上文所闡述之一光學系統(例如,見以上圖5之電子器件500)之影像品質之最佳化自動化。 Furthermore, portions of an electronic system associated with the disclosed optical systems set forth herein may comprise or consist of: components, subcomponents, processes, components, methods, or mechanisms based on artificial intelligence or knowledge or rules ( For example, support vector machines, neural networks, expert systems, Bayesian trust networks, fuzzy logic, data fusion engines, classifiers...). Among other things, and other than those set forth herein, such components may also automate certain mechanisms or processes that are executed to make portions of the systems and methods more adaptable and more efficient and intelligent. For example, such components can automate the image quality optimization of an optical system (e.g., see electronic device 500 of Figure 5 above) as set forth above.
以上所述者包含所請求標的物之態樣之實例。當然,不可能出於闡述所請求標的物之目的而闡述組件或方法之每一種可構想組合,但熟習此項技術者可認識到,所揭示標的物之諸多進一步組合及排列皆係可能的。相應地,所主張標的物旨在囊括屬於隨附申請專利範圍之精神及範疇內之所有此等變更、修改及變化。此外,就本詳細說明或申請專利範圍中所使用之術語「包含」、「具有」而言,此等術語意欲以類似於術語「包括(comprising)」當在一請求項中用作一過渡語時所解譯之方式來包容。 The above description contains examples of the aspects of the claimed subject matter. Of course, it is not possible to clarify every conceivable combination of components or methods for the purpose of illustrating the claimed subject matter, but those skilled in the art will recognize that many further combinations and permutations of the disclosed subject matter are possible. Accordingly, the claimed subject matter is intended to cover all such changes, modifications and variations in the scope of the invention. In addition, with the terms "including" and "having" as used in the detailed description or the scope of the claims, these terms are intended to be used as a transitional phrase in a request item in a similar sense to the term "comprising". The way to interpret it is tolerant.
100‧‧‧光學系統/系統/光學成像系統 100‧‧‧Optical Systems/Systems/Optical Imaging Systems
102‧‧‧光學元件/透鏡/元件 102‧‧‧Optical components/lenses/components
104‧‧‧光學軸/軸 104‧‧‧Optical shaft/shaft
106‧‧‧光學感測器/感測器/影像感測器 106‧‧‧Optical Sensor/Sensor/Image Sensor
110‧‧‧距離 110‧‧‧ distance
200‧‧‧光學成像系統/系統 200‧‧‧Optical Imaging System/System
202‧‧‧光學元件 202‧‧‧Optical components
204‧‧‧光學軸 204‧‧‧ Optical axis
206‧‧‧影像平面/影像感測器 206‧‧‧Image Plane/Image Sensor
210‧‧‧距離 210‧‧‧ Distance
300‧‧‧塑膠光學系統/系統 300‧‧‧Plastic optical systems/systems
302‧‧‧光學軸 302‧‧‧ Optical axis
304‧‧‧影像平面 304‧‧‧ image plane
500‧‧‧電子器件 500‧‧‧Electronics
1800‧‧‧光學系統/系統/光學成像系統 1800‧‧‧Optical Systems/Systems/Optical Imaging Systems
1802‧‧‧光學元件 1802‧‧‧Optical components
1900‧‧‧光學系統 1900‧‧‧Optical system
1902‧‧‧光學元件/光學透鏡 1902‧‧‧Optical components/optical lenses
1904‧‧‧光學軸 1904‧‧‧ Optical axis
1906‧‧‧蓋板/影像感測器/感測器 1906‧‧‧Cover/Image Sensor/Sensor
1908‧‧‧感測器/蓋板/覆蓋玻璃 1908‧‧‧Sensor/Cover/Cover Glass
2300‧‧‧光學系統 2300‧‧‧Optical system
2302‧‧‧光學元件 2302‧‧‧Optical components
2400‧‧‧光學系統 2400‧‧‧Optical system
2402‧‧‧光學元件 2402‧‧‧Optical components
2406‧‧‧覆蓋玻璃/感測器 2406‧‧‧ Covering glass/sensor
2408‧‧‧感測器/覆蓋玻璃 2408‧‧‧Sensor/covering glass
A1‧‧‧孔徑光闌/孔隙 A1‧‧‧ aperture aperture/pores
ex‧‧‧沿x軸之橫向像差 e x ‧‧‧lateral aberration along the x-axis
ey‧‧‧沿一垂直軸之橫向光線誤差/沿y軸之橫向像差 e y ‧‧ ‧ transverse ray error along a vertical axis / lateral aberration along the y axis
L1‧‧‧透鏡/第一透鏡/最左側透鏡/物件側透鏡/物鏡 L1‧‧‧ lens / first lens / leftmost lens / object side lens / objective lens
L2‧‧‧透鏡/第二透鏡 L2‧‧ lens / second lens
L3‧‧‧透鏡/第三透鏡 L3‧‧‧ lens / third lens
L4‧‧‧透鏡/第四透鏡 L4‧‧‧ lens / fourth lens
L5‧‧‧透鏡/第五透鏡 L5‧‧‧ lens / fifth lens
Py‧‧‧沿水平軸之光瞳直徑 P y ‧‧‧ pupil diameter along the horizontal axis
R1‧‧‧凸面物件側表面/表面/透鏡表面/物件側表面/曲率半徑/光學表面 R1‧‧‧ convex object side surface/surface/lens surface/object side surface/curvature radius/optical surface
R2‧‧‧凸面影像側表面/表面/透鏡表面/影像側表面/曲率半徑/光學表面 R2‧‧‧ convex image side surface/surface/lens surface/image side surface/curvature radius/optical surface
R3‧‧‧微凹面物件側表面/表面/物件側表面/曲率半徑/光學表面 R3‧‧‧micro-concave object side surface/surface/object side surface/curvature radius/optical surface
R4‧‧‧表面/影像側表面/曲率半徑/光學表面 R4‧‧‧Surface/image side surface/curvature radius/optical surface
R5‧‧‧表面/物件側表面/曲率半徑/光學表面 R5‧‧‧Surface/object side surface/curvature radius/optical surface
R6‧‧‧表面/影像側表面/曲率半徑/光學表面 R6‧‧‧Surface/image side surface/curvature radius/optical surface
R7‧‧‧凹面物件側光學表面/表面/物件側表面/曲率半徑/光學表面 R7‧‧‧Concave object side optical surface/surface/object side surface/curvature radius/optical surface
R8‧‧‧凸面形影像側光學表面/表面/影像側表面/曲率半徑/光學表面 R8‧‧‧ convex image side optical surface / surface / image side surface / radius of curvature / optical surface
R9‧‧‧凸面光學表面/表面/物件側表面/曲率半徑/光學表面 R9‧‧‧Convex optical surface/surface/object side surface/curvature radius/optical surface
R10‧‧‧表面/影像側表面/曲率半徑/光學表面 R10‧‧‧Surface/image side surface/curvature radius/optical surface
圖1圖解說明根據本發明揭示內容之各種態樣之經組態以聚焦一相對近物件之一實例性光學成像系統之一圖式。 1 illustrates a diagram of an exemplary optical imaging system configured to focus a relatively close object in accordance with various aspects of the present disclosure.
圖2圖解說明根據其他所揭示態樣之經組態以聚焦實質上在無窮遠處之一物件之一實例性光學成像系統之一圖 式。 2 illustrates a diagram of an exemplary optical imaging system configured to focus on one of substantially one object at infinity, in accordance with other disclosed aspects. formula.
圖3繪示包括複數個經注入模製之光學組件之一實例性光學成像系統之一圖式。 3 illustrates a diagram of an exemplary optical imaging system including a plurality of injection molded optical components.
圖4圖解說明針對聚焦一相對近物件之一樣本光學成像系統之實例性場曲率及失真圖表之一圖式。 4 illustrates one diagram of an example field curvature and distortion graph for a sample optical imaging system that focuses on a relatively close object.
圖5圖解說明針對圖4之聚焦實質上在無窮遠處之一物件之樣本光學成像系統之實例性場曲率及失真之一圖式。 Figure 5 illustrates one of the example field curvatures and distortions for the sample optical imaging system of Figure 4 focusing on one of the objects at substantially infinity.
圖6繪示根據進一步態樣針對聚焦一相對近物件之一實例性光學成像系統之一樣本橫向色差圖表之一圖式。 6 is a diagram of one of a sample lateral chromatic aberration diagram of an exemplary optical imaging system for focusing a relatively close object in accordance with a further aspect.
圖7圖解說明根據其他態樣針對圖6之聚焦在實質上無窮遠處之一物件之實例性光學成像系統之一樣本橫向色差圖表之一圖式。 7 illustrates one of a sample lateral chromatic aberration diagram of an exemplary optical imaging system for one of the objects focused at substantially infinity according to FIG. 6 in accordance with other aspects.
圖8繪示針對具有在10 cm處聚焦之一物件之一所揭示光學成像系統之橫向光線扇形圖之一圖式。 Figure 8 depicts a diagram of a lateral ray sector diagram for an optical imaging system having one of the objects focused at 10 cm.
圖9圖解說明針對圖8之具有在實質上無窮遠處聚焦之一物件之所揭示光學成像系統之橫向光線扇形圖之一圖式。 9 illustrates a diagram of a lateral ray sector diagram for the disclosed optical imaging system with one of the objects at substantially infinity for FIG.
圖10圖解說明根據本發明揭示內容之態樣之用於聚焦在10 cm處之一物件之一影像之一樣本光學系統之一剖面。 Figure 10 illustrates a cross-section of a sample optical system for one of the images of one of the objects focused at 10 cm, in accordance with an aspect of the present disclosure.
圖11圖解說明根據本發明揭示內容之用於聚焦在無窮遠處之一物件之一影像之一樣本光學系統之一剖面。 Figure 11 illustrates a cross section of a sample optical system for one of the images of one of the objects at infinity, in accordance with the teachings of the present invention.
圖12圖解說明根據本發明揭示內容之態樣針對在10 cm處之一物件之場曲率及失真之一實例性圖表。 Figure 12 illustrates an exemplary graph of field curvature and distortion for an object at 10 cm in accordance with aspects of the present disclosure.
圖13圖解說明在本發明揭示內容之其他態樣中針對在無窮遠處之一物件之場曲率及失真之一實例性圖表。 Figure 13 illustrates an exemplary graph of field curvature and distortion for an object at infinity in other aspects of the present disclosure.
圖14圖解說明根據一(或多個)態樣針對在10 cm處之一物件之主要橫向色差之一實例性圖表。 Figure 14 illustrates an exemplary graph of one of the major lateral chromatic aberrations for an object at 10 cm in accordance with one (or more) aspects.
圖15圖解說明根據一或多個其他態樣針對在無窮遠處之一物件之主要橫向色差之一實例性圖表。 Figure 15 illustrates an exemplary graph of one of the primary lateral chromatic aberrations for an object at infinity in accordance with one or more other aspects.
圖16圖解說明根據又其他態樣針對在10 cm處之一物件之各種影像高度之一實例性橫向光線扇形圖。 Figure 16 illustrates an exemplary lateral ray pie chart for one of various image heights of an object at 10 cm, according to still other aspects.
圖17圖解說明根據至少一個其他態樣針對在無窮遠處之一物件之各種影像高度之一實例性橫向光線扇形圖。 Figure 17 illustrates an exemplary lateral ray pie chart for one of various image heights of an object at infinity according to at least one other aspect.
圖18繪示根據額外所揭示態樣針對一實例性微光學系統之一定範圍之視場角之一橫向光線扇形圖。 18 illustrates a transverse ray sector diagram of a range of field angles for an exemplary micro-optic system in accordance with additional disclosed aspects.
圖19圖解說明圖18之包含透鏡及光學表面之微光學系統之一樣本圖式。 Figure 19 illustrates a sample pattern of the micro-optic system of Figure 18 including a lens and an optical surface.
圖20繪示針對藉由圖18之微光學系統聚焦之一物件之場曲率及失真之一實例性圖表。 20 is an exemplary graph of field curvature and distortion for an object that is focused by the micro-optic system of FIG.
圖21圖解說明在一態樣中針對0.90毫米之一光瞳半徑之縱向像差之一樣本圖表。 Figure 21 illustrates a sample plot of one of the longitudinal aberrations for a pupil radius of 0.90 mm in one aspect.
圖22繪示根據進一步態樣針對一所揭示微光學系統之橫向色差之一實例性圖表。 22 depicts an exemplary graph of lateral chromatic aberration for a disclosed micro-optic system in accordance with further aspects.
圖23圖解說明根據所揭示態樣針對在近場中聚焦之一微光學系統之一定範圍之視場角之一橫向光線扇形圖。 23 illustrates a lateral ray pie chart for a range of field angles of a range of micro-optical systems in a near field, in accordance with the disclosed aspects.
圖24繪示圖23之包含透鏡及光學表面之微光學系統之一樣本圖式。 Figure 24 is a diagram showing a sample of the micro-optic system of Figure 23 including the lens and the optical surface.
圖25圖解說明針對藉由圖23之微光學系統來聚焦之一近場物件之場曲率及失真之一實例性圖式。 Figure 25 illustrates an exemplary diagram of field curvature and distortion for a near-field object that is focused by the micro-optic system of Figure 23.
圖26繪示在一態樣中針對一所揭示微光學系統針對0.90毫米之光瞳半徑之縱向像差之一樣本圖式。 26 is a sample plot of longitudinal aberrations for a pupil radius of 0.90 millimeters for an disclosed micro-optic system in one aspect.
圖27圖解說明根據又其他所揭示態樣針對一所揭示微光學系統之橫向色差之一實例性圖式。 Figure 27 illustrates an exemplary diagram of lateral chromatic aberration for a disclosed micro-optic system in accordance with yet other disclosed aspects.
圖28A、圖28B、圖28C及圖28D圖解說明根據進一步態樣之在無窮遠處聚焦之一實例性微光學系統之圖式及相關光學效能圖表。 28A, 28B, 28C, and 28D illustrate a diagram of an exemplary micro-optic system and an associated optical performance graph at infinity focusing according to further aspects.
圖29A、圖29B、圖29C及圖29D繪示圖28之在近場中聚焦之微光學系統及相關光學效能圖表。 29A, 29B, 29C, and 29D are diagrams of the micro-optical system and related optical performance of FIG. 28 focused in the near field.
100‧‧‧光學系統/系統/光學成像系統 100‧‧‧Optical Systems/Systems/Optical Imaging Systems
102‧‧‧光學元件/透鏡/元件 102‧‧‧Optical components/lenses/components
104‧‧‧光學軸/軸 104‧‧‧Optical shaft/shaft
106‧‧‧光學感測器/感測器/影像感測器 106‧‧‧Optical Sensor/Sensor/Image Sensor
110‧‧‧距離 110‧‧‧ distance
A1‧‧‧孔徑光闌/孔隙 A1‧‧‧ aperture aperture/pores
L1‧‧‧透鏡/第一透鏡/最左側透鏡/物件側透鏡/物鏡 L1‧‧‧ lens / first lens / leftmost lens / object side lens / objective lens
L2‧‧‧透鏡/第二透鏡 L2‧‧ lens / second lens
L3‧‧‧透鏡/第三透鏡 L3‧‧‧ lens / third lens
L4‧‧‧透鏡/第四透鏡 L4‧‧‧ lens / fourth lens
L5‧‧‧透鏡/第五透鏡 L5‧‧‧ lens / fifth lens
R1‧‧‧凸面物件側表面/表面/透鏡表面/物件側表面/曲率半徑/光學表面 R1‧‧‧ convex object side surface/surface/lens surface/object side surface/curvature radius/optical surface
R2‧‧‧凸面影像側表面/表面/透鏡表面/影像側表面/曲率半徑/光學表面 R2‧‧‧ convex image side surface/surface/lens surface/image side surface/curvature radius/optical surface
R3‧‧‧微凹面物件側表面/表面/物件側表面/曲率半徑/光學表面 R3‧‧‧micro-concave object side surface/surface/object side surface/curvature radius/optical surface
R4‧‧‧表面/影像側表面/曲率半徑/光學表面 R4‧‧‧Surface/image side surface/curvature radius/optical surface
R5‧‧‧表面/物件側表面/曲率半徑/光學表面 R5‧‧‧Surface/object side surface/curvature radius/optical surface
R6‧‧‧表面/影像側表面/曲率半徑/光學表面 R6‧‧‧Surface/image side surface/curvature radius/optical surface
R7‧‧‧凹面物件側光學表面/表面/物件側表面/曲率半徑/光學表面 R7‧‧‧Concave object side optical surface/surface/object side surface/curvature radius/optical surface
R8‧‧‧凸面形影像側光學表面/表面/影像側表面/曲率半徑/光學表面 R8‧‧‧ convex image side optical surface / surface / image side surface / radius of curvature / optical surface
R9‧‧‧凸面光學表面/表面/物件側表面/曲率半徑/光學表面 R9‧‧‧Convex optical surface/surface/object side surface/curvature radius/optical surface
R10‧‧‧表面/影像側表面/曲率半徑/光學表面 R10‧‧‧Surface/image side surface/curvature radius/optical surface
Claims (45)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161550789P | 2011-10-24 | 2011-10-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201329495A true TW201329495A (en) | 2013-07-16 |
TWI578016B TWI578016B (en) | 2017-04-11 |
Family
ID=47148983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101139335A TWI578016B (en) | 2011-10-24 | 2012-10-24 | Optical system with microelectromechanical system image focus actuator |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN104105991B (en) |
TW (1) | TWI578016B (en) |
WO (1) | WO2013063097A1 (en) |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014153575A (en) * | 2013-02-08 | 2014-08-25 | Konica Minolta Inc | Imaging lens, and imaging device and portable terminal |
JP2014153576A (en) * | 2013-02-08 | 2014-08-25 | Konica Minolta Inc | Imaging lens, and imaging device and portable terminal |
CN103543512B (en) * | 2013-06-03 | 2016-05-11 | 玉晶光电(厦门)有限公司 | Portable electronic devices and its optical imaging lens |
CN108234851B (en) | 2013-06-13 | 2019-08-16 | 核心光电有限公司 | Based on Dual-Aperture zoom digital camera |
US9857568B2 (en) | 2013-07-04 | 2018-01-02 | Corephotonics Ltd. | Miniature telephoto lens assembly |
CN108388005A (en) | 2013-07-04 | 2018-08-10 | 核心光电有限公司 | Small-sized focal length lens external member |
JP2015040945A (en) * | 2013-08-21 | 2015-03-02 | コニカミノルタ株式会社 | Lens unit for on-vehicle camera |
JP6254680B2 (en) * | 2014-04-04 | 2018-01-10 | シャープ株式会社 | Lens element and imaging device |
TWI491914B (en) | 2014-04-29 | 2015-07-11 | Largan Precision Co Ltd | Image capturing optical lens assembly, image capturing device and mobile terminal |
US9392188B2 (en) | 2014-08-10 | 2016-07-12 | Corephotonics Ltd. | Zoom dual-aperture camera with folded lens |
TWI510805B (en) | 2014-08-12 | 2015-12-01 | Largan Precision Co Ltd | Photographing optical lens assembly, image capturing device and electronic device |
CN112433331B (en) | 2015-01-03 | 2022-07-08 | 核心光电有限公司 | Miniature telephoto lens module and camera using the same |
CN104898254B (en) * | 2015-02-13 | 2017-11-10 | 玉晶光电(厦门)有限公司 | Portable electronic devices and its optical imaging lens |
TWI576632B (en) | 2015-03-02 | 2017-04-01 | 大立光電股份有限公司 | Imaging system, image capturing apparatus and electronic device |
TWI569035B (en) * | 2015-05-27 | 2017-02-01 | 先進光電科技股份有限公司 | Optical image capturing system |
TWI599792B (en) | 2015-06-05 | 2017-09-21 | 先進光電科技股份有限公司 | Optical image capturing system |
TWI601974B (en) * | 2015-07-15 | 2017-10-11 | 先進光電科技股份有限公司 | Optical image capturing system |
TWI601973B (en) * | 2015-07-15 | 2017-10-11 | 先進光電科技股份有限公司 | Optical image capturing system |
US10488632B2 (en) | 2016-01-20 | 2019-11-26 | Mems Optical Zoom Corporation | MEMS lens actuator |
US11347016B2 (en) | 2017-02-23 | 2022-05-31 | Corephotonics Ltd. | Folded camera lens designs |
JP6781964B2 (en) * | 2017-03-28 | 2020-11-11 | 株式会社ニコン | Optical system and optical equipment |
CN109564337A (en) | 2017-07-07 | 2019-04-02 | 核心光电有限公司 | For preventing the folding camera prism design of stray light |
CN113050253B (en) | 2017-07-23 | 2023-08-04 | 核心光电有限公司 | Folding camera and folding lens kit thereof |
US11333845B2 (en) | 2018-03-02 | 2022-05-17 | Corephotonics Ltd. | Spacer design for mitigating stray light |
JP2020523627A (en) | 2018-05-14 | 2020-08-06 | コアフォトニクス リミテッド | Bendable camera lens design |
CN108398769B (en) * | 2018-05-30 | 2019-10-25 | 广东旭业光电科技股份有限公司 | Optical imaging lens |
JP7218127B2 (en) | 2018-08-31 | 2023-02-06 | キヤノン株式会社 | Lens device and camera system |
JP7252247B2 (en) | 2019-01-03 | 2023-04-04 | コアフォトニクス リミテッド | Multi-aperture camera comprising at least one camera with two zoom states |
CN110351405B (en) * | 2019-07-03 | 2024-09-03 | 小光子(武汉)科技有限公司 | Mobile communication equipment with microcosmic imaging function |
JP2022536204A (en) | 2019-08-21 | 2022-08-12 | コアフォトニクス リミテッド | Small total track length for large sensor formats |
US12072609B2 (en) | 2019-09-24 | 2024-08-27 | Corephotonics Ltd. | Slim pop-out cameras and lenses for such cameras |
US11656538B2 (en) | 2019-11-25 | 2023-05-23 | Corephotonics Ltd. | Folded zoom camera module with adaptive aperture |
KR102688149B1 (en) | 2020-01-08 | 2024-07-23 | 코어포토닉스 리미티드 | Multi-aperture zoom digital cameras and methods of using same |
WO2021245488A1 (en) | 2020-05-30 | 2021-12-09 | Corephotonics Ltd. | Systems and methods for obtaining a super macro image |
US12050308B2 (en) | 2020-07-22 | 2024-07-30 | Corephotonics Ltd. | Folded camera lens designs including eight lenses of +−+−+++− refractive powers |
EP4425256A2 (en) | 2020-07-31 | 2024-09-04 | Corephotonics Ltd. | Folded macro-tele camera lens designs |
CN117518405A (en) * | 2020-09-18 | 2024-02-06 | 核心光电有限公司 | Camera system and method for compensating for undesired linear movement of a camera system |
CN114868065A (en) | 2020-12-01 | 2022-08-05 | 核心光电有限公司 | Folding camera with continuously adaptive zoom factor |
KR20220165824A (en) | 2021-01-25 | 2022-12-15 | 코어포토닉스 리미티드 | Slim pop-out wide camera lenses |
KR102712773B1 (en) | 2021-03-22 | 2024-09-30 | 코어포토닉스 리미티드 | Folded cameras with continuously adaptive zoom factor |
KR102685591B1 (en) | 2021-09-23 | 2024-07-15 | 코어포토닉스 리미티드 | Large aperture continuous zoom folded telecamera |
KR102610118B1 (en) | 2021-11-02 | 2023-12-04 | 코어포토닉스 리미티드 | Compact double folded tele camera |
CN115598818B (en) * | 2022-10-17 | 2023-04-25 | 佛山迈奥光学科技有限公司 | Industrial detection dry microscope objective |
CN117572607B (en) * | 2024-01-16 | 2024-03-29 | 苏州高视半导体技术有限公司 | Cylindrical lens with negative distortion and broadband and microscopic optical system |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07181389A (en) * | 1993-12-22 | 1995-07-21 | Minolta Co Ltd | Compact macro-lens |
JP3141681B2 (en) * | 1994-04-27 | 2001-03-05 | キヤノン株式会社 | Optical system with anti-vibration function |
JP2002082271A (en) * | 2000-06-27 | 2002-03-22 | Milestone Kk | Photographing lens body |
CN101819315B (en) * | 2009-02-27 | 2014-05-07 | 柯尼卡美能达精密光学株式会社 | Image pickup lens, image pickup apparatus, and mobile terminal |
CN201508432U (en) * | 2009-04-07 | 2010-06-16 | 富士能株式会社 | Camera lens and camera device |
TWI421533B (en) * | 2010-01-19 | 2014-01-01 | Largan Precision Co Ltd | Optical photographing lens assembly |
JP2011209554A (en) * | 2010-03-30 | 2011-10-20 | Fujifilm Corp | Image pickup lens, image pickup device and portable terminal device |
-
2012
- 2012-10-24 WO PCT/US2012/061668 patent/WO2013063097A1/en active Application Filing
- 2012-10-24 TW TW101139335A patent/TWI578016B/en not_active IP Right Cessation
- 2012-10-24 CN CN201280064307.7A patent/CN104105991B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN104105991B (en) | 2017-06-30 |
CN104105991A (en) | 2014-10-15 |
WO2013063097A1 (en) | 2013-05-02 |
TWI578016B (en) | 2017-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI578016B (en) | Optical system with microelectromechanical system image focus actuator | |
KR102113532B1 (en) | Optical imaging lens assembly, image capturing unit and electronic device | |
US11971610B2 (en) | Optical imaging system | |
US20230418032A1 (en) | Optical imaging system | |
US20220091370A1 (en) | Optical imaging system | |
TWI569033B (en) | Fixed focal length optical lens architecture providing a customized depth of focus optical system | |
US8508649B2 (en) | Compact distorted zoom lens for small angle of view | |
US8289624B2 (en) | Imaging lens system | |
KR101834554B1 (en) | Photographic lens optical system | |
US20220035132A1 (en) | Image capturing lens system, image capturing unit and electronic device | |
WO2012171650A1 (en) | Auto-focus actuator for field curvature correction of zoom lenses | |
US8174777B2 (en) | Zoom lens assembly | |
TW201504676A (en) | Zoom lens | |
US11048067B2 (en) | Lens system | |
US11774728B2 (en) | Photographing optical lens system, image capturing unit and electronic device | |
CN112213846B (en) | Zoom lens and electronic device | |
US11988945B2 (en) | Optical imaging lens assembly, image capturing unit and electronic device | |
TWI838733B (en) | Optical system | |
US20080151390A1 (en) | Auto-focusing image-forming lens set | |
WO2021052359A1 (en) | Lens group, related device and related system | |
TWI778904B (en) | Optical lens assembly and photographing module | |
US20240111136A1 (en) | Image system lens assembly, image capturing unit and electronic device | |
TWM651387U (en) | Optical imaging system | |
Fang et al. | 2x optical digital zoom lens with short total length and extremely small front aperture for two million pixel cmos on mobile phone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |