TW201326024A - Micro/nano metallic structure of molecular detector and method for manufacturing the same - Google Patents
Micro/nano metallic structure of molecular detector and method for manufacturing the same Download PDFInfo
- Publication number
- TW201326024A TW201326024A TW100147992A TW100147992A TW201326024A TW 201326024 A TW201326024 A TW 201326024A TW 100147992 A TW100147992 A TW 100147992A TW 100147992 A TW100147992 A TW 100147992A TW 201326024 A TW201326024 A TW 201326024A
- Authority
- TW
- Taiwan
- Prior art keywords
- nano
- micro
- layer
- group
- metal
- Prior art date
Links
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
本發明是有關於一種分子檢測感測器及其製作方法,且特別是有關於一種分子檢測感測器之微奈米金屬結構及其製作方法。The invention relates to a molecular detection sensor and a manufacturing method thereof, and in particular to a micro-nano metal structure of a molecular detection sensor and a manufacturing method thereof.
目前較為廣泛使用的生物晶片為螢光生物晶片及酵素呈色生物晶片,然而,其中螢光標定與多重抗體抗原結合等流程不僅增加檢測複雜度,更使檢測成本大幅增加。有鑑於此,許多非螢光型檢測技術持續被研究開發,包括金屬奈米粒子聚集或分散時顏色改變的偵測方式、激發光源使金屬薄膜產生表面電漿共振(surface plasmon resonance,SPR)而用於偵測因生物分子沉積造成共振角度或反射光強度之變化的方式、金屬奈米粒子瑞利散射(Rayleigh Scattering)偵測方式、激發光源使金屬微奈米粒子或金屬微奈米結構產生局部化表面電漿共振(localized surface plasmon resonance,LSPR)而用於偵測因微量生物分子沉積造成共振頻率變化的方式、激發光源使金屬微奈米粒子或金屬微奈米結構產生局部電磁場表面增強拉曼散射強度(surface enhanced raman scattering,SERS)而用於偵測微量生物分子沉積造成拉曼位移(Raman Shift)的方式、以及利用奈米結(nano-junction)或奈米線(nano-wire)等電性偵測方式。上述這些方法雖然可達成非標記(Label Free)與低濃度偵測的目標,但大部分牽涉奈米化製程,例如微奈米金屬顆粒製作或微奈米結構製作,造成成本提升與量產性不佳的問題。激發光源使金屬薄膜產生表面電漿共振偵測方式雖不涉及奈米化製程,但對於偵測光源、機構精準度與溫度穩定度的要求亦極高。At present, the widely used biochips are fluorescent biochips and enzyme-colored bio-chips. However, the process of combining the fluorescing cursor with the multiplex antibody antigen not only increases the detection complexity, but also greatly increases the detection cost. In view of this, many non-fluorescent detection technologies have been researched and developed, including the detection of color changes when metal nanoparticles are concentrated or dispersed, and the excitation source causes surface plasmon resonance (SPR) of the metal film. A method for detecting a change in a resonance angle or a reflected light intensity due to biomolecular deposition, a Rayleigh Scattering detection method of a metal nanoparticle, an excitation light source to generate a metal micronanoparticle or a metal micronite structure Localized surface plasmon resonance (LSPR) is used to detect the change of resonance frequency caused by trace biomolecule deposition, and the excitation source causes local electromagnetic field surface enhancement of metal micro-nanoparticles or metal micro-nanostructures. Surface enhanced raman scattering (SERS) for detecting the Raman Shift of trace biomolecules and using nano-junctions or nanowires ) Isoelectric detection method. Although these methods can achieve the goal of label free (Label Free) and low concentration detection, most of them involve nano-chemical processes, such as micro-nano metal particle fabrication or micro-nano structure fabrication, resulting in cost increase and mass production. Poor question. The excitation light source makes the surface film plasma resonance detection method of the metal film, although it does not involve the nanocrystallization process, but the requirements for detecting the light source, the mechanism precision and the temperature stability are also extremely high.
局部化表面電漿共振感測晶片檢測方式是國際先進研究實驗室近十年才開始發展的檢測技術,其工作原理乃利用全波段光源激發微奈米金屬顆粒或金屬微奈米結構之局部化表面電漿共振,進而在金屬顆粒或結構上產生局部化電場。有別於一般金屬薄膜之表面電漿共振,局部化電場之有效範圍可小於數十奈米,而一般表面電漿共振產生之表面消散波(evanescent wave)的有效範圍則大約為200奈米。一般之表面電漿共振晶片,其偵測方式需使用極精準之角度掃描反射率變化或固定某特定角度之多波長或多點反射強度偵測,對於偵測光源、機構精準度與溫度穩定度的要求均極高。相較之下,局部化電場則可感知極少量分子造成的微小折射率變化。The localized surface plasma resonance sensing wafer inspection method is a detection technology developed by the international advanced research laboratory in the past ten years. Its working principle is to use the full-band light source to stimulate the localization of micro-nano metal particles or metal micro-nanostructures. The surface plasma resonates to produce a localized electric field on the metal particles or structure. Different from the surface plasma resonance of general metal film, the effective range of localized electric field can be less than tens of nanometers, and the effective range of surface evanescent wave generated by surface plasma resonance is about 200 nm. In general, a surface-plasma resonance wafer is detected by using an extremely precise angle to scan a reflectance change or to fix a multi-wavelength or multi-point reflection intensity detection at a specific angle for detecting light source, mechanism accuracy, and temperature stability. The requirements are extremely high. In contrast, a localized electric field can sense small refractive index changes caused by very small amounts of molecules.
局部化表面電漿共振感測晶片偵測方式可分為穿透光譜偵測與反射光譜偵測兩種方式,激發光源為一垂直入射之全波段光源,偵測端則為一波長高解析之光譜儀,當微量分子與功能化感測晶片(functionalized biochip)結合後,即可偵測特性光譜之波長偏移(extinction spectrum shift)。由於此類型感測晶片具備高靈敏度且偵測方式簡易等優點,目前正廣泛被研究並應用於各種生物分子檢測,例如用於檢測阿茲海默症的生物標記物澱粉狀蛋白衍生可溶性配位體(biomarker amyloid-derived diffusible ligands,ADDLs)、以及用於檢測攝護腺癌的生物標記物前列腺特異抗原(biomarker prostate-specific antigen,PSA)等。The localized surface plasma resonance sensing wafer detection method can be divided into two methods: penetration spectrum detection and reflection spectrum detection. The excitation light source is a full-wavelength light source with a vertical incidence, and the detection end is a high-resolution one wavelength. A spectrometer, when a trace molecule is combined with a functionalized biochip, detects the extinction spectrum shift of the characteristic spectrum. Due to the high sensitivity and easy detection method of this type of sensing wafer, it is widely studied and applied to various biomolecule detections, such as biomarker amyloid-derived soluble coordination for detecting Alzheimer's disease. Biomarker amyloid-derived diffusible ligands (ADDLs), and biomarker prostate-specific antigen (PSA) for detecting prostate cancer.
局部化表面電漿共振感測晶片雖具備高靈敏度且偵測方式簡易等優點,但在晶片製作、量產上卻存在較高的技術門檻。局部化表面電漿共振感測晶片種類可分為奈米顆粒分散(nano-particle dispersions)、奈米顆粒表面固定(surface-immobilized nanoparticles)、以及奈米結構陣列(nanostructure arrays)三種類型。前兩種方式雖可達成高靈敏度偵測,但奈米金屬顆粒製作與其固定於基版表面之製程並不易量產。第三種方式可使用奈米球模板技術(nanonphere lithography,NSL)、團鏈共聚物模板技術(block copolymer lithography)、膠體晶體蝕刻技術(colloidal lithography)、金屬薄膜蒸鍍(metal thin film evaporation)、以及電子束微影製程技術(e-beam lithography)等技術製作局部化表面電漿共振晶片。這些方法雖可成功製作具有序或無序之微奈米結構晶片並應用於局部化表面電漿共振檢測,但仍具有製程過於複雜、大面積製作不易、以及重複性(reproduction)不佳等問題有待克服,目前並無法大量生產。Although the localized surface plasma resonance sensing wafer has the advantages of high sensitivity and simple detection method, there are high technical thresholds in wafer fabrication and mass production. The localized surface plasma resonance sensing wafer types can be classified into three types: nano-particle dispersions, surface-immobilized nanoparticles, and nanostructure arrays. Although the first two methods can achieve high-sensitivity detection, the preparation of nano metal particles and the process of fixing them on the surface of the substrate are not easy to mass-produce. The third method can use nanosphere lithography (NSL), block copolymer lithography, colloidal lithography, metal thin film evaporation, And localized surface plasma resonance wafers are fabricated by techniques such as e-beam lithography. Although these methods can successfully produce ordered or disordered micro-nanostructured wafers and are applied to localized surface plasma resonance detection, they still have problems such as overly complex processes, large-area fabrication, and poor re-production. To be overcome, it is not currently mass-produced.
有鑑於上述課題,本發明係提供一種分子檢測感測器之微奈米金屬結構及其製作方法,可提高大面積製造之穩定性與均勻性,控制結構形狀及週期性,並同時簡化製程。In view of the above problems, the present invention provides a micro-nano metal structure of a molecular detection sensor and a manufacturing method thereof, which can improve the stability and uniformity of large-area manufacturing, control the shape and periodicity of the structure, and at the same time simplify the process.
根據本發明之一方面,係提出一種分子檢測感測器之微奈米金屬結構的製作方法,至少包括:提供一基板;形成一有機材料層於基板上;形成一光阻材料層於有機材料層上;圖案化光阻材料層以形成一微奈米級圖案化光阻層;以微奈米級圖案化光阻層為遮罩蝕刻有機材料層,以形成一微奈米級圖案化有機層,並暴露出基板之一部份表面;沈積一金屬層於微奈米級圖案化光阻層上、微奈米級圖案化有機層上及基板暴露之部份表面上;以及去除微奈米級圖案化光阻層及微奈米級圖案化有機層以形成微奈米金屬結構。According to an aspect of the present invention, a method for fabricating a micro-nano metal structure of a molecular detection sensor includes: providing a substrate; forming an organic material layer on the substrate; forming a photoresist material layer on the organic material On the layer; patterning the photoresist layer to form a micro-nano-patterned photoresist layer; masking the organic material layer with a micro-nano-patterned photoresist layer to form a micro-nano-patterned organic layer a layer and exposing a portion of the surface of the substrate; depositing a metal layer on the micro-nano patterned photoresist layer, on the micro-nano-patterned organic layer, and on a portion of the exposed surface of the substrate; and removing the micro-nene The rice-scale patterned photoresist layer and the micro-nano-patterned organic layer form a micro-nano metal structure.
根據本發明之另一方面,係提出一種分子檢測感測器之微奈米金屬結構的製作方法,至少包括:形成一基板;沈積一金屬層於基板上;形成一有機材料層於金屬層上;形成一光阻材料層於有機材料層上;圖案化光阻材料層以形成一微奈米級圖案化光阻層,並暴露出有機材料層之部分表面;以微奈米級圖案化光阻層為遮罩蝕刻有機材料層,以形成一微奈米級圖案化有機層,並暴露出金屬層之部分表面;沈積一遮罩材料層於微奈米級圖案化光阻層上、微奈米級圖案化有機層上及金屬層上;去除微奈米級圖案化光阻層及微奈米級圖案化有機層,以形成一微奈米級圖案化遮罩層於金屬層上;以及根據微奈米級圖案化遮罩層蝕刻金屬層以形成微奈米金屬結構。According to another aspect of the present invention, a method for fabricating a micro-nano metal structure of a molecular detection sensor includes: forming a substrate; depositing a metal layer on the substrate; forming an organic material layer on the metal layer Forming a photoresist layer on the organic material layer; patterning the photoresist layer to form a micro-nano-patterned photoresist layer, and exposing a portion of the surface of the organic material layer; patterning the light at a micron-level The resist layer is a mask etched organic material layer to form a micro-nano-patterned organic layer, and exposes a part of the surface of the metal layer; depositing a mask material layer on the micro-nano-patterned photoresist layer, micro On the nano-patterned organic layer and on the metal layer; removing the micro-nano-patterned photoresist layer and the micro-nano-patterned organic layer to form a micro-nano-patterned mask layer on the metal layer; And etching the metal layer according to the micro-nano patterned mask layer to form a micro-nano metal structure.
根據本發明之再一方面,係提出一種用於分子檢測感測器之微奈米金屬結構,至少包括一基板以及一金屬奈米柱陣列形成於基板上,金屬奈米柱陣列包括複數個金屬奈米柱體。According to still another aspect of the present invention, a micro-nano metal structure for a molecular detection sensor is provided, comprising at least a substrate and a metal nano-pillar array formed on the substrate, the metal nano-pillar array comprising a plurality of metals Nano cylinder.
為了對本發明之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式,作詳細說明如下:In order to provide a better understanding of the above and other aspects of the present invention, the following detailed description of the embodiments and the accompanying drawings
以下係提出一種分子檢測感測器之微奈米金屬結構及其製造方法,藉由沈積金屬層於微奈米級圖案化光阻層上、微奈米級圖案化有機層上及基板暴露之部份表面上,接著去除微奈米級圖案化光阻層及微奈米級圖案化有機層以形成微奈米金屬結構。此方法可提高大面積製造之穩定性與均勻性,控制結構形狀及週期性,並同時簡化製程。然而,實施例所提出的細部結構和製程步驟僅為舉例說明之用,並非對本發明欲保護之範圍做限縮。該些步驟僅為舉例說明之用,並非用以限縮本發明。具有通常知識者當可依據實際實施態樣的需要對該些步驟加以修飾或變化。The following is a micro-nano metal structure of a molecular detection sensor and a manufacturing method thereof, by depositing a metal layer on a micro-nano-patterned photoresist layer, a micro-nano-patterned organic layer, and a substrate exposed On a portion of the surface, the micro-nano-patterned photoresist layer and the micro-nano-patterned organic layer are subsequently removed to form a micro-nano metal structure. This method can improve the stability and uniformity of large-area manufacturing, control the shape and periodicity of the structure, and at the same time simplify the process. However, the detailed structure and process steps set forth in the examples are for illustrative purposes only and are not intended to limit the scope of the invention. These steps are for illustrative purposes only and are not intended to limit the invention. Those having ordinary knowledge may modify or change the steps as needed according to the actual implementation.
請參照第1A~1E圖。第1A圖繪示依照本發明之第一實施例之基板、有機材料層及光阻材料層的示意圖。第1B圖繪示圖案化第1A圖之光阻材料層後形成微奈米級圖案化光阻層的示意圖。第1C圖繪示以第1B圖之微奈米級圖案化光阻層為遮罩蝕刻有機材料層後形成微奈米級圖案化有機層的示意圖。第1D圖繪示沈積金屬層於第1C圖之微奈米級圖案化光阻層、微奈米級圖案化有機層及基板上的示意圖。第1E圖繪示去除第1D圖之微奈米級圖案化光阻層及微奈米級圖案化有機層後形成微奈米金屬結構的示意圖。Please refer to Figures 1A to 1E. FIG. 1A is a schematic view showing a substrate, an organic material layer and a photoresist layer according to a first embodiment of the present invention. FIG. 1B is a schematic view showing the formation of a micro-nano-patterned photoresist layer after patterning the photoresist layer of FIG. 1A. FIG. 1C is a schematic view showing the micro-nano-patterned organic layer formed by etching the organic material layer with the micro-nano-patterned photoresist layer of FIG. 1B as a mask. FIG. 1D is a schematic view showing a deposited metal layer on the micro-nano-patterned photoresist layer, the micro-nano-patterned organic layer, and the substrate of FIG. 1C. FIG. 1E is a schematic view showing the formation of a micro-nano metal structure after removing the micro-nano-patterned photoresist layer and the micro-nano-patterned organic layer of FIG. 1D.
首先,如第1A圖所示,提供一基板101。基板101例如是聚碳酸酯(PC)基板,其厚度為約0.6毫米(mm)。實施例之基板101例如為透明基板。接著,形成有機材料層102於基板101上。有機材料層102與基板101具有良好之附著力,例如為有機染料層或高分子層,但並不以此為限。有機材料層102例如包括双苯乙烯基化合物(bis-styryl compound),以化學式I表示:First, as shown in Fig. 1A, a substrate 101 is provided. The substrate 101 is, for example, a polycarbonate (PC) substrate having a thickness of about 0.6 millimeters (mm). The substrate 101 of the embodiment is, for example, a transparent substrate. Next, an organic material layer 102 is formed on the substrate 101. The organic material layer 102 has good adhesion to the substrate 101, such as an organic dye layer or a polymer layer, but is not limited thereto. The organic material layer 102 includes, for example, a bis-styryl compound represented by the chemical formula I:
其中,Y係選自氧原子、硫原子、含取代基之碳原子(C-R5)、以及含取代基之氮原子(N-R6)其中之一。Among them, Y is one selected from the group consisting of an oxygen atom, a sulfur atom, a carbon atom containing a substituent (CR 5 ), and a nitrogen atom (NR 6 ) having a substituent.
R1係選自碳數1至18(”C1-18”)之烷基(alkyl group)、苯基、含有鹵素原子(halogen atom)之烷基、含有烷氧取代基(alkoxyl group substitute)之C1-18之烷基、含有酮基(Ketone)之C1-18之烷基、C1-18之醚基(ether group)、以及對二烷基苯(p-alkyl benzyl group)其中之一。R 1 is selected from the group consisting of an alkyl group having a carbon number of 1 to 18 ("C 1-18 "), a phenyl group, an alkyl group containing a halogen atom, and an alkoxyl group substitute. a C 1-18 alkyl group, a ketone group (Cetone) C 1-18 alkyl group, a C 1-18 ether group, and a p-alkyl benzyl group. one.
R2、R3、R5、R6、R7可為相同或不同之基團,其係選自氫原子、氮原子、硫原子、鹵素原子、碳數1至8(”C1-8”)之烷基、C1-8之烷氧基(alkoxyl group)、C1-8之烷酯基(alkylate group)、羧基(carboxyl group)、C1-8之烷氧羰基(alkoxycarbonyl group)、C1-6之烷基銨次烴基氧羰基(alkylaminealkylenecarboxy group)、金剛烷基(adamantyl group)、氨基(amide group)、胺基(amino group,N-R2)、含氧胺基(oxygen containing amino group,N-R2)、硫磺基(sulfo group)、硫基(sulfonyl group)、硼酸(boronic acid)、硝基(nitro group,NO2)、三氟甲基(trifluoromethyl group)、氟化磺酸基(sulfonic acid fluoride group)、磺酸基(sulfonic acid group)、羥基(hydroxyl group)、二茂鐵基(ferrocenyl group)、氰基(cyano group,CN)、雜環(heterocyclic group)、以及含氮雜環(nitrogen containing heterocyclic group)其中之一。R 2 , R 3 , R 5 , R 6 , and R 7 may be the same or different groups selected from a hydrogen atom, a nitrogen atom, a sulfur atom, a halogen atom, and a carbon number of 1 to 8 ("C 1-8" ") alkyl, C 1-8 alkoxyl group, C 1-8 alkylate group, carboxyl group, C 1-8 alkoxycarbonyl group , alkyl 1-6 alkylalkylene alkylene carboxy group, adamantyl group, amide group, amino group (NR 2 ), oxygen containing amino group Group, NR 2 ), sulfo group, sulfonyl group, boronic acid, nitro group (NO 2 ), trifluoromethyl group, fluorinated sulfonic acid group (sulfonic acid fluoride group), sulfonic acid group, hydroxyl group, ferrocenyl group, cyano group (CN), heterocyclic group, and nitrogen One of the nitrogen containing heterocyclic groups.
R4係選自氫原子、烷基、烷氧基、鹵素原子、硝基、磺酸基、酸基、磺酸基(sulfonic acid group)、含取代基或不含取代基之苯環其中之一。R 4 is selected from the group consisting of a hydrogen atom, an alkyl group, an alkoxy group, a halogen atom, a nitro group, a sulfonic acid group, an acid group, a sulfonic acid group, a substituent-containing or a benzene ring having no substituent. One.
X係選自鹵素原子、過氯酸根(perchlorate,ClO4 -)、四氟硼酸根(fluoroborate,BF4 -)、四苯硼酸根(tetraphenyl boron,BPh4 -)、六氟磷酸根(hexfluorophoshpate,PF6 -)、六氟銻酸根(hexfluoroantimonate,SbF6 -)、四氰代二甲基苯離子(7,7',8,8'-tetracyanoquinonedimethane,TCNQ-)、四環氰基乙烯離子(tetracyanoethylene,TCNE-)、苯磺酸根(naphthalenesulfonic acid)、苯磺酸鹽(benzenesulfonates)及有機金屬錯合物(organometallic complex)其中之一。X is selected from the group consisting of a halogen atom, perchlorate (ClO 4 - ), tetrafluoroborate (BF 4 - ), tetraphenyl boron (BPh 4 - ), and hexafluorophoshpate (hexfluorophoshpate, PF 6 - ), hexfluoroantimonate (SbF 6 - ), tetracyanoquinonedimethane (TCNQ - ), tetracyanoethylene ion (tetracyanoethylene ion) , TCNE - ), naphthalenesulfonic acid, benzenesulfonates, and organometallic complex.
實施例中,有機材料層102係包括化合物I-1,以化學式I-1表示:In an embodiment, the organic material layer 102 comprises the compound I-1, represented by the chemical formula I-1:
接著,形成光阻材料層103於有機材料層102上。光阻材料層103例如為熱感式光阻層或無機光阻層,例如是Ge-Sb-Sn-Ox層。Next, a photoresist material layer 103 is formed on the organic material layer 102. The photoresist layer 103 is, for example, a thermally sensitive photoresist layer or an inorganic photoresist layer, for example, a Ge-Sb-Sn-O x layer.
然後,如第1B圖所示,圖案化光阻材料層103以形成微奈米級圖案化光阻層104。圖案化光阻材料層103的方法可包括:以聚焦雷射照射光阻材料層103以形成一曝光區域,以及移除此曝光區域以形成微奈米級圖案化光阻層104。聚焦雷射可以是建構於R-Θ移動平台或X-Y平台之聚焦雷射光點,其波長例如是405奈米(nm),數值孔徑(numerical aperture,NA)例如是0.65,但不在此限,實際應用時所採用的聚焦雷射之波長範圍實質上可以為紫外光、可見光到近紅外線的波長,只要能形成實施例之微奈米級圖案化光阻層104即可。以聚焦雷射光點對光阻材料層103加熱使其曝光,藉由雷射功率與脈衝調整方式使部分光阻材料層103曝光,使用顯影液(例如是稀釋之KOH溶液)顯影,可有效突破光學繞射極限,在光阻材料層103上製作出微奈米級結構,而形成微奈米級圖案化光阻層104。實施例之微奈米級圖案化光阻層104之微奈米級結構可以是周期性或非周期性排列之微奈米級孔洞,孔洞的半高寬可控制在小於200奈米,例如是150奈米。當微奈米級結構是周期性排列時,可以是周期性之同心圓排列或螺旋排列之微奈米級孔洞。Then, as shown in FIG. 1B, the photoresist layer 103 is patterned to form a micro-nano patterned photoresist layer 104. The method of patterning the photoresist layer 103 may include irradiating the photoresist layer 103 with a focused laser to form an exposed region, and removing the exposed region to form the micro-nano patterned photoresist layer 104. The focused laser may be a focused laser spot constructed on an R-Θ mobile platform or an XY stage, the wavelength of which is, for example, 405 nm (nm), and the numerical aperture (NA) is, for example, 0.65, but not limited thereto. The wavelength range of the focused laser used in the application may be substantially the wavelength of ultraviolet light, visible light to near infrared light, as long as the micro-nano-patterned photoresist layer 104 of the embodiment can be formed. The photoresist material layer 103 is heated and exposed by focusing the laser spot, and a part of the photoresist material layer 103 is exposed by laser power and pulse adjustment, and developed by using a developing solution (for example, a diluted KOH solution), which can effectively break through At the optical diffraction limit, a micro-nano-scale structure is formed on the photoresist layer 103 to form a micro-nano-patterned photoresist layer 104. The micro-nano structure of the micro-nano patterned photoresist layer 104 of the embodiment may be a micro-nano-scale hole periodically or non-periodically arranged, and the half-height of the hole may be controlled to be less than 200 nm, for example 150 nm. When the micro-nano structure is periodically arranged, it may be a periodic concentric circle arrangement or a spiral arrangement of micro-nano holes.
藉由控制雷射脈衝聚焦的位置與停留的時間,可調整雷射聚焦在光阻材料層103上之不同位置的熱累積,而可控制形成之微奈米級孔洞的截面形狀,例如是圓形、橢圓形、水滴形或棒狀(rod)。當聚焦雷射是建構於R-Θ移動平台之聚焦雷射光點時,可形成周期性之同心圓排列之微奈米級孔洞。經由控制圓周方向之第一週期P1及半徑方向之第二週期P2,可以調整微奈米級孔洞之排列位置及彼此間之相對配置。By controlling the position of the laser pulse focusing and the time of staying, the heat accumulation of the laser focused on different positions on the photoresist layer 103 can be adjusted, and the cross-sectional shape of the formed micro-nano hole can be controlled, for example, a circle Shape, ellipse, drop shape or rod. When the focused laser is a focused laser spot constructed on the R-Θ mobile platform, a periodic concentric circle of micro-nano holes can be formed. By arranging the first period P1 in the circumferential direction and the second period P2 in the radial direction, the arrangement positions of the micro-nano holes and the relative arrangement between them can be adjusted.
接著,如第1C圖所示,以微奈米級圖案化光阻層104為遮罩蝕刻有機材料層102,以形成微奈米級圖案化有機層105(micro/nano patterned organic layer),並暴露出基板101之一部份表面101a。其中,可以乾式蝕刻方式蝕刻有機材料層102至基板101之部份表面101a,例如是氧電漿蝕刻方式,但並不以此為限。Next, as shown in FIG. 1C, the organic material layer 102 is etched by using the micro-nano-patterned photoresist layer 104 as a mask to form a micro/nano patterned organic layer 105, and A portion of the surface 101a of the substrate 101 is exposed. The organic material layer 102 can be etched to the surface 101a of the substrate 101 by a dry etching method, for example, by an oxygen plasma etching method, but is not limited thereto.
其次,如第1D圖所示,沈積金屬層106於微奈米級圖案化光阻層104、微奈米級圖案化有機層105及基板101暴露之部份表面101a上。金屬層106之材料例如為金(Au)、銀(Ag)、鋁(Al)或鉑(Pt),但並不以此為限。只要化學穩定性佳,不與檢測分子發生反應,並且能夠配合局部化表面電漿共振之共振波長及偶合效率等光譜特性要求即可。金屬層106亦可為複合金屬層,例如包括一金層及一鈦(Ti)層,先沈積鈦層於微奈米級圖案化光阻層104、微奈米級圖案化有機層105及基板101暴露之部份表面101a上,接著沈積金層於鈦層上。金層之厚度例如為約40奈米,鈦層之厚度例如為3奈米。另一實施例中,複合金屬層可包括一金層及一鉻(Cr)層,先沈積鉻層於微奈米級圖案化光阻層104、微奈米級圖案化有機層105及基板101暴露之部份表面101a上,接著沈積金層於鉻層上。金屬層106為複合金屬層時,其中例如鈦層或鉻層可增加金層與基板間的附著性。Next, as shown in FIG. 1D, the deposited metal layer 106 is deposited on the micro-nano-patterned photoresist layer 104, the micro-nano-patterned organic layer 105, and a portion of the surface 101a exposed by the substrate 101. The material of the metal layer 106 is, for example, gold (Au), silver (Ag), aluminum (Al) or platinum (Pt), but is not limited thereto. As long as the chemical stability is good, it does not react with the detection molecule, and it can be combined with the spectral characteristics such as the resonance wavelength and the coupling efficiency of the localized surface plasma resonance. The metal layer 106 may also be a composite metal layer, for example, including a gold layer and a titanium (Ti) layer, first depositing a titanium layer on the micro-nano-patterned photoresist layer 104, the micro-nano-patterned organic layer 105, and the substrate. On the exposed portion of the surface 101a, a gold layer is deposited on the titanium layer. The thickness of the gold layer is, for example, about 40 nm, and the thickness of the titanium layer is, for example, 3 nm. In another embodiment, the composite metal layer may include a gold layer and a chromium (Cr) layer, and the chromium layer is first deposited on the micro-nano-patterned photoresist layer 104, the micro-nano-patterned organic layer 105, and the substrate 101. On the exposed portion of the surface 101a, a gold layer is then deposited on the chromium layer. When the metal layer 106 is a composite metal layer, for example, a titanium layer or a chromium layer can increase the adhesion between the gold layer and the substrate.
然後,如第1E圖所示,去除微奈米級圖案化光阻層104及微奈米級圖案化有機層105以形成微奈米金屬結構10。其中,可以濕式蝕刻方式或掀離(lift-off)製程去除微奈米級圖案化光阻層104及微奈米級圖案化有機層105,例如是以有機溶劑溶解微奈米級圖案化有機層105,且同時一併去除微奈米級圖案化有機層105上之微奈米級圖案化光阻層104及部份金屬層106。有機溶劑可以是醇類,但並不以此為限。微奈米金屬結構10可包括周期性或非周期性排列之金屬奈米柱陣列107。例如如附圖1所示,其繪示依照本發明一實施例之分子檢測感測器之微奈米金屬結構之金屬奈米柱上視圖。實施例中,金屬奈米柱體的半高寬約為150奈米。當金屬奈米柱陣列107是周期性排列時,可以是周期性之同心圓排列或螺旋排列之金屬奈米柱陣列。金屬奈米柱陣列107之形狀、尺寸及排列方式係對應微奈米級圖案化光阻層104之微奈米級孔洞的形狀、尺寸及排列方式。實施例中,以濕式蝕刻方式或掀離製程去除微奈米級圖案化有機層105,可提高大面積製造金屬奈米柱陣列107之穩定性與均勻性,以及控制微奈米金屬結構10之形狀及週期性。並且,以有機溶劑溶解微奈米級圖案化有機層105,尚具有製程簡單之功效。Then, as shown in FIG. 1E, the micro-nano-patterned photoresist layer 104 and the micro-nano-patterned organic layer 105 are removed to form the micro-nano metal structure 10. The micro-nano-patterned photoresist layer 104 and the micro-nano-patterned organic layer 105 may be removed by a wet etching method or a lift-off process, for example, by dissolving micro-nano patterning in an organic solvent. The organic layer 105 and the micro-nano patterned photoresist layer 104 and the partial metal layer 106 on the micro-nano patterned organic layer 105 are simultaneously removed. The organic solvent may be an alcohol, but is not limited thereto. The micro-nano metal structure 10 can include a periodic or non-periodically arranged array of metal nanopillars 107. For example, as shown in FIG. 1, a top view of a metal nanocolumn of a micronano metal structure of a molecular detection sensor in accordance with an embodiment of the present invention is shown. In an embodiment, the metal nano-pillar has a full width at half maximum of about 150 nanometers. When the metal nano-pillar array 107 is periodically arranged, it may be a periodic concentric circular array or spiral array of metal nano-pillar arrays. The shape, size and arrangement of the metal nano-pillar array 107 correspond to the shape, size and arrangement of the micro-nano holes of the micro-nano patterned photoresist layer 104. In an embodiment, removing the micro-nano-patterned organic layer 105 by wet etching or a lift-off process can improve the stability and uniformity of the large-area fabrication of the metal nano-pillar array 107, and control the micro-nano metal structure 10 Shape and periodicity. Moreover, dissolving the micro-nano-patterned organic layer 105 in an organic solvent has a simple process.
以上述方式製造分子檢測感測器之微奈米金屬結構10,可輕易改變金屬奈米柱陣列107的形狀與排列方式。當適當頻率、入射角度之偵測光源照射微奈米金屬結構10時,會在金屬奈米柱陣列107上產生局部化之電磁場,可應用於局部化表面電漿檢測晶片或表面增強拉曼散射檢測晶片。例如如第5圖所示,其繪示以垂直入射光源照射依照本發明一實施例之分子檢測感測器測得之局部化表面電漿共振吸收光譜。例如當聚焦雷射是建構於R-Θ移動平台之聚焦雷射光點時,實施例所形成之微奈米金屬結構10可具有周期性之同心圓排列之金屬奈米柱陣列107。經由控制圓周方向之第一週期P1及半徑方向之第二週期P2,而調整金屬奈米柱陣列107之尺寸與排列週期,可調整激發光源偶合至局部化表面電漿模態之波長與效率,進而對應改變調整分子檢測感測器之微奈米金屬結構10的感測方式及靈敏度等檢測特性。By fabricating the micro-nano metal structure 10 of the molecular detection sensor in the above manner, the shape and arrangement of the metal nano-column array 107 can be easily changed. When the detection source of the appropriate frequency and incident angle illuminates the micro-nano metal structure 10, a localized electromagnetic field is generated on the metal nano-column array 107, which can be applied to the localized surface plasma detecting wafer or surface-enhanced Raman scattering. The wafer is detected. For example, as shown in FIG. 5, a localized surface plasma resonance absorption spectrum measured by a molecular detection sensor according to an embodiment of the present invention is irradiated with a normal incident light source. For example, when the focused laser is a focused laser spot constructed on the R-Θ mobile platform, the micro-nano metal structure 10 formed in the embodiment may have a periodic concentric arrangement of metal nano-pillar arrays 107. Adjusting the size and arrangement period of the metal nano-pillar array 107 by controlling the first period P1 in the circumferential direction and the second period P2 in the radial direction, the wavelength and efficiency of the excitation source coupling to the localized surface plasma mode can be adjusted. Further, the detection characteristics such as the sensing mode and sensitivity of the micro-nano metal structure 10 of the adjustment molecular detection sensor are changed.
請參照第2A~2G圖。第2A圖繪示依照本發明之第二實施例之基板及金屬層的示意圖。第2B圖繪示有機材料層及光阻材料層形成於第2A圖之金屬層上的示意圖。第2C圖繪示圖案化第2B圖之光阻材料層後形成微奈米級圖案化光阻層的示意圖。第2D圖繪示以第2C圖之微奈米級圖案化光阻層為遮罩蝕刻有機材料層後形成微奈米級圖案化有機層的示意圖。第2E圖繪示沈積遮罩材料層於第2D圖之微奈米級圖案化光阻層、微奈米級圖案化有機層及金屬層上的示意圖。第2F圖繪示去除第2E圖之微奈米級圖案化光阻層及微奈米級圖案化有機層後形成微奈米級圖案化遮罩層的示意圖。第2G圖繪示根據第2F圖之微奈米級圖案化遮罩層蝕刻金屬層後形成微奈米金屬結構的示意圖。Please refer to the 2A to 2G drawings. 2A is a schematic view showing a substrate and a metal layer in accordance with a second embodiment of the present invention. FIG. 2B is a schematic view showing that the organic material layer and the photoresist layer are formed on the metal layer of FIG. 2A. FIG. 2C is a schematic view showing the formation of a micro-nano-patterned photoresist layer after patterning the photoresist layer of FIG. 2B. FIG. 2D is a schematic view showing the micro-nano-patterned organic layer formed by etching the organic material layer with the micro-nano-patterned photoresist layer of FIG. 2C as a mask. FIG. 2E is a schematic view showing the deposition of the mask material layer on the micro-nano-patterned photoresist layer, the micro-nano-patterned organic layer and the metal layer of FIG. 2D. FIG. 2F is a schematic view showing the formation of a micro-nano-patterned mask layer after removing the micro-nano-patterned photoresist layer of FIG. 2E and the micro-nano-patterned organic layer. FIG. 2G is a schematic view showing the formation of a micro-nano metal structure after etching the metal layer according to the micro-nano patterning mask layer of FIG. 2F.
首先,如第2A圖所示,提供一基板201,接著沈積金屬層208於基板201上。接著,如第2B圖所示,形成有機材料層202於基板201上,以及形成光阻材料層203於有機材料層202上。基板、有機材料層、光阻材料、與金屬層如前文第一實施例所述,在此不再贅述。First, as shown in FIG. 2A, a substrate 201 is provided, and then a metal layer 208 is deposited on the substrate 201. Next, as shown in FIG. 2B, an organic material layer 202 is formed on the substrate 201, and a photoresist material layer 203 is formed on the organic material layer 202. The substrate, the organic material layer, the photoresist material, and the metal layer are as described in the foregoing first embodiment, and are not described herein again.
然後,如第2C圖所示,圖案化光阻材料層203以形成微奈米級圖案化光阻層204,並暴露出有機材料層202之部分表面202a。接著,如第2D圖所示,以微奈米級圖案化光阻層204為遮罩蝕刻有機材料層202,以形成微奈米級圖案化有機層205,並暴露出金屬層208之部分表面208a。微奈米級圖案化光阻層與微奈米級圖案化有機層及其形成方式如前文第一實施例所述,在此不再贅述。Then, as shown in FIG. 2C, the photoresist layer 203 is patterned to form the micro-nano patterned photoresist layer 204, and a portion of the surface 202a of the organic material layer 202 is exposed. Next, as shown in FIG. 2D, the organic material layer 202 is etched by the micro-nano patterned photoresist layer 204 to form the micro-nano-patterned organic layer 205, and a part of the surface of the metal layer 208 is exposed. 208a. The micro-nano-patterned photoresist layer and the micro-nano-patterned organic layer and the formation manner thereof are as described in the foregoing first embodiment, and are not described herein again.
其次,如第2E圖所示,沈積遮罩材料層209於微奈米級圖案化光阻層204、微奈米級圖案化有機層205及金屬層208之部分表面208a上。遮罩材料層209之材料例如為氮化矽(SiN),但不在此限。接著,如第2F圖所示,去除微奈米級圖案化光阻層204及微奈米級圖案化有機層205,以形成微奈米級圖案化遮罩層210於金屬層208上。其中,可以濕式蝕刻方式或掀離製程去除微奈米級圖案化光阻層204及微奈米級圖案化有機層205,例如是以有機溶劑溶解微奈米級圖案化有機層205,且同時一併去除微奈米級圖案化有機層205上之微奈米級圖案化光阻層204及部份遮罩材料層209。有機溶劑可以是醇類,但並不以此為限。微奈米級圖案化遮罩層210可以是周期性或非周期性排列之遮罩柱體陣列,其形狀、尺寸及排列方式係對應微奈米級圖案化光阻層204之微奈米級孔洞的形狀、尺寸及排列方式。實施例以濕式蝕刻方式或掀離製程去除微奈米級圖案化有機層205,可提高大面積製造微奈米級圖案化遮罩層210及後續之微奈米金屬結構之穩定性與均勻性,以及控制結構形狀及週期性。並且,以有機溶劑溶解微奈米級圖案化有機層205,尚具有製程簡單之功效。Next, as shown in FIG. 2E, a masking material layer 209 is deposited on the micro-nano-patterned photoresist layer 204, the micro-nano-patterned organic layer 205, and a portion of the surface 208a of the metal layer 208. The material of the mask material layer 209 is, for example, tantalum nitride (SiN), but is not limited thereto. Next, as shown in FIG. 2F, the micro-nano-patterned photoresist layer 204 and the micro-nano-patterned organic layer 205 are removed to form a micro-nano-patterned mask layer 210 on the metal layer 208. The micro-nano-patterned photoresist layer 204 and the micro-nano-patterned organic layer 205 may be removed by a wet etching method or a lift-off process, for example, the micro-nano-patterned organic layer 205 is dissolved in an organic solvent, and At the same time, the micro-nano-patterned photoresist layer 204 and the partial mask material layer 209 on the micro-nano-patterned organic layer 205 are removed. The organic solvent may be an alcohol, but is not limited thereto. The micro-nano-patterned mask layer 210 may be a periodic or non-periodically arranged array of mask pillars, the shape, size and arrangement of which correspond to the micro-nano scale of the micro-nano-patterned photoresist layer 204. The shape, size and arrangement of the holes. The embodiment removes the micro-nano-patterned organic layer 205 by wet etching or a lift-off process, which can improve the stability and uniformity of the large-area fabrication of the micro-nano patterned mask layer 210 and the subsequent micro-nano metal structure. Sex, as well as control structure shape and periodicity. Moreover, dissolving the micro-nano-patterned organic layer 205 in an organic solvent has a simple process.
然後,如第2G圖所示,根據微奈米級圖案化遮罩層210蝕刻金屬層208以形成微奈米金屬結構20。其中,可以乾式蝕刻方式蝕刻金屬層208至基板201之部份表面201a,例如是反應性離子蝕刻(RIE)方式,但並不以此為限。金屬層208蝕刻之後,微奈米級圖案化遮罩層210之結構即轉移至金屬層208而形成實施例之金屬奈米柱陣列207。Then, as shown in FIG. 2G, the metal layer 208 is etched according to the micro-nano patterning mask layer 210 to form the micro-nano metal structure 20. The metal layer 208 can be etched to a portion of the surface 201a of the substrate 201 by a dry etching method, such as a reactive ion etching (RIE) method, but is not limited thereto. After the metal layer 208 is etched, the structure of the micronano-patterned mask layer 210 is transferred to the metal layer 208 to form the metal nano-pillar array 207 of the embodiment.
於上述實施例中,藉由濕式蝕刻方式或掀離製程去除微奈米級圖案化有機層205後,形成大面積的微奈米級圖案化遮罩層210,再以乾式蝕刻方式將微奈米級圖案化遮罩層210之結構轉移至金屬層208而形成金屬奈米柱陣列207。由於微奈米級圖案化遮罩層210之材質堅固,邊緣亦平整,因此實施例之微奈米金屬結構20之金屬奈米柱陣列207亦具有邊界整齊及形狀整齊之優點。In the above embodiment, after the micro-nano-patterned organic layer 205 is removed by a wet etching method or a lift-off process, a large-area micro-nano-patterned mask layer 210 is formed, and then the micro-nano patterning mask layer 210 is formed by dry etching. The structure of the nano-patterned mask layer 210 is transferred to the metal layer 208 to form a metal nano-pillar array 207. Since the material of the micro-nano-patterned mask layer 210 is strong and the edges are flat, the metal nano-pillar array 207 of the micro-nano metal structure 20 of the embodiment also has the advantages of a neat boundary and a neat shape.
如第1E圖所示,實施例之用於分子檢測感測器之微奈米金屬結構10包括基板101以及金屬奈米柱陣列107形成於基板101上,金屬奈米柱陣列107包括複數個金屬奈米柱體。金屬奈米柱陣列107可以周期性或非周期性排列於基板101上,金屬奈米柱體的半高寬可小於200奈米,例如是150奈米。金屬奈米柱體之截面可以為圓形、橢圓形、水滴形或棒狀。金屬奈米柱體之截面形狀為橢圓形、水滴形或棒狀時,其激發光源偶合至局部化表面電漿模態之波長與效率,亦會與金屬奈米柱體之截面為圓形時所產生之波長與效率有所差異。因此,使用者可針對特定待測分子選用金屬奈米柱體之截面形狀為橢圓形、水滴形或棒狀之分子檢測感測器之微奈米金屬結構10。As shown in FIG. 1E, the micro-nano metal structure 10 for a molecular detection sensor of the embodiment includes a substrate 101 and a metal nano-pillar array 107 formed on the substrate 101, and the metal nano-column array 107 includes a plurality of metals. Nano cylinder. The metal nano-pillar array 107 may be periodically or non-periodically arranged on the substrate 101, and the half-height of the metal nano-pillar may be less than 200 nanometers, for example, 150 nanometers. The cross section of the metal nano cylinder may be circular, elliptical, drop-shaped or rod-shaped. When the cross-sectional shape of the metal nano-cylinder is elliptical, drop-shaped or rod-shaped, the wavelength and efficiency of the excitation source coupled to the localized surface plasma mode are also rounded when the cross section of the metal nano-cylinder is circular. The resulting wavelength differs from the efficiency. Therefore, the user can select the micro-nano metal structure 10 of the molecular detection sensor whose cross-sectional shape of the metal nano-cylinder is elliptical, drop-shaped or rod-shaped for a specific molecule to be tested.
第3圖繪示依照本發明一實施例之分子檢測感測器之微奈米金屬結構之上視圖。當金屬奈米柱陣列307是周期性排列於基板301上時,可以是周期性之螺旋排列之金屬奈米柱陣列,或者如第3圖所示,亦可以是周期性之同心圓排列之金屬奈米柱陣列307。實施例中,金屬奈米柱陣列307在圓周方向之第一週期P1及在半徑方向之第二週期P2並非定值,可以視需要調整第一週期P1及第二週期P2而調整金屬奈米柱陣列307之排列週期,進而調整激發光源偶合至局部化表面電漿模態之波長與效率,而能夠對應改變調整分子檢測感測器之微奈米金屬結構30的感測方式及靈敏度等檢測特性。3 is a top view of a micro-nano metal structure of a molecular detection sensor in accordance with an embodiment of the present invention. When the metal nano-pillar array 307 is periodically arranged on the substrate 301, it may be a periodic spiral array of metal nano-pillars, or as shown in FIG. 3, may also be a periodic concentrically arranged metal. Nano column array 307. In the embodiment, the first period P1 of the metal nano-pillar array 307 in the circumferential direction and the second period P2 in the radial direction are not constant, and the first period P1 and the second period P2 may be adjusted as needed to adjust the metal nano-column. The arrangement period of the array 307 further adjusts the wavelength and efficiency of the excitation source coupling to the localized surface plasma mode, and can change the sensing characteristics and sensitivity of the micro-nano metal structure 30 of the modified molecular detection sensor. .
第4圖繪示依照本發明另一實施例之分子檢測感測器之微奈米金屬結構之示意圖。其中,實施例之用於分子檢測感測器之微奈米金屬結構40包括基板401以及金屬奈米柱陣列407形成於基板401上,基板401更包括基材4011以及一介電層4012形成於基材4011上。當基板401係為例如是聚碳酸酯基板,介電層4012可防止激發光源(例如是雷射光束)對於基材4011的破壞,亦可提供分子檢測感測器適當的介面條件,例如根據不同分子檢測感測器之需求調整介電層4012之折射係數等等。4 is a schematic view showing a micro-nano metal structure of a molecular detection sensor according to another embodiment of the present invention. The micro-nano metal structure 40 for the molecular detection sensor of the embodiment includes a substrate 401 and a metal nano-pillar array 407 formed on the substrate 401. The substrate 401 further includes a substrate 4011 and a dielectric layer 4012 formed on the substrate 401. On the substrate 4011. When the substrate 401 is, for example, a polycarbonate substrate, the dielectric layer 4012 can prevent damage of the substrate 4011 by an excitation light source (for example, a laser beam), and can also provide appropriate interface conditions for the molecular detection sensor, for example, according to different The need for a molecular detection sensor adjusts the refractive index of the dielectric layer 4012 and the like.
據此,實施例之分子檢測感測器之微奈米金屬結構及其製造方法,藉由沈積金屬層於微奈米級圖案化光阻層及微奈米級圖案化有機層上,然後去除微奈米級圖案化光阻層及微奈米級圖案化有機層,以形成微奈米金屬結構,不僅提高大面積製造之穩定性與均勻性,控制結構形狀及週期性,並同時簡化製程。並且,藉由調整微奈米金屬結構之金屬奈米柱陣列的尺寸與排列週期,可改變調整分子檢測感測器之微奈米金屬結構的感測方式及靈敏度等檢測特性。Accordingly, the micro-nano metal structure of the molecular detection sensor of the embodiment and the manufacturing method thereof are performed by depositing a metal layer on the micro-nano-patterned photoresist layer and the micro-nano-patterned organic layer, and then removing The micro-nano-patterned photoresist layer and the micro-nano-patterned organic layer form a micro-nano metal structure, which not only improves the stability and uniformity of large-area manufacturing, but also controls the shape and periodicity of the structure, and at the same time simplifies the process. . Moreover, by adjusting the size and arrangement period of the metal nano-column array of the micro-nano metal structure, the sensing characteristics such as the sensing mode and sensitivity of the micro-nano metal structure of the molecular detection sensor can be changed.
綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。In conclusion, the present invention has been disclosed in the above embodiments, but it is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.
10、20、30、40...分子檢測感測器之微奈米金屬結構10, 20, 30, 40. . . Micro-nano metal structure of molecular detection sensor
101、201、301、401...基板101, 201, 301, 401. . . Substrate
101a、201a、208a...部份表面101a, 201a, 208a. . . Partial surface
102、202...有機材料層102, 202. . . Organic material layer
103、203...光阻材料層103, 203. . . Photoresist material layer
104、204...微奈米級圖案化光阻層104, 204. . . Micro-nano patterned photoresist layer
105、205...微奈米級圖案化有機層105, 205. . . Micro-nano patterned organic layer
106、208...金屬層106, 208. . . Metal layer
107、207、307、407...金屬奈米柱陣列107, 207, 307, 407. . . Metal nanocolumn array
209...遮罩材料層209. . . Mask material layer
210...微奈米級圖案化遮罩層210. . . Micro-nano patterned mask layer
4011...基材4011. . . Substrate
4012...介電層4012. . . Dielectric layer
第1A圖繪示依照本發明第一實施例之基板、有機材料層及光阻材料層的示意圖。FIG. 1A is a schematic view showing a substrate, an organic material layer and a photoresist layer according to a first embodiment of the present invention.
第1B圖繪示圖案化第1A圖之光阻材料層後形成微奈米級圖案化光阻層的示意圖。FIG. 1B is a schematic view showing the formation of a micro-nano-patterned photoresist layer after patterning the photoresist layer of FIG. 1A.
第1C圖繪示以第1B圖之微奈米級圖案化光阻層為遮罩蝕刻有機材料層後形成微奈米級圖案化有機層的示意圖。FIG. 1C is a schematic view showing the micro-nano-patterned organic layer formed by etching the organic material layer with the micro-nano-patterned photoresist layer of FIG. 1B as a mask.
第1D圖繪示沈積金屬層於第1C圖之微奈米級圖案化光阻層、微奈米級圖案化有機層及基板上的示意圖。FIG. 1D is a schematic view showing a deposited metal layer on the micro-nano-patterned photoresist layer, the micro-nano-patterned organic layer, and the substrate of FIG. 1C.
第1E圖繪示去除第1D圖之微奈米級圖案化光阻層及微奈米級圖案化有機層後形成微奈米金屬結構的示意圖。FIG. 1E is a schematic view showing the formation of a micro-nano metal structure after removing the micro-nano-patterned photoresist layer and the micro-nano-patterned organic layer of FIG. 1D.
第2A圖繪示依照本發明之第二實施例之基板及金屬層的示意圖。2A is a schematic view showing a substrate and a metal layer in accordance with a second embodiment of the present invention.
第2B圖繪示有機材料層及光阻材料層形成於第2A圖之金屬層上的示意圖。FIG. 2B is a schematic view showing that the organic material layer and the photoresist layer are formed on the metal layer of FIG. 2A.
第2C圖繪示圖案化第2B圖之光阻材料層後形成微奈米級圖案化光阻層的示意圖。FIG. 2C is a schematic view showing the formation of a micro-nano-patterned photoresist layer after patterning the photoresist layer of FIG. 2B.
第2D圖繪示以第2C圖之微奈米級圖案化光阻層為遮罩蝕刻有機材料層後形成微奈米級圖案化有機層的示意圖。FIG. 2D is a schematic view showing the micro-nano-patterned organic layer formed by etching the organic material layer with the micro-nano-patterned photoresist layer of FIG. 2C as a mask.
第2E圖繪示沈積遮罩材料層於第2D圖之微奈米級圖案化光阻層、微奈米級圖案化有機層及金屬層上的示意圖。FIG. 2E is a schematic view showing the deposition of the mask material layer on the micro-nano-patterned photoresist layer, the micro-nano-patterned organic layer and the metal layer of FIG. 2D.
第2F圖繪示去除第2E圖之微奈米級圖案化光阻層及微奈米級圖案化有機層後形成微奈米級圖案化遮罩層的示意圖。FIG. 2F is a schematic view showing the formation of a micro-nano-patterned mask layer after removing the micro-nano-patterned photoresist layer of FIG. 2E and the micro-nano-patterned organic layer.
第2G圖繪示根據第2F圖之微奈米級圖案化遮罩層蝕刻金屬層後形成微奈米金屬結構的示意圖。FIG. 2G is a schematic view showing the formation of a micro-nano metal structure after etching the metal layer according to the micro-nano patterning mask layer of FIG. 2F.
第3圖繪示依照本發明一實施例之分子檢測感測器之微奈米金屬結構之上視圖。3 is a top view of a micro-nano metal structure of a molecular detection sensor in accordance with an embodiment of the present invention.
第4圖繪示依照本發明另一實施例之分子檢測感測器之微奈米金屬結構之示意圖。4 is a schematic view showing a micro-nano metal structure of a molecular detection sensor according to another embodiment of the present invention.
第5圖繪示以垂直入射光源照射依照本發明一實施例之分子檢測感測器測得之局部化表面電漿共振吸收光譜。Figure 5 is a diagram showing the localized surface plasma resonance absorption spectrum measured by a molecular detection sensor according to an embodiment of the present invention by irradiating a vertical incident light source.
附圖1繪示依照本發明一實施例之分子檢測感測器之微奈米金屬結構之金屬奈米柱上視圖。1 is a top view of a metal nanocolumn of a micronano metal structure of a molecular detection sensor in accordance with an embodiment of the present invention.
10...分子檢測感測器之微奈米金屬結構10. . . Micro-nano metal structure of molecular detection sensor
101...基板101. . . Substrate
107...金屬奈米柱陣列107. . . Metal nanocolumn array
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100147992A TWI480225B (en) | 2011-12-22 | 2011-12-22 | Micro/nano metallic structure of molecular detector and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100147992A TWI480225B (en) | 2011-12-22 | 2011-12-22 | Micro/nano metallic structure of molecular detector and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201326024A true TW201326024A (en) | 2013-07-01 |
TWI480225B TWI480225B (en) | 2015-04-11 |
Family
ID=49224733
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100147992A TWI480225B (en) | 2011-12-22 | 2011-12-22 | Micro/nano metallic structure of molecular detector and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI480225B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI626210B (en) * | 2017-04-28 | 2018-06-11 | 鴻海精密工業股份有限公司 | A method for making a nanodevice |
CN109470679A (en) * | 2017-09-08 | 2019-03-15 | 清华大学 | Molecular vehicle for Molecular Detection |
TWI800366B (en) * | 2022-04-29 | 2023-04-21 | 國立清華大學 | Raman detecting chip, method of fabricating the same and raman spetroscopy detecting system using such raman detecting chip |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7037639B2 (en) * | 2002-05-01 | 2006-05-02 | Molecular Imprints, Inc. | Methods of manufacturing a lithography template |
JP2008511985A (en) * | 2004-08-31 | 2008-04-17 | エージェンシー フォー サイエンス,テクノロジー アンド リサーチ | Nanostructure and method for producing the same |
TW200722559A (en) * | 2005-12-06 | 2007-06-16 | Ind Tech Res Inst | Metal nanodot arrays and fabrication methods thereof |
TWI313356B (en) * | 2006-12-28 | 2009-08-11 | Ind Tech Res Inst | Structure having nano-hole and fabricating method thereof, tip array structure and fabricating method of tip structure |
TWI410621B (en) * | 2009-11-06 | 2013-10-01 | Ind Tech Res Inst | Trace detection device of biological and chemical analytes and diction method applying the same |
-
2011
- 2011-12-22 TW TW100147992A patent/TWI480225B/en active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI626210B (en) * | 2017-04-28 | 2018-06-11 | 鴻海精密工業股份有限公司 | A method for making a nanodevice |
CN109470679A (en) * | 2017-09-08 | 2019-03-15 | 清华大学 | Molecular vehicle for Molecular Detection |
TWI800366B (en) * | 2022-04-29 | 2023-04-21 | 國立清華大學 | Raman detecting chip, method of fabricating the same and raman spetroscopy detecting system using such raman detecting chip |
Also Published As
Publication number | Publication date |
---|---|
TWI480225B (en) | 2015-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Suresh et al. | Fabrication of large-area flexible SERS substrates by nanoimprint lithography | |
Kasani et al. | A review of 2D and 3D plasmonic nanostructure array patterns: fabrication, light management and sensing applications | |
Lin et al. | Size effect on SERS of gold nanorods demonstrated via single nanoparticle spectroscopy | |
Sigle et al. | Reproducible deep-UV SERRS on aluminum nanovoids | |
Balčytis et al. | From fundamental toward applied SERS: shared principles and divergent approaches | |
Wu et al. | Wafer-scale leaning silver nanopillars for molecular detection at ultra-low concentrations | |
Gopalakrishnan et al. | Bimetallic 3D nanostar dimers in ring cavities: recyclable and robust surface-enhanced Raman scattering substrates for signal detection from few molecules | |
Yue et al. | Sensitive and reproducible surface-enhanced raman spectroscopy (SERS) with arrays of dimer-nanopillars | |
Murray-Méthot et al. | Optical properties of Au, Ag, and bimetallic Au on Ag nanohole arrays | |
Brown et al. | Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA) | |
Li et al. | Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area | |
Huang et al. | Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection | |
Ko et al. | Porous substrates for label-free molecular level detection of nonresonant organic molecules | |
Kalachyova et al. | Ultrasensitive and reproducible SERS platform of coupled Ag grating with multibranched Au nanoparticles | |
Deng et al. | Single-order, subwavelength resonant nanograting as a uniformly hot substrate for surface-enhanced Raman spectroscopy | |
US9726788B2 (en) | Method for fabricating nanoantenna array, nanoantenna array chip and structure for lithography | |
Pal et al. | A generalized exponential relationship between the surface-enhanced Raman scattering (SERS) efficiency of gold/silver nanoisland arrangements and their non-dimensional interparticle distance/particle diameter ratio | |
Braun et al. | Versatile direct laser writing lithography technique for surface enhanced infrared spectroscopy sensors | |
Schubert et al. | Mapping the polarization pattern of plasmon modes reveals nanoparticle symmetry | |
Wang et al. | Nanopin plasmonic resonator array and its optical properties | |
Seo et al. | 3D plasmon coupling assisted sers on nanoparticle-nanocup array hybrids | |
Zhou et al. | Selective functionalization of the nanogap of a plasmonic dimer | |
D’Andrea et al. | SERS enhancement and field confinement in nanosensors based on self-organized gold nanowires produced by ion-beam sputtering | |
Song et al. | Probing the mechanisms of strong fluorescence enhancement in plasmonic nanogaps with sub-nanometer precision | |
Merlen et al. | Surface-enhanced Raman and fluorescence spectroscopy of dye molecules deposited on nanostructured gold surfaces |