TW201328091A - Multi-wavelength DBR laser - Google Patents

Multi-wavelength DBR laser Download PDF

Info

Publication number
TW201328091A
TW201328091A TW101141326A TW101141326A TW201328091A TW 201328091 A TW201328091 A TW 201328091A TW 101141326 A TW101141326 A TW 101141326A TW 101141326 A TW101141326 A TW 101141326A TW 201328091 A TW201328091 A TW 201328091A
Authority
TW
Taiwan
Prior art keywords
laser diode
wavelength
gain
signal control
bragg wavelengths
Prior art date
Application number
TW101141326A
Other languages
Chinese (zh)
Inventor
Catherine Genevieve Caneau
Feng Xie
Chung-En Zah
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of TW201328091A publication Critical patent/TW201328091A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06256Controlling the frequency of the radiation with DBR-structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0612Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1206Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
    • H01S5/1215Multiplicity of periods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3401Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3401Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers
    • H01S5/3402Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers intersubband lasers, e.g. transitions within the conduction or valence bands

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

A multi-wavelength distributed Bragg reflector (DBR) laser diode is provided including front and rear DBR sections and a plurality of dedicated tuning signal control nodes. The front DBR section includes a plurality of front wavelength selective grating sections defining a plurality of distinct grating periodicities λ 1*, λ 2*... corresponding to distinct Bragg wavelengths λ S1*, λ S2*... The rear DBR section comprises a plurality of rear wavelength selective grating sections defining a plurality of distinct grating periodicities λ 1, λ 2... corresponding to distinct Bragg wavelengths λ S1, λ S2... The tuning signal control nodes are associated with corresponding front wavelength selective grating sections, rear wavelength selective grating sections, or both, such that tuning signals applied to one or more of the dedicated tuning signal control nodes spectrally aligns select Bragg wavelengths λ S1*, λ S2*... of the front DBR section with a selected distinct Bragg wavelengths λ S1, λ S2... of the rear DBR section.

Description

多波長分散式布拉格反射鏡雷射 Multi-wavelength decentralized Bragg reflector laser 【相關申請案之交叉引用】 [Cross-reference to related applications]

本申請案主張2011年11月7日申請之美國臨時申請案第61/556,434號及2012年8月9日申請之美國申請案第13/570,719號之優先權利,本申請案依賴於該等案之內容且該等案之內容全文以引用之方式併入本文中。 The present application claims priority to U.S. Provisional Application No. 61/556,434, filed on Nov. 7, 2011, and U.S. Application Serial No. 13/570,719, filed on Aug. The contents of the contents are hereby incorporated by reference in their entirety.

本揭示案係關於特徵為多波長發射之雷射二極體,且更詳言之,係關於分散式布拉格反射鏡(DBR)量子級聯(QCL)雷射二極體。儘管本揭示案之概念將享有在各種領域中之廣泛適用性,但本揭示案亦係關於(例如)在氣體感測及醫學診斷中之分子組分識別中之作為中紅外(mid-IR)可調諧源之該等雷射之使用。 The present disclosure relates to laser diodes characterized by multi-wavelength emission, and more particularly to distributed Bragg reflector (DBR) quantum cascade (QCL) laser diodes. Although the concept of the present disclosure will enjoy wide applicability in various fields, the present disclosure also relates to mid-infrared (mid-IR) in, for example, molecular component identification in gas sensing and medical diagnostics. The use of such lasers of tunable sources.

先前技術之缺陷仍然存在。本發明目的在於解決此等缺陷及/或提供對先前技術之改良。 The drawbacks of the prior art still exist. It is an object of the present invention to address such deficiencies and/or to provide improvements over the prior art.

本揭示案係針對多波長DBR QCL產品,該等多波長DBR QCL產品可經操作以時間上有順序地產生數個波長。例如,可使用所得發射以取樣闊吸收線。本揭示案之特定實施例受限於單極QCL,該等單極QCL使用子帶間過渡以產生光子,但亦意欲本揭示案之概念可適合用 於雙極雷射,該等雙極雷射使用帶間過渡以產生光子。 The present disclosure is directed to multi-wavelength DBR QCL products that are operable to sequentially generate a plurality of wavelengths in time. For example, the resulting emission can be used to sample a broad absorption line. Particular embodiments of the present disclosure are limited to unipolar QCLs that use sub-band transitions to produce photons, but it is also intended that the concepts of the present disclosure are suitable for use For bipolar lasers, these bipolar lasers use inter-band transitions to produce photons.

根據本揭示案之一個實施例,提供多波長分散式布拉格反射鏡(DBR)雷射二極體,該DBR雷射二極體包含前DBR部分及後DBR部分及複數個專用調諧訊號控制節點。前DBR部分包含複數個前波長選擇性光柵部分,該複數個前波長選擇性光柵部分界定對應於不同布拉格波長λS1*、λS2*......之複數個不同光柵週期性Λ1*、Λ2*......。後DBR部分包含複數個後波長選擇性光柵部分,該複數個後波長選擇性光柵部分界定對應於不同布拉格波長λS1、λS2.......之複數個不同光柵週期性Λ1、Λ2......。複數個專用調諧訊號控制節點與前波長選擇性光柵部分中之個別部分、後波長選擇性光柵部分中之個別部分或以上兩者相關聯,且該複數個專用調諧訊號控制節點經構造,以使得施加至專用調諧訊號控制節點中之一或多者之一或多個調諧訊號將前DBR部分之不同布拉格波長λS1*、λS2*......中之選定波長與後DBR部分之不同布拉格波長λS1、λS2......中之選定波長光譜式地對齊。 In accordance with an embodiment of the present disclosure, a multi-wavelength decentralized Bragg reflector (DBR) laser diode is provided, the DBR laser diode comprising a front DBR portion and a rear DBR portion and a plurality of dedicated tuning signal control nodes. The front DBR portion includes a plurality of pre-wavelength selective grating portions defining a plurality of different grating periodicities 对应1 corresponding to different Bragg wavelengths λ S1 *, λ S2 *, ... *, Λ 2 *... The rear DBR portion includes a plurality of post-wavelength selective grating portions defining a plurality of different grating periodicities 对应1 corresponding to different Bragg wavelengths λ S1 , λ S2 . Λ 2 ...... A plurality of dedicated tuning signal control nodes are associated with respective ones of the pre-wavelength selective grating portions, individual portions of the post-wavelength selective grating portion, or both, and the plurality of dedicated tuning signal control nodes are configured such that One or more of the tuning signals applied to one or more of the dedicated tuning signal control nodes will select the selected wavelengths of the different Bragg wavelengths λ S1 *, λ S2 *, ... of the front DBR portion and the latter DBR portion The selected wavelengths in the different Bragg wavelengths λ S1 , λ S2 , . . . are spectrally aligned.

根據本發明之多波長DBR雷射二極體10之通用結構圖示於第1圖中。在第1圖中,DBR 10包含前DBR部分20及後DBR部分30、複數個專用調諧訊號控制節點25、35、增益部分40、相位部分50及在雷射二極體10 之前端面12與後端面14之間延伸之波導芯45。增益部分40可包含量子級聯活性區域且該增益部分40可沿藉由雷射二極體10之波導芯45界定之光傳播軸定位於前DBR部分20與後DBR部分30之間。 A general structure of the multi-wavelength DBR laser diode 10 according to the present invention is shown in FIG. In FIG. 1, the DBR 10 includes a front DBR portion 20 and a rear DBR portion 30, a plurality of dedicated tuning signal control nodes 25, 35, a gain portion 40, a phase portion 50, and a laser diode 10 A waveguide core 45 extending between the front end surface 12 and the rear end surface 14. Gain portion 40 can include a quantum cascade active region and can be positioned between front DBR portion 20 and rear DBR portion 30 along a light propagation axis defined by waveguide core 45 of laser diode 10.

如將由熟悉DBR雷射之人士所瞭解,DBR雷射之DBR部分包含布拉格光柵,亦即,基於藉由週期性結構進行之布拉格反射之反光裝置。DBR部分之週期性結構界定雷射之布拉格波長λB。本揭示案之前DBR部分20及後DBR部分30不依賴於光柵相位Φ或頻擾光柵週期性中之週期性移位或非週期性移位來產生多個波長選擇能力。進一步地,儘管前DBR部分20之個別反射率峰值可經調諧以匹配後DBR部分30之選定反射率峰值,但前DBR部分20及後DBR部分30之各別反射率峰值經間隔以使得該等反射率峰值不互相重疊,如下文將詳細解釋。 As will be appreciated by those familiar with DBR lasers, the DBR portion of the DBR laser includes a Bragg grating, that is, a retroreflective device based on Bragg reflection by a periodic structure. The periodic structure of the DBR portion defines the Bragg wavelength λ B of the laser. The DBR portion 20 and the rear DBR portion 30 prior to the present disclosure do not rely on the grating phase Φ or periodic or non-periodic shifting in the frequency of the frequency grating to produce multiple wavelength selection capabilities. Further, although the individual reflectance peaks of the front DBR portion 20 can be tuned to match the selected reflectance peaks of the rear DBR portion 30, the respective reflectance peaks of the front DBR portion 20 and the rear DBR portion 30 are spaced such that such The peak reflectances do not overlap each other, as explained in detail below.

本揭示案係針對前DBR部分20及後DBR部分30之詳情。可自技術中易於獲得之教義收集波導芯45之各別結構、相關聯波導層、增益部分40及相位部分50,及防反射塗層。如第1圖及第2圖中所圖示,前DBR部分20包含複數個前波長選擇性光柵部分,該複數個前波長選擇性光柵部分界定對應於不同布拉格波長λS1*、λS2*......(不同布拉格波長)之複數個不同光柵週期性Λ1*、Λ2*......。類似地,後DBR部分30包含複數個後波長選擇性光柵部分,該複數個後波長選擇性光柵部分 界定對應於不同布拉格波長λS1、λS2......(不同布拉格波長)之複數個不同光柵週期性Λ1、Λ2......。 This disclosure is directed to the details of the front DBR portion 20 and the rear DBR portion 30. The individual structures of the waveguide core 45, the associated waveguide layer, the gain portion 40 and the phase portion 50, and the anti-reflective coating can be collected from the teachings readily available in the art. As illustrated in Figures 1 and 2, the front DBR portion 20 includes a plurality of pre-wavelength selective grating portions defined to correspond to different Bragg wavelengths λ S1 *, λ S2 *. ..... (different Bragg wavelengths) of a plurality of different grating periodic Λ 1 *, Λ 2 *. Similarly, the rear DBR portion 30 includes a plurality of post-wavelength selective grating portions that define complex numbers corresponding to different Bragg wavelengths λ S1 , λ S2 ... (different Bragg wavelengths) Different grating periodicities Λ 1 , Λ 2 ......

如第2圖中示意性地圖示,在本揭示案之一個實施例中,不同布拉格波長中λS1*、λS2*......中之每一波長關於不同布拉格波長λS1、λS2......光譜式偏離。然而,波長選擇性光柵部分包含專用調諧訊號控制節點25、35,該等專用調諧訊號控制節點25、35與前波長選擇性光柵部分中之個別部分、後波長選擇性光柵部分中之個別部分或以上兩者相關聯。在操作中,如第3圖中所圖示,將調諧訊號施加至專用調諧訊號控制節點25、35中之一者,以改變不同布拉格波長中之選定波長(亦即,λS3*)及將該選定波長置放為與不同布拉格波長中之選定波長(亦即,λS3)光譜式對齊以在所示實例中之選定發射波長-λS3處產生發射。連續調諧訊號可經調整以用於在連續發射波長λS1、λS2......處發射。 As schematically illustrated in FIG. 2, in one embodiment of the present disclosure, each of λ S1 *, λ S2 *, ... in a different Bragg wavelength is related to a different Bragg wavelength λ S1 , λ S2 ... spectral deviation. However, the wavelength selective grating portion includes dedicated tuning signal control nodes 25, 35 that are separate portions of the dedicated wavelength control node 25, 35 and the pre-wavelength selective grating portion, individual portions of the post-wavelength selective grating portion or The above two are related. In operation, as illustrated in FIG. 3, a tuning signal is applied to one of the dedicated tuning signal control nodes 25, 35 to change a selected one of the different Bragg wavelengths (ie, λ S3 *) and The selected wavelength is placed to be spectrally aligned with a selected one of the different Bragg wavelengths (i.e., λ S3 ) to produce an emission at a selected emission wavelength - λ S3 in the illustrated example. The continuous tuning signal can be adjusted for transmission at successive emission wavelengths λ S1 , λ S2 .

在第2圖及第3圖中所示之實施例中,儘管不同布拉格波長λS1*、λS2*......中之每一波長比相應的不同布拉格波長λS1、λS2......更短,但注意,根據本揭示案意欲各種「未調諧」狀態。舉例而言,不同布拉格波長λS1*、λS2*......可比相應的不同布拉格波長λS1、λS2......更短及/或更長。通常,儘管意欲各種控制節點配置,但藉由激活短波長光柵部分中之調諧訊號控制節點(例如,微加熱器或直流注入電極),將長波長光柵部分與雷射二極體之相對DBR部分中之相應的較短布拉格波長光柵部分 對齊。 In the embodiments shown in Figs. 2 and 3, although each of the different Bragg wavelengths λ S1 *, λ S2 *, ... has a different Bragg wavelength λ S1 , λ S2 . ..... is shorter, but note that various "untuned" states are intended in accordance with the present disclosure. For example, different Bragg wavelengths λ S1 *, λ S2 * . . . may be shorter and/or longer than the corresponding different Bragg wavelengths λ S1 , λ S2 . In general, although various control node configurations are intended, the long-wavelength grating portion and the opposite DBR portion of the laser diode are activated by activating a tuning signal control node (eg, a micro-heater or a DC injection electrode) in the short-wavelength grating portion. The corresponding shorter Bragg wavelength gratings are partially aligned.

作為進一步實例,意欲在「未調諧」狀態下不同布拉格波長λS1*、λS2*......中之一或多個波長可關於不同布拉格波長λS1、λS2......光譜式地對齊。在處於「調諧」狀態下之情況下,可將一或多個調諧訊號施加至專用前調諧訊號控制節點25或專用後調諧訊號控制節點30,以改變不同布拉格波長λS1*、λS2*......中之選定波長,以使得除了一者以外的所有該等不同布拉格波長λS1*、λS2*......關於不同布拉格波長λS1、λS2......光譜式偏離。此配置及工序圖示於第4圖中。事實上,確保不同布拉格波長λS1*、λS2*......中之每一波長關於不同布拉格波長λS1、λS2......光譜式地偏離0.5 mm之DBR長度之約4.1 cm-1或更多(波數)可係有益的。光譜分離應隨著降低之DBR長度增加。 As a further example, one or more wavelengths of different Bragg wavelengths λ S1 *, λ S2 *, ... in the "untuned" state may be related to different Bragg wavelengths λ S1 , λ S2 ..... . Spectral alignment. In the "tuned" state, one or more tuning signals can be applied to the dedicated pre-tuning signal control node 25 or the dedicated post-tuning signal control node 30 to change the different Bragg wavelengths λ S1 *, λ S2 *. The selected wavelengths in ..... such that all but one of the different Bragg wavelengths λ S1 *, λ S2 * ... with respect to different Bragg wavelengths λ S1 , λ S2 ..... . Spectral deviation. This configuration and process diagram are shown in Figure 4. In fact, it is ensured that each of the different Bragg wavelengths λ S1 *, λ S2 *, ... is spectrally offset from the DBR length of 0.5 mm with respect to different Bragg wavelengths λ S1 , λ S2 . Approximately 4.1 cm-1 or more (wavenumber) can be beneficial. Spectral separation should increase with decreasing DBR length.

如在第1圖中進一步圖示,後DBR部分30之後波長選擇性光柵部分亦具有控制機制。該控制機制可採用雷射二極體散熱片或所圖示之後調諧訊號控制節點35之形式,該後調諧訊號控制節點35可與後DBR部分30之後波長選擇性光柵部分之個別部分相關聯。在雷射二極體具有散熱片或對前DBR部分20及後DBR部分30常見之一些其它溫度控制機制的情況下,意欲可藉由調諧散熱片溫度、調諧調諧訊號控制節點25、35或以上兩者來執行對前DBR部分20及後DBR部分30之熱控制。 As further illustrated in Figure 1, the wavelength selective grating portion after the rear DBR portion 30 also has a control mechanism. The control mechanism may take the form of a laser diode heat sink or the illustrated tuned signal control node 35, which may be associated with an individual portion of the wavelength selective grating portion after the rear DBR portion 30. In the case where the laser diode has a heat sink or some other temperature control mechanism common to the front DBR portion 20 and the rear DBR portion 30, it is intended to tune the heat sink temperature, tune the tuning signal control node 25, 35 or above. Both perform thermal control of the front DBR portion 20 and the rear DBR portion 30.

在前調諧訊號控制節點25及後調諧訊號控制節點35 包含熱調諧節點(例如,微加熱器元件)之情況下,確保不同布拉格波長λS1*、λS2*......中之每一波長比不同布拉格波長λS1、λS2......更短通常將係有利的,以使得藉由前熱調諧節點中之一個節點引發之溫度增加將增加相應的調諧波長,從而使得該相應調諧波長與目標發射波長對齊。亦意欲前調諧訊號控制節點25及後調諧訊號控制節點35可包含用於直流注入至前波長選擇性光柵部分及後波長選擇性光柵部分之電觸頭。最終,意欲取決於特定應用之操作需求調諧訊號控制節點25、35中之個別節點可作為單一控制節點一起操作。 In the case where the pre-tuning signal control node 25 and the post-tuning signal control node 35 include thermal tuning nodes (eg, micro-heater elements), each of the different Bragg wavelengths λ S1 *, λ S2 *, ... is ensured It is generally advantageous for a wavelength to be shorter than the different Bragg wavelengths λ S1 , λ S2 ... such that an increase in temperature induced by a node in the front thermal tuning node will increase the corresponding tuning wavelength, thereby The respective tuning wavelength is aligned with the target emission wavelength. It is also intended that the pre-tuned signal control node 25 and the post-tuned signal control node 35 can include electrical contacts for DC injection into the front wavelength selective grating portion and the rear wavelength selective grating portion. Finally, it is intended that the individual nodes of the tuning signal control nodes 25, 35 can operate together as a single control node depending on the operational requirements of the particular application.

在雷射二極體10之增益部分40特徵為波長相關光學增益光譜的情況下,通常較佳的係佈置前DBR部分20之前波長選擇性光柵部分及後DBR部分30之後波長選擇性光柵部分,以使得對應於光學增益光譜之相對較低增益部中之反射比峰值的光柵部分定位於相對地接近雷射二極體10之增益部分40,而對應於光學增益光譜之相對較高增益部中之反射比峰值的光柵部分定位於相對地遠離雷射二極體10之增益部分40。 In the case where the gain portion 40 of the laser diode 10 is characterized by a wavelength dependent optical gain spectrum, it is generally preferred to arrange the wavelength selective grating portion before the front DBR portion 20 and the wavelength selective grating portion after the rear DBR portion 30, So that the grating portion corresponding to the reflectance peak in the relatively lower gain portion of the optical gain spectrum is positioned relatively close to the gain portion 40 of the laser diode 10, corresponding to the relatively higher gain portion of the optical gain spectrum The grating portion of the reflectance peak is located relatively far from the gain portion 40 of the laser diode 10.

雷射二極體10之波導芯45可包含量子級聯芯之堆疊且每一量子級聯芯可經配置以界定增益峰值,該增益峰值近似於後波長選擇性光柵部分之不同布拉格波長λS1、λS2......中之一個波長。或者,雷射二極體10之波導芯45可包含具有增益光譜之單一量子級聯芯,該增益光譜足夠寬以包含後波長選擇性光柵部分之不同布拉格 波長λS1、λS2......。在許多情況下,雷射二極體10之增益部分40特徵將在於波長相關光學增益光譜。為考慮此情況,意欲將具有相對較低之光學增益之量子級聯芯置放為相對接近雷射二極體10之光學傳播模式之中心,而將具有相對較高之光學增益之量子級聯芯置放為相對遠離雷射二極體10之光學傳播模式之中心。或者或另外,可用較大數目之級或較高之限制因子構造具有相對較低之光學增益之芯,且可用較少數目之級或較低之限制因子構造具有相對較高之光學增益之芯。作為進一步替代,意欲較短波長芯可置放為靠近波導芯45之中心,其中較長波長芯在外側,原因在於在較長波長處之光學模式大小大於在相對短波長處之光學模式大小。 The waveguide core 45 of the laser diode 10 can comprise a stack of quantum cascade cores and each quantum cascade core can be configured to define a gain peak that approximates a different Bragg wavelength λ S1 of the post-wavelength selective grating portion One of the wavelengths of λ S2 . Alternatively, the waveguide core 45 of the laser diode 10 may comprise a single quantum cascade core having a gain spectrum which is sufficiently wide to include different Bragg wavelengths λ S1 , λ S2 ... of the post-wavelength selective grating portion. .. In many cases, the gain portion 40 of the laser diode 10 will be characterized by a wavelength dependent optical gain spectrum. To account for this situation, it is intended to place a quantum cascade core having a relatively low optical gain close to the center of the optical propagation mode of the laser diode 10, and a quantum cascade having a relatively high optical gain. The core is placed at the center of the optical propagation mode relatively far from the laser diode 10. Alternatively or additionally, a core having a relatively low optical gain may be constructed with a greater number of levels or higher limiting factors, and a core having a relatively higher optical gain may be constructed with a reduced number of stages or a lower limiting factor. . As a further alternative, it is intended that the shorter wavelength core can be placed near the center of the waveguide core 45 with the longer wavelength core on the outside because the optical mode size at longer wavelengths is greater than the optical mode size at relatively short wavelengths.

較佳地,雷射二極體10之波導芯45包含單極QCL,該單極QCL使用子帶間過渡以產生光子。然而,亦意欲雷射二極體10之波導芯45可包含雙極雷射,該雙極雷射使用帶間過渡以產生光子。 Preferably, the waveguide core 45 of the laser diode 10 comprises a monopolar QCL that uses sub-band transitions to produce photons. However, it is also intended that the waveguide core 45 of the laser diode 10 can comprise a bipolar laser that uses a transition between the bands to produce photons.

舉例而言且不加以限制,在本揭示案之概念之一個實施中,不同布拉格波長λS1、λS2......經選擇為相對較闊吸收線之取樣波長,亦即,近似150 cm-1頻譜寬度。為此目的,第2圖及第3圖圖示五個反射峰值,可使用經選擇以匹配葡萄糖之五個吸收峰值之五個0.75 mm長的後波長選擇性光柵部分產生該五個反射峰值。應注意,針對較短DBR部分熱調諧波長需要之電力少於針對較長DBR部分熱調諧波長需要之電力,大體言之,前波長選 擇性光柵部分比後部分更短以允許較高輸出功率。在更特定實施中,假定光柵長度為0.5 mm,則選定光柵部分之布拉格波長與DBR之第一個空值之間的頻譜距離為約4.1 cm-1(△βL=2πng△wL)。對於在後DBR部分中之取樣波長之光柵頻寬範圍外之取樣波長,前反射率峰值應設定為短於後取樣波長中之一個波長近似4.1 cm-1,以使得可藉由使用微加熱器或直流注入的加熱來調諧每一取樣波長以匹配附近之取樣波長。分別使用微加熱器或電流注入自4.57 μm DBR QCL決定之熱調諧效率為近似11 cm-1W-1mm及15 cm-1W-1mm。分別使用微加熱器或電流注入將0.5 mm長的前光柵之布拉格波長對齊取樣波長中之一個波長需要之加熱電力估計為186 mW及137 mW。 By way of example and not limitation, in one implementation of the concept of the present disclosure, different Bragg wavelengths λ S1 , λ S2 ... are selected as sampling wavelengths of relatively wide absorption lines, ie, approximately 150 Cm -1 spectrum width. To this end, Figures 2 and 3 illustrate five reflection peaks that can be generated using five 0.75 mm long post-wavelength selective grating portions selected to match the five absorption peaks of glucose. It should be noted that the power required for the shorter DBR portion of the thermally tuned wavelength is less than the power required for the longer DBR portion of the thermally tuned wavelength. In general, the front wavelength selective grating portion is shorter than the latter portion to allow for higher output power. In a more specific implementation, assuming a grating length of 0.5 mm, the spectral distance between the Bragg wavelength of the selected grating portion and the first null of the DBR is about 4.1 cm -1 (ΔβL = 2πn g ΔwL). For sampling wavelengths outside the grating bandwidth of the sampling wavelength in the rear DBR section, the front reflectance peak should be set to be shorter than one of the post-sampling wavelengths by approximately 4.1 cm -1 so that micro-heaters can be used Or DC injection heating to tune each sample wavelength to match the nearby sampling wavelength. The thermal tuning efficiencies determined by the use of microheaters or current injections from 4.57 μm DBR QCL are approximately 11 cm -1 W -1 mm and 15 cm -1 W -1 mm, respectively. The heating power required to align the Bragg wavelength of the 0.5 mm long front grating with one of the sampling wavelengths using microheaters or current injection, respectively, is estimated to be 186 mW and 137 mW.

應注意,當如同「較佳地」、「常見地」及「通常地」之術語在本文中使用時,該等術語不用於限制所主張發明之範疇或暗示某些特徵對所主張發明之結構或功能係關鍵的、基本的或甚至係重要的。相反,該等術語僅意在識別本揭示案之實施例之特定態樣或強調替代特徵或額外特徵,該等替代特徵或額外特徵可能或可能不用於本揭示案之特定實施例中。 It should be noted that when terms such as "preferably", "commonly" and "generally" are used herein, the terms are not used to limit the scope of the claimed invention or to imply certain features to the structure of the claimed invention. Or the function is critical, basic or even important. Rather, the terms are only intended to identify a particular embodiment or an alternative feature or additional feature of the present disclosure, which may or may not be used in a particular embodiment of the present disclosure.

為描述及界定本發明之目的,應注意,在本文中使用術語「實質上」及「近似地」以表示可歸因於任何定量比較之固有不確定程度、值、量測或其它表示。亦可在本文中使用術語「實質上」及「近似地」以表示程度, 藉由該程度定量表示可自所陳述之引用變化而不導致所討論之標的物之基本功能之變化。 For purposes of describing and defining the present invention, it is noted that the terms "substantially" and "approximately" are used herein to mean the inherent degree of uncertainty, value, measurement, or other representation attributable to any quantitative comparison. The terms "substantially" and "approximately" may also be used herein to indicate the degree. Quantitative representations of the degree can be varied from the stated reference without causing a change in the basic function of the subject matter in question.

用詳細描述本揭示案之標的物且藉由參閱本揭示案之特定實施例,應注意,甚至在特定元件圖示於伴隨本描述之每一圖式中的情況下,本文中所揭示之各種細則不應理解為暗示該等細則係關於為本文所述之各種實施例之基本組件的元件。相反,本揭示案所附申請專利範圍應理解為本揭示案之寬度及本文所示之各種發明之相應範疇之唯一表示。進一步,將顯而易見,在不背離所附申請專利範圍中界定之發明之範疇的情況下,修改及變更係可能的。更具體地,儘管本揭示案之一些態樣在本文中識別為較佳的或尤其有利的,但意欲本揭示案不必受限於該等態樣。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S) The detailed disclosure of the present disclosure, and by reference to the specific embodiments of the present disclosure, The details are not to be construed as implying that the details are in terms of the elements of the basic components of the various embodiments described herein. Rather, the scope of the invention is to be construed as the invention Further, it will be apparent that modifications and variations are possible without departing from the scope of the invention as defined in the appended claims. More specifically, although some aspects of the present disclosure are identified herein as preferred or particularly advantageous, it is intended that the present disclosure not be limited to such aspects.

應注意,以下請求項中之一或多個請求項使用術語「其中」作為過渡習語。為界定本發明之目的,應注意,此術語引入在申請專利範圍中作為開放式過渡習語,該習語用於引入結構之一系列特性之復述,且該習語應以與最常使用之開放式前置術語「包含」相同之方式解譯。 It should be noted that one or more of the following request items use the term "where" as a transitional idiom. For the purposes of defining the present invention, it should be noted that this term is incorporated in the scope of the patent application as an open transitional idiom for introducing a reciting of a series of characteristics of the structure, and the idiom should be used most often. The open preposition term "contains" is interpreted in the same way.

10‧‧‧多波長分散式布拉格反射鏡(DBR)雷射二極體 10‧‧‧Multi-wavelength decentralized Bragg reflector (DBR) laser diode

12‧‧‧前端面 12‧‧‧ front end

14‧‧‧後端面 14‧‧‧ rear end face

20‧‧‧前DBR部分 20‧‧‧Pre-DBR section

25‧‧‧前調諧訊號控制節點 25‧‧‧Pre-tuning signal control node

30‧‧‧後DBR部分 30‧‧‧DBR part

35‧‧‧後調諧訊號控制節點 35‧‧‧ Rear Tuning Signal Control Node

40‧‧‧增益部分 40‧‧‧ Gain section

45‧‧‧波導芯 45‧‧‧Waveguide core

50‧‧‧相位部分 50‧‧‧ phase part

當結合以下圖式閱讀時,可最佳理解本揭示案之特定實施例之以下詳細描述,其中相同結構用相同元件符號指定且其中:第1圖為根據本揭示案之多波長分散式布拉格反射鏡 (DBR)量子級聯雷射二極體之示意圖;第2圖圖示根據本揭示案之未調諧多波長DBR之前光柵部及後光柵部之特性;第3圖圖示根據本揭示案之一個實施例之調諧多波長DBR之方法;及第4圖圖示根據本揭示案之替代實施例之調諧多波長DBR之方法。 The following detailed description of the specific embodiments of the present disclosure is best understood by the following description, in which the same structures are designated by the same elements and wherein: FIG. 1 is a multi-wavelength decentralized Bragg reflection according to the present disclosure. mirror (DBR) Schematic diagram of a quantum cascade laser diode; FIG. 2 illustrates characteristics of a grating portion and a back grating portion before untuned multi-wavelength DBR according to the present disclosure; FIG. 3 illustrates one according to the present disclosure A method of tuning a multi-wavelength DBR of an embodiment; and FIG. 4 illustrates a method of tuning a multi-wavelength DBR in accordance with an alternate embodiment of the present disclosure.

10‧‧‧多波長分散式布拉格反射鏡(DBR)雷射二極體 10‧‧‧Multi-wavelength decentralized Bragg reflector (DBR) laser diode

12‧‧‧前端面 12‧‧‧ front end

14‧‧‧後端面 14‧‧‧ rear end face

20‧‧‧前DBR部分 20‧‧‧Pre-DBR section

25‧‧‧前調諧訊號控制節點 25‧‧‧Pre-tuning signal control node

30‧‧‧後DBR部分 30‧‧‧DBR part

35‧‧‧後調諧訊號控制節點 35‧‧‧ Rear Tuning Signal Control Node

40‧‧‧增益部分 40‧‧‧ Gain section

45‧‧‧波導芯 45‧‧‧Waveguide core

50‧‧‧相位部分 50‧‧‧ phase part

Claims (20)

一種多波長分散式布拉格反射鏡(DBR)雷射二極體,該DBR雷射二極體包含前DBR部分及後DBR部分、複數個專用調諧訊號控制節點、一增益部分及在該雷射二極體之前端面與後端面之間延伸之一波導芯,該DBR雷射二極體之特徵在於:該增益部分包含一活性區域且該增益部分沿藉由該雷射二極體之該波導芯界定之一光傳播軸定位於該前DBR部分與該後DBR部分之間;該前DBR部分包含複數個前波長選擇性光柵部分,該複數個前波長選擇性光柵部分界定對應於不同布拉格波長λS1*、λS2*......之複數個不同光柵週期性Λ1*、Λ2*......;該後DBR部分包含複數個後波長選擇性光柵部分,該複數個後波長選擇性光柵部分界定對應於不同布拉格波長λS1、λS2......之複數個不同光柵週期性Λ1、Λ2......;該複數個專用調諧訊號控制節點與該等前波長選擇性光柵部分之個別部分、該等後波長選擇性光柵部分之個別部分或以上兩者相關聯,且該複數個專用調諧訊號控制節點經構造,以使得施加至該等專用調諧訊號控制節點中之一或多者之一或多個調諧訊號將該前DBR部分之該等不同布拉格波長λS1*、λS2*......中之一選定波長與該後DBR部分之該等不同布拉格波長λS1、λS2......中 之一選定波長光譜式地對齊不同布拉格波長。 A multi-wavelength decentralized Bragg reflector (DBR) laser diode comprising a front DBR portion and a rear DBR portion, a plurality of dedicated tuning signal control nodes, a gain portion, and a laser portion a waveguide core extending between the front end surface and the rear end surface of the polar body, the DBR laser diode being characterized in that the gain portion includes an active region and the gain portion is along the waveguide core through the laser diode Defining a light propagation axis positioned between the front DBR portion and the rear DBR portion; the front DBR portion comprising a plurality of front wavelength selective grating portions, the plurality of front wavelength selective grating portions being defined to correspond to different Bragg wavelengths a plurality of different grating periodicities S 1 *, Λ 2 * ... of S1 *, λ S2 * ...; the latter DBR portion includes a plurality of post-wavelength selective grating portions, the plurality of The post-wavelength selective grating portion defines a plurality of different grating periodicities Λ 1 , Λ 2 ... corresponding to different Bragg wavelengths λ S1 , λ S2 , ...; the plurality of dedicated tuning signal control nodes Individual parts of the pre-wavelength selective grating portion Individual portions or both of the post-wavelength selective grating portions are associated, and the plurality of dedicated tuning signal control nodes are configured to be applied to one or more of the dedicated tuning signal control nodes the tuning signal or a plurality of such part of the front DBR different Bragg wavelength λ S1 *, λ S2 * ...... selected one of the wavelength of the DBR section after these different Bragg wavelengths λ S1, λ S2 One of the selected wavelengths spectrally aligns different Bragg wavelengths. 如請求項1所述之雷射二極體,其中:該等前波長選擇性光柵部分或後波長選擇性光柵部分及該等專用前調諧訊號控制節點或專用後調諧訊號控制節點經構造,以使得施加至該等專用前調諧訊號控制節點或專用後調諧訊號控制節點中之一者的一調諧訊號將該等不同布拉格波長λS1*、λS2*......中之一選定波長置放為與該等不同布拉格波長λS1、λS2中之一選定波長光譜式對齊;及該等不同布拉格波長λS1*、λS2*......比該等不同布拉格波長λS1、λS2更短或更長。 The laser diode of claim 1, wherein: the front wavelength selective grating portion or the rear wavelength selective grating portion and the dedicated front tuning signal control node or the dedicated post tuning signal control node are configured to And causing a tuning signal applied to one of the dedicated pre-tuning signal control nodes or the dedicated post-tuning signal control node to select one of the different Bragg wavelengths λ S1 *, λ S2 * Aligned with a selected wavelength spectral pattern of one of the different Bragg wavelengths λ S1 , λ S2 ; and the different Bragg wavelengths λ S1 *, λ S2 * ... are different than the different Bragg wavelengths λ S1 , λ S2 is shorter or longer. 如請求項2所述之雷射二極體,其中該等前波長選擇性光柵部分及後波長選擇性光柵部分與該等專用前調諧訊號控制節點及專用後調諧訊號控制節點經構造,以使得施加至與一較短波長相關聯之一專用前調諧訊號控制節點或專用後調諧訊號控制節點的一調諧訊號將該等不同布拉格波長λS1*、λS2*......中之一選定波長置放為與該等不同布拉格波長λS1、λS2中之一選定波長光譜式對齊。 The laser diode of claim 2, wherein the pre-wavelength selective grating portion and the post-wavelength selective grating portion are configured with the dedicated pre-tuning signal control node and the dedicated post-tuning signal control node to Applying to a tuning signal of a dedicated pre-tuning signal control node or a dedicated post-tuning signal control node associated with a shorter wavelength, one of the different Bragg wavelengths λ S1 *, λ S2 * ... The selected wavelength is placed in alignment with a selected wavelength spectrum of one of the different Bragg wavelengths λ S1 , λ S2 . 如請求項2所述之雷射二極體,其中,該等不同布拉格波長λS1*、λS2*......中之每一波長關於該等相應的不同布拉格波長λS1、λS2......光譜式地偏離0.5 mm之一DBR長度之約4.1 cm-1或更多。 The laser diode of claim 2, wherein each of the different Bragg wavelengths λ S1 *, λ S2 *, ... is associated with the respective different Bragg wavelengths λ S1 , λ S2 ... spectrally deviates from the length of one of 0.5 mm DBR by about 4.1 cm -1 or more. 如前述請求項中之一項所述之雷射二極體,其中:該等不同布拉格波長λS1*、λS2*......中之一或多個波 長關於該等不同布拉格波長λS1、λS2......光譜式對齊;及該等前波長選擇性光柵部分與該等專用前調諧訊號控制節點經構造,以使得施加至該等專用前調諧訊號控制節點之調諧訊號將改變該等不同布拉格波長λS1*、λS2*......中之選定波長,以使得除了一個以外的所有該等不同布拉格波長λS1*、λS2*......關於該等不同布拉格波長λS1、λS2......光譜式偏離。 A laser diode according to one of the preceding claims, wherein one or more of the different Bragg wavelengths λ S1 *, λ S2 *, ... with respect to the different Bragg wavelengths λ S1 , λ S2 ... spectral alignment; and the pre-wavelength selective grating portions and the dedicated pre-tuned signal control nodes are configured to be tuned to the dedicated pre-tuned signal control node The signal will change the selected wavelength of the different Bragg wavelengths λ S1 *, λ S2 *... such that all but one of the different Bragg wavelengths λ S1 *, λ S2 *..... Regarding the different Bragg wavelengths λ S1 , λ S2 ... spectral deviation. 如前述請求項中之一項所述之雷射二極體,其中:該等前調諧訊號控制節點包含熱調諧節點;及該等不同布拉格波長λS1*、λS2*......中之每一波長比該等不同布拉格波長λS1、λS2......更短,以使得藉由該等前熱調諧節點中之一或多個節點引發之一溫度增加將增加該等不同布拉格波長λS1*、λS2*......。 A laser diode according to any one of the preceding claims, wherein: the pre-tuned signal control node comprises a thermally tuned node; and the different Bragg wavelengths λ S1 *, λ S2 *... Each of the wavelengths is shorter than the different Bragg wavelengths λ S1 , λ S2 ... such that a temperature increase by one or more of the nodes in the front thermal tuning node will increase Different Bragg wavelengths λ S1 *, λ S2 *... 如前述請求項中之一項所述之雷射二極體,其中該等前調諧訊號控制節點包含用於直流注入至該等前波長選擇性光柵部分之電觸頭。 A laser diode according to any of the preceding claims, wherein the pre-tuned signal control nodes comprise electrical contacts for DC injection into the front wavelength selective grating portions. 如前述請求項中之一項所述之雷射二極體,其中:該等後波長選擇性光柵部分包含與該等後波長選擇性光柵部分相關聯之一或多個後調諧訊號控制節點;及該等後調諧訊號控制節點經構造以使得施加至該等後調諧訊號控制節點中之一或多個節點之一或多個調諧訊號將改變該等不同布拉格波長λS1、λS2......中之一或多個波長。 The laser diode of any one of the preceding claims, wherein: the post-wavelength selective grating portion comprises one or more post-tuning signal control nodes associated with the post-wavelength selective grating portions; And the post-tuning signal control nodes are configured such that one or more of the tuning signals applied to one or more of the post-tuning signal control nodes will change the different Bragg wavelengths λ S1 , λ S2 ... One or more wavelengths in .... 如前述請求項中之一項所述之雷射二極體,其中一專用前控制節點包含與一單一前波長選擇性光柵部分相關聯之一單一控制節點或與一單一前波長選擇性光柵部分相關聯之複數個調諧訊號控制節點。 A laser diode according to one of the preceding claims, wherein a dedicated pre-control node comprises a single control node associated with a single pre-wavelength selective grating portion or with a single pre-wavelength selective grating portion Associated with a plurality of tuning signal control nodes. 如前述請求項中之一項所述之雷射二極體,其中:該雷射二極體之該波導芯包含量子級聯芯之一堆疊;及每一量子級聯芯包含一增益峰值,該增益峰值近似於該等後波長選擇性光柵部分之該等不同布拉格波長λS1、λS2......中之一個波長。 A laser diode according to any one of the preceding claims, wherein: the waveguide core of the laser diode comprises a stack of quantum cascade cores; and each quantum cascade core comprises a gain peak, The gain peak approximates one of the different Bragg wavelengths λ S1 , λ S2 , ... of the post-wavelength selective grating portion. 如請求項10所述之雷射二極體,其中:該雷射二極體之該增益部分特徵在於一波長相關光學增益光譜;及具有相對較低之光學增益之該等量子級聯芯經置放為相對地接近該雷射二極體之光學傳播模式之中心,而具有相對較高之光學增益之該等量子級聯芯經置放為相對地遠離該雷射二極體之該光學傳播模式之該中心。 The laser diode of claim 10, wherein: the gain portion of the laser diode is characterized by a wavelength dependent optical gain spectrum; and the quantum cascade core having a relatively low optical gain Positioned relatively close to the center of the optical propagation mode of the laser diode, and the quantum cascade cores having relatively high optical gains are placed relatively far from the laser diode The center of the communication model. 如請求項10所述之雷射二極體,其中:該雷射二極體之該增益部分特徵在於一波長相關光學增益光譜;及用一相對較高數目之級或相對較高之限制因子構造具有相對較低之光學增益之該等量子級聯芯,而用一相對較低數目之級或相對較低之限制因子構造具有相對較高之光學增益之該等量子級聯芯。 The laser diode of claim 10, wherein: the gain portion of the laser diode is characterized by a wavelength dependent optical gain spectrum; and using a relatively high number of levels or a relatively high limiting factor The quantum cascade cores having relatively low optical gains are constructed, and the quantum cascade cores having relatively high optical gains are constructed with a relatively low number of stages or relatively low limiting factors. 如請求項10所述之雷射二極體,其中:相對較短之波長量子級聯芯經置放為相對地接近該雷射二極體之該光學傳播模式之該中心,而相對較長之波長量子級聯芯經置放為相對地遠離該雷射二極體之該光學傳播模式之該中心。 The laser diode of claim 10, wherein: the relatively short wavelength quantum cascade core is placed relatively close to the center of the optical propagation mode of the laser diode, and is relatively long The wavelength quantum cascade core is placed at a center relatively far from the optical propagation mode of the laser diode. 如前述請求項中之一項所述之雷射二極體,其中該雷射二極體之該波導芯包含具有一增益光譜之一單一量子級聯芯,該增益光譜足夠寬以包含該等後波長選擇性光柵部分之該等不同布拉格波長λS1、λS2......。 A laser diode according to any one of the preceding claims, wherein the waveguide core of the laser diode comprises a single quantum cascade core having a gain spectrum, the gain spectrum being sufficiently wide to include such The different Bragg wavelengths λ S1 , λ S2 , ... of the post-wavelength selective grating portion. 如前述請求項中之一項所述之雷射二極體,其中該雷射二極體之該波導芯包含一單極QCL,該單極QCL使用子帶間過渡以產生光子。 A laser diode according to any of the preceding claims, wherein the waveguide core of the laser diode comprises a monopolar QCL that uses sub-band transitions to produce photons. 如前述請求項1至14中之一項所述之雷射二極體,其中該雷射二極體之該波導芯包含一雙極雷射,該雙極雷射使用帶間過渡以產生光子。 The laser diode according to any one of the preceding claims 1 to 14, wherein the waveguide core of the laser diode comprises a bipolar laser, and the bipolar laser uses a transition between the bands to generate photons. . 如前述請求項中之一項所述之雷射二極體,其中:該雷射二極體之該增益部分特徵在於一波長相關光學增益光譜;及該等前波長選擇性光柵部分及後波長選擇性光柵部分沿該雷射二極體之該光傳播軸佈置,以使得對應於該光學增益光譜之相對較低增益部中之反射比峰值的光柵部分定位於相對地接近該雷射二極體之該增益部分,而對應於該光學增益光譜之相對較高增益部中之反射比峰值的光柵部分定位於相對地遠離該雷射二極體之該增益 部分。 A laser diode according to any one of the preceding claims, wherein: the gain portion of the laser diode is characterized by a wavelength dependent optical gain spectrum; and the front wavelength selective grating portion and the latter wavelength a selective grating portion disposed along the light propagation axis of the laser diode such that a grating portion corresponding to a peak of a reflectance in a relatively lower gain portion of the optical gain spectrum is positioned relatively close to the laser diode The gain portion of the body, and the grating portion corresponding to the peak of the reflectance in the relatively higher gain portion of the optical gain spectrum is positioned relatively far from the gain of the laser diode section. 如前述請求項中之一項所述之雷射二極體,其中:該雷射二極體之該增益部分特徵在於一波長相關光學增益光譜;及對應於該光學增益光譜之最低增益部中之一反射比峰值的該前光柵部分定位於最接近沿該雷射二極體之該光傳播軸之一前部的該增益部分。 A laser diode according to any one of the preceding claims, wherein: the gain portion of the laser diode is characterized by a wavelength dependent optical gain spectrum; and a lowest gain portion corresponding to the optical gain spectrum The front grating portion of one of the reflectance peaks is positioned closest to the gain portion along a front of one of the light propagation axes of the laser diode. 如前述請求項中之一項所述之雷射二極體,其中:該雷射二極體之該增益部分特徵在於一波長相關光學增益光譜;及對應於該光學增益光譜之該最低增益部中之一反射比峰值的該後光柵部分定位於最接近沿該雷射二極體之該光傳播軸之一後部的該增益部分。 A laser diode according to any one of the preceding claims, wherein: the gain portion of the laser diode is characterized by a wavelength dependent optical gain spectrum; and the lowest gain portion corresponding to the optical gain spectrum The rear grating portion of one of the reflectance peaks is positioned closest to the gain portion along the rear of one of the light propagation axes of the laser diode. 一種多波長分散式布拉格反射鏡(DBR)雷射二極體,該DBR雷射二極體包含前DBR部分及後DBR部分、複數個專用調諧訊號控制節點、一增益部分及在該雷射二極體之前端面與後端面之間延伸之一波導芯,其中:該增益部分包含一活性區域且該增益部分沿藉由該雷射二極體之該波導芯界定之一光傳播軸定位於該前DBR部分與該後DBR部分之間;該前DBR部分包含複數個前波長選擇性光柵部分,該複數個前波長選擇性光柵部分界定對應於不同布拉格波長λS1*、λS2*......之複數個不同光柵週期性Λ1*、Λ2*......; 該後DBR部分包含複數個後波長選擇性光柵部分,該複數個後波長選擇性光柵部分界定對應於不同布拉格波長λS1、λS2......之複數個不同光柵週期性Λ1、Λ2......;該等不同布拉格波長中λS1*、λS2*......中之每一波長關於該等不同布拉格波長λS1、λS2......較短且光譜式偏離;該複數個專用調諧訊號控制節點與該等前波長選擇性光柵部分中之個別部分相關聯,且該複數個專用調諧訊號控制節點經構造,以使得施加至該等前專用調諧訊號控制節點中之一或多個節點之一或多個調諧訊號將該前DBR部分之該等不同布拉格波長λS1*、λS2*......中之一選定波長與該後DBR部分之該等不同布拉格波長λS1、λS2......中之一選定波長光譜式地對齊不同布拉格波長;該雷射二極體之該波導芯包含量子級聯芯之一堆疊;每一量子級聯芯包含一增益峰值,該增益峰值近似於該等後波長選擇性光柵部分之該等不同布拉格波長λS1、λS2......中之一個波長;該雷射二極體之該增益部分特徵在於一波長相關光學增益光譜;具有相對較低之光學增益之該等量子級聯芯經置放為相對地接近該雷射二極體之該光學傳播模式之中心,而具有相對較高之光學增益之該等量子級聯芯經置放為相對遠離該雷射二極體之該光學傳播模式之該中心;及 對應於該光學增益光譜之最低增益部中之一反射比峰值的該前光柵部分定位於最接近沿該雷射二極體之該光傳播軸之一前部的該增益部分。 A multi-wavelength decentralized Bragg reflector (DBR) laser diode comprising a front DBR portion and a rear DBR portion, a plurality of dedicated tuning signal control nodes, a gain portion, and a laser portion a waveguide core extending between the front end surface and the rear end surface of the polar body, wherein: the gain portion includes an active region and the gain portion is positioned along a light propagation axis defined by the waveguide core of the laser diode Between the front DBR portion and the rear DBR portion; the front DBR portion includes a plurality of front wavelength selective grating portions, the plurality of front wavelength selective grating portions being defined corresponding to different Bragg wavelengths λ S1 *, λ S2 *... a plurality of different grating periodicities Λ 1 *, Λ 2 *...; the rear DBR portion includes a plurality of post-wavelength selective grating portions, the plurality of post-wavelength selective grating portions being defined corresponding to different Bragg wavelengths λ S1, λ S2 ...... plurality of different grating periodicity Λ 1, Λ 2 ......; these different Bragg wavelengths λ S1 *, λ S2 * .... Each wavelength in .. with respect to the different Bragg wavelengths λ S1 , λ S2 ..... Short and spectrally offset; the plurality of dedicated tuning signal control nodes are associated with respective ones of the pre-wavelength selective grating portions, and the plurality of dedicated tuning signal control nodes are configured to be applied to the plurality of One or more tuning signals of one or more of the former dedicated tuning signal control nodes select one of the different wavelengths of the different Bragg wavelengths λ S1 *, λ S2 *, ... a selected wavelength of the different Bragg wavelengths λ S1 , λ S2 , ... of the post DBR portion is spectrally aligned with different Bragg wavelengths; the waveguide core of the laser diode comprises a quantum cascade core a stack; each quantum cascade core includes a gain peak that approximates one of the different Bragg wavelengths λ S1 , λ S2 , ... of the post-wavelength selective grating portion; The gain portion of the laser diode is characterized by a wavelength dependent optical gain spectrum; the quantum cascade cores having relatively low optical gains are placed relatively close to the optical propagation mode of the laser diode Center of The quantum cascade cores having a relatively high optical gain are placed at a center of the optical propagation mode relatively far from the laser diode; and one of the lowest gain portions corresponding to the optical gain spectrum The front grating portion of the peak is positioned closest to the gain portion along a front portion of the light propagation axis of the laser diode.
TW101141326A 2011-11-07 2012-11-07 Multi-wavelength DBR laser TW201328091A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161556434P 2011-11-07 2011-11-07
US13/570,719 US20130114628A1 (en) 2011-11-07 2012-08-09 Multi-wavelength dbr laser

Publications (1)

Publication Number Publication Date
TW201328091A true TW201328091A (en) 2013-07-01

Family

ID=48223655

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101141326A TW201328091A (en) 2011-11-07 2012-11-07 Multi-wavelength DBR laser

Country Status (5)

Country Link
US (1) US20130114628A1 (en)
EP (1) EP2777107A2 (en)
KR (1) KR20140089548A (en)
TW (1) TW201328091A (en)
WO (1) WO2013070484A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11539190B2 (en) 2016-09-02 2022-12-27 Kyushu University, National University Corporation Continuous-wave organic thin-film distributed feedback laser and electrically driven organic semiconductor laser diode
US11626710B2 (en) 2017-02-07 2023-04-11 Kyushu University, National University Corporation Current-injection organic semiconductor laser diode, method for producing same and program
US12015248B2 (en) 2016-09-02 2024-06-18 Kyushu University, National University Corporation Continuous-wave organic thin-film distributed feedback laser and electrically driven organic semiconductor laser diode

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2926420A1 (en) * 2012-11-30 2015-10-07 Thorlabs Quantum Electronics, Inc. Monolithic wide wavelength tunable mid-ir laser sources
US9660417B2 (en) 2014-01-31 2017-05-23 Photodigm, Inc. Light emitting device with extended mode-hop-free spectral tuning ranges and method of manufacture
US20150311665A1 (en) * 2014-04-29 2015-10-29 Board Of Regents, The University Of Texas System External cavity system generating broadly tunable terahertz radiation in mid-infrared quantum cascade lasers
CN110311024A (en) * 2015-02-17 2019-10-08 新世纪光电股份有限公司 Light emitting diode
CN107482477B (en) * 2017-07-28 2019-09-10 长春理工大学 The high-power distributed feedback semiconductor laser on surface and the modulation of side dielectric grating
CN114094442A (en) * 2021-11-10 2022-02-25 海南师范大学 Dual-wavelength quantum cascade semiconductor laser chip

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5379318A (en) * 1994-01-31 1995-01-03 Telefonaktiebolaget L M Ericsson Alternating grating tunable DBR laser
WO2002075867A2 (en) * 2001-03-19 2002-09-26 Bookham Technology Tuneable laser
GB2377545A (en) * 2001-07-14 2003-01-15 Marconi Caswell Ltd Tuneable Laser
DE10143956A1 (en) * 2001-09-07 2003-04-03 Fraunhofer Ges Forschung Quantum Cascade Lasers
US7403552B2 (en) * 2006-03-10 2008-07-22 Wisconsin Alumni Research Foundation High efficiency intersubband semiconductor lasers

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11539190B2 (en) 2016-09-02 2022-12-27 Kyushu University, National University Corporation Continuous-wave organic thin-film distributed feedback laser and electrically driven organic semiconductor laser diode
US11909177B2 (en) 2016-09-02 2024-02-20 Kyushu University, National University Corporation Continuous-wave organic thin-film distributed feedback laser and electrically driven organic semiconductor laser diode
US12015248B2 (en) 2016-09-02 2024-06-18 Kyushu University, National University Corporation Continuous-wave organic thin-film distributed feedback laser and electrically driven organic semiconductor laser diode
US11626710B2 (en) 2017-02-07 2023-04-11 Kyushu University, National University Corporation Current-injection organic semiconductor laser diode, method for producing same and program
TWI798201B (en) * 2017-02-07 2023-04-11 國立大學法人九州大學 Current-injection organic semiconductor laser diode, method for producing same and program
US11955776B2 (en) 2017-02-07 2024-04-09 Kyushu University, National University Corporation Current-injection organic semiconductor laser diode, method for producing same and program

Also Published As

Publication number Publication date
WO2013070484A2 (en) 2013-05-16
KR20140089548A (en) 2014-07-15
EP2777107A2 (en) 2014-09-17
US20130114628A1 (en) 2013-05-09
WO2013070484A3 (en) 2013-07-04

Similar Documents

Publication Publication Date Title
TW201328091A (en) Multi-wavelength DBR laser
JP6684094B2 (en) Tunable laser device and laser module
Wang et al. Widely tunable 2.3 μm III-V-on-silicon Vernier lasers for broadband spectroscopic sensing
Lee et al. DFB quantum cascade laser arrays
Mansuripur et al. Widely tunable mid-infrared quantum cascade lasers using sampled grating reflectors
JP4989834B2 (en) Improved mirror and cavity design for sample grating distributed Bragg reflector lasers
CN104185932B (en) Heater element for multi-wavelength DBR laser
EP2828939A2 (en) Waveguide structure for mid-ir multiwavelength concatenated distributed-feedback laser with an active core made of cascaded stages
JP2004336002A (en) Sampled grating distributed feedback variable wavelength semiconductor laser connected to sampled grating bragg reflector
JP2007048988A (en) Semiconductor laser, laser module, optical component, laser device, and manufacturing method and control method of semiconductor laser
CN107624206A (en) Cursor effect DBR laser including integrating tuned cell
TW201334335A (en) Mid-IR multiwavelength concatenated distributed-feedback laser with an active core made of cascaded stages
WO2016152274A1 (en) Variable wavelength laser element and laser module
Liu et al. Coherent beam combining of high power broad-area laser diode array with near diffraction limited beam quality and high power conversion efficiency
CN105075038A (en) Semiconductor laser element, integrated semiconductor laser element, and method for manufacturing semiconductor laser element
Bloom et al. Coherent combining of two quantum-cascade lasers in a Michelson cavity
CN105075037A (en) Monolithic wide wavelength tunable mid-ir laser sources
Liu et al. Single-mode quantum cascade lasers employing asymmetric Mach-Zehnder interferometer type cavities
JP6274322B2 (en) LASER DEVICE AND LASER DEVICE CONTROL METHOD
CN107104362A (en) Semiconductor laser diode and its manufacture method
JP2002527911A (en) Tunable laser and method of tuning
Bergonzo et al. Widely Vernier tunable external cavity laser including a sampled fiber Bragg grating with digital wavelength selection
Byrd et al. Blue laser diode wavelength selection with a variable reflectivity resonant mirror
US10283936B2 (en) Quantum cascade laser with serially configured gain sections
Joshi et al. Mode locked InAs/InP quantum dash based DBR Laser monolithically integrated with a semiconductor optical amplifier