TW201328965A - Method of fabricating anti-reflective layer and anti-reflective layer fabricated by the same - Google Patents

Method of fabricating anti-reflective layer and anti-reflective layer fabricated by the same Download PDF

Info

Publication number
TW201328965A
TW201328965A TW101100214A TW101100214A TW201328965A TW 201328965 A TW201328965 A TW 201328965A TW 101100214 A TW101100214 A TW 101100214A TW 101100214 A TW101100214 A TW 101100214A TW 201328965 A TW201328965 A TW 201328965A
Authority
TW
Taiwan
Prior art keywords
substrate
oxide
preparation
nanowires
zinc oxide
Prior art date
Application number
TW101100214A
Other languages
Chinese (zh)
Inventor
Shui-Jinn Wang
Pei-Ren Wang
Der-Ming Kuo
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW101100214A priority Critical patent/TW201328965A/en
Publication of TW201328965A publication Critical patent/TW201328965A/en

Links

Abstract

A method of fabricating an anti-reflective layer and an anti-reflective layer fabricated by the same. The method of fabricating an anti-reflective layer of the present invention comprises steps: (A) providing a substrate; (B) forming plural nanowires standing over the substrate; (C) forming a covering layer on the nanowires; (D) removing part of the covering layer to expose the top of the nanowires; and (E) removing the nanowires to thus form plural nanotubes standing over the substrate. The method of the present invention offers a simple, efficient, and low cost process, the highly transparent nanotube arrays in the present invention can serve as not only light wave-guiding medium but also a graded refractive index structure.

Description

抗反射層之製備方法以及以該方法所製備之抗反射層Method for preparing antireflection layer and antireflection layer prepared by the method

本發明係關於一種抗反射層之製備方法以及以該方法所製備之抗反射層,尤指一種具有複數奈米管之抗反射層之製備方法以及以該抗反射層。The present invention relates to a method for preparing an antireflection layer and an antireflection layer prepared by the method, and more particularly to a method for preparing an antireflection layer having a plurality of nanotubes and the antireflection layer.

抗反射層的應用領域相當廣泛,舉例如光學鏡片表面抗反射、或是顯示螢幕表面抗反射等。Anti-reflective layers are used in a wide variety of applications, such as anti-reflection of optical lens surfaces or display surface anti-reflection.

習知技術中,係於光學設備、元件或晶粒表面沉積或成長奈米材料以作為抗反射結構層,其係屬一種具有大範圍波段抗反射效果之製程技術。目前習知反射層製作技術大致可歸納為下列兩種方法:In the prior art, a nanomaterial is deposited or grown on the surface of an optical device, component or crystal grain as an anti-reflective structural layer, which is a process technology with a wide range of anti-reflection effects. At present, the conventional reflective layer fabrication techniques can be roughly summarized into the following two methods:

一、多層膜結構:此係利用薄膜作為抗反射層,其理論基礎係根據該薄膜的折射率與厚度乘積為入射波波長的四分之一的奇數倍,讓反射波形成破壞性干涉,而使入射波反射率趨近為零的效果。此類設計雖然理論上可以降低特定波長的反射,然於材料選擇上,往往並不容易利用單一層材料始可於特定波段獲得足夠低之折射率,因此一般乃利用多層膜結構,以達到特定波段更完整的抗反射效果。1. Multi-layer film structure: This system utilizes a film as an anti-reflection layer. The theoretical basis is that the product of the refractive index and the thickness of the film is an odd multiple of a quarter of the wavelength of the incident wave, so that the reflected wave forms destructive interference. And the effect of making the incident wave reflectance close to zero. Although such a design can theoretically reduce the reflection of a specific wavelength, it is often not easy to use a single layer of material to obtain a sufficiently low refractive index in a specific wavelength band. Therefore, a multilayer film structure is generally used to achieve a specific A more complete anti-reflection effect on the band.

此外,多層膜結構之製作,通常需使用真空蒸鍍在基板上蒸鍍多層不同折射率的材料,但其主要缺點是較難達到大範圍波段的抗反射效果,且採用真空蒸鍍的方式成本較高。In addition, the fabrication of the multilayer film structure usually requires vacuum evaporation of a plurality of layers of materials having different refractive indices on the substrate, but the main disadvantage is that it is difficult to achieve an anti-reflection effect in a wide range of wavelength bands, and the cost of vacuum evaporation is adopted. Higher.

二、非均勻層結構:Second, the non-uniform layer structure:

此係於基板表面沉積或堆疊多層材料,並利用此一非均質材料層,以獲得一具漸變折射率之表面結構,而獲致特定波段之抗反射效果。利用此一原理製作之抗反射結構包括有:次波長結構(Subwavelength Structure)、奈米孔隙薄膜(Nano-Porous Film)與表面奈米結構(Nanocorrugation Surface)等。This is to deposit or stack multiple layers of material on the surface of the substrate, and use this layer of heterogeneous material to obtain a surface structure with a graded index of refraction to achieve an anti-reflection effect in a specific wavelength band. The anti-reflection structure fabricated by this principle includes: a Subwavelength Structure, a Nano-Porous Film, and a Nanocorrugation Surface.

一般而言,此類非均質結構對光入射角度具有較不敏感之特性,較適合應用於具寬廣入射角之抗反射膜製作。並且,非均勻層結構於材料之選擇方面受限較小,且其適用之工作頻寬大於傳統多層干涉式鍍膜,為近來廣泛研究及已被廣泛使用之抗反射膜。In general, such heterogeneous structures are less sensitive to light incident angles and are more suitable for anti-reflective film fabrication with a wide angle of incidence. Moreover, the non-uniform layer structure is less restricted in material selection, and its applicable working bandwidth is larger than that of the conventional multilayer interferometric coating, and is an anti-reflection film which has been widely studied recently and has been widely used.

關於非均勻層結構之製作技術,主要係利用光學干涉微影或電子束微影,於光阻劑上形成所設計之圖案,再藉由蝕刻製程於基板上形成奈米結構。而此類利用傳統微影技術之工藝,雖然能方便進行奈米結構之製作並將之進行抗反射之應用,然其製程較顯繁雜,且微影製程成本較高、產出速度慢,於大面積的太陽能電池或顯示器面板之應用上較不具競爭力。The fabrication technique of the non-uniform layer structure mainly uses optical interference lithography or electron beam lithography to form a designed pattern on the photoresist, and then forms a nanostructure on the substrate by an etching process. Such a process using the traditional lithography technology, although it is convenient to carry out the production of the nanostructure and anti-reflection application, the process is more complicated, and the lithography process has higher cost and slower output. Large-area solar cells or display panels are less competitive.

利用奈米粒子塗佈於基板上,藉由這些奈米粒子作為蝕刻的罩幕,將基材表面蝕刻出奈米柱狀結構,亦為近年來常見的抗反射材料之作法(可參考Gong-Ru Lin et al.,“Low refractive index Si nanopillars on Si substrate”,Appl. Phys. Lett. 90,181923(2007)以及Sen Wang et al.,“Simple lithographic approach for subwavelength structure antireflection”,Appl. Phys. Lett. 91,061105(2007))。然奈米粒子之塗佈,尤其於大面積基板上,均勻度之控制不易,為製程技術上之較大挑戰。The nanoparticles are coated on the substrate, and the nano-particles are used as an etching mask to etch the surface of the substrate into a nano-column structure. This is also a common anti-reflection material in recent years (refer to Gong- Ru Lin et al., "Low refractive index Si nanopillars on Si substrate", Appl. Phys. Lett. 90, 181923 (2007) and Sen Wang et al., "Simple lithographic approach for subwavelength structure antireflection", Appl. Phys. Lett. 91,061105 (2007)). The coating of nano particles, especially on large-area substrates, is difficult to control the uniformity, which is a big challenge in the process technology.

此外,奈米壓印技術亦為近期另一很常見之奈米結構抗反射材料之的製作方式,然奈米壓印所需用及之模具,仍需要依賴精密之微影製程始能發揮最大功效,此與奈米粒子塗佈技術類似,同樣面臨成本高、製程不易之問題。In addition, nanoimprint technology is also the production method of another very common nanostructure anti-reflective material in the near future. However, the molds required for imprinting still need to rely on the precision lithography process to maximize the performance. Efficacy, similar to nanoparticle coating technology, also faces the problem of high cost and difficult process.

於基板表面成長奈米柱結構抗反射層之製作技術,因其抗反射的效果顯著,且具有低成本、製程簡易與可應用於大面積製作之優勢,已成為另一熱門之抗反射材料製作技術,其中以成長氧化鋅的奈米柱最受矚目(可參考Yun-JuLee et al.,“ZnO Nanostructures as Efficient Antireflection Layers in Solar Cells”,Nano Lett. Vol. 8 No.5 1501-1505(2008)以及M. Krunks et al.,“Nanostructured solar cell based on spray pyrolysis deposited ZnO nanorod array”,Solar Energy Materials & Solar Cells92(2008) 1016-1019),然而由於氧化鋅奈米線能隙寬度僅為3.3~3.7eV,於部分可見光及紫外光波段係屬一吸光材料,氧化鋅奈米柱陣列之穿透率不高,降低了光線從表面進入基板之機率,因此並不適合太陽電池之應用,而仍有需要改善的空間。The fabrication technology of the nano column structure anti-reflection layer on the surface of the substrate has become a popular anti-reflective material because of its remarkable anti-reflection effect, low cost, simple process and wide application in large-area production. Technology, in which the nano column of zinc oxide is the most popular (refer to Yun-JuLee et al., "ZnO Nanostructures as Efficient Antireflection Layers in Solar Cells", Nano Lett. Vol. 8 No. 5 1501-1505 (2008) And M. Krunks et al., "Nanostructured solar cell based on spray pyrolysis deposited ZnO nanorod array", Solar Energy Materials & Solar Cells 92 (2008) 1016-1019), however, since the zinc oxide nanowire energy gap width is only 3.3 ~3.7eV, which is a light absorbing material in some visible light and ultraviolet light bands, the transmittance of zinc oxide nano column array is not high, which reduces the probability of light entering the substrate from the surface, so it is not suitable for solar cell applications, but still There is room for improvement.

基此,本發明揭示一種具高能隙/高穿透率、可調變折射係數與極低反射率特性之奈米管陣列製作技術,其特徵係於光學設備、元件或晶粒表面,製作一種具有粗化與漸變(graded)折射系數之奈米管陣列抗反射結構,一方面藉由入射光線於奈米管間之散射消除反射,一方面藉由奈米管本身之光導作用使入射光線導入元件內部,進而獲得高穿透率與低反射率之特性。此一利用高透光特性材料(如SiO2、TiO2、HfO2、ZrO2、HfLaO、Si3N4與AlN等)製作之抗反射材奈米管陣列結構,其製程簡易可適合大面積製作,除可避免傳統利用氧化鋅奈米線之光吸收缺點外,更可利用奈米管之光導作用有效降低反射率,極具進步性與應用性。Accordingly, the present invention discloses a nanotube array fabrication technique with high energy gap/high transmittance, variable refractive index and very low reflectance characteristics, which is characterized by optical devices, components or die surfaces, The nano tube array anti-reflection structure with roughened and graded refractive index, on the one hand, eliminates reflection by scattering of incident light between the nanotubes, and on the other hand, the incident light is introduced into the element by the light guiding action of the nanotube itself. Internally, the characteristics of high transmittance and low reflectivity are obtained. The anti-reflective material nano tube array structure made of a material having high light transmittance characteristics (such as SiO 2 , TiO 2 , HfO 2 , ZrO 2 , HfLaO, Si 3 N 4 and AlN, etc.) is easy to process for a large area. In addition to avoiding the shortcomings of traditional light absorption of zinc oxide nanowires, the light guide effect of the nanotubes can be utilized to effectively reduce the reflectivity, which is highly progressive and applicable.

本發明之奈米管抗反射層之製備方法,係包括步驟:(A)提供一基板;(B)形成複數個奈米線直立於該基板上;(C)形成一披覆層於該些奈米線之表面;(D)移除部份該披覆層以顯露該些奈米線之頂端;以及(E)移除該些奈米線,以形成複數個奈米管直立於該基板上。The method for preparing a nano tube anti-reflection layer of the present invention comprises the steps of: (A) providing a substrate; (B) forming a plurality of nanowires standing on the substrate; (C) forming a coating layer on the substrate. a surface of the nanowire; (D) removing a portion of the coating to reveal the top ends of the nanowires; and (E) removing the nanowires to form a plurality of nanotubes standing upright on the substrate on.

本發明之奈米管抗反射層之製備方法,其製作技術之優點主要包括有:The preparation method of the nano tube anti-reflection layer of the invention has the following advantages:

1. 整體製作過程皆屬低溫製程。1. The overall production process is a low temperature process.

2. 不需使用昂貴之磊晶或光學鍍膜設備與製程。2. No need to use expensive epitaxial or optical coating equipment and processes.

3. 不需觸媒、製程簡易、且成本低廉。3. No need for catalyst, easy process, and low cost.

4. 抗反射奈米管陣列具有結構(奈米管之長度、內/外徑與密度等)與材料可容易調變之優勢。4. The anti-reflective nanotube array has the advantages of structure (length, inner/outer diameter and density of the nanotubes) and the material can be easily modulated.

本發明係利用高透光特性材料製作奈米管陣列抗反射結構,其製作技術依序包含:水熱法成長氧化鋅奈米線、沉積高透光特性材料(涵蓋絕緣材料、半導體材料、或導體材料等)薄膜、再以蝕刻製程移除氧化鋅奈米線等製程,整體皆屬低溫製程,不需使用昂貴之磊晶或光學鍍膜設備與製程,此外亦不需觸媒,且具有製程簡易與成本低廉之優點。The invention utilizes a high light transmission characteristic material to fabricate a nano tube array anti-reflection structure, and the manufacturing technology comprises the following steps: hydrothermal growth of zinc oxide nanowire, deposition of high light transmission characteristic material (covering insulating material, semiconductor material, or The conductive material, etc.), and the process of removing the zinc oxide nanowire by an etching process, all of which are low-temperature processes, do not require expensive epitaxial or optical coating equipment and processes, and do not require catalyst, and have a process The advantages of simplicity and low cost.

再者,透過材料選擇與製程參數調變,可製得不同材質(包括絕緣材料、半導體與導體材料等)之奈米管陣列抗反射結構。藉由入射光線於奈米管間之散射消除反射作用、以及奈米管本身之光導作用使入射光線導入元件內部,實驗證實於400~800 nm頻譜範圍可獲得極低之反射率(≦1.5%),此在光學元件與設備以及太陽能電池(solar cell)之抗反射方面之應用極具潛力,於光電工業上亦具有極大商機。Furthermore, the nano tube array anti-reflection structure of different materials (including insulating materials, semiconductors and conductor materials, etc.) can be obtained through material selection and process parameter modulation. The incident light is introduced into the element by the scattering of the incident light between the nanotubes and the light guide of the nanotube itself. It is experimentally confirmed that a very low reflectance (≦1.5%) can be obtained in the 400-800 nm spectrum range. This has great potential in the application of optical components and equipment and solar cell anti-reflection, and has great business opportunities in the optoelectronic industry.

本發明之製備方法中,該步驟(A)之後較佳可更包括一步驟(A1):形成一晶種層於該基板之表面。In the preparation method of the present invention, the step (A) preferably further comprises a step (A1) of forming a seed layer on the surface of the substrate.

本發明之製備方法中,該步驟(A)之基板較佳可選自由:玻璃基板、石英基板、半導體基板、透明導電鍍膜玻璃基板、陶瓷基板、金屬基板、高分子材料基板、藍寶石基板、表面設有電子元件之基板、所組成之群組。因此,本發明之奈米管抗反射層之製備方法可應用於光學鏡片、各種顯示器、太陽電池、或其他光學設備中,使賦予抗反射功能。In the preparation method of the present invention, the substrate of the step (A) is preferably selected from the group consisting of a glass substrate, a quartz substrate, a semiconductor substrate, a transparent conductive coated glass substrate, a ceramic substrate, a metal substrate, a polymer material substrate, a sapphire substrate, and a surface. A substrate and a group of electronic components are provided. Therefore, the method for preparing the nano tube anti-reflection layer of the present invention can be applied to optical lenses, various displays, solar cells, or other optical devices to impart an anti-reflection function.

本發明之製備方法中,該晶種層之材料較佳可為:鋅鋁氧化物(AZO)、銦鋅氧化物(IZO)、鎵鋅氧化物(GZO)、或鋅氧化物(ZnO)、或其組合,或其他具高抗酸鹼之導電金屬或半導體薄膜。In the preparation method of the present invention, the material of the seed layer may preferably be: zinc aluminum oxide (AZO), indium zinc oxide (IZO), gallium zinc oxide (GZO), or zinc oxide (ZnO), Or a combination thereof, or other conductive metal or semiconductor film with high acid and alkali resistance.

本發明之製備方法中,該步驟(D)之部份該披覆層之移除方法較佳係感應耦合電漿(ICP)方法。In the preparation method of the present invention, the part of the step (D) is preferably a method of removing the coating layer by an inductively coupled plasma (ICP) method.

本發明之製備方法中,該步驟(D)之該些奈米線之顯露長度較佳可為1 μm以下。例如,0.5 μm、或0 μm,只要使奈米線不被批覆層完全蓋住即可。In the preparation method of the present invention, the exposed length of the nanowires in the step (D) may preferably be 1 μm or less. For example, 0.5 μm, or 0 μm, as long as the nanowire is not completely covered by the blanket.

本發明之製備方法中,該步驟(D)之奈米線之移除較佳可透過浸泡於一選擇性溶液而進行,且其中該選擇性溶液較佳對於該奈米線及該披覆層具有蝕刻選擇性。In the preparation method of the present invention, the removal of the nanowire of the step (D) is preferably performed by immersing in a selective solution, and wherein the selective solution is preferably for the nanowire and the coating layer. Has etch selectivity.

本發明之製備方法中,該些奈米管之厚度較佳可為1 nm至1000 nm,長度較佳可為0.5 μm至10 μm,直徑較佳可為30 nm至1500 nm。奈米管之長度會影響光線抗反射與穿透之性質,若奈米管之長度過長,會造成穿透率太低;但若奈米管之長度過短,則無法達到足夠的抗反射效果。因此奈米管之長度需適當控制。In the preparation method of the present invention, the thickness of the nanotubes is preferably from 1 nm to 1000 nm, the length is preferably from 0.5 μm to 10 μm, and the diameter is preferably from 30 nm to 1500 nm. The length of the tube affects the anti-reflection and penetration properties of the light. If the length of the tube is too long, the penetration rate will be too low; however, if the length of the tube is too short, sufficient anti-reflection effect will not be achieved. Therefore, the length of the nanotube should be properly controlled.

本發明之製備方法中,該些奈米線較佳可為氧化鋅基奈米線,且較佳地該些奈米線係藉由水熱法形成。此外,氧化鋅基奈米線較佳可具有六角柱的形狀。In the preparation method of the present invention, the nanowires may preferably be zinc oxide-based nanowires, and preferably the nanowires are formed by a hydrothermal method. Further, the zinc oxide base wire preferably has a hexagonal column shape.

本發明之製備方法中,該些奈米管(亦即,批覆層)之材料較佳可為透明絕緣材料、透明半導體材料、透明導電材料或其組合。例如,該些奈米管之材料可為二氧化矽(SiO2)、氧化鋁(Al2O3)、氧化鋅(ZnO)、氧化鎳(NiO)、氧化銦錫(InSnO)、銦鋅氧化物(InZnO)、鋁鋅氧化物(AlZnO)、鎵鋅氧化物(GaZnO)、銅硼氧化物(CuBO2)、銅鋁氧化物(CuAlO2)、銅鎵氧化物(CuGaO2)、銅銦氧化物(CuInO2)、矽(Si)、砷化鎵(GaAs)、氮化矽(Si3N4)、氮化鉭(TaN)、鉿鑭氧化物(HfLaO)、矽化鈦(TiSi2)、氮化鈦(TiN)、氧化鉿(HfO2)或其組合。In the preparation method of the present invention, the materials of the nanotubes (ie, the coating layer) may preferably be a transparent insulating material, a transparent semiconductor material, a transparent conductive material or a combination thereof. For example, the materials of the nanotubes may be cerium oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), zinc oxide (ZnO), nickel oxide (NiO), indium tin oxide (InSnO), indium zinc oxide. (InZnO), aluminum zinc oxide (AlZnO), gallium zinc oxide (GaZnO), copper boron oxide (CuBO 2 ), copper aluminum oxide (CuAlO 2 ), copper gallium oxide (CuGaO 2 ), copper indium Oxide (CuInO 2 ), bismuth (Si), gallium arsenide (GaAs), tantalum nitride (Si 3 N 4 ), tantalum nitride (TaN), tantalum oxide (HfLaO), titanium telluride (TiSi 2 ) Titanium nitride (TiN), hafnium oxide (HfO 2 ) or a combination thereof.

再者,本發明另提供一種奈米管抗反射層,其較佳係依照上述方法所製得,且其包括:一基板;複數個奈米管,係直立於該基板上;其中,該奈米管之長度係0.5μm至10μm,外直徑係30 nm至1500 nm,管壁厚度係1 nm至1000 nm,該奈米管之材料係透明絕緣材料、透明半導體材料、透明導電材料或其組合。Furthermore, the present invention further provides a nanotube anti-reflection layer, which is preferably produced according to the above method, and includes: a substrate; a plurality of nanotubes erected on the substrate; wherein the nano The length of the rice tube is 0.5 μm to 10 μm, the outer diameter is 30 nm to 1500 nm, and the wall thickness is 1 nm to 1000 nm. The material of the nanotube is a transparent insulating material, a transparent semiconductor material, a transparent conductive material or a combination thereof. .

本發明之奈米管抗反射層係藉由奈米管陣列之次波長結構、表面粗化、漸變折射係數、以及導光(Light Guiding Effect)等特性,以可有效降低入射光之反射,達到抗反射功能。詳細地說,本發明係藉由表面具有次波長奈米管結構,以減少光通過時產生的散射,並利用奈米管之導光效應與表面粗化效應,有效地引導光線進入元件內部。再者,更可藉由此一結構所具備漸變(graded)折射係數之特質,進一步降低表面光線的反射。The nano tube anti-reflection layer of the invention has the characteristics of sub-wavelength structure, surface roughening, gradual refractive index, and light guiding effect of the nanotube array, so as to effectively reduce the reflection of incident light and achieve resistance. Reflection function. In detail, the present invention has a sub-wavelength nanotube structure on the surface to reduce scattering generated when light passes, and utilizes the light guiding effect and surface roughening effect of the nanotube to effectively guide light into the inside of the element. Moreover, the reflection of the surface light can be further reduced by the characteristic of the graded refractive index of the structure.

本發明藉由入射光線於奈米管間之散射以消除反射,並利用奈米管結構具備漸變折射係數和光導作用,使入射光線導入元件內部。並且,經由實驗證實,本發明之奈米管抗反射層可於400~800nm頻譜範圍中獲得高的穿透率(≧90%)以及極低之反射率(≦1.5%)。The invention eliminates reflection by scattering of incident light between the nanotubes, and uses the nanotube structure to have a graded refractive index and a light guide to introduce incident light into the interior of the component. Moreover, it has been confirmed through experiments that the nanotube antireflection layer of the present invention can obtain high transmittance (≧90%) and extremely low reflectance (≦1.5%) in the spectral range of 400 to 800 nm.

本發明之新穎奈米管抗反射層技術,屬於技術上之創新,對於降低元件表面入射光之反射以及入射光之導入極有助益,因此非常具有進步性,且於太陽電池與光學設備方面亦具有相當高的應用價值。The novel nanotube anti-reflection layer technology of the invention belongs to the technical innovation, and is very helpful for reducing the reflection of incident light on the surface of the component and the introduction of incident light, so it is very advanced, and in terms of solar cells and optical equipment. It also has a very high application value.

本發明之奈米管抗反射層較佳係用於提供抗反射功能,且該奈米管抗反射層對於波長範圍400 nm至800 nm之光的反射率較佳係1.5%以下。The nano tube anti-reflection layer of the present invention is preferably used for providing an anti-reflection function, and the reflectance of the nanotube anti-reflection layer for light having a wavelength range of 400 nm to 800 nm is preferably 1.5% or less.

本發明中,奈米管之長度會影響光線抗反射與穿透之性質,若奈米管之長度過長,會造成穿透率太低;但若奈米管之長度過短,則無法達到足夠的抗反射效果。因此奈米管之長度需適當控制。In the present invention, the length of the nanotube tube affects the anti-reflection and penetration properties of the light. If the length of the nanotube tube is too long, the penetration rate is too low; however, if the length of the nanotube tube is too short, sufficient Anti-reflective effect. Therefore, the length of the nanotube should be properly controlled.

本發明中,奈米管可呈現規則或不規則之陣列排列,其奈米管密度可依照製程條件調整。In the present invention, the nanotubes can be arranged in a regular or irregular array, and the nanotube density can be adjusted according to the process conditions.

本發明之奈米管抗反射層中,該基板較佳係選自由:玻璃基板、石英基板、半導體基板、透名導電鍍膜玻璃基板、陶瓷基板、金屬基板、高分子材料基板、藍寶石基板、表面設有電子元件之基板、所組成之群組。In the nano tube anti-reflection layer of the present invention, the substrate is preferably selected from the group consisting of a glass substrate, a quartz substrate, a semiconductor substrate, a transparent conductive coated glass substrate, a ceramic substrate, a metal substrate, a polymer material substrate, a sapphire substrate, and a surface. A substrate and a group of electronic components are provided.

本發明之奈米管抗反射層較佳可更包括一晶種層,係設於該基板與該複數個奈米管之間。Preferably, the nano tube anti-reflective layer of the present invention further comprises a seed layer disposed between the substrate and the plurality of nanotubes.

本發明之奈米管抗反射層中,該晶種層之厚度較佳可為10~500 nm。In the anti-reflection layer of the nanotube of the present invention, the thickness of the seed layer may preferably be 10 to 500 nm.

本發明之奈米管抗反射層中,該複數個奈米管係不規則分布,且複數個奈米管較佳為:各自獨立地單一排列;二個以上相鄰排列;或同時具有獨立地單一排列以及二個以上相鄰排列之型態。In the nano tube anti-reflection layer of the present invention, the plurality of nanotube tubes are irregularly distributed, and the plurality of nanotube tubes are preferably: each independently arranged in a single arrangement; two or more adjacent arrays; or simultaneously independently A single arrangement and two or more adjacent arrangements.

本發明之奈米管抗反射層中,該奈米管之長度較佳係1 μm至10 μm。並且,該些奈米管之材料較佳可為二氧化矽(SiO2)、氧化鋁(Al2O3)、氧化鋅(ZnO)、氧化鎳(NiO)、氧化銦錫(InSnO)、銦鋅氧化物(InZnO)、鋁鋅氧化物(AlZnO)、鎵鋅氧化物(GaZnO)、銅硼氧化物(CuBO2)、銅鋁氧化物(CuAlO2)、銅鎵氧化物(CuGaO2)、銅銦氧化物(CuInO2)、矽(Si)、砷化鎵(GaAs)、氮化矽(Si3N4)、氮化鉭(TaN)、鉿鑭氧化物(HfLaO)、矽化鈦(TiSi2)、氮化鈦(TiN)、氧化鉿(HfO2)或其組合。In the nanotube antireflection layer of the present invention, the length of the nanotube is preferably from 1 μm to 10 μm. Moreover, the materials of the nanotubes are preferably cerium oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), zinc oxide (ZnO), nickel oxide (NiO), indium tin oxide (InSnO), indium. Zinc oxide (InZnO), aluminum zinc oxide (AlZnO), gallium zinc oxide (GaZnO), copper boron oxide (CuBO 2 ), copper aluminum oxide (CuAlO 2 ), copper gallium oxide (CuGaO 2 ), Copper indium oxide (CuInO 2 ), bismuth (Si), gallium arsenide (GaAs), tantalum nitride (Si 3 N 4 ), tantalum nitride (TaN), tantalum oxide (HfLaO), titanium telluride (TiSi) 2 ), titanium nitride (TiN), yttrium oxide (HfO 2 ) or a combination thereof.

以下係藉由特定的具體實施例說明本發明之實施方式,熟習此技藝之人士可由本說明書所揭示之內容輕易地了解本發明之其他優點與功效。惟需注意的是,以下圖式均為簡化之示意圖,圖式中之元件數目、形狀及尺寸可依實際實施狀況而隨意變更,且元件佈局狀態可更為複雜。本發明亦可藉由其他不同的具體實施例加以施行或應用,本說明書中的各項細節亦可基於不同觀點與應用,在不悖離本發明之精神下進行各種修飾與變更。The embodiments of the present invention are described by way of specific examples, and those skilled in the art can readily appreciate the other advantages and advantages of the present invention. It should be noted that the following drawings are simplified schematic diagrams. The number, shape and size of components in the drawings can be changed arbitrarily according to actual implementation conditions, and the component layout state can be more complicated. The present invention may be embodied or applied in various other specific embodiments, and various modifications and changes can be made without departing from the spirit and scope of the invention.

[前置作業][pre-job]

前置作業中,需預備以下材料:In the pre-operation, the following materials must be prepared:

(1)基板:n-或p-型半導體基板、絕緣體(玻璃或陶磁或介電材料)基板、金屬基板、或藍寶石基板(Sapphire Substrate)等。(1) Substrate: an n- or p-type semiconductor substrate, an insulator (glass or ceramic or dielectric material) substrate, a metal substrate, or a sapphire substrate (Sapphire Substrate).

(2)晶種層靶材:鋅鋁氧化物(AZO)、銦鋅氧化物(IZO)、鎵鋅氧化物(GZO)或鋅氧化物(ZnO)或其組合者等。(2) Seed layer target: zinc aluminum oxide (AZO), indium zinc oxide (IZO), gallium zinc oxide (GZO) or zinc oxide (ZnO) or a combination thereof.

(3)高透光性氧化物或半導體材料:二氧化矽(SiO2)、二氧化鈦(TiO2)、二氧化鉿(HfO2)、二氧化鋯(ZrO2)、鉿鑭氧化物(HfLaO)、氮化矽(Si3N4)與氮化鋁(AlN)等或其組合者。(3) Highly transparent oxide or semiconductor materials: cerium oxide (SiO 2 ), titanium dioxide (TiO 2 ), hafnium oxide (HfO 2 ), zirconium dioxide (ZrO 2 ), hafnium oxide (HfLaO) , tantalum nitride (Si 3 N 4 ) and aluminum nitride (AlN), etc. or a combination thereof.

[實施例1][Example 1]

首先,提供一基板11(如圖1A所示),將基板11以去離子水洗滌5分鐘後,浸泡於H2SO4:H2O2=3:1之混合溶液10分鐘。接著,以去離子水洗滌5分鐘,並用HF:H2O=1:100之混合溶液浸泡20秒,再次以去離子水洗滌5秒鐘。First, a substrate 11 (shown in FIG. 1A) was provided, and the substrate 11 was washed with deionized water for 5 minutes, and then immersed in a mixed solution of H 2 SO 4 :H 2 O 2 =3:1 for 10 minutes. Subsequently, it was washed with deionized water for 5 minutes, and soaked for 20 seconds with a mixed solution of HF:H 2 O = 1:100, and again washed with deionized water for 5 seconds.

調製NH4OH:H2O2:H2O=1/4:1:5之混合溶液並浸泡10分鐘。接著,以去離子水洗滌5分鐘後,調製HCL:H2O2:H2O=1:1:6之混合溶液並浸泡10分鐘。再次以去離子水洗滌5分鐘。於HF:H2O=1:100之混合溶液浸泡15-20秒,最後以去離子水洗滌5秒鐘,並以氮氣吹乾A mixed solution of NH 4 OH:H 2 O 2 :H 2 O=1/4:1:5 was prepared and immersed for 10 minutes. Next, after washing with deionized water for 5 minutes, a mixed solution of HCL:H 2 O 2 :H 2 O=1:1:6 was prepared and immersed for 10 minutes. Wash again with deionized water for 5 minutes. Soak in a mixed solution of HF:H 2 O=1:100 for 15-20 seconds, finally wash with deionized water for 5 seconds, and blow dry with nitrogen.

接著,進行晶種層(seed layer)之沈積(此為選擇性步驟),使基板全面或部分覆上一層晶種層(圖未示)。須注意的是,除氮化鎵基或是氧化鋅基之基板以外,任何與氧化鋅(0001)面晶格匹配度不良之基板均須沉積一晶種層以利氧化鋅奈米線之成長。Next, deposition of a seed layer (this is an optional step) is performed to completely or partially coat the substrate with a seed layer (not shown). It should be noted that except for the gallium nitride-based or zinc oxide-based substrate, any substrate with poor lattice matching with zinc oxide (0001) surface must deposit a seed layer to facilitate the growth of zinc oxide nanowires. .

在此形成晶種層所使用之沉積系統為DC/RF濺鍍系統或蒸鍍系統。沉積條件為:功率200 W、沈積速率0.4 /sec、真空條件7.6x10-3 torr、氬氣(Ar)流量24 sccm。晶種層材料為:鋅鋁氧化物(AZO)、銦鋅氧化物(IZO)、鎵鋅氧化物(GZO)、或鋅氧化物(ZnO)、或其組合者等。所需晶種層之最適厚度為:100~500 nm。The deposition system used to form the seed layer here is a DC/RF sputtering system or an evaporation system. The deposition conditions are: power 200 W, deposition rate 0.4 /sec, vacuum condition 7.6x10 -3 torr, argon (Ar) flow rate 24 sccm. The seed layer material is: zinc aluminum oxide (AZO), indium zinc oxide (IZO), gallium zinc oxide (GZO), or zinc oxide (ZnO), or a combination thereof. The optimum thickness of the desired seed layer is: 100~500 nm.

接著,如圖1B所示,以水熱法(HTG)成長氧化鋅奈米線12(不同氧化鋅奈米線12之直徑係有稍微差異)。其所使用之混合溶液成分包括:800毫升之去離子水、6公克之硝酸鋅(Zinc Nitrate)、與3公克之環六次甲基四胺(hexamethylenetetramine:HMT)。成長條件係:靜置試片於保持於85℃之混和溶液中40-120分鐘。所製得氧化鋅奈米線之直徑與長度分別為40~200 nm與1~2 μm。如圖2A之電子顯微鏡結果所示,透過水熱法方式成長所得之氧化鋅奈米線,除了清楚可見其奈米線之成長具垂直排列之特性,於長寬比、均勻度甚或密度等方面均較容易獲得控制。Next, as shown in FIG. 1B, the zinc oxide nanowires 12 are grown by hydrothermal method (HTG) (the diameters of the different zinc oxide nanowires 12 are slightly different). The mixed solution components used therein include: 800 ml of deionized water, 6 g of zinc nitrate (Zinc Nitrate), and 3 g of hexamethylenetetramine (HMT). The growth conditions were as follows: The test piece was allowed to stand in a mixed solution maintained at 85 ° C for 40-120 minutes. The diameter and length of the prepared zinc oxide nanowires are 40 to 200 nm and 1 to 2 μm, respectively. As shown in the electron microscopy results of Fig. 2A, the zinc oxide nanowires grown by hydrothermal method are clearly visible in terms of the vertical alignment of the growth of the nanowires, in terms of aspect ratio, uniformity or even density. It is easier to get control.

接著,如圖1C所示,於該些氧化鋅奈米線12表面鍍著高透光性氧化物或半導體材料,例如:SiO2、TiO2、HfO2、ZrO2、HfLaO、Si3N4與AlN等或其組合者。在此係鍍著二氧化矽薄膜13。可使用之沉積系統,例如:化學或物理氣相沈積(CVD)、DC/RF濺鍍(sputter)系統、熱蒸著(thermal evaporator)、電子束沉積(e-beam)。在此,二氧化矽薄膜13之膜厚平均為約1μm。本發明中,可藉由化學氣相沉積控制透光性氧化物或半導體材料厚度,亦即調變奈米管之管壁厚度,進一步調變奈米管陣列之等效折射率與光導效應。如圖2B之電子顯微鏡結果所示,二氧化矽薄膜13被覆住氧化鋅奈米線12之上端與側壁,同時氧化鋅奈米線12/二氧化矽薄膜13結構具有均勻之線徑、長度及密度分佈。Next, as shown in FIG. 1C, the surface of the zinc oxide nanowires 12 is plated with a highly transparent oxide or semiconductor material such as SiO 2 , TiO 2 , HfO 2 , ZrO 2 , HfLaO, Si 3 N 4 . With AlN, etc. or a combination thereof. Here, the ruthenium dioxide film 13 is plated. Deposition systems that can be used, such as chemical or physical vapor deposition (CVD), DC/RF sputter systems, thermal evaporators, electron beam deposition (e-beam). Here, the film thickness of the ceria film 13 is about 1 μm on average. In the present invention, the thickness of the light-transmissive oxide or semiconductor material can be controlled by chemical vapor deposition, that is, the thickness of the tube wall of the nanotube can be modulated, and the equivalent refractive index and photoconductivity of the nanotube array can be further modulated. As shown in the electron microscope results of FIG. 2B, the ruthenium dioxide film 13 is coated on the upper end and the side wall of the zinc oxide nanowire 12, and the structure of the zinc oxide nanowire 12/cerium oxide film 13 has a uniform wire diameter and length. Density distribution.

其後,如圖1D所示,蝕刻部分的二氧化矽薄膜13使露出長度約0.5μm氧化鋅奈米線12。蝕刻系統例如可使用:乾式蝕刻(RIE、ICP等)、或化學溶液濕式蝕刻(BOE等)。使用乾式蝕刻時的條件:RF功率為80 W、ICP功率為2500 W、蝕刻速率為45 /sec、真空條件為7.5×10-9 torr、C4F8流量為45 sccm。氧化物蝕刻最適厚度:100~500 nm。如圖2C之電子顯微鏡結果所示,經ICP乾式蝕刻部份二氧化矽後,於試片上已揭露出約0.5μm長度之氧化鋅奈米線。此外,在此可藉由ICP乾式蝕刻之方式,來決定最後二氧化矽奈米管的長度。Thereafter, as shown in FIG. 1D, the portion of the ceria film 13 is etched to expose the zinc oxide nanowire 12 having a length of about 0.5 μm. The etching system can be, for example, dry etching (RIE, ICP, etc.) or chemical solution wet etching (BOE, etc.). Conditions for dry etching: RF power of 80 W, ICP power of 2500 W, and etching rate of 45 /sec, the vacuum condition is 7.5 × 10 -9 torr, and the C 4 F 8 flow rate is 45 sccm. The optimum thickness of oxide etching: 100~500 nm. As shown in the electron microscopy results of Fig. 2C, after partial etching of the cerium oxide by ICP, a zinc oxide nanowire having a length of about 0.5 μm was exposed on the test piece. In addition, the length of the final ruthenium dioxide nanotube can be determined by ICP dry etching.

接著,如圖1E所示,將氧化鋅奈米線12/二氧化矽薄膜13結構浸泡於具選擇性之混合溶液中進行蝕刻,以移除氧化鋅奈米線12,而得到複數二氧化矽奈米管14。在此,用於蝕刻的混合溶液之組成為:500毫升之去離子水、50毫升之磷酸溶液(H3PO4)與10毫升之鹽酸(HCl)。蝕刻條件:靜置於室溫下之混合溶液中5-10分鐘。如圖2D之電子顯微鏡結果所示,其係為本實施例所製得之二氧化矽奈米管的上視圖,可看到經蝕刻後,二氧化矽奈米管的結構。本實施例所製得之二氧化矽奈米管14的長度與外管壁的厚度分別為1.5 μm與200 nm。Next, as shown in FIG. 1E, the structure of the zinc oxide nanowire 12/cerium oxide film 13 is immersed in a selective mixed solution for etching to remove the zinc oxide nanowire 12, thereby obtaining a plurality of oxidations.矽 Nano tube 14. Here, the composition of the mixed solution for etching was: 500 ml of deionized water, 50 ml of a phosphoric acid solution (H 3 PO 4 ) and 10 ml of hydrochloric acid (HCl). Etching conditions: statically placed in a mixed solution at room temperature for 5-10 minutes. As shown in the electron microscope results of Fig. 2D, it is a top view of the ruthenium dioxide nanotubes prepared in the present example, and the structure of the ruthenium dioxide nanotubes after etching can be seen. The length of the ruthenium dioxide nanotube 14 prepared in this example and the thickness of the outer tube wall were 1.5 μm and 200 nm, respectively.

[測試例1]能量散射光譜(Energy Dispersive Spectrum,EDS)測試[Test Example 1] Energy Dispersive Spectrum (EDS) test

圖3A-3C係本發明實施例1中各步驟(分別對應圖1B、1D、以及1E)之結構進行能量散射光譜分析結果圖。其中,圖3A-3C係分別為氧化鋅奈米線、氧化鋅/二氧化矽奈米結構、以及蝕刻後二氧化矽奈米管之能量散射光譜分析結果圖。由各圖中所顯示主要波形訊號,可證實所製得試片分別確認具有氧化鋅、氧化鋅及二氧化矽、及二氧化矽之材料。而散射光譜中所出現有少許之鉑(Pt)訊號,應為電子顯微鏡測試之前處理時所造成。3A-3C are graphs showing the results of energy scatter spectrum analysis of the structures of the respective steps (corresponding to Figs. 1B, 1D, and 1E, respectively) in the first embodiment of the present invention. 3A-3C are graphs of energy dispersive spectroscopy results of zinc oxide nanowires, zinc oxide/cerium oxide nanostructures, and post-etched germanium dioxide nanotubes, respectively. From the main waveform signals shown in the respective figures, it was confirmed that the obtained test pieces were respectively confirmed to have zinc oxide, zinc oxide, cerium oxide, and cerium oxide. A small amount of platinum (Pt) signal appears in the scattering spectrum and should be caused by the previous processing of the electron microscope test.

[測試例2]穿透率特性測量[Test Example 2] Measurement of permeability characteristics

圖4為本發明實施例1中各步驟(分別對應圖1B、1D、以及1E)之穿透特性測量結果圖。其中,曲線(a)、(b)、(c)係分別為氧化鋅奈米線、氧化鋅/二氧化矽奈米結構、以及蝕刻後二氧化矽奈米管之穿透特性分析結果圖。由圖4之結果可看到,二氧化矽奈米管14具有平均92%以上的穿透率,比起成長氧化鋅奈米線的結果(~80%),二氧化矽奈米管14有12%以上的增加幅度。因此,經由穿透率特性的量測,證明了本發明技術所製作之二氧化矽奈米管對於光電子元件之應用具有極大之助益。4 is a graph showing measurement results of penetration characteristics of each step (corresponding to FIGS. 1B, 1D, and 1E, respectively) in Embodiment 1 of the present invention. Among them, the curves (a), (b), and (c) are the results of analysis of the penetration characteristics of the zinc oxide nanowire, the zinc oxide/cerium oxide nanostructure, and the post-etched ruthenium dioxide nanotube. As can be seen from the results of FIG. 4, the cerium oxide nanotube 14 has an average transmittance of 92% or more, which is higher than that of the grown zinc oxide nanowire (~80%). More than 12% increase. Therefore, it has been proved by the measurement of the transmittance characteristics that the ruthenium dioxide nanotubes produced by the technique of the present invention are extremely useful for the application of optoelectronic components.

[測試例3]反射率特性測量[Test Example 3] Measurement of reflectance characteristics

取氮化鎵基板、圖1B所示之結構、以及圖1E所示之結構分別進行反射率特性測量,其結果如圖5A以及圖5B所示。圖5A係表示了圖1B、以及圖1E所示之結構的反射率特性結果,由圖5A可看到,在可見光波段(400 nm~800 nm),二氧化矽奈米管具有平均1.5%以下的反射率。而未覆有二氧化矽奈米管之氮化鎵基板(如圖5B所示)的反射率則高於20%。因此,根據此反射率特性之量測結果,可證實本發明所製作之二氧化矽奈米管陣列結構於抗反射之應用,確實具有極大之助益與潛力。The reflectance characteristics were measured by taking the gallium nitride substrate, the structure shown in FIG. 1B, and the structure shown in FIG. 1E, and the results are shown in FIGS. 5A and 5B. Fig. 5A shows the results of the reflectance characteristics of the structures shown in Fig. 1B and Fig. 1E. As can be seen from Fig. 5A, in the visible light band (400 nm to 800 nm), the cerium oxide nanotubes have an average of 1.5% or less. Reflectivity. The reflectivity of the gallium nitride substrate (shown in FIG. 5B) which is not covered with the ruthenium dioxide nanotube is higher than 20%. Therefore, according to the measurement results of the reflectance characteristics, it can be confirmed that the structure of the ruthenium dioxide nanotube array fabricated by the present invention is extremely useful and potential.

綜上所述,本發明揭示一種具高能隙/高穿透率、可調變折射係數與極低反射率特性之奈米管陣列製作技術,其特徵係於光學設備、元件或晶粒表面,製作一種具有粗化與漸變(graded)折射系數之奈米管陣列抗反射結構,一方面藉由入射光線於奈米管間之散射消除反射,一方面藉由奈米管本身之光導作用使入射光線導入元件內部,進而獲得高穿透率與低反射率之特性。此一利用高透光特性材料(如SiO2、TiO2、HfO2、ZrO2、HfLaO、Si3N4與AlN等)製作之抗反射材奈米管陣列結構,其製程簡易可適合大面積製作,除可避免傳統利用氧化鋅奈米線之光吸收缺點外,更可利用奈米管之光導作用有效降低反射率,極具進步性與應用性。In summary, the present invention discloses a nanotube array fabrication technique with high energy gap/high transmittance, variable refractive index, and very low reflectance characteristics, which are characterized by optical devices, components, or grain surfaces. A nano tube array anti-reflection structure with roughened and graded refractive index is fabricated. On the one hand, the reflection of the incident light between the nanotubes is used to eliminate the reflection, and on the other hand, the incident light is made by the light guide of the nanotube itself. It is introduced into the inside of the component to obtain high transmittance and low reflectivity. The anti-reflective material nano tube array structure made of a material having high light transmittance characteristics (such as SiO 2 , TiO 2 , HfO 2 , ZrO 2 , HfLaO, Si 3 N 4 and AlN, etc.) is easy to process for a large area. In addition to avoiding the shortcomings of traditional light absorption of zinc oxide nanowires, the light guide effect of the nanotubes can be utilized to effectively reduce the reflectivity, which is highly progressive and applicable.

本發明之奈米管抗反射層之製備方法,其製作技術之優點主要包括有:The preparation method of the nano tube anti-reflection layer of the invention has the following advantages:

1. 整體製作過程皆屬低溫製程。1. The overall production process is a low temperature process.

2. 不需使用昂貴之磊晶或光學鍍膜設備與製程。2. No need to use expensive epitaxial or optical coating equipment and processes.

3. 不需觸媒、製程簡易、且成本低廉。3. No need for catalyst, easy process, and low cost.

4. 抗反射奈米管陣列具有結構(奈米管之長度、內/外徑與密度等)與材料可容易調變之優勢。4. The anti-reflective nanotube array has the advantages of structure (length, inner/outer diameter and density of the nanotubes) and the material can be easily modulated.

本發明係利用高透光特性材料製作奈米管陣列抗反射結構,其製作技術依序包含:水熱法成長氧化鋅奈米線、沉積高透光特性材料(涵蓋絕緣材料、半導體材料、或導體材料等)薄膜、再以蝕刻製程移除氧化鋅奈米線等製程,整體皆屬低溫製程,不需使用昂貴之磊晶或長晶設備與製程,此外亦不需觸媒,且具有製程簡易與成本低廉之優點。The invention utilizes a high light transmission characteristic material to fabricate a nano tube array anti-reflection structure, and the manufacturing technology comprises the following steps: hydrothermal growth of zinc oxide nanowire, deposition of high light transmission characteristic material (covering insulating material, semiconductor material, or The film of conductor material, etc., and the process of removing the zinc oxide nanowire by etching process, all of which are low-temperature processes, do not need expensive epitaxial or long crystal equipment and processes, and do not need catalyst, and have process The advantages of simplicity and low cost.

再者,透過材料選擇與製程參數調變,可製得不同材質(包括絕緣材料、半導體與導體材料等)之奈米管陣列抗反射結構。藉由入射光線於奈米管間之散射消除反射作用、以及奈米管本身之光導作用使入射光線導入元件內部,實驗證實於400~800 nm頻譜範圍可獲得極低之反射率(≦1.5%),此在光學元件與設備以及太陽能電池(solar cell)之抗反射方面之應用極具潛力,於光電工業上亦具有極大商機。Furthermore, the nano tube array anti-reflection structure of different materials (including insulating materials, semiconductors and conductor materials, etc.) can be obtained through material selection and process parameter modulation. The incident light is introduced into the element by the scattering of the incident light between the nanotubes and the light guide of the nanotube itself. It is experimentally confirmed that a very low reflectance (≦1.5%) can be obtained in the 400-800 nm spectrum range. This has great potential in the application of optical components and equipment and solar cell anti-reflection, and has great business opportunities in the optoelectronic industry.

上述實施例僅係為了方便說明而舉例而已,本發明所主張之權利範圍自應以申請專利範圍所述為準,而非僅限於上述實施例。The above-mentioned embodiments are merely examples for convenience of description, and the scope of the claims is intended to be limited to the above embodiments.

11...基板11. . . Substrate

12...氧化鋅奈米線12. . . Zinc oxide nanowire

13...二氧化矽薄膜13. . . Cerium oxide film

14...二氧化矽奈米管14. . . Ceria nanotube

圖1A-1E係本發明實施例1之奈米管抗反射層之製備流程圖。1A-1E are flow charts showing the preparation of the nanotube anti-reflection layer of Example 1 of the present invention.

圖2A-2D係分別為本發明實施例1之圖1B-1E所示結構之電子顯微鏡結果圖。2A-2D are diagrams showing the results of electron microscopy of the structures shown in Figs. 1B-1E of Example 1 of the present invention, respectively.

圖3A-3C係分別為本發明實施例1之圖1B、1D、1E所示結構之能量散射光譜分析結果圖。3A-3C are diagrams showing the results of energy scattering spectrum analysis of the structures shown in Figs. 1B, 1D, and 1E of Example 1 of the present invention, respectively.

圖4係為本發明實施例1之圖1B、1D、1E所示結構之穿透特性測量結果圖。Fig. 4 is a graph showing the measurement results of the penetration characteristics of the structures shown in Figs. 1B, 1D, and 1E of the first embodiment of the present invention.

圖5A係本發明實施例1之圖1B、以及圖1E所示之結構的反射率結果圖。Fig. 5A is a graph showing the results of reflectance of the structures shown in Fig. 1B and Fig. 1E of the first embodiment of the present invention.

圖5B係未覆有二氧化矽奈米管之氮化鎵基板的反射率結果圖。Fig. 5B is a graph showing the results of reflectance of a gallium nitride substrate not coated with a ruthenium dioxide nanotube.

11...基板11. . . Substrate

12...氧化鋅奈米線12. . . Zinc oxide nanowire

13...二氧化矽薄膜13. . . Cerium oxide film

14...二氧化矽奈米管14. . . Ceria nanotube

Claims (22)

一種奈米管抗反射層之製備方法,包括步驟:(A) 提供一基板;(B) 形成複數個奈米線直立於該基板上;(C) 形成一披覆層於該些奈米線之表面;(D) 移除部份該披覆層以顯露該些奈米線之頂端;以及(E) 移除該些奈米線,以形成複數個奈米管直立於該基板上。A method for preparing a nano tube anti-reflection layer, comprising the steps of: (A) providing a substrate; (B) forming a plurality of nanowires standing on the substrate; (C) forming a coating layer on the nanowires a surface; (D) removing a portion of the cladding layer to reveal the top ends of the nanowires; and (E) removing the nanowires to form a plurality of nanotubes standing upright on the substrate. 如申請專利範圍第1項所述之製備方法,其中,該步驟(A)之後更包括一步驟(A1):形成一晶種層於該基板之表面。The preparation method of claim 1, wherein the step (A) further comprises a step (A1) of forming a seed layer on the surface of the substrate. 如申請專利範圍第1項所述之製備方法,其中,該步驟(A)之基板係選自由:玻璃基板、石英基板、半導體基板、透明導電鍍膜玻璃基板、陶瓷基板、金屬基板、高分子材料基板、藍寶石基板、表面設有電子元件之基板、所組成之群組。The preparation method according to the first aspect of the invention, wherein the substrate of the step (A) is selected from the group consisting of: a glass substrate, a quartz substrate, a semiconductor substrate, a transparent conductive coated glass substrate, a ceramic substrate, a metal substrate, and a polymer material. A substrate, a sapphire substrate, and a substrate on which an electronic component is provided on the surface, and a group formed thereof. 如申請專利範圍第2項所述之製備方法,其中,該晶種層之材料為:鋅鋁氧化物(AZO)、銦鋅氧化物(IZO)、鎵鋅氧化物(GZO)、或鋅氧化物(ZnO)、或其組合。The preparation method according to claim 2, wherein the material of the seed layer is: zinc aluminum oxide (AZO), indium zinc oxide (IZO), gallium zinc oxide (GZO), or zinc oxide. (ZnO), or a combination thereof. 如申請專利範圍第1項所述之製備方法,其中,該步驟(D)之部份該披覆層之移除方法係感應耦合電漿(ICP)方法。The preparation method of claim 1, wherein the part of the step (D) is a method of removing the coating layer by an inductively coupled plasma (ICP) method. 如申請專利範圍第1項所述之製備方法,其中,該步驟(D)之該些奈米線之顯露長度係為1 μm以下。The preparation method according to claim 1, wherein the exposed length of the nanowires in the step (D) is 1 μm or less. 如申請專利範圍第1項所述之製備方法,其中,該步驟(D)之奈米線之移除係透過浸泡於一選擇性溶液而進行,該選擇性溶液係對於該奈米線及該披覆層具有蝕刻選擇性。The preparation method of claim 1, wherein the removing of the nanowire of the step (D) is performed by immersing in a selective solution for the nanowire and the The cladding layer has etch selectivity. 如申請專利範圍第1項所述之製備方法,其中,該些奈米管之厚度係1 nm至1000 nm。The preparation method according to claim 1, wherein the thickness of the nanotubes is from 1 nm to 1000 nm. 如申請專利範圍第1項所述之製備方法,其中,該些奈米管之長度係0.5 μm至10 μm。The preparation method according to claim 1, wherein the length of the nanotubes is 0.5 μm to 10 μm. 如申請專利範圍第1項所述之製備方法,其中,該些奈米管之外直徑係30 nm至1500 nm。The preparation method of claim 1, wherein the outer diameter of the nanotubes is 30 nm to 1500 nm. 如申請專利範圍第1項所述之製備方法,其中,該些奈米線為氧化鋅基奈米線。The preparation method of claim 1, wherein the nanowires are zinc oxide-based nanowires. 如申請專利範圍第1項所述之製備方法,其中,該些奈米線係藉由水熱法形成。The preparation method according to claim 1, wherein the nanowires are formed by a hydrothermal method. 如申請專利範圍第1項所述之製備方法,其中,該些奈米管之材料為透明絕緣材料、透明半導體材料、透明導電材料或其組合。The preparation method of claim 1, wherein the materials of the nanotubes are transparent insulating materials, transparent semiconductor materials, transparent conductive materials or a combination thereof. 如申請專利範圍第1項所述之製備方法,其中,該些奈米管之材料為二氧化矽(SiO2)、氧化鋁(Al2O3)、氧化鋅(ZnO)、氧化鎳(NiO)、氧化銦錫(InSnO)、銦鋅氧化物(InZnO)、鋁鋅氧化物(AlZnO)、鎵鋅氧化物(GaZnO)、銅硼氧化物(CuBO2)、銅鋁氧化物(CuAlO2)、銅鎵氧化物(CuGaO2)、銅銦氧化物(CuInO2)、矽(Si)、砷化鎵(GaAs)、氮化矽(Si3N4)、氮化鉭(TaN)、鉿鑭氧化物(HfLaO)、矽化鈦(TiSi2)、氮化鈦(TiN)、氧化鉿(HfO2)或其組合。The preparation method according to claim 1, wherein the materials of the nanotubes are cerium oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), zinc oxide (ZnO), and nickel oxide (NiO). ), InSnO, Indium, Indium, AlZnO, GaZnO, CuBO 2 , CuAlO 2 , copper gallium oxide (CuGaO 2 ), copper indium oxide (CuInO 2 ), germanium (Si), gallium arsenide (GaAs), tantalum nitride (Si 3 N 4 ), tantalum nitride (TaN), tantalum Oxide (HfLaO), titanium telluride (TiSi 2 ), titanium nitride (TiN), hafnium oxide (HfO 2 ), or a combination thereof. 一種奈米管抗反射層,包括:一基板;複數個奈米管,係直立於該基板上;其中,該奈米管之長度係0.5μm至10 μm,外直徑係30 nm至1500 nm,管壁厚度係1 nm至1000 nm,該奈米管之材料係透明絕緣材料、透明半導體材料、透明導電材料或其組合。A nano tube anti-reflection layer comprises: a substrate; a plurality of nano tubes erected on the substrate; wherein the nanotubes have a length of 0.5 μm to 10 μm and an outer diameter of 30 nm to 1500 nm, The wall thickness is from 1 nm to 1000 nm, and the material of the nanotube is a transparent insulating material, a transparent semiconductor material, a transparent conductive material or a combination thereof. 如申請專利範圍第15項所述之奈米管抗反射層,係用於提供抗反射功能,且該奈米管抗反射層對於波長範圍400 nm至800 nm之光的反射率係1.5%以下。The anti-reflection layer of the nanotube according to claim 15 is for providing an anti-reflection function, and the reflectance of the nanotube anti-reflection layer is less than 1.5% for light having a wavelength range of 400 nm to 800 nm. . 如申請專利範圍第15項所述之奈米管抗反射層,其中,該基板係選自由:玻璃基板、石英基板、半導體基板、透名導電鍍膜玻璃基板、陶瓷基板、金屬基板、高分子材料基板、藍寶石基板、表面設有電子元件之基板、所組成之群組。The nano tube anti-reflection layer according to claim 15, wherein the substrate is selected from the group consisting of a glass substrate, a quartz substrate, a semiconductor substrate, a transparent conductive coated glass substrate, a ceramic substrate, a metal substrate, and a polymer material. A substrate, a sapphire substrate, and a substrate on which an electronic component is provided on the surface, and a group formed thereof. 如申請專利範圍第15項所述之奈米管抗反射層,更包括一晶種層,係設於該基板與該複數個奈米管之間。The anti-reflection layer of the nanotube according to claim 15 further comprising a seed layer disposed between the substrate and the plurality of nanotubes. 如申請專利範圍第18項所述之奈米管抗反射層,其中,該晶種層之厚度為10~500 nm。The nano tube anti-reflection layer according to claim 18, wherein the seed layer has a thickness of 10 to 500 nm. 如申請專利範圍第15項所述之奈米管抗反射層,其中,該複數個奈米管係不規則分布,且複數個奈米管係為:各自獨立地單一排列;二個以上相鄰排列;或同時具有獨立地單一排列以及二個以上相鄰排列之型態。The nano tube anti-reflection layer according to claim 15, wherein the plurality of nano tube systems are irregularly distributed, and the plurality of nano tube systems are: each independently arranged in a single arrangement; two or more adjacent Arranged; or both have a single arrangement independently and two or more adjacent arrangements. 如申請專利範圍第15項所述之奈米管抗反射層,其中,該奈米管之長度係1 μm至10 μm。The nano tube anti-reflection layer according to claim 15, wherein the length of the nanotube is 1 μm to 10 μm. 如申請專利範圍第15項所述之奈米管抗反射層,其中,該些奈米管之材料為二氧化矽(SiO2)、氧化鋁(Al2O3)、氧化鋅(ZnO)、氧化鎳(NiO)、氧化銦錫(InSnO)、銦鋅氧化物(InZnO)、鋁鋅氧化物(AlZnO)、鎵鋅氧化物(GaZnO)、銅硼氧化物(CuBO2)、銅鋁氧化物(CuAlO2)、銅鎵氧化物(CuGaO2)、銅銦氧化物(CuInO2)、矽(Si)、砷化鎵(GaAs)、氮化矽(Si3N4)、氮化鉭(TaN)、鉿鑭氧化物(HfLaO)、矽化鈦(TiSi2)、氮化鈦(TiN)、氧化鉿(HfO2)或其組合。The nano tube anti-reflection layer according to claim 15, wherein the materials of the nanotubes are cerium oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), zinc oxide (ZnO), Nickel oxide (NiO), indium tin oxide (InSnO), indium zinc oxide (InZnO), aluminum zinc oxide (AlZnO), gallium zinc oxide (GaZnO), copper boron oxide (CuBO 2 ), copper aluminum oxide (CuAlO 2 ), copper gallium oxide (CuGaO 2 ), copper indium oxide (CuInO 2 ), germanium (Si), gallium arsenide (GaAs), tantalum nitride (Si 3 N 4 ), tantalum nitride (TaN) ), niobium oxide (HfLaO), titanium telluride (TiSi 2 ), titanium nitride (TiN), hafnium oxide (HfO 2 ), or a combination thereof.
TW101100214A 2012-01-03 2012-01-03 Method of fabricating anti-reflective layer and anti-reflective layer fabricated by the same TW201328965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101100214A TW201328965A (en) 2012-01-03 2012-01-03 Method of fabricating anti-reflective layer and anti-reflective layer fabricated by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101100214A TW201328965A (en) 2012-01-03 2012-01-03 Method of fabricating anti-reflective layer and anti-reflective layer fabricated by the same

Publications (1)

Publication Number Publication Date
TW201328965A true TW201328965A (en) 2013-07-16

Family

ID=49225579

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101100214A TW201328965A (en) 2012-01-03 2012-01-03 Method of fabricating anti-reflective layer and anti-reflective layer fabricated by the same

Country Status (1)

Country Link
TW (1) TW201328965A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI487932B (en) * 2013-11-21 2015-06-11 Global Wafers Co Ltd Optical device and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI487932B (en) * 2013-11-21 2015-06-11 Global Wafers Co Ltd Optical device and manufacture thereof

Similar Documents

Publication Publication Date Title
Srivastava et al. Excellent antireflection properties of vertical silicon nanowire arrays
Zhu et al. Nanostructured photon management for high performance solar cells
CN105022106B (en) The ultra wide band absorber and preparation method of a kind of visible near-infrared wave band
Alimanesh et al. Broadband anti-reflective properties of grown ZnO nanopyramidal structure on Si substrate via low-temperature electrochemical deposition
CN101858995A (en) Nanostructured anti-reflection coatings and correlation technique and device
Moayedfar et al. Various types of anti-reflective coatings (ARCS) based on the layer composition and surface topography: a review
KR20180090613A (en) Meta optical device and method of fabricating the same
US20110033974A1 (en) Method for fabricating hollow nanotube structure
CN103219443B (en) A kind of LED three-dimensional photon crystal structure and preparation method
KR101081499B1 (en) Fabricating method of antireflection nano structure
US8101522B2 (en) Silicon substrate having nanostructures and method for producing the same and application thereof
US20190339418A1 (en) Broadband absorbers via nanostructures
WO2013171286A1 (en) Solar cells having a nanostructured antireflection layer
US20140319524A1 (en) Substrates having a broadband antireflection layer and methods of forming a broadband antireflection layer
Leem et al. Antireflective properties of disordered Si SWSs with hydrophobic surface by thermally dewetted Pt nanomask patterns for Si-based solar cells
US9537024B2 (en) Metal-dielectric hybrid surfaces as integrated optoelectronic interfaces
Sun et al. Fabrication of anti-reflecting Si nano-structures with low aspect ratio by nano-sphere lithography technique
TW201328965A (en) Method of fabricating anti-reflective layer and anti-reflective layer fabricated by the same
Schmelz et al. Optical properties of black silicon structures ALD-coated with Al2O3
Li et al. Antireflection subwavelength structures based on silicon nanowires arrays fabricated by metal-assisted chemical etching
KR101773951B1 (en) Method for texturing of semiconductor substrate, semiconductor substrate manufactured by the method and device comprising the same
CN105470341A (en) Cheap disorder broad-spectrum wide-angle antireflection structure and manufacturing method thereof
Visser et al. Investigations of sol-gel ZnO films nanostructured by reactive ion beam etching for broadband anti-reflection
Yang et al. Nano-fabrication of depth-varying amorphous silicon crescent shell array for light trapping
El-Broullesy et al. Broadband absorption of modified conical nanowires for photovoltaic applications