TW201326917A - An electromagnetic wave polarizing component - Google Patents
An electromagnetic wave polarizing component Download PDFInfo
- Publication number
- TW201326917A TW201326917A TW100149884A TW100149884A TW201326917A TW 201326917 A TW201326917 A TW 201326917A TW 100149884 A TW100149884 A TW 100149884A TW 100149884 A TW100149884 A TW 100149884A TW 201326917 A TW201326917 A TW 201326917A
- Authority
- TW
- Taiwan
- Prior art keywords
- electromagnetic wave
- polarizing element
- geometric pattern
- spiral
- polarized
- Prior art date
Links
Landscapes
- Polarising Elements (AREA)
Abstract
Description
本發明是有關於一種偏振元件,且特別是有關於一種電磁波偏振元件。This invention relates to a polarizing element, and more particularly to an electromagnetic wave polarizing element.
電磁波及光波之偏振特性應用相當廣泛,可應用於固態光源、顯示系統、照明、視覺辨識、通訊系統等領域。傳統偏光片多為吸收式或是反射式。吸收式偏振片之材料會將一偏極方向之電磁波吸收,也就是至少有一半之電磁波能量之損耗,故光之穿透率會先減少一半。而反射式偏振元件可使單一偏振穿透,另一正交之偏振光波反射,但若需將此偏振光波轉換至另一極化方向則需額外之結構及空間作偏光回收。因此,傳統偏光片雖能達到偏振效果,但不是光穿透率降低相當多,就是需外加附件而增加成本。The polarization characteristics of electromagnetic waves and light waves are widely used in solid-state light sources, display systems, lighting, visual identification, communication systems, and the like. Traditional polarizers are mostly absorptive or reflective. The material of the absorbing polarizer absorbs electromagnetic waves in a polarized direction, that is, at least half of the electromagnetic wave energy is lost, so the light transmittance is first reduced by half. The reflective polarizing element can penetrate a single polarization and reflect another orthogonal polarized light wave. However, if this polarized light wave is to be converted to another polarization direction, additional structure and space are required for polarization recovery. Therefore, although the conventional polarizer can achieve the polarization effect, the light transmittance is not reduced much, that is, the accessory needs to be added to increase the cost.
本發明電磁波偏振元件是由複數個單元結構依特定週期排列所組成,且排列之週期小於電磁波波長,單元結構具特殊設計幾何形狀圖案,可使入射此結構之非偏振電磁波轉換成具高單一偏振性偏振電磁波。相較於習知技術,本發明之偏振元件具單一高偏振性及高穿透率。The electromagnetic wave polarizing element of the invention is composed of a plurality of unit structures arranged according to a specific period, and the period of the arrangement is smaller than the wavelength of the electromagnetic wave, and the unit structure has a special design geometric pattern, so that the unpolarized electromagnetic wave incident on the structure can be converted into a high single polarization. Polarized electromagnetic waves. Compared to the prior art, the polarizing element of the present invention has a single high polarization and a high transmittance.
本發明提供一種電磁波偏振元件,至少包括複數個單元結構,而各所述單元結構具有至少一幾何圖案,且所述幾何圖案具有一主共振偏振軸。相鄰所述單元結構之間的所述幾何圖案具一排列間隔,所述排列間隔小於所述入射電磁波之波長。所述入射電磁波包含一第一極化電磁波及一第二極化電磁波,當所述第一極化電磁波穿過所述幾何圖案時,所述第一極化電磁波之一第一極化方向會轉至所述主共振偏振軸方向,同時所述第二極化電磁波穿過所述幾何圖案時,所述第二極化電磁波之一第二極化方向會轉至所述主共振偏振軸方向,而獲得一第三極化電磁波。The present invention provides an electromagnetic wave polarizing element comprising at least a plurality of unit structures, each of the unit structures having at least one geometric pattern, and the geometric pattern having a main resonant polarization axis. The geometric patterns between adjacent unit structures have an arrangement interval which is smaller than a wavelength of the incident electromagnetic wave. The incident electromagnetic wave includes a first polarized electromagnetic wave and a second polarized electromagnetic wave, and when the first polarized electromagnetic wave passes through the geometric pattern, a first polarization direction of the first polarized electromagnetic wave Turning to the main resonant polarization axis direction, while the second polarized electromagnetic wave passes through the geometric pattern, a second polarization direction of the second polarized electromagnetic wave is turned to the main resonant polarization axis direction And obtain a third polarized electromagnetic wave.
在本發明之實施例中,所述幾何圖案的形狀包括垂直長條、水平長條或其組合、連續螺旋形、圓形、橢圓形、多邊形或其組合。In an embodiment of the invention, the shape of the geometric pattern comprises a vertical strip, a horizontal strip or a combination thereof, a continuous spiral, a circle, an ellipse, a polygon, or a combination thereof.
在本發明之實施例中,所述電磁波偏振元件更形成於一基板上,劃分為所述複數個單元結構,其中所述幾何圖案係為凸起。In an embodiment of the invention, the electromagnetic wave polarizing element is further formed on a substrate and divided into the plurality of unit structures, wherein the geometric pattern is a protrusion.
在本發明之實施例中,所述之電磁波偏振元件為一金屬膜層,而所述幾何圖案係為中空或填有一介電物質。In an embodiment of the invention, the electromagnetic wave polarizing element is a metal film layer, and the geometric pattern is hollow or filled with a dielectric substance.
為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.
本發明提供一電磁波偏振元件,當非偏振電磁波經過此電磁波偏振元件後,將轉換成單一偏振性之電磁波。此電磁波偏振元件係由複數個單元結構依特定間隔排列所組成,且排列之間隔(週期)小於電磁波波長。單元結構設計具特定幾何形狀,可使入射此偏振元件之非偏振電磁波轉換成具單一偏振性,且入射電磁波之電磁波耗損低,也就是此電磁波偏振元件具有高穿透率。The present invention provides an electromagnetic wave polarizing element that is converted into a single polarized electromagnetic wave when the unpolarized electromagnetic wave passes through the electromagnetic wave polarizing element. The electromagnetic wave polarizing element is composed of a plurality of unit structures arranged at a specific interval, and the interval (period) of the array is smaller than the wavelength of the electromagnetic wave. The unit structure is designed to have a specific geometry, so that the unpolarized electromagnetic wave incident on the polarizing element can be converted into a single polarization, and the electromagnetic wave of the incident electromagnetic wave is low, that is, the electromagnetic wave polarizing element has a high transmittance.
圖1A是一種電磁波偏振元件的示意圖,圖1B是圖1A中一單元結構的放大立體示意圖,而圖1C是圖1B的上視示意圖。如圖1A所示,該電磁波偏振元件100本身為一膜層或膜片,例如為一金屬膜層,具有一厚度t。該電磁波偏振元件100包含複數個單元結構102(以虛線分割),每一個單元結構102設計具有特定幾何形狀之幾何圖案104,且各相鄰單元結構102之間的排列間隔為d。由於此實施例中每一個單元結構102具有一樣螺旋形狀的幾何圖案104,且每一個單元結構102實質上為正方形(上視方向),因此,幾何圖案104之排列週期也就是幾何圖案104的排列間隔d。根據本發明之原理,相鄰單元結構102之間的幾何圖案104的排列間隔d(也就是排列週期)需小於入射電磁波之波長。1A is a schematic view of an electromagnetic wave polarizing element, FIG. 1B is an enlarged perspective view of a unit structure of FIG. 1A, and FIG. 1C is a top view of FIG. 1B. As shown in FIG. 1A, the electromagnetic wave polarizing element 100 itself is a film or a film, such as a metal film layer, having a thickness t. The electromagnetic wave polarizing element 100 includes a plurality of unit structures 102 (divided in dashed lines), each unit structure 102 is designed with a geometric pattern 104 of a particular geometry, and the spacing between adjacent unit structures 102 is d. Since each of the unit structures 102 in this embodiment has a geometric pattern 104 of the same spiral shape, and each of the unit structures 102 is substantially square (upper viewing direction), the arrangement period of the geometric patterns 104 is also the arrangement of the geometric patterns 104. Interval d. In accordance with the principles of the present invention, the arrangement spacing d (i.e., the arrangement period) of the geometric patterns 104 between adjacent unit structures 102 needs to be less than the wavelength of the incident electromagnetic waves.
如圖1B及1C所示,單元結構102中具螺旋形狀的幾何圖案104係為中空(即貫穿單元結構102),此中空螺旋形狀的幾何圖案104之螺旋間距與螺旋線寬相同,螺旋長度計算如下:As shown in FIGS. 1B and 1C, the geometric pattern 104 having a spiral shape in the unit structure 102 is hollow (ie, through the unit structure 102), and the helical pitch of the geometric pattern 104 of the hollow spiral shape is the same as the spiral width, and the spiral length is calculated. as follows:
其中n為螺旋半圈之圈數(即將螺旋視為多個半圈的連續組合),w為螺旋線寬,R為螺旋的半徑。在本實施例中,螺旋半徑R的長度會隨半圈圈數n而逐次增加一螺旋線寬w長。Where n is the number of turns of the spiral half turn (ie, the spiral is considered as a continuous combination of multiple half turns), w is the spiral width, and R is the radius of the spiral. In the present embodiment, the length of the spiral radius R is gradually increased by a spiral width w length with a half circle number n .
端視所欲偏振的入射電磁波之波長範圍或產品需求,本發明中幾何圖案104的螺旋形式、螺旋線寬w、螺旋長度、螺旋間之間距,甚或膜層結構(即電磁波偏振元件100)厚度t均可相應調整。在一實施例中,定義入射電磁波波長為λ,則螺旋線寬w可為0.05λ~0.3 λ,穿透電磁波偏振元件100厚度t可為0.003λ~0.1 λ。舉例而言,入射電磁波在可見光波段400 nm~750 nm時,螺旋線寬w可為50~100 nm,穿透電磁波偏振元件100厚度t可為50 nm。在紅外光1 μm~10 μm時,螺旋線寬w可為160 nm,穿透電磁波偏振元件100厚度t可為200 nm。在兆赫波段2THz~10THz(30 μm~150 μm)時,螺旋線寬w可為1μm,穿透電磁波偏振元件100厚度t可為0.1μm。在微波波段2GHz~10GHz時,螺旋線寬w可為1 mm,穿透電磁波偏振元件100厚度t可為0.1mm。當幾何圖案104為螺旋形狀時,穿透電磁波偏振元件100的電磁波之橢偏率可小於0.1,且電磁波偏振元件100穿透率T可大於0.7。Regarding the wavelength range or product requirement of the incident electromagnetic wave to be polarized, the spiral form of the geometric pattern 104, the spiral width w , the spiral length, the inter-spiral distance, or even the thickness of the film structure (ie, the electromagnetic wave polarizing element 100) in the present invention. t can be adjusted accordingly. In an embodiment, the wavelength of the incident electromagnetic wave is defined as λ, and the width w of the spiral line may be 0.05λ~0.3 λ, and the thickness t of the electromagnetic wave polarizing element 100 may be 0.003λ~0.1 λ. For example, when the incident electromagnetic wave is in the visible light band of 400 nm to 750 nm, the spiral width w can be 50 to 100 nm, and the thickness of the electromagnetic wave polarizing element 100 can be 50 nm. When the infrared light is 1 μm~10 μm, the spiral width w can be 160 nm, and the thickness of the penetrating electromagnetic wave polarizing element 100 can be 200 nm. In the megahertz band of 2 THz to 10 THz (30 μm to 150 μm), the spiral width w may be 1 μm, and the thickness t of the penetrating electromagnetic wave polarizing element 100 may be 0.1 μm. In the microwave band of 2 GHz to 10 GHz, the spiral width w can be 1 mm, and the thickness t of the electromagnetic wave polarizing element 100 can be 0.1 mm. When the geometric pattern 104 is in a spiral shape, the ellipsometric ratio of the electromagnetic wave penetrating the electromagnetic wave polarizing element 100 may be less than 0.1, and the electromagnetic wave polarizing element 100 may have a transmittance T greater than 0.7.
事實上,本發明所提供的電磁波偏振元件之單元結構乃設計具有特定幾何形狀圖案,而特定幾何形狀圖案可包括垂直及水平長條之組合、連續螺旋、圓形、橢圓形、多邊形或其組合。此處之特定幾何形狀圖案之形狀尺寸乃設計為具極化調變功能,也就是可調整入射電磁波的極化方向。In fact, the unit structure of the electromagnetic wave polarizing element provided by the present invention is designed to have a specific geometric pattern, and the specific geometric pattern may include a combination of vertical and horizontal strips, continuous spiral, circular, elliptical, polygonal or a combination thereof. . The shape of the specific geometric pattern here is designed to have a polarization modulation function, that is, to adjust the polarization direction of incident electromagnetic waves.
圖2A-2C是單一單元結構的幾何圖案的上視示意圖。如圖2A中,單元結構102中具L形狀的幾何圖案104係為中空,此處L形狀的中空幾何圖案104可視為是垂直及水平長條形狀之組合。類似地,圖2B中,單元結構102中具C形狀的幾何圖案104係為中空,而在其他實施例中,幾何圖案104更可填以一透明介電物質。此處C形狀的幾何圖案104可視為是圓形圖案之變化設計。圖2C中,單一單元結構102中具偏心卍形狀的幾何圖案104,而幾何圖案104或可中空或更可填以一透明介電物質。卍形狀的幾何圖案104乃為偏心設計,也就是說,橫邊β1>橫邊β3與縱邊β2>縱邊β4兩條件中至少滿足一項,或是橫邊β1≠橫邊β3,縱邊β2≠縱邊β4則一滿足,即可達到偏心的要求。2A-2C are top plan views of geometric patterns of a single unit structure. As shown in FIG. 2A, the L-shaped geometric pattern 104 in the unit structure 102 is hollow, where the L-shaped hollow geometric pattern 104 can be considered to be a combination of vertical and horizontal elongated shapes. Similarly, in FIG. 2B, the geometric pattern 104 having a C shape in the unit structure 102 is hollow, while in other embodiments, the geometric pattern 104 may be filled with a transparent dielectric substance. Here, the geometric pattern 104 of the C shape can be regarded as a change design of the circular pattern. In Figure 2C, the single unit structure 102 has an eccentrically shaped geometric pattern 104, and the geometric pattern 104 may be hollow or more filled with a transparent dielectric material. The geometric pattern 104 of the crucible shape is an eccentric design, that is, at least one of the conditions of the lateral side β1>the lateral side β3 and the longitudinal side β2>the longitudinal side β4, or the lateral side β1≠the lateral side β3, the longitudinal side When the β2 longitudinal edge β4 is satisfied, the eccentricity requirement can be achieved.
根據另一實施例,本發明之電磁波偏振元件可設計形成在一基板上。According to another embodiment, the electromagnetic wave polarizing element of the present invention can be designed to be formed on a substrate.
圖3A是一種電磁波偏振元件的示意圖,圖3B是圖3A中一單元結構放大的上視示意圖。如圖3A所示,該電磁波偏振元件形成在一透明的基板101上,基板101上可劃分為複數個單元結構102(以虛線分割),每一個單元結構102中設計具有特定幾何形狀之幾何圖案104,其中幾何圖案104係為凸起(突出於基板表面之上),且各單元結構102之間的排列間隔為d。此實施例中每一個單元結構102具有一樣的幾何圖案104,亦即兩個相同大小的正六角形圈框呈對角排列構成幾何圖案104。此處,凸出的幾何圖案104乃是由金屬膜層所構成而以例如電鍍、沈積蝕刻或貼膜方式形成於基板101上。形成在基板101上的該電磁波偏振元件本身可視為以特定週期排列的多個不連續的金屬膜圖案。3A is a schematic view of an electromagnetic wave polarizing element, and FIG. 3B is an enlarged top view of a unit structure of FIG. 3A. As shown in FIG. 3A, the electromagnetic wave polarizing element is formed on a transparent substrate 101. The substrate 101 can be divided into a plurality of unit structures 102 (divided by broken lines), and each unit structure 102 is designed with a geometric pattern of a specific geometric shape. 104, wherein the geometric pattern 104 is a protrusion (projecting above the surface of the substrate), and the arrangement interval between the unit structures 102 is d. Each of the unit structures 102 in this embodiment has the same geometric pattern 104, that is, two identically sized regular hexagonal ring frames are diagonally arranged to form the geometric pattern 104. Here, the convex geometric pattern 104 is formed of a metal film layer and formed on the substrate 101 by, for example, electroplating, deposition etching, or filming. The electromagnetic wave polarizing element formed on the substrate 101 itself can be regarded as a plurality of discontinuous metal film patterns arranged in a specific cycle.
每一個單元結構102實質上為正方形(上視方向),因此,幾何圖案104之排列週期也就是幾何圖案104的排列間隔d。根據本發明之原理,幾何圖案104的排列間隔d(也就是排列週期)需小於入射電磁波之波長。Each of the unit structures 102 is substantially square (upper viewing direction), and therefore, the arrangement period of the geometric patterns 104 is the arrangement interval d of the geometric patterns 104. In accordance with the principles of the present invention, the arrangement spacing d (i.e., the arrangement period) of the geometric patterns 104 needs to be less than the wavelength of the incident electromagnetic waves.
幾何圖案之週期排列包含交錯排列、矩形排列、三角排列、六角排列、環型排列等週期性排列方式。The periodic arrangement of the geometric patterns includes a periodic arrangement such as staggered arrangement, rectangular arrangement, triangular arrangement, hexagonal arrangement, and ring arrangement.
圖4A是單一幾何圖案的上視示意圖,圖4B是圖4A之幾何圖案週期排列所組成一種電磁波偏振元件的上視示意圖。如圖4A所示,該幾何圖形為螺旋形狀的中空幾何圖案104,此螺旋形狀的中空幾何圖案104之螺旋間距與螺旋線寬w相等。於單一單元結構102中具有兩個螺旋形狀的中空幾何圖案104,但其螺旋開口乃朝向不同方向(可呈如約90度角排列)排列,而構成電磁波偏振元件。4A is a top plan view of a single geometric pattern, and FIG. 4B is a top view of an electromagnetic wave polarizing element formed by the periodic arrangement of the geometric patterns of FIG. 4A. As shown in FIG. 4A, the geometry is a spiral-shaped hollow geometric pattern 104 having a helical pitch equal to the helical width w . The hollow geometric pattern 104 having two spiral shapes in the single unit structure 102, but the spiral openings are arranged in different directions (which may be arranged at an angle of, for example, about 90 degrees) to constitute an electromagnetic wave polarizing element.
一般而言,一非偏振電磁波可視為被分成兩正交的偏振電磁波,意即入射電磁波可包含一第一極化電磁波及一第二極化電磁波,當此兩正交偏振的第一與第二極化電磁波入射至此電磁波偏振元件時,當第一與第二極化電磁波穿過幾何圖案104時,由於幾何圖案104具主共振偏振軸(如圖5A-圖5F所示標示,虛線箭頭軸為主共振偏振軸),其中第一極化電磁波的一第一極化方向會轉至幾何圖案104的主共振偏振軸方向,而第二極化電磁波穿過幾何圖案104時,其第二極化方向亦會轉至幾何圖案104的主共振偏振軸方向,也就是兩正交偏振電磁波穿過此電磁波偏振元件時,會同時旋轉至其主共振偏振軸,而達到單一偏振性,產生第三極化電磁波。In general, an unpolarized electromagnetic wave can be regarded as being divided into two orthogonal polarized electromagnetic waves, that is, the incident electromagnetic wave can include a first polarized electromagnetic wave and a second polarized electromagnetic wave, and the first and the second orthogonal polarization When the polarized electromagnetic wave is incident on the electromagnetic wave polarizing element, when the first and second polarized electromagnetic waves pass through the geometric pattern 104, since the geometric pattern 104 has a main resonant polarization axis (as indicated by FIG. 5A - FIG. 5F, the dotted arrow axis) a primary resonant polarization axis), wherein a first polarization direction of the first polarized electromagnetic wave is turned to the main resonant polarization axis direction of the geometric pattern 104, and a second polarized electromagnetic wave passes through the geometric pattern 104, the second pole thereof The direction of the polarization also shifts to the direction of the main resonant polarization axis of the geometric pattern 104, that is, when two orthogonally polarized electromagnetic waves pass through the electromagnetic wave polarizing element, they are simultaneously rotated to their main resonant polarization axis to achieve a single polarization, resulting in a third Polarized electromagnetic waves.
圖5A-圖5D是不同螺旋幾何圖形之偏振方向示意圖。請見圖5A,當螺旋開口方向相對X軸為90度時,其主共振偏振軸y’為125度。請見圖5B,當螺旋開口方向相對X軸為180度時,其主共振偏振軸y’為212度。請見圖5C,當螺旋開口方向相對X軸為270度時,其主共振偏振軸y’為294度。請見圖5D,當螺旋開口方向相對X軸為0度時,其主共振偏振軸y’為26度,顯示螺旋形狀的幾何圖案104之開口會影響主共振偏振軸的角度。此外,請見圖5E與圖5F,當螺旋半圈圈數改變時,也會影響主共振偏振軸的角度,因此,使用者可依需求調整螺旋開口與半圈圈數,來達成所需的主共振偏振軸角度。5A-5D are schematic views of polarization directions of different spiral geometries. Referring to Fig. 5A, when the direction of the spiral opening is 90 degrees with respect to the X-axis, the main resonance polarization axis y' is 125 degrees. Referring to Fig. 5B, when the direction of the spiral opening is 180 degrees with respect to the X-axis, the main resonant polarization axis y' is 212 degrees. Referring to Fig. 5C, when the direction of the spiral opening is 270 degrees with respect to the X-axis, the main resonance polarization axis y' is 294 degrees. Referring to Fig. 5D, when the direction of the spiral opening is 0 degrees with respect to the X-axis, the main resonant polarization axis y' is 26 degrees, and the opening of the geometric pattern 104 showing the spiral shape affects the angle of the main resonant polarization axis. In addition, please refer to Fig. 5E and Fig. 5F. When the number of turns of the spiral half circle changes, the angle of the polarization axis of the main resonance is also affected. Therefore, the user can adjust the number of spiral openings and the number of half turns to achieve the required Main resonance polarization axis angle.
圖6顯示兩不同的、正交的入射偏振電磁波的極化方向於共振頻率之橢偏圖,其入射電磁波波長λ為46.15微米。Figure 6 shows an ellipsometric diagram of the polarization directions of two different, orthogonal incident polarized electromagnetic waves at a resonant frequency with an incident electromagnetic wave wavelength λ of 46.15 microns.
如圖6所示,倘以單元結構102中具螺旋形狀的中空幾何圖案104來舉例,螺旋形狀的中空幾何圖案104之螺旋間距與螺旋線寬相同(w為螺旋線寬),螺旋具5個半圈時(n為螺旋半圈之圈數,n為5時),兩不同的、正交的入射偏振電磁波極化方向的偏振角度分為75度及165度時,此兩正交的偏振電磁波極化方向皆轉至120度位置,而達到出射電磁波具單一偏振性。且由於兩不同的、正交的入射偏振電磁波均轉變成同一極化方向,故其具高穿透率。As shown in FIG. 6, if the hollow geometric pattern 104 having a spiral shape in the unit structure 102 is exemplified, the spiral pitch of the spiral-shaped hollow geometric pattern 104 is the same as the spiral width ( w is a spiral width), and the spiral has 5 In the case of a half turn ( n is the number of turns of the spiral half turn, n is 5), the two orthogonal polarizations are divided into 75 degrees and 165 degrees when the polarization angles of the polarization directions of the two different orthogonal polarizations are divided into 75 degrees and 165 degrees. The polarization directions of the electromagnetic waves are all rotated to a position of 120 degrees, and the emitted electromagnetic waves have a single polarization. And because the two different, orthogonal incident polarized electromagnetic waves are all converted into the same polarization direction, they have a high transmittance.
本案電磁波偏振元件可本身為具有特定週期排列幾何圖案的膜層,或者是形成於基板表面上具有特定週期排列的幾何圖案群。本案電磁波偏振元件可獨立成一膜片以調變電磁波之偏振性,或可直接利用半導體製程,而將本案偏振元件製作於固態光源或基板之上。由於本案電磁波偏振元件可將非偏振電磁波轉變成為具單一偏振性的偏振電磁波,並不像傳統偏光片會造成電磁波能量之大量損耗,故本案偏振元件之電磁波穿透率良好。The electromagnetic wave polarizing element of the present invention may itself be a film layer having a geometric pattern arranged in a specific period, or a geometric pattern group having a specific period of arrangement formed on the surface of the substrate. The electromagnetic wave polarizing element of the present invention can be independently formed into a diaphragm to modulate the polarization of the electromagnetic wave, or the semiconductor manufacturing process can be directly used, and the polarizing element of the present invention can be fabricated on a solid-state light source or a substrate. Since the electromagnetic wave polarizing element of the present invention can convert the unpolarized electromagnetic wave into a polarized electromagnetic wave having a single polarization, unlike the conventional polarizer, the electromagnetic wave energy is greatly depleted, so the electromagnetic wave transmittance of the polarizing element in the present case is good.
與習知技術相比,本案電磁波偏振元件因其結構單純,製造成本較低,且可視產品或應用需求調整,故偏振可調性高。而且,本案偏振元件具高光穿透率,較無電磁波耗損的問題。Compared with the prior art, the electromagnetic wave polarizing element of the present invention has high polarization adjustment because of its simple structure, low manufacturing cost, and adjustment according to the needs of products or applications. Moreover, the polarizing element of the present invention has a high light transmittance, and has no problem of electromagnetic wave loss.
本案之電磁波偏振元件可以廣泛應用,例如可用於製造高偏振性及高光波穿透率之光源,用於液晶顯示系統。並可應用於固態光源、照明、視覺辨識、通訊系統等領域。例如應用於矽基液晶(liquid crystal on silicon,LCoS)之微投影顯示器,可減少雙色分光片、偏光分離器、偏光片及偏光回收等元件之使用,增進光利用率,減少光機體積及降低能耗。或者,在LCD背光模組中使用可增進偏光效率,而影像辨識系統中,偏極化光源可增進影像清晰度。甚至應用於光通訊系統中,可抑制訊號雜訊。。The electromagnetic wave polarizing element of the present invention can be widely applied, for example, to a light source for manufacturing high polarization and high light transmittance, for use in a liquid crystal display system. It can be applied to solid-state light sources, lighting, visual identification, communication systems and other fields. For example, a micro-projection display applied to liquid crystal on silicon (LCoS) can reduce the use of components such as a two-color spectrophotometer, a polarizing splitter, a polarizer, and a polarized light recovery, thereby improving light utilization, reducing the size and reduction of the optical machine. Energy consumption. Alternatively, the use of an LCD backlight module can improve polarization efficiency, and in an image recognition system, a polarized light source can enhance image sharpness. It can even be used in optical communication systems to suppress signal noise. .
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.
100...電磁波偏振元件100. . . Electromagnetic wave polarizing element
101...基板101. . . Substrate
102...單元結構102. . . Unit structure
104...幾何圖案104. . . Geometric patterns
d...排列間隔d. . . Arrange interval
圖1A是一種電磁波偏振元件的示意圖。Fig. 1A is a schematic view of an electromagnetic wave polarizing element.
圖1B是圖1A中一單元結構的放大立體示意圖。Figure 1B is an enlarged perspective view of a unit structure of Figure 1A.
圖1C是圖1B的上視示意圖。Figure 1C is a top plan view of Figure 1B.
圖2A-2C是單一單元結構的幾何形狀圖案的上視示意圖。2A-2C are top plan views of geometric patterns of a single unit structure.
圖3A是一種電磁波偏振元件的示意圖。Fig. 3A is a schematic view of an electromagnetic wave polarizing element.
圖3B是圖3A中一單元結構放大的上視示意圖。Figure 3B is an enlarged top plan view of a unit structure of Figure 3A.
圖4A是單一幾何圖案的上視示意圖。Figure 4A is a top plan view of a single geometric pattern.
圖4B是圖4A之幾何圖案週期排列所組成一種電磁波偏振元件的上視示意圖。Figure 4B is a top plan view of an electromagnetic wave polarizing element comprising the periodic arrangement of the geometric patterns of Figure 4A.
圖5A-圖5F是不同螺旋幾何圖形之偏振方向示意圖。5A-5F are schematic views of polarization directions of different spiral geometries.
圖6是兩不同的、正交的入射偏振電磁波的極化方向於共振頻率之橢偏圖。Figure 6 is an ellipsometric diagram of the polarization directions of two different, orthogonal incident polarized electromagnetic waves at a resonant frequency.
100...電磁波偏振元件100. . . Electromagnetic wave polarizing element
102...單元結構102. . . Unit structure
104...幾何圖案104. . . Geometric patterns
d...排列間隔d. . . Arrange interval
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100149884A TWI435125B (en) | 2011-12-30 | 2011-12-30 | An electromagnetic wave polarizing component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100149884A TWI435125B (en) | 2011-12-30 | 2011-12-30 | An electromagnetic wave polarizing component |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201326917A true TW201326917A (en) | 2013-07-01 |
TWI435125B TWI435125B (en) | 2014-04-21 |
Family
ID=49224990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100149884A TWI435125B (en) | 2011-12-30 | 2011-12-30 | An electromagnetic wave polarizing component |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI435125B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9470819B2 (en) | 2014-08-26 | 2016-10-18 | Tsinghua University | Light emitting device and display device using the same |
-
2011
- 2011-12-30 TW TW100149884A patent/TWI435125B/en active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9470819B2 (en) | 2014-08-26 | 2016-10-18 | Tsinghua University | Light emitting device and display device using the same |
TWI577631B (en) * | 2014-08-26 | 2017-04-11 | 鴻海精密工業股份有限公司 | Light emitting device and display device adopting the light emitting device |
Also Published As
Publication number | Publication date |
---|---|
TWI435125B (en) | 2014-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4838804B2 (en) | Wire grid polarizer with low fill factor | |
US9891460B2 (en) | Substrate for display, display panel and display device | |
WO2017020518A1 (en) | Array substrate, liquid crystal display panel and display device | |
US10684505B2 (en) | Tunable electro-optic filter | |
WO2018076858A1 (en) | Display panel and display device | |
JP2006201782A (en) | Wire grid polarization film, method for manufacturing the same, liquid crystal display using the same, and method for manufacturing mold for forming grid of the same | |
TWI456296B (en) | Transflective liquid crystal display | |
JP2015062066A (en) | Optical metapolarizer device | |
CN113381277B (en) | Circular polarization laser of chiral metamaterial | |
CN102681078B (en) | Grating polarizer | |
TWI495943B (en) | Liquid crystal panel, driving method thereof, and liquid crystal display containing the same | |
US9488764B2 (en) | Wire grid polarizer and backlight unit using the same | |
US10274781B2 (en) | Display device and controlling method | |
US20190377248A1 (en) | Method and apparatus for dynamically variable electrical control of light beam reflective liquid crystal devices | |
CN102809843A (en) | Liquid crystal panel and transflective liquid crystal display | |
KR20110007735A (en) | Double sided liquid crystal display | |
TWI435125B (en) | An electromagnetic wave polarizing component | |
WO2020155279A1 (en) | Optical film layer and display device | |
CN107221732B (en) | Ultra-wideband polarization reconfigurable circular polarizer based on black phosphorus | |
TWI499807B (en) | Fresnel liquid crystal lens and two dimension/three dimension display apparatus | |
KR20120105694A (en) | Liquid crystal display with wide viewing angle | |
WO2014153850A1 (en) | Semitransparent semireflective liquid crystal display panel and display using same | |
US20100085640A1 (en) | Polarizing plate and polarizing device comprising the same | |
US20100079864A1 (en) | Optical sheet | |
CN109188758B (en) | Optical film |