TW201320698A - Methods, apparatus and systems for managing IP flow mobility - Google Patents

Methods, apparatus and systems for managing IP flow mobility Download PDF

Info

Publication number
TW201320698A
TW201320698A TW101135065A TW101135065A TW201320698A TW 201320698 A TW201320698 A TW 201320698A TW 101135065 A TW101135065 A TW 101135065A TW 101135065 A TW101135065 A TW 101135065A TW 201320698 A TW201320698 A TW 201320698A
Authority
TW
Taiwan
Prior art keywords
enb
cgw
interference
radio access
flow
Prior art date
Application number
TW101135065A
Other languages
Chinese (zh)
Inventor
John Cartmell
John Mcnally
Arty Chandra
Original Assignee
Interdigital Patent Holdings
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interdigital Patent Holdings filed Critical Interdigital Patent Holdings
Publication of TW201320698A publication Critical patent/TW201320698A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/22Performing reselection for specific purposes for handling the traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • H04W36/144Reselecting a network or an air interface over a different radio air interface technology
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Systems and methods are described for IP mobility based on feedback received fromeNodeBs and/or Home eNodeBs ((H)eNBs). The feedback may include, for example, levels of interference and load levels. In some embodiments a converged gateway may configure the (H)eNBs to measure a performance parameter. The (H)eNB may then provide the measurement to the converged gateway. Based on the measurement, the converged gateway may determine to offload one or more IP flows from a first radio access technology (cellular, for example) to a second radio access technology (non- cellular, for example).

Description

管理IP流行動性方法、裝置及系統Management IP flow mobility method, device and system

用戶設備(UE)可包括為了連接到無線通訊網路賦能兩個不同無線電存取技術(RAT)的雙模裝置。最近,這些RAT已被用於訊息分離,在其中訊息被劃分為兩個封包流,其例如可賦能到UE的增加的流通量。
A User Equipment (UE) may include a dual mode device that enables two different Radio Access Technologies (RATs) to connect to a wireless communication network. Recently, these RATs have been used for message separation, in which the message is divided into two packet streams, which for example can be assigned to the UE's increased throughput.

在一個實施例中,一種方法包括配置代管(hosting)IP流的e節點B和家用e節點B中的一者以測量性能參數、接收反饋資料,其中該反饋資料包括性能參數的測量、以及基於該反饋資料來確定IP流的卸載。
在一個實施例中,一種方法包括經由X2介面以從代管IP流的家用e節點B和e節點B中的一者接收反饋資料,其中該反饋資料包括性能參數的測量,以及基於該反饋資料來確定IP流的卸載。
在一個實施例中,一種方法包括經由介面以從e節點B接收干擾測量,其中IP流正遍歷該e節點B、當干擾測量超過干擾臨界值時,將該IP流從e節點B移動到非蜂巢無線電存取技術、以及當干擾測量未超過干擾臨界值時,確定e節點B上的負載超過了負載臨界值,並將IP流從e節點B移動到非蜂巢無線電存取技術。
在一個實施例中,一種方法包括經由介面以從家用e節點B接收干擾測量,其中IP流正遍歷該家用e節點B、當干擾測量超過干擾臨界值時,將該IP流從該家用e節點B移動到非蜂巢無線電存取技術、當干擾測量未超過干擾臨界值時,確定該家用e節點B上的負載超過了負載臨界值,以及將該IP流從該家用e節點B移動到非蜂巢無線電存取技術。
在一個實施例中,一種方法包括請求來自家用e節點B管理系統的性能參數測量、從該家用e節點B管理系統接收性能參數測量、以及基於該性能參數測量來確定IP流的卸載。
In one embodiment, a method includes configuring one of an eNodeB and a home eNodeB hosting an IP flow to measure performance parameters, receive feedback data, wherein the feedback data includes measurements of performance parameters, and The offloading of the IP flow is determined based on the feedback data.
In one embodiment, a method includes receiving feedback data from one of a home eNodeB and an eNodeB of a escrow IP flow via an X2 interface, wherein the feedback data includes measurements of performance parameters, and based on the feedback data To determine the uninstallation of the IP stream.
In one embodiment, a method includes receiving an interference measurement from an eNodeB via an interface, wherein an IP flow is traversing the eNodeB, and moving the IP flow from the eNodeB to the non-interference when the interference measurement exceeds an interference threshold The cellular radio access technology, and when the interference measurement does not exceed the interference threshold, determines that the load on the eNodeB exceeds the load threshold and moves the IP flow from the eNodeB to the non-homed radio access technology.
In one embodiment, a method includes receiving interference measurements from a home eNodeB via an interface, wherein an IP flow is traversing the home eNodeB, and when the interference measurement exceeds an interference threshold, the IP flow is from the home eNode B moves to non-homed radio access technology, determines that the load on the home eNodeB exceeds the load threshold when the interference measurement does not exceed the interference threshold, and moves the IP flow from the home eNodeB to the non-homed Radio access technology.
In one embodiment, a method includes requesting performance parameter measurements from a home eNodeB management system, receiving performance parameter measurements from the home eNodeB management system, and determining offloading of IP flows based on the performance parameter measurements.

雖然詳細說明在此參考特定的實施例進行解釋和描述,但在此描述的系統和方法不意圖被限制於所示的細節。相反,在不脫離所揭露的範圍的情況下,各種修飾可在申請專利範圍的等同替代的範圍內在細節方面做出。
毫微微(femto)存取點(例如家用節點B或演進型家用節點B)可以是可將使用蜂巢網路無線空氣介面(例如UMTS陸地無線電存取(UTRAN)、長期演進(LTE)和分碼多重存取(CDMA))的無線傳輸/接收單元(WTRU)連接到使用寬頻IP回載的蜂巢操作者網路的用戶端設備(CPE)。用於用戶的寬頻IP回載的有線選擇可包括雙線xDSL(例如ADSL、ADSL2、VDSL、VDSL2)、同軸電纜(例如經由DOCSIS 1.1、2.0和3.0)、光纖到家/戶(FTTH/FTTP)及/或經由電線的寬頻(BPL)。
CGW概念的一些基本方面和特徵以及CGW的各種實施例在各種出版品中披露,包括US專利申請案公開號2011/0228750和2012/0071168,其經由引用被完全結合於此。
在特定的示例實施例中,揭露了用於基於用於家庭、鄰居和企業環境的“融合閘道”(CGW)的混合網路的一般架構。該混合網路架構可例如基於演進型3GPP家用節點B平臺以經由CGW結合廣域網路操作者提供的增值服務來解決本地裝置間或裝置之中的無線通訊。
閘道系統可提供各種特徵,例如到本地網路、公共網際網路和私有服務供應者網路的毫微微胞元的存取,即經由3GPP家用節點B(HNB);包括3GPP UMTS和IEEE 802.11的多個無線電存取技術(RAT)(或諸如乙太網路這樣的有線技術)間的卸載、流移動和頻寬或融合管理(BWM或CGM);機器對機器(M2M)網路連接,包括對基於802.1S.4的自組織網路(SON)的輔助;以及對階層網路元件的M2M閘道功能。
在諸如蜂巢網路這樣的網路中存在結合CGW設備的多種方式。例如,CGW可放置在行動核心網路(MCN)和HNB之間,並對MCN裝置充當HNB,對HNB充當MCN裝置。
CGW可被用來確定如何分離資料以傳輸(例如決定在多個RAT的每一個或其他有線技術之間哪些資料封包被發送給終端裝置)。例如,序號可與經由特定RAT發送的資料封包相關聯。CGW設備可追蹤分開傳輸的資料封包的序號以便維持發送和接收設備之間(例如在服務GPRS支援節點(SGSN)和WTRU之間等)的適當的順序。
在此描述的方法和裝置可在全部統稱為通訊系統的有線網路、無線網路和混合有線無線網路上使用。第1A圖是在其中一個或多個揭露的實施例可得以實施的示例通訊系統100的圖。通訊系統100可以是向多個無線用戶提供諸如語音、資料、視訊、訊息和廣播等這樣的內容的多重存取系統。通訊系統100可使多個無線用戶能夠經由共享包括無線頻寬的系統資源來存取這樣的內容。例如,通訊系統100可採用一個或多個頻道存取方法,例如分碼多重存取(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)、及/或單載波FDMA(SC-FDMA)等。
如第1A圖所示,通訊系統100可包括無線傳輸/接收單元(WTRU)102a、102b、102c、102d、無線電存取網路(RAN)104、核心網路106、公共交換電話網路(PSTN)108、網際網路110和其他網路112。
雖然顯示了特定數目的WTRU、基地台和網路元件,但可設想任何數目的這樣的WTRU、基地台、及/或網路元件。
雖然WTRU被顯示為示例性終端裝置,但可設想其他裝置是可能的。例如,經由HNB、WIFI和經由CGW的乙太網路存取點所連接的有線和無線終端裝置的混合。
WTRU 102a、102b、102c、102d的每一個可以是被配置為在無線環境中操作及/或通訊的任何類型的裝置。以示例的方式,WTRU 102a、102b、102c、102d可被配置為發送及/或接收無線信號、並且可包括用戶設備(UE)、行動站、固定或行動用戶單元、呼叫器、蜂巢電話、個人數位助手(PDA)、智慧型電話、膝上型電腦、迷你筆記型電腦、個人電腦、無線感測器、及/或消費電子產品等。
UE在此可被用於示例的目的,但任何WTRU可容易地應用於在此的示例。
通訊系統100亦可包括基地台114a和基地台114b。基地台114a、114b的每一個可以是被配置為與WTRU 102a、102b、102c、102d中的至少一個進行無線介面連接以便於存取諸如核心網路106、網際網路110及/或其他網路112這樣的一個或多個通訊網路的任何類型的裝置。例如,基地台114a、114b可以是基地收發站(BTS)、節點-B、e節點B、家用節點B、家用e節點B、站點控制器、存取點(AP)及/或無線路由器等。
雖然基地台114a、114b每一個被圖示為單一元件或裝置,但可預期基地台114a、114b可包括任何數目的互連基地台及/或網路元件。
在一些示例實施例中,基地台114a可以是RAN 104的一部分,RAN 104亦可包括其他基地台及/或網路元件(未示出),例如基地台控制器(BSC)、無線電網路控制器(RNC)及/或中繼節點等。基地台114a及/或基地台114b可被配置為在特定地理區域(可被稱為胞元(未示出))內發送及/或接收無線信號。胞元可進一步被劃分為胞元扇區。例如,與基地台114a相關聯的胞元可被劃分為3個胞元扇區。
在一些示例實施例中,基地台114a可包括3個收發器,例如每個胞元扇區一個。在其他示例實施例中,基地台114a可採用多輸入多輸出(MIMO)技術、並可使用多個收發器用於胞元的每個扇區。
基地台114a、114b可經由空氣介面116以與WTRU 102a、102b、102c、102d的一個或多個進行通訊,空氣介面116可以是任何適當的無線通訊鏈路(例如射頻(RF)、微波、紅外(IR)、紫外(UV)及/或可見光等)。空氣介面116可使用任何適當的無線電存取技術(RAT)來建立。
通訊系統100可以是多重存取系統、並且可採用一個或多個頻道存取方案,例如CDMA、TDMA、FDMA、OFDMA及/或SC-FDMA等。例如,RAN 104中的基地台114a和WTRU 102a、102b和102c可實現諸如通用行動電信系統(UMTS)陸地無線電存取(UTRA)這樣的無線電技術,其可使用寬頻CDMA(WCDMA)來建立空氣介面116。WCDMA可包括諸如高速封包存取(HSPA)及/或演進HSPA(HSPA+)這樣的通訊協定。HSPA可包括高速下鏈封包存取(HSDPA)及/或高速上鏈封包存取(HSUPA)。
在一些示例實施例中,基地台114a和WTRU 102a、102b和102c可實現諸如演進UMTS陸地無線電存取(E-UTRA)這樣的無線電技術,其可使用長期演進(LTE)及/或高級LTE(LTE-A)來建立空氣介面116。
在一些示例實施例中,基地台114a和WTRU 102a、102b和102c可實現諸如IEEE 802.16(即全球互通微波存取(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、臨時標準2000(IS-2000)、臨時標準95(IS-95)、臨時標準856(IS-856)、全球行動通訊系統(GSM)、增強型資料速率GSM演進技術(EDGE)及/或GSM EDGE(GERAN)等這樣的無線電技術。
第1A圖中的基地台114b可以是例如無線路由器、家用節點B、家用e節點B或存取點、並且可使用任何適當的RAT以促進例如商業地點、家庭、車輛及/或校園等的局部區域中的無線連接性。
在一些示例實施例中,基地台114b以及WTRU 102c和102d可:(1)實現諸如(i)IEEE 802.11這樣的無線電技術,以建立無線區域網路(WLAN);及/或(ii)IEEE 802.15這樣的無線電技術,以建立無線個人區域網路(WPAN);及/或(2)可使用基於蜂巢的RAT(例如WCDMA、CDMA2000、GSM、LTE及/或LTE-A等)來建立微微胞元(picocell)或毫微微胞元(femtocell)。
如第1A圖所示,基地台114b可與網際網路110有直接連接,並且基地台114b可經由核心網路106來存取(或不可存取)網際網路110。
RAN 104可與核心網路106通訊,核心網路106可以是被配置為向WTRU 102a、102b、102c和102d的一個或多個提供語音、資料、應用及/或經由網際網路協定的語音(VoIP)服務的任何類型的網路。例如,核心網路106可提供呼叫控制、計費服務、基於移動位置的服務、預付費呼叫、網際網路連接及/或視訊分配等、及/或執行諸如用戶認證這樣的高階安全功能。RAN 104及/或核心網路106可與採用與RAN 104相同RAT或不同RAT的其他RAN(未示出)直接或間接通訊。例如,除了與可採用E-UTRA無線電技術的RAN 104連接(例如,與其通訊)之外,核心網路106也可與採用GSM無線電技術的另一個RAN進行通訊。
核心網路106亦可作為閘道,用於WTRU 102a、102b、102c和102d存取PSTN 108、網際網路110及/或其他網路112。PSTN 108可包括提供傳統老式電話服務(POTS)的電路交換電話網路。網際網路110可包括使用公共通訊協定的互連電腦網路和裝置的全球系統,例如TCP/IP網際網路協定系列中的傳輸控制協定(TCP)、用戶資料報協定(UDP)和網際網路協定(IP)。網路112可包括由其他服務供應者擁有及/或操作的有線或無線通訊網路。例如,網路112可包括與可採用與RAN 104相同RAT或不同RAT的一個或多個RAN相連接的另一個核心網路。
在通訊系統100中的WTRU(例如WTRU 102a、102b、102c及/或102d的一些或所有)可包括多模能力(例如WTRU 102a、102b、102c及/或102d可包括用於經由使用不同無線鏈路與不同無線網路進行通訊的多個收發器)。例如,WTRU 102c可被配置為與可採用基於蜂巢的無線電技術的基地台114a和與可採用IEEE 802無線電技術的基地台114b進行通訊。
第1B圖是示例WTRU 102的系統圖。如第1B圖所示,WTRU 102可包括處理器118、收發器120、傳輸/接收元件122、揚聲器/麥克風124、鍵盤126、顯示器/觸控板128、不可移式記憶體130、可移式記憶體132、電源134、全球定位系統(GPS)碼片組136及/或其他週邊裝置138等。
處理器118可以是通用處理器、專用處理器、傳統處理器、數位信號處理器(DSP)、多個微處理器、與DSP核相關聯的一或多個微處理器、控制器、微控制器、專用積體電路(ASIC)、現場可編程閘陣列(FPGA)電路、任何其他類型的積體電路(IC)及/或狀態機等。處理器118可執行信號編碼、資料處理、功率控制、輸入/輸出處理及/或使WTRU 102能夠在無線環境中操作的任何其他功能。處理器118可與收發器120耦合,收發器120可與傳輸/接收元件122耦合。雖然第1B圖將處理器118和收發器120圖示為分離的元件,可預期處理器118和收發器120可在電子封裝或晶片中集成在一起。
傳輸/接收元件(例如單元、裝置、模組或裝置)122可被配置為使用空氣介面116以向例如基地台(例如基地台114a)發送信號或從基地台(例如基地台114a)接收信號。例如,在一些示例實施例中,傳輸/接收元件122可以是被配置為發送及/或接收RF信號的天線。
在一些示例實施例中,傳輸/接收元件122例如可以是被配置為發送及/或接收IR、UV或可見光信號的發光體/偵測器。在各示例實施例中,傳輸/接收元件122可以被配置為發送和接收RF和光信號兩者。可預期,傳輸/接收元件122可被配置為發送及/或接收無線信號的任何組合。
雖然傳輸/接收元件122被顯示為單一元件,WTRU 102可包括任何數目的傳輸/接收元件122。例如,WTRU 102可採用MIMO技術,使得WTRU 102可包括用於使用(例如經由)空氣介面116發送和接收無線信號的兩個或更多個傳輸/接收元件122(例如多個天線)。
收發器120可被配置為調變將由傳輸/接收元件122發送的信號並解調由傳輸/接收元件122接收的信號。由於WTRU 102可具有多模能力,收發器120可包括例如用於使WTRU 102能夠經由諸如UTRA、WIFI及/或IEEE 802.11這樣的多個RAT進行通訊的多個收發器。
WTRU 102的處理器118可與揚聲器/麥克風124、鍵盤126及/或顯示器/觸控板128(例如液晶顯示器(LCD)顯示器單元或有機發光二極體(OLED)顯示器單元)耦合、並可從其接收用戶輸入資料。處理器118亦可以向揚聲器/麥克風124、鍵盤126及/或顯示器/觸控板128輸出用戶資料。處理器118可從諸如不可移式記憶體130及/或可移式記憶體132這樣的任何類型的適當記憶體存取資訊、並將資料儲存在其中。不可移式記憶體130可包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟或任何其他類型的記憶體裝置。可移式記憶體132可包括用戶身份模組(SIM)卡、記憶條及/或安全數位(SO)記憶卡等。
在一些示例實施例中,處理器118可從實體上不位於WTRU 102(例如在伺服器或家用電腦(未示出))上的記憶體存取資訊、並將資料儲存在其中。
處理器118可從電源134接收(供應)功率、並可被配置為分配及/或控制給WTRU 102中其他元件的功率。電源134可以是用於向WTRU 102供電的任何適當的裝置。例如,電源134可包括一或多個乾電池(例如鎳鎘(NiCd)、鎳鋅(NiZn)、鎳金屬氫化物(NiMH)、鋰離子(Li-ion)等)、太陽能電池及/或燃料電池等。
處理器118亦可以與可被配置為提供關於WTRU 102目前位置的位置資訊(例如經度和緯度)的GPS碼片組136耦合。附加於或替代來自GPS碼片組136的資訊,WTRU 102可經由空氣介面116以從基地台(例如基地台114a及/或114b)接收位置資訊、及/或基於從兩個或更多個附近(本地或鄰近)基地台接收到的信號的時序來確定其位置。可預期,WTRU 102可以用任何適當的位置確定方法來獲取位置資訊。
處理器118可與其他週邊裝置138耦合,其他週邊裝置138可包括提供附加特徵、功能及/或有線或無線連接的一或多個軟體及/或硬體模組。例如,週邊裝置138可包括加速計、電子羅盤、衛星收發器、數位照相機(用於相片及/或視訊)、通用串列匯流排(USB)埠、振動裝置、電視收發器、免持耳機、藍芽R模組、調頻(FM)無線電單元、數位音樂播放器、媒體播放器、視訊遊戲玩家模組及/或網際網路瀏覽器等。
第1C圖是根據實施例的RAN 104和核心網路106的系統圖。如上所述,RAN 104可採用E-UTRA無線電技術以經由空氣介面116來與WTRU 102a、102b、102c進行通訊。RAN 104亦與核心網路106進行通訊。
RAN 104可包括e節點B 140a、140b、140c,但將理解RAN 104可包括任何數目的e節點B而與實施例保持一致。e節點B 140a、140b、140c每一個可包括用於經由空氣介面116來與WTRU 102a、102b、102c進行通訊的一或多個收發器。在一個實施例中,e節點B 140a、140b、140c可實施MIMO技術。因此,e節點B 140a例如可使用多個天線來向WTRU 102a發送無線信號並從其接收無線信號。
e節點B 140a、140b、140c的每一個可與特定的胞元(未示出)相關聯、並且可被配置為處理無線電資源管理決策、切換決策、排程在上鏈及/或下鏈中的用戶等。如第1C圖所示,e節點B 140a、140b、140c可經由X2介面互相通訊。
第1C圖中示出的核心網路106可包括移動管理閘道(MME)142、服務閘道144和封包資料網路(PDN)閘道146。雖然上述元件被描述為核心網路106的一部分,但將理解這些元件的任何一個可由除了核心網路操作者以外的實體擁有及/或操作。
MME 142可經由S1介面以與RAN 104中的e節點B 140a、140b、140c的每一個e節點連接、並且可作為控制節點。例如,MME 142可負責認證WTRU 102a、102b、102c的用戶認證、承載啟動/止動、在WTRU 102a、102b、102c初始連結期間選取特定的服務閘道等。MME 142亦可提供用於在RAN 104和採用諸如GSM或WCDMA這樣的其他無線電技術的其他RAN(未示出)之間切換的控制面功能。
服務閘道144可經由S1介面以與RAN 104中的e節點B 140a、140b、140c的每一個e節點B連接。服務閘道144通常可路由和轉發去往/來自WTRU 102a、102b、102c的用戶資料封包。服務閘道144亦可以執行其他功能,例如在e節點B間切換期間錨定用戶面、當下鏈資料對WTRU 102a、102b、102c可用時觸發傳呼、管理和儲存WTRU 102a、102b、102c的上下文等。
服務閘道144亦可與PDN閘道146連接,PDN閘道146可向WTRU 102a、102b、102c提供到諸如網際網路110這樣的封包交換網路的存取,以便於WTRU 102a、102b、102c和賦能IP裝置之間的通訊。
核心網路106可促進與其他網路的通訊。例如,核心網路106可向WTRU 102a、102b、102c提供到諸如PSTN 108這樣的電路交換網路的存取,以便於WTRU 102a、102b、102c和傳統陸線通訊裝置之間的通訊。例如,核心網路106可包括作為核心網路106和PSTN 108之間的介面的IP閘道(例如IP多媒體子系統(IMS)伺服器)或與其通訊。此外,核心網路106可向WTRU 102a、102b、102c提供對網路112的存取,網路112可包括由其他服務提供者擁有及/或操作的其他有線或無線網路。
雖然某些圖式顯示了LTE成分,但可預期諸如UMTS、CDMA及/或LTE-A等這樣的其他行動電信技術可被應用,例如,對於UMTS,RAN 104例如可包括節點-B和RNC。
可聯合被稱為H(e)NB的家用節點B(HNB)和家用e節點B(HeNB)是3GPP術語,不限於僅用於家庭,亦可應用於企業和地鐵部署。術語“毫微微存取點”(FAP)可被認為與H(e)NB同義。
H(e)NB可使用寬頻IP回載經由UMTS陸地無線電存取網路(UTRAN)或長期演進(LTE)無線空氣介面以與蜂巢操作者的網路相連接。
藉由提供演進型HNB平臺中的附加智慧並經由寬頻IP回載來提供新的加值服務,經由HNB平臺和其他數位家庭/鄰居/企業元件的集成或互動可以有附加的機會。加值服務可包括更低成本的通訊和娛樂選擇(例如“四重播放(quadruple play)”)、簡化的家用網路管理(包括遠端存取)、用於個人裝置的擴展應用(包括音頻/視訊對話轉移及/或通用遠端控制能力)、賦能IP多媒體對話(IMS)的“本地”服務、改善的個人/家庭安全、及/或操作者支援的網路安全的支援等。新的能力可包括無線寬頻回載選擇(包括3G技術及/或諸如WiMAX、LTE及/或LTE-A這樣的更高頻寬的4G技術)。
新的能力可包括對大量機器對機器(M2M)裝置及/或M2M閘道的HNB支援、多媒體資料的協作多RAT傳遞(包括同時的多RAT連接)和鄰近HNB的互連,以形成鄰居區域或企業區域網路,這可便於包括對本地快取內容的存取的本地P2P通訊。
新的能力亦可包括在HNB和在車輛環境(WAVE)賦能的車輛中的無線存取之間的介面。這樣的介面在用戶達到或離開家時可有助於在車裏的用戶對話連續性以及車輛資料到網路的傳遞。
以下是可由CGW混合網路架構支援的服務需求的示例:(1)簡化的部署和操作,包括自動配置;(2)如由蜂巢網路操作者提供的WTRU服務(例如所有WTRU服務),包括到/離開巨集胞元的移動、對IMS及/或M2M閘道的支持等;(3)使用傳訊以及經由CGW的資料的本地裝置通訊;(4)使用經由CGW的傳訊以及經由本地裝置間的點對點(P2P)連接的資料的本地裝置通訊;(5)從WTRU到家用網路的本地IP存取;(6)從WTRU到家用網路的遠端存取;(7)公共警報系統到家用網路的擴展;及/或(8)蜂巢網路電視服務的擴展(例如對家用網路的包括頻寬管理的多媒體廣播多播服務)。
可由CGW混合網路架構支援的存取需求的示例可包括對以下的支援:(1)對蜂巢操作者核心網路的基於IP的寬頻回載;(2)對蜂巢和WLAN存取的封閉、開放和混合訂戶組;(3)UMTS空氣介面,包括對舊有終端的支援;(4)LTE/LTE-A空氣介面;(5)基於802.1I的WLAN空氣介面,包括對舊有終端和802.11 p WAVE裝置的支援;(6)使用蜂巢/WLAN介面/閘道及/或直接經由諸如ZigBee及/或藍芽等的可選M2M介面的M2M;(7)RAT間及/或HNB間存取/服務傳遞;(8)多RAT存取/服務;及/或(9)本地許可控制及/或本地資源控制。
CGW可提供以下特徵:(1)包括3GPP HNB、本地GW、IEEE 802.11 AP、IEEE 802.15.4 WPAN、RF感測模組及/或M2M GW的CGW元件以及包括動態頻譜管理(DSM)的CGW應用的初始化;(2)CGW元件向一或多個外部操作者網路及/或一或多個服務供應者的註冊,包括對IMS和非IMS服務及/或外部M2M伺服器等的支援;(3)經由CGW已在WTRU和住宅/企業網路之間的本地IP存取(LIPA);(4)經由CGW的選取的IP流量卸載(SIPTO);(5)經由頻寬管理增強CGW以對本地和行動核心操作者(MCN)服務的存取;(6)從HNB到HNB、HNB到巨集胞元以及巨集胞元到HNB的空閒及/或活動移動;(7)對輔助自組織網路(SON)的前視干擾管理(pIM);及/或(8)M2M閘道功能等。
活動HNB移動可支持合併的硬切換和包括支援無損切換的的服務無線電網路子系統(SRNS)重新定向程序。在CGW中的頻寬管理可包括頻寬管理(BWM)伺服器,該伺服器可為具有支援多模能力的BWM用戶端的裝置提供在蜂巢(例如UMTS)和802.11空氣介面間IP封包資料的多RAT分佈。在一些示例實施例中,BWM伺服器可被集成到包括HNB中的BWM伺服器功能集成的CGW中,或者BWM伺服器可以是標準HNB和MCN之間的獨立實體。
在一些示例實施例中,BWM伺服器可與多個HNB集成,這在企業佈置中可能是有用的。
家用或企業網路可被配置為具有到公共網際網路的電纜資料機或數位用戶線(DSL)連接。網路可具有在相同的家庭區域網路(HAN)或企業區域(EAN)中能夠互相連接的HNB和BWM伺服器、以及在HAN或EAN上具有IP位址的HNB和BWM伺服器。
第2A和2B圖(共同地包括分佈在兩頁上的一個系統,其中在兩頁上都顯示的數據機207顯示了這兩個圖重疊/相遇的地方)是CGW混合網路的示例基礎架構。實體實現可取決於感興趣的特定功能改變。主要元件的描述在此概述。
在第2圖所示的架構中,特殊介面(被稱為邏輯介面)可由多於一個的實體介面真實地實現。例如,諸如蜂巢電話202這樣的終端裝置可具有Wi-Fi介面206和蜂巢介面204兩者。在此示例中,邏輯介面可以是實體多無線電存取技術(多RAT)。這可促進多個傳輸,以增加資料速率或提供鏈路強健性(例如多RAT分集),或提供靈活性使得依賴於RAT對將被傳輸資料的適用性以自適應的方式來選取每個RAT。
CGW基礎設施可由包括任何硬線設施(例如5類電纜、同軸電纜、電話線、電線及/或光纖等)的家庭“核心網路”元件組成。
在第2圖中,CGW平臺201的某些功能在標為CGW功能210的方塊中示出。這些功能可邏輯地存在於CGW平臺中,但可以集中的形式實現在例如HNB中或以分佈的形式實現在多個節點間。
CGW基礎設施網路的高階元件可以是獨立的實體或模組。然而,通用架構的商業實現可合併各種元件以提高性能和降低大小/成本/能量消耗。例如,HNB 203可以與家用閘道、WLAN存取點208及/或TV STB 211實體集成以提供單盒多技術的“融合閘道”。為了支援這樣的結構,HNB 203、HeNB 205、寬頻資料機207及/或STB 211可基於寬頻論壇的TR-069或其他標準共享用於遠端管理的公共應用層協定。在一些示例實施例中,毫微微胞元基地台可與家用閘道和Wi-Fi路由器集成。
在一些特定示例實施例中,HNB 203可包括向WTRU賦能的裝置提供到基於家庭的網路或到外部網際網路的“本地IP存取”(LIPA)的能力。HNB可經由諸如WLAN AP這樣的閘道來支援到其他網路的邏輯及/或實體連接、及/或與其他網路集成。
HNB 203可經由乙太網路以與客戶的家用閘道連接,家用閘道可經由例如寬頻、電纜、光纖或DSL以提供到蜂巢操作者的核心網路208的存取。固定無線寬頻存取也可以是一種選擇,例如可使用WiMAX或LTE蜂巢技術。非操作者提供的WLAN AP可在家用網路中使用。CGW亦可使用由蜂巢操作者管理的基於802.11n的AP。
在此描述的系統和方法通常涉及頻寬管理技術、IP流移動和無縫WLAN卸載(IFOM)。在一些實施例中,控制實體可以是CGW、BWM伺服器224或作出關於如何向諸如用戶裝置這樣的WTRU路由封包的行動核心網路本身。如在下更詳細的描述那樣,在此描述的系統和方法可將反饋用作對IFOM決定引擎的輸入。例如,該反饋可來自家用e節點B及/或e節點B(此後統稱為(H)eNB)。在此描述的系統和方法不單單針對e節點B實施例或家用e節點B實施例。反而,在此描述的系統和方法可應用於具有e節點B或家用e節點B中的任一個或兩者的架構。因此,針對e節點B的任何實施例也可使用家用e節點B來實現,反之亦然,除非明確地聲明其他的方式。
該反饋可包括例如在(H)eNB處測量的擁塞及/或負載、或者性能參數的其他測量。此反饋(例如在e節點B處測量的干擾)可使用各種適當技術中的任一種(或組合)被提供給IFOM決定引擎。在一個實施例中,例如,該反饋經由X2介面提供。在另一個實施例中,該反饋直接從已經被配置為報告各種性能測量的(H)eNB接收。在又一個實施例中,該反饋從家用e節點B管理系統(HeMS)接收。
在一些實施例中,一旦接收到此反饋資訊,路由決策可基於以下邏輯作出。如果(H)eNB經由以上列出的任何介面來報告干擾及/或超載情況,且使用此超載或干擾(H)eNB的WTRU具有3GPP和非3GPP傳輸兩者,並且源於/發往(sink to)該用戶裝置的IP流允許該IP流被卸載到非3GPP傳輸,則WTRU的IP流的一些或全部從3GPP無線電存取技術(例如蜂巢)被移動到非3GPP無線電存取技術(例如Wi-Fi)。
使用eSON的基於CGW的IFOM
在一些實施例中,可以使用基於CGW的IFOM演進型自組織網路(eSON)系統和方法。目前在CGW中的IFOM決定引擎功能可經由採用在藉由引用合併於此的3GPP TS 32.581 v9.1.0中的家用e節點B需求來使用:
REQ-OAMP_CM-FUN-016 HeNB應當能夠通知HeMS在無線電環境中的改變和需要的無線電頻寬。
應當注意,雖然所示的實施例使用位於建築物中控制若干家用e節點B的CGW來示出,但此揭露並不受這樣的限制。反而,一些系統和方法可使用位於行動核心網路中的CGW、並控制若干小型胞元e節點B或巨集e節點B,而不脫離本揭露的範圍。
在基於CGW的IFOM中,CGW可具有例如根據若干輸入功能來決定如何在諸如蜂巢和Wi-Fi這樣的兩個RAT之間移動IP流的決定引擎。輸入可包括但不限於IP流的數目、每個IP流消耗的流通量、每IP流的路由策略以及在WTRU處進行的接收信號強度指示(RSSI)測量。在一些實施例中,對此決定過程的附加輸入可包括來自(H)eNB的反饋資訊。該反饋資訊可包括由(H)eNB所測量的干擾、在(H)eNB處的等級或資源負載或其他性能參數。
為了接收該反饋資訊,在一些實施例中,CGW可配置(H)eNB來作出測量並將其報告給該CGW。一旦接收到一個或多個測量,CGW然後可處理這些測量並基於此測量的干擾來決定將IP流從蜂巢傳輸移開。因此,可以降低(H)eNB間干擾。
第3圖-第8圖闡明了在各操作階段基於CGW的IFOM-eSON架構的非限制實施例。首先參考第3圖,在該闡明的實施例中,在建築物301中有若干家用e節點B 303a、303b,並有若干用戶裝置305a、305b、305c、305d,一些(例如裝置305a和305d)同時與家用e節點B 303a或303b中的一者以及Wi-Fi AP 311a或311b中的一者連接。其他用戶裝置,例如用戶裝置305b和305c僅經由Wi-Fi連接。如將理解的那樣,對於任何特定的建築物,可有n個家用e節點B和m個Wi-Fi AP,其中n是任何正整數,m是任何正整數。另外,出於解釋的目的,讓我們假設每個用戶裝置305a-305d主動地參與資料傳輸,如由線320所示那樣。在所示的實施例中,在該建築物中有管理家用e節點B的單一CGW 310。
參考第4圖,雖然與家用e節點B 303a或303b連接的用戶裝置305a-305d中的每一個主動地參與資料對話,但家用e節點B可能開始互相干擾,如在第4圖中箭頭402表示那樣。在CGW 310中的eSON 伺服器315可以配置家用e節點B 303a、303b的每一個來收集對其環境的測量。
接下來參考第5圖,在收集這些測量後,每個家用e節點B可將這些測量發送給CGW 310,如第5圖中所示的箭頭502指示那樣。每個家用e節點B多久發送一次測量報告可基於其如何被CGW配置。現在參考第6圖,在接收到這些測量後,CGW 310中的eSON伺服器315可將此性能資料傳遞給IFOM決定引擎317,如第6圖中的箭頭602所示那樣。
在分析該性能資料後,IFOM決定引擎317可確定在家用e節點B 303a和303b之間存在不可接受等級的干擾402。參考第7圖,為了緩解此干擾,IFOM決定引擎317然後可嘗試使用IFOM功能將IP流從蜂巢傳輸移開、並移動到非蜂巢傳輸(例如Wi-Fi),如在第7圖所示的IP流702指示的那樣。在IP流的一或多個已從蜂巢傳輸移動到非蜂巢傳輸後,家用e節點B間干擾可有效地減小以不再不利地影響性能,如第8圖所示。
第9圖顯示了根據一個非限制實施例顯示了CGW 901和e節點B 903之間互動的非協定特定的高階訊息序列圖。類似的訊息序列圖可應用於家用e節點B。經由訊息902,CGW 901可配置e節點B 903以進行環境測量。經由訊息904,e節點B 903可確認該配置訊息。在906處,e節點B 903可開始獲得資料(即干擾測量、擁塞測量、資源負載或其他性能度量)以提供給CGW 901。經由訊息908,e節點B可發送測量報告。在910處,CGW 901可分析由e節點B 903提供的反饋資料。
如果CGW確定干擾(或者至少不可接受的干擾等級)存在,在虛線框914中示出的流程發生。特別地,CGW 901將IP流從蜂巢無線電存取技術移動到非蜂巢無線電存取技術(即Wi-Fi),如在916處所示。藉由比較,如果CGW 901確定干擾不存在(或至少可接受等級的干擾存在),在虛線框917中所示的流程發生。特別地,CGW 901不將IP流從蜂巢無線電存取技術移動到非蜂巢無線電存取技術,如在918處所示。
在一個實施例中,CGW 901和家用e節點B 903之間的傳訊介面可使用CPE WAN管理協定(參考TR-069)。在不脫離本揭露的範圍的情況下,其他實施例可使用執行類似功能的不同協定。使用CPE WAN管理協定可能需要在家用e節點B中的TR-069用戶端。然而,e節點B已經具有被用於由HeMS的初始提供的TR-069用戶端,如在3GPP TS 32.581 v9.1.0中描述那樣:
REQ-OAMP_CM-FUN-001 HeNB配置應當由HeMS使用TR-069 CWMP協定來管理。
根據一個非限制實施例的做出測量的家用e節點B的配置和使用TR-069協定將這些測量傳輸給CGW在第10A圖和第10B圖中示出。在1001處,CGW可打開與家用e節點B的TR-069連接。在1002處,CGW和家用e節點B可建立安全連接。在1003處,CGW可藉由發送連接請求訊息來與家用e節點B建立對話。
多種事件可觸發CGW來建立對話。例如,在一些實施例中,由HeMS對家用e節點B的提供可用作觸發。在一些實施例中,邏輯可被用來基於在一個位置中操作的家用e節點B的數目來確定干擾是可能的。在任何事件中,在1004處,家用e節點B可向CGW發送通知請求以識別其自己。此通知請求可包括唯一識別該家用e節點B的參數。在一些實施例中,該通知請求可類似於3GPP TS 32.593 v9.1.0部分5.1.2.2的步驟2.1。在1005處,CGW可向家用e節點B發送通知回應。在一些實施例中,該通知回應可類似於3GPP TS 32.593 v9.1.0部分5.1.2.2的步驟2.1。在1006處,CGW可發送可包括各種參數的設定參數值請求訊息。在一些實施例中,這些參數可包括例如測量的頻率列表、在那些頻率中測量什麼以及多久執行這些測量。這些參數可包括例如EUTRA ARFCN最小值、EUTRA ARFCN最大值和需要測量的列表(例如RSSI、RSRP等)。設定參數值請求訊息亦可指明週期,例如“一次”或每“x”秒一次。亦可包括當被設定指明家用e節點B其應當開始執行測量時的執行測量旗標。
在1007處,家用e節點B可向CGW發送設定參數值回應訊息。在1008處,在CGW和家用e節點B之間的TR-069對話結束。應注意,雖然示出的實施例顯示了TR-069對話在1008處結束,但本揭露不受這樣的限制。事實上,在一些實施例中,CGW和家用e節點B之間的對話可在e節點B執行測量時保持打開。在一些實施例中,CGW可基於傳訊需要來確定是否保持該對話打開。例如,如果CGW和家用e節點B具有相對活動的關係,保持對話打開有益於減少整體傳訊,因為建立TR-069對話需要若干信號。在另一方面,如果CGW相對不頻繁地僅需要來自CGW的資訊,結束該對話並在之後重新發起其可能是有益的(如在第10A和10B圖所示)。
一旦被配置,家用e節點B在1009執行經指明的測量。在進行測量後,在1010處家用e節點B打開與CGW的TR-069連接。在1011處,CGW和家用e節點B可建立安全連接。在1012處,家用e節點B可藉由向CGW發送通知請求來建立TR-069對話。注意,如果測量被配置為“一次”,則訊息1009-1016將僅發生一次。如果測量被配置為週期性的或至少再發生的,則在每個週期進行測量後,適當的傳訊可發生。在1013處,CGW向家用e節點B發送通知回應。通知請求和後續的通知回應可類似於3GPP TS 32.593 v9.1.0部分5.1.2.2的步驟2.1。在1014處,CGW可發送取得參數值請求訊息以查詢家用e節點B已經進行的測量。在1015處,家用e節點B可在取得參數回應訊息中返回這些值。在1016處,CGW和家用e節點B之間的TR-069對話結束。
一旦接收到測量資訊,在1017處,CGW可作用於這些測量以決定IP流是否需要從蜂巢移動到Wi-Fi(或其他非蜂巢網路)以避免干擾。如果IP流可被移動(基於用戶裝置能力和路由規則),則CGW將把這些IP流轉移到Wi-Fi。
現在參考第10B圖,如果CGW確定其不再需要家用e節點B執行測量,其將命令家用e節點B停止執行測量。為了停止家用e節點B進行任何另外的測量,CGW可打開與家用e節點B的TR-069連接,如在1018處所示。在1019處,CGW和家用e節點B可建立安全連接。在1020處,CGW可聯繫家用e節點B以經由連接請求訊息來請求其建立TR-069對話。在1021處,家用e節點B可向CGW發送通知請求以識別其自己。此通知請求可包括唯一識別該家用e節點B的參數。在一些實施例中,該通知請求可類似於3GPP TS 32.593 v9.1.0部分5.1.2.2的步驟2.1。在1022處,CGW可向家用e節點B發送可類似於3GPP TS 32.593 v9.1.0部分5.1.2.2的步驟2.1的通知回應。在1023處,CGW可發送包括被重置以指明家用e節點B應當停止執行測量的執行測量旗標的設定參數值請求訊息。在1024處,家用e節點B可向CGW發送設定參數值回應訊息。在1025處,在CGW和家用e節點B之間的TR-069對話可結束。
第10A和10B圖中的家用e節點B可包括CGW可向其寫入以配置測量並從其讀取實際測量的結構(即記憶體)。
在測量已經進行並從(H)eNB接收到後,CGW將獲知每個e節點B在其中操作的無線電環境。CGW然後可分析這些結果並決定是否嘗試將IP流從蜂巢傳輸卸載到一或多個非蜂巢傳輸。在一些實施例中,該決定可基於以下原理:如果所有(H)eNB測量到低干擾,不做任何事;如果沒有非蜂巢AP,不做任何事;並且如果(H)eNB的確測量到高干擾,連結於其的裝置可能遭受不利的流通量/性能。如果那些連結的裝置中任何的裝置是有IFOM能力的,則一或多個IP流可被移動(即那些具有不要求“僅蜂巢”的路由規則的IP流可被移動到非蜂巢傳輸(例如Wi-Fi傳輸))。
在各種實施例中,CGW可配置(H)eNB來測量分配給每個(H)eNB的傳輸頻率周圍的頻率。當測量從一個(H)eNB(或若干(H)eNB)接收到,此邏輯可將在該(H)eNB的傳輸頻率附近的頻率的經報告的接收信號強度指示(RSSI)和參考信號接收功率(RSRP)等級與儲存在CGW中的臨界值RSSI和RSRP等級進行比較。如果測量的值在臨界值以下,不嘗試IP流移動。如果測量的值在臨界值以上,CGW可嘗試移動流。如果CGW確定IP流應當被移動,其可遍曆經由報告干擾的(H)eNB路由的現有IP流列表。對於這些IP流中的每一個,CGW可確定WTRU(即目的地)是否亦具有活動鏈結的非蜂巢連接,並且將確定IP流路由規則是否允許從蜂巢傳輸到非蜂巢傳輸的IP流移動。在發現所有能夠從蜂巢移動到非蜂巢的IP流後,CGW將實行這些IP流的移動。
第11圖闡明了根據一個非限制實施例的基於測量的家用e節點B間干擾的處理流程1100。如將理解的那樣,類似的處理流程可被用來測量e節點B間干擾。可針對已測量到干擾的每個家用e節點B執行此處理流程1100。在1102處,確定報告家用e節點B是否已測量到在其傳輸頻率附近的頻率上的干擾。如果沒有測量到干擾,該過程結束。然而,如果已測量到干擾,該處理流程繼續到1104,其中流經正經歷干擾的CGW和家用e節點B的IP流被識別。在那些IP流中,確定哪些到達具有經由此家用e節點B鏈結到3GPP PDP上下文的現有Wi-Fi連接的WTRU。亦確定IP流是否具有不是“僅蜂巢”或否則可限制卸載的路由策略。在1106處,在1104處識別的一或多個IP流被卸載到Wi-Fi傳輸(或其他非蜂巢傳輸)。在一些實施例中,在1104處識別的所有IP流可被移動到非蜂巢傳輸。在其他實施例中,單一IP流可經由在每次卸載後執行的干擾等級重評估來依序地卸載。
在此描述的系統和方法可以是WTRU裝置無關的(device agnostic)。反而,從WTRU的角度,對於一些實施例,執行在此描述的系統和方法所需的所有是具有IFOM能力的WTRU裝置。並且,可以實現在此描述的系統和方法以經由緩解干擾來執行自優化和自恢復。
使用X2介面的基於CGW的IFOM
LTE X2介面是針對(H)eNB間通訊設計的。3GPP TS 36.420 v10.1.0具有關於X2介面的附加細節,並且藉由引用被合併於此。有若干定義的程序基於遍歷X2介面的傳訊以在(H)eNB中執行。這些程序的主要範圍在藉由引用結合於此的3GPP TS 36.423 v10.2.0中找到。這些程序包括介面管理、測量和切換協作。關於X2介面的X2應用協定(AP)的附加細節亦可在3GPP TS 36.423 v10.2.0中找到。
根據各實施例,已存在於CGW中的IFOM決定引擎功能可與在(H)eNB間定義的X2介面和(H)eNB支援作為X2介面的結果的定義的過程一起被使用。雖然在此描述的各實施例在位於建築物中控制若干家用e節點B的CGW的上下文中進行解釋,但該系統和方法不受這樣的限制。反而,該系統和方法可應用於具有位於MCN中並且控制若干小型胞元e節點B或巨集e節點B的CGW的實施例。並且,在其他實施例中,在此描述的系統和方法可擴展到現有的基於PDN閘道的IFOM。
根據基於CGW的IFOM的一個實施例,CGW可具有根據一或多個輸入的功能來決定如何在蜂巢存取網路和非蜂巢存取網路(例如Wi-Fi)間行動IP流的決定引擎,這些輸入例如但不限於:IP流的數目、每個IP流消耗的流通量、每IP流的路由策略和在UE處進行的RSSI測量。並且,CGW亦可使用表示由一或多個(H)eNB測量的干擾的輸入、(H)eNB資源的超載及/或其他性能相關的度量。
一般地,(H)eNB可向另一個(H)eNB發送包括由該(H)eNB測量的干擾和該(H)eNB資源的負載的訊息。根據在此描述的系統和方法,(H)eNB可被配置為如CGW是另一個(H)eNB那樣操作。為了引起e節點B像這樣操作,CGW可模仿(H)eNB並與該(H)eNB建立X2連接。因此,在一些實施例中,CGW具有與在CGW中創建X2代理相關的功能。一或多個關聯的(H)eNB將如其正與另一個(H)eNB通訊那樣執行。經由該X2連接,CGW得知胞元處於(H)eNB範圍內。其然後可配置該(H)eNB以執行已經定義的測量來支援X2介面。該(H)eNB然後可執行(或從其管理的胞元收集)需要的測量並將這些測量發送給CGW。CGW然後可將這些作為到IFOM決定引擎的輸入。如果該(H)eNB(和其胞元)受到束縛(例如從干擾或資源負載角度),CGW可基於測量到的干擾或資源負載來決定將IP流從蜂巢傳輸移開。藉由從蜂巢存取網路卸載IP流,可以減小(H)eNB間干擾,並且可以減輕資源超載。
第12圖-第17圖圖釋了根據一個非限制實施例的使用X2介面的基於CGW的IFOM。雖然所示的實施例顯示了兩個家用e節點B 1203a、1203b和兩個Wi-Fi AP 1211a、1211b,但本揭露不受這樣的限制。反而,可使用任何適當數目的家用e節點B及/或e節點B 1211a、1211b和適當數目的非蜂巢AP。例如,在一些實施例中,建築物可包括3個e節點B、7個Wi-Fi AP和一個藍芽存取點。另外,出於闡明的目的,示出了若干用戶裝置1205a、1205b、1205c、1205d,其中一些(1205b和1205c)連接到家用e節點B 1203a、1203b和Wi-Fi AP 1211a、1211b中的一者、以及僅經由Wi-Fi連接的其他裝置(1205a、1205d)。另外,出於解釋的目的,讓我們假設每個用戶主動地參與資料傳輸。此外,出於解釋的目的,假設單一CGW 1210正在管理在此建築物1201中的家用e節點B。第12圖圖釋了該基於CGW的IFOM-X2架構。
現在參考第13圖,雖然與家用e節點B連接的每個用戶裝置主動地參與資料對話,但家用e節點B可開始互相干擾,如在第13圖中的箭頭1302指示那樣。並且,在一些實施例中,家用e節點B即使在無干擾的情況下也可能超載(即最小空閒資源可用)。並且,在一些實施例中,家用e節點B另外可能遭受降級的性能。如第14圖所示,在CGW 1210中的X2代理1216可經由X2介面1404來配置每個家用e節點B 1203a、1203b以收集對其環境的測量。該配置可在適當的時間發生,包括在存在干擾之前。在收集這些測量後,每個家用e節點B可經由X2介面1404向CGW發送測量。在一些實施例中,每個家用e節點B多久發送測量報告可基於其由CGW如何配置。例如,測量報告可週期性地發送。
如第15圖所示,在接收到這些測量後,在CGW中的X2代理可將此資料傳遞給IFOM決定引擎1217,如由箭頭1502所示。在分析此干擾及/或負載資料後,IFOM決定引擎1217可確定一或多個家用e節點B 1203a、1203b正經歷干擾。在一些情況下,其可確定一或多個家用e節點B可能正經歷已經由X2介面1404報告的超載情況及/或其他潛在有害操作情況。在任何事件中,為了緩解家用e節點B經歷的干擾、超載或性能相關的問題,IFOM決定引擎1217可嘗試使用IFOM功能以將IP流1220從蜂巢傳輸移動到Wi-Fi傳輸,如第16圖所示。如第16圖所示,到用戶裝置的IP流1220從家用e節點B 1203a被移動到Wi-Fi AP 1211a。
在IP流中的一或多個已從蜂巢傳輸被移動到Wi-Fi傳輸後,由家用e節點B測量的干擾、超載及/或其他有害情況可有效地被減少以不再不利地影響性能。此經修復的操作環境在第17圖中示出。
現在參考第18圖,顯示了顯示根據一個非限制實施例的CGW 1801和(H)eNB 1803之間互動的非協定特定高階訊息序列圖。經由訊息1802,CGW 1801配置(H)eNB以進行環境測量。經由訊息1804,(H)eNB 1803確認該配置訊息。在1806處,(H)eNB 1803進行測量。經由訊息1808,(H)eNB 1803向CGW 1801發送測量報告。在1810處,CGW 1801分析這些測量。虛線框1812示出了如果在1810中CGW 1801確定干擾發生時的訊息序列。特別地,如在1818處所示,CGW 1801將一或多個IP流從蜂巢移動到Wi-Fi。在另一方面,虛線框1814圖釋了如果確定(H)eNB 1803超載的訊息流。特別地,如在1820所示,CGW 1801將IP流從蜂巢移動到Wi-Fi。最終,虛線框1816圖釋了如果替代地沒有干擾、超載或其他有害情況由CGW 1801確定時在(H)eNB處存在的訊息。特別地,如在1822處所示,IP流不被移動。
在一些實施例中,在CGW和(H)eNB之間的傳訊介面將重新使用為(H)eNB間通訊所設計的LTE X2介面(參考3GPP TS 36.420 v10.1.0)。換句話說,在一些實施例中,CGW可藉由配置在該CGW控制下的(H)eNB執行和報告在3GPP TS 36.423中定義的測量來一般地模仿(H)eNB的動作。
雖然一些實施例使用X2介面,但其他實施例可使用執行類似功能的不同協定。如果使用現有的X2介面,不需要對(H)eNB進行改變。X2介面可使用X2應用協定(參考3GPP TS 36.423 v10.2.0)和SCTP/IP以在(H)eNB間進行通訊。經由X2介面的現有定義的程序可被重新使用來引起(H)eNB執行測量並向CGW報告測量。CGW可使用這些結果來決定是否將某些IP流從蜂巢傳輸(遍歷報告這些測量的(H)eNB)移動到非蜂巢傳輸(同樣在CGW的控制下)。
第19圖圖釋了根據一個非限制實施例的用於配置(H)eNB 1903使用X2介面進行測量並將那些測量傳遞給CGW 1901的傳訊圖。在1902,CGW 1901向(H)eNB 1903發送X2建立訊息。該建立訊息可以如在3GPP TS 36.423 v10.2.0部分9.1.2.3中定義的那樣。CGW 1901執行此步驟的觸發可以是各種適當的觸發。例如,其可以是家用e節點B由HeMS提供的結果。可選地,其可能是在一個位置有若干家用e節點B並且可能有干擾的CGW中建立的直觀知識。在任何事件中,X2建立訊息1902要求發送實體具有(H)eNB ID。因此,在一些實施例中,CGW 1901將必須被分配(H)eNB ID(即便其不是(H)eNB)。X2建立訊息1902亦可具有在發送該訊息的實體的範圍內的胞元的列表。接收實體使用此資訊來確定向哪些實體發送干擾訊息。如果兩個(H)eNB使用相同的頻率,則一旦它們具有X2對話,每一個可向另一個發送干擾資訊。為了CGW 1901迫使(H)eNB 1903發送干擾資訊,CGW將必須包括胞元資訊,該胞元資訊包括了(H)eNB發送干擾資訊。將藉由將EUARFCN設定為由該(H)eNB使用的頻率來進行這些。在一些實施例中,CGW可在家用e節點B被提供時竊聽家用e節點B-HeMS互動以學習該EUARFCN,或者CGW可能被預先配置有此資訊。
在1904處,(H)eNB 1903可如在3GPP TS 36.423 V10.2.0的部分9.2.1.4中定義的那樣向CGW 1901發送X2回應訊息。根據此訊息,CGW 1901可得知有關由回應(H)eNB 1903所服務的所有胞元的訊息。在1906處,CGW可如在3GPP TS 36.423 V10.2.0的部分9.2.1.11中定義的那樣向(H)eNB發送資源狀態請求訊息。CGW 1901可設定此訊息以為由(H)eNB在1904中報告的每個胞元配置以下測量:PRB週期、TNL負載指示符週期、HW負載指示符週期以及複合可用容量週期。CGW可設定週期,使得(H)eNB將週期性地報告這些測量。CGW可設定“部分成功指示符”以允許(H)eNB報告其支持的那些測量(如果其不支持所有以上測量的話)。CGW可設定“註冊請求”以開始引起(H)eNB執行和發送測量。
在1908處,(H)eNB例如可如在3GPP TS 36.423 V10.2.0的部分9.2.1.12中定義的那樣向CGW發送資源狀態回應訊息。在1910處,一旦被配置,(H)eNB 1903可執行經指明的測量。在1912處,(H)eNB例如可如在3GPP TS 36.423 V10.2.0的部分9.2.1.14中定義的那樣週期地向CGW發送資源狀態更新訊息。在1914處,(H)eNB可如在3GPP TS 36.423 V10.2.0的部分9.1.2.1中定義的那樣非同步地向CGW發送負載資訊訊息。
在1916處,CGW可作用於在1912和1914處接收的測量以決定是否需要將IP流從蜂巢移動到Wi-Fi(或其他無線電存取技術)以避免干擾、減少在(H)eNB上的負載或改善操作性能。如果(H)eNB正經歷干擾或處於超載情況下,並且如果IP流可以被移動(基於用戶裝置能力和路由規則),則CGW可將一或多個IP流轉移到Wi-Fi。
如果CGW確定其不再需要(H)eNB執行測量,其可向該(H)eNB發送具有被設定為停止的“註冊請求”的資源狀態請求訊息,以通知該(H)eNB停止執行測量,如在1918處所示。然後,如在1920處所示,雖然(H)eNB可中止向CGW發送資源狀態更新訊息,但其可繼續向CGW發送負載資訊訊息。
在一些實施例中,(H)eNB可提供由該(H)eNB經歷的負載(經由資源狀態更新訊息)及/或由該(H)eNB測量的干擾(經由負載資訊訊息)。由於這兩者指明(H)eNB是否處於束縛(雖然出於不同的原因)情況下,干擾決定演算法可考慮這兩種情況。然而,無論該(H)eNB為何處於束縛情況下,導致的動作可以是相同的,特別地,嘗試將IP流從蜂巢傳輸移動到非蜂巢傳輸。
根據一個非限制實施例的考慮干擾測量和超載的處理流程在第20圖中示出。
在步驟2001中,CGW確定此家用e節點B是否已在此家用e節點B正使用的上鏈或下鏈頻率上測量到干擾(負載資訊訊息)。如果沒有,流程繼續到步驟2003,在其中CGW確定此家用e節點B是否超載(無線電狀態更新訊息)。如果沒有,在轉移IP流量方面不需要做任何事情,並且由此該過程結束。
在另一方面,如果在步驟2001中確定此家用e節點B已在此家用e節點B正在使用的上鏈或下鏈頻率上測量到干擾或在步驟2003中確定此家用e節點B超載,流程繼續到步驟2005。在步驟2005中,CGW確定滿足以下標準的所有IP流:(1)流經此CGW和正經歷干擾的家用e節點B;(2)到達具有經由此家用e節點B鏈結到3GPP PDP上下文的現有Wi-Fi連接的用戶裝置;和(3)具有不是“僅蜂巢”的路由策略。然後,在步驟2007,CGW將滿足上述標準的一或多個(在此示例中所有)IP流移動到Wi-Fi傳輸,並且該過程結束。
在一些實施例中,移動演算法的一些原理可包括以下:如果(H)eNB測量到低干擾並且不超載,則不做任何事。如果沒有Wi-Fi AP,則不做任何事。如果(H)eNB測量到高干擾或超載,與其連結的裝置可能遭受不利的流通量/性能。如果任何那些裝置是具有IFOM能力的,則可被移動的一或多個IP流(例如那些具有不要求“僅蜂巢”的路由規則的IP流)將被移動到Wi-Fi傳輸。
當CGW從(H)eNB接收到負載資訊訊息時,其可解碼來自該訊息中的以下資訊元素(IE):上鏈干擾超載指示和相關窄帶傳輸功率(RNTP)。這些IE中的每一個IE報告每實體資源塊(PRB)其各自的資訊。上鏈干擾超載指示報告由(H)eNB胞元測量的上鏈干擾等級、並報告每個PRB的作為列舉值(高、中或低)的干擾。RNTP報告在每個PRB中將由e節點B胞元傳送的下鏈功率是否大於在相同IE中提供的RNTP臨界值。
在一些實施例中,CGW可分析所報告的值並確定是否有不可接受的量的上鏈或下鏈干擾。為了確定是否有上鏈干擾,CGW可計算正在經歷高干擾的PRB的百分比。例如,如果此百分比超過儲存在CGW中的臨界值,則CGW可嘗試將至少一個IP流從蜂巢傳輸移動到Wi-Fi傳輸(或其他非蜂巢傳輸)。為了確定是否有下鏈干擾,CGW可使用從(H)eNB接收的每PRB的RNTP。如果(H)eNB計畫為“許多”PRB超過下鏈功率臨界值,(H)eNB可能很好地操作在重干擾環境中。類似於上鏈干擾計算,CGW可計算計畫超過下鏈功率臨界值的PRB的百分比。例如,如果此百分比超過了儲存在CGW中的臨界值,則CGW可嘗試將至少一個IP流從蜂巢傳輸移動到Wi-Fi傳輸(或其他非蜂巢傳輸)。因此,根據一些實施例,如果e節點B胞元正經歷上鏈及/或下鏈干擾,CGW可嘗試將IP流從蜂巢傳輸移動到非蜂巢傳輸。
當CGW從(H)eNB接收到資源狀態更新訊息時,其可解碼來自該訊息中的以下IE:硬體負載指示符;S1傳輸網路層(TNL)負載指示符;無線電資源指示符和複合可用容量群組。硬體負載指示符IE由上鏈硬體負載指示符和下鏈硬體負載指示符構成。這些中的每一個可作為列舉參數來報告(低負載、中負載、高負載和超載)。類似地,S1 TNL負載指示符IE由上鏈S1 TNL負載指示符和下鏈S1 TNL負載指示符構成。這些中的每一個也可作為列舉參數來報告(低負載、中負載、高負載和超載)。無線電資源指示符IE由包括目前正在使用的上鏈和下鏈總PRB百分比的若干參數構成。每個的百分比包括值0到100%。複合可用容量群組IE由兩個項構成,複合可用容量上鏈和複合可用容量下鏈。這些項中的每一個可被拆分成若干分量,包括容量值。容量值是可用e節點B容量的百分比。例如,0意味著沒有剩餘的容量,而100意味著(H)eNB的所有容量剩餘。
CGW可分析所報告的值並確定(H)eNB是否超載。如果參數指出超載的(H)eNB(例如超過儲存在CGW中的臨界值),則CGW可嘗試將至少一個IP流從蜂巢傳輸移動到Wi-Fi傳輸。
在各實施例中,各種參數可被用來確定何時超載情況存在。在一個實施例中,以下8個參數可被用來確定用於評估負載情況的度量:
上鏈硬體負載指示符(UHLI)
下鏈硬體負載指示符(DHLI)
上鏈S1 TNL負載指示符(USTLI)
下鏈S1 TNL負載指示符(DSTLI)
目前使用的上鏈總PRB(UTPU)
目前使用的下鏈總PRB(DTPU)
複合可用容量上鏈——容量值(UCV)
複合可用容量下鏈——容量值(DCV)
用於這些參數中的每一個參數的各個權重可儲存在CGW中。由於以下演算法基於權重來按比例計算這些參數,在一些實施例中,對權重的唯一限制是其是非負的。
確定(H)eNB狀態(超載或未超載)的一個過程如下。首先,對儲存在CGW中的權重求和(總權重,total weight):
While the detailed description is to be considered as illustrative and illustrative, the embodiments Instead, various modifications may be made in the details without departing from the scope of the invention.
A femto access point (eg, Home Node B or Evolved Home Node B) may be capable of using a cellular network wireless air interface (eg, UMTS Terrestrial Radio Access (UTRAN), Long Term Evolution (LTE), and code division A multiple access (CDMA) wireless transmit/receive unit (WTRU) is connected to a customer premises equipment (CPE) of a cellular operator network that uses broadband IP backhaul. Wired options for broadband IP backhaul for subscribers may include two-wire xDSL (eg ADSL, ADSL2, VDSL, VDSL2), coaxial cable (eg via DOCSIS 1.1, 2.0 and 3.0), fiber to home/home (FTTH/FTTP) and / or broadband (BPL) via wires.
Some of the basic aspects and features of the CGW concept, as well as various embodiments of the CGW, are disclosed in various publications, including US Patent Application Publication No. 2011/0228750 and 2012/0071168, which are hereby incorporated by reference in its entirety.
In certain example embodiments, a general architecture for a hybrid network based on "Converged Gateway" (CGW) for home, neighbor, and enterprise environments is disclosed. The hybrid network architecture can be based, for example, on an evolved 3GPP Home Node B platform to address wireless communications between local devices or devices via a CGW in conjunction with value added services provided by a wide area network operator.
The gateway system can provide various features such as access to femtocells to the local network, the public internet, and the private service provider network, ie via 3GPP Home Node B (HNB); including 3GPP UMTS and IEEE 802.11 Offloading, streaming and bandwidth or converged management (BWM or CGM) between multiple radio access technologies (RATs) (or wired technologies such as Ethernet); machine-to-machine (M2M) network connections, Includes assistance for 802.1S.4-based ad hoc networks (SON); and M2M gateway functionality for hierarchical network elements.
There are many ways to combine CGW devices in a network such as a cellular network. For example, the CGW can be placed between the Mobile Core Network (MCN) and the HNB, acting as an HNB for the MCN device and as an MCN device for the HNB.
The CGW can be used to determine how to separate the data for transmission (eg, determining which data packets are sent to the terminal device between each of the multiple RATs or other wired technologies). For example, the sequence number can be associated with a data packet sent via a particular RAT. The CGW device can track the sequence number of the separately transmitted data packets in order to maintain an appropriate sequence between the transmitting and receiving devices (e.g., between a Serving GPRS Support Node (SGSN) and the WTRU, etc.).
The methods and apparatus described herein can be used on all wired networks, wireless networks, and hybrid wired wireless networks, collectively referred to as communication systems. FIG. 1A is a diagram of an example communication system 100 in which one or more of the disclosed embodiments can be implemented. Communication system 100 may be a multiple access system that provides content to multiple wireless users, such as voice, data, video, messaging, and broadcast. Communication system 100 enables multiple wireless users to access such content via sharing system resources including wireless bandwidth. For example, communication system 100 may employ one or more channel access methods, such as code division multiple access (CDMA), time division multiple access (TDMA), frequency division multiple access (FDMA), orthogonal FDMA (OFDMA). And/or single carrier FDMA (SC-FDMA) and the like.
As shown in FIG. 1A, communication system 100 can include wireless transmit/receive units (WTRUs) 102a, 102b, 102c, 102d, radio access network (RAN) 104, core network 106, public switched telephone network (PSTN). 108, the Internet 110 and other networks 112.
Although a particular number of WTRUs, base stations, and network elements are shown, any number of such WTRUs, base stations, and/or network elements are contemplated.
While the WTRU is shown as an exemplary terminal device, other devices are contemplated as possible. For example, a mixture of wired and wireless terminal devices connected via HNB, WIFI, and an Ethernet access point via the CGW.
Each of the WTRUs 102a, 102b, 102c, 102d may be any type of device configured to operate and/or communicate in a wireless environment. By way of example, the WTRUs 102a, 102b, 102c, 102d may be configured to transmit and/or receive wireless signals, and may include user equipment (UE), mobile stations, fixed or mobile subscriber units, pagers, cellular phones, individuals Digital assistants (PDAs), smart phones, laptops, mini-notebooks, personal computers, wireless sensors, and/or consumer electronics.
The UE may be used herein for illustrative purposes, but any WTRU may be readily applied to the examples herein.
The communication system 100 can also include a base station 114a and a base station 114b. Each of the base stations 114a, 114b can be configured to wirelessly interface with at least one of the WTRUs 102a, 102b, 102c, 102d to facilitate access to, for example, the core network 106, the Internet 110, and/or other networks. 112 Any type of device of one or more communication networks. For example, the base stations 114a, 114b may be a base transceiver station (BTS), a node-B, an e-Node B, a home node B, a home e-Node B, a site controller, an access point (AP), and/or a wireless router, etc. .
While base stations 114a, 114b are each illustrated as a single component or device, it is contemplated that base stations 114a, 114b can include any number of interconnected base stations and/or network elements.
In some example embodiments, base station 114a may be part of RAN 104, and RAN 104 may also include other base stations and/or network elements (not shown), such as base station controller (BSC), radio network control (RNC) and/or relay nodes. Base station 114a and/or base station 114b may be configured to transmit and/or receive wireless signals within a particular geographic area (which may be referred to as a cell (not shown). The cell can be further divided into cell sectors. For example, a cell associated with base station 114a can be divided into three cell sectors.
In some example embodiments, base station 114a may include three transceivers, such as one for each cell sector. In other example embodiments, base station 114a may employ multiple input multiple output (MIMO) technology and may use multiple transceivers for each sector of a cell.
The base stations 114a, 114b can communicate with one or more of the WTRUs 102a, 102b, 102c, 102d via the air interface 116, which can be any suitable wireless communication link (e.g., radio frequency (RF), microwave, infrared (IR), ultraviolet (UV) and/or visible light, etc.). The air interface 116 can be established using any suitable radio access technology (RAT).
Communication system 100 can be a multiple access system and can employ one or more channel access schemes such as CDMA, TDMA, FDMA, OFDMA, and/or SC-FDMA. For example, base station 114a and WTRUs 102a, 102b, and 102c in RAN 104 may implement a radio technology such as Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access (UTRA), which may use Wide Frequency CDMA (WCDMA) to establish an air interface 116. WCDMA may include communication protocols such as High Speed Packet Access (HSPA) and/or Evolution HSPA (HSPA+). HSPA may include High Speed Downlink Packet Access (HSDPA) and/or High Speed Uplink Packet Access (HSUPA).
In some example embodiments, base station 114a and WTRUs 102a, 102b, and 102c may implement a radio technology such as Evolved UMTS Terrestrial Radio Access (E-UTRA), which may use Long Term Evolution (LTE) and/or LTE-Advanced ( LTE-A) to establish air interface 116.
In some example embodiments, base station 114a and WTRUs 102a, 102b, and 102c may implement, for example, IEEE 802.16 (ie, Worldwide Interoperability for Microwave Access (WiMAX)), CDMA2000, CDMA2000 1X, CDMA2000 EV-DO, Temporary Standard 2000 (IS- 2000), Provisional Standard 95 (IS-95), Provisional Standard 856 (IS-856), Global System for Mobile Communications (GSM), Enhanced Data Rate GSM Evolution (EDGE) and/or GSM EDGE (GERAN) Radio technology.
The base station 114b in Figure 1A may be, for example, a wireless router, a home Node B, a home eNodeB or an access point, and any suitable RAT may be used to facilitate localization of, for example, a business location, home, vehicle, and/or campus. Wireless connectivity in the area.
In some example embodiments, base station 114b and WTRUs 102c and 102d may: (1) implement a radio technology such as (i) IEEE 802.11 to establish a wireless local area network (WLAN); and/or (ii) IEEE 802.15 Such radio technology to establish a wireless personal area network (WPAN); and/or (2) cellular-based RATs (eg, WCDMA, CDMA2000, GSM, LTE, and/or LTE-A, etc.) can be used to establish picocells (picocell) or femtocell.
As shown in FIG. 1A, the base station 114b can be directly connected to the Internet 110, and the base station 114b can access (or not access) the Internet 110 via the core network 106.
The RAN 104 can communicate with a core network 106, which can be configured to provide voice, data, applications, and/or voice over the Internet Protocol to one or more of the WTRUs 102a, 102b, 102c, and 102d ( VoIP) Any type of network that serves. For example, core network 106 may provide call control, billing services, mobile location based services, prepaid calling, internet connection and/or video distribution, etc., and/or perform high level security functions such as user authentication. The RAN 104 and/or the core network 106 can communicate directly or indirectly with other RANs (not shown) that employ the same RAT as the RAN 104 or a different RAT. For example, in addition to (e.g., communicating with) the RAN 104, which may employ an E-UTRA radio technology, the core network 106 may also be in communication with another RAN employing a GSM radio technology.
The core network 106 can also serve as a gateway for the WTRUs 102a, 102b, 102c, and 102d to access the PSTN 108, the Internet 110, and/or other networks 112. The PSTN 108 may include a circuit switched telephone network that provides traditional legacy telephone service (POTS). Internet 110 may include a global system of interconnected computer networks and devices that use public communication protocols, such as Transmission Control Protocol (TCP), User Datagram Protocol (UDP), and the Internet in the TCP/IP Internet Protocol Series. Road Agreement (IP). Network 112 may include a wired or wireless communication network that is owned and/or operated by other service providers. For example, network 112 may include another core network that is connected to one or more RANs that may employ the same RAT as RAN 104 or a different RAT.
The WTRUs in communication system 100 (e.g., some or all of WTRUs 102a, 102b, 102c, and/or 102d) may include multi-mode capabilities (e.g., WTRUs 102a, 102b, 102c, and/or 102d may be included for use via different wireless chains) Multiple transceivers that communicate with different wireless networks). For example, the WTRU 102c may be configured to communicate with a base station 114a that may employ a cellular-based radio technology and a base station 114b that may employ an IEEE 802 radio technology.
FIG. 1B is a system diagram of an example WTRU 102. As shown in FIG. 1B, the WTRU 102 may include a processor 118, a transceiver 120, a transmit/receive element 122, a speaker/microphone 124, a keyboard 126, a display/touchpad 128, a non-removable memory 130, and a removable Memory 132, power source 134, Global Positioning System (GPS) chip set 136 and/or other peripheral devices 138, and the like.
The processor 118 can be a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor (DSP), a plurality of microprocessors, one or more microprocessors associated with the DSP core, a controller, a micro control , dedicated integrated circuit (ASIC), field programmable gate array (FPGA) circuit, any other type of integrated circuit (IC) and/or state machine. The processor 118 may perform signal encoding, data processing, power control, input/output processing, and/or any other functionality that enables the WTRU 102 to operate in a wireless environment. The processor 118 can be coupled to a transceiver 120 that can be coupled to the transmit/receive element 122. Although FIG. 1B illustrates processor 118 and transceiver 120 as separate components, it is contemplated that processor 118 and transceiver 120 can be integrated together in an electronic package or wafer.
Transmission/reception components (e.g., units, devices, modules, or devices) 122 can be configured to use air interface 116 to transmit signals to, for example, a base station (e.g., base station 114a) or to receive signals from a base station (e.g., base station 114a). For example, in some example embodiments, the transmit/receive element 122 may be an antenna configured to transmit and/or receive RF signals.
In some example embodiments, the transmit/receive element 122 may be, for example, an illuminant/detector configured to transmit and/or receive IR, UV, or visible light signals. In various example embodiments, transmit/receive element 122 may be configured to transmit and receive both RF and optical signals. It is contemplated that the transmit/receive element 122 can be configured to transmit and/or receive any combination of wireless signals.
Although the transmit/receive element 122 is shown as a single element, the WTRU 102 may include any number of transmit/receive elements 122. For example, the WTRU 102 may employ MIMO technology such that the WTRU 102 may include two or more transmit/receive elements 122 (e.g., multiple antennas) for transmitting and receiving wireless signals (e.g., via the air interface 116).
The transceiver 120 can be configured to modulate a signal to be transmitted by the transmission/reception element 122 and demodulate the signal received by the transmission/reception element 122. Since the WTRU 102 may have multi-mode capabilities, the transceiver 120 may include, for example, multiple transceivers for enabling the WTRU 102 to communicate via multiple RATs such as UTRA, WIFI, and/or IEEE 802.11.
The processor 118 of the WTRU 102 can be coupled to and can be coupled to a speaker/microphone 124, a keyboard 126, and/or a display/touchpad 128, such as a liquid crystal display (LCD) display unit or an organic light emitting diode (OLED) display unit. It receives user input data. The processor 118 can also output user profiles to the speaker/microphone 124, the keyboard 126, and/or the display/touchpad 128. The processor 118 can access information from any type of suitable memory, such as the non-removable memory 130 and/or the removable memory 132, and store the data therein. The non-removable memory 130 may include random access memory (RAM), read only memory (ROM), a hard disk, or any other type of memory device. The removable memory 132 can include a Subscriber Identity Module (SIM) card, a memory stick, and/or a secure digital (SO) memory card, and the like.
In some example embodiments, processor 118 may access information from, and store data in, memory that is not physically located on WTRU 102 (e.g., on a server or a home computer (not shown)).
The processor 118 can receive (supply) power from the power source 134 and can be configured to allocate and/or control power to other elements in the WTRU 102. Power source 134 may be any suitable device for powering WTRU 102. For example, the power source 134 can include one or more dry cells (eg, nickel cadmium (NiCd), nickel zinc (NiZn), nickel metal hydride (NiMH), lithium ion (Li-ion), etc.), solar cells, and/or fuel cells. Wait.
The processor 118 may also be coupled to a set of GPS chips 136 that may be configured to provide location information (e.g., longitude and latitude) with respect to the current location of the WTRU 102. In addition to or in lieu of information from the GPS chipset 136, the WTRU 102 may receive location information from a base station (e.g., base station 114a and/or 114b) via air interface 116, and/or based on two or more nearby The timing of the signal received (local or adjacent) by the base station to determine its position. It is contemplated that the WTRU 102 may obtain location information using any suitable location determination method.
The processor 118 can be coupled to other peripheral devices 138, which can include one or more software and/or hardware modules that provide additional features, functionality, and/or wired or wireless connections. For example, peripheral device 138 may include an accelerometer, an electronic compass, a satellite transceiver, a digital camera (for photo and/or video), a universal serial bus (USB) port, a vibrating device, a television transceiver, a hands-free headset, Bluetooth R module, FM radio unit, digital music player, media player, video game player module and/or internet browser.
1C is a system diagram of RAN 104 and core network 106, in accordance with an embodiment. As noted above, the RAN 104 may employ E-UTRA radio technology to communicate with the WTRUs 102a, 102b, 102c via the air interface 116. The RAN 104 also communicates with the core network 106.
The RAN 104 may include eNodeBs 140a, 140b, 140c, but it will be understood that the RAN 104 may include any number of eNodeBs consistent with embodiments. Each of the eNodeBs 140a, 140b, 140c may include one or more transceivers for communicating with the WTRUs 102a, 102b, 102c via the air interface 116. In one embodiment, eNodeBs 140a, 140b, 140c may implement MIMO technology. Thus, eNodeB 140a, for example, may use multiple antennas to transmit wireless signals to, and receive wireless signals from, WTRU 102a.
Each of the eNodeBs 140a, 140b, 140c may be associated with a particular cell (not shown) and may be configured to handle radio resource management decisions, handover decisions, scheduling in the uplink and/or downlink Users and so on. As shown in FIG. 1C, the eNodeBs 140a, 140b, 140c can communicate with each other via the X2 interface.
The core network 106 shown in FIG. 1C may include a mobility management gateway (MME) 142, a service gateway 144, and a packet data network (PDN) gateway 146. While the above elements are described as being part of the core network 106, it will be understood that any of these elements can be owned and/or operated by entities other than the core network operator.
The MME 142 may be connected to each of the eNodeBs 140a, 140b, 140c in the RAN 104 via the S1 interface and may serve as a control node. For example, the MME 142 may be responsible for authenticating user authentication for the WTRUs 102a, 102b, 102c, bearer activation/deactivation, selecting a particular service gateway during initial connection of the WTRUs 102a, 102b, 102c, and the like. The MME 142 may also provide control plane functionality for switching between the RAN 104 and other RANs (not shown) employing other radio technologies such as GSM or WCDMA.
Service gateway 144 may be coupled to each eNodeB of eNodeBs 140a, 140b, 140c in RAN 104 via an S1 interface. The service gateway 144 can typically route and forward user data packets to/from the WTRUs 102a, 102b, 102c. The service gateway 144 may also perform other functions, such as anchoring the user plane during handover between eNodeBs, triggering paging when the downlink information is available to the WTRUs 102a, 102b, 102c, managing and storing the context of the WTRUs 102a, 102b, 102c, etc. .
The service gateway 144 can also be coupled to a PDN gateway 146 that can provide the WTRUs 102a, 102b, 102c with access to a packet switched network, such as the Internet 110, to facilitate the WTRUs 102a, 102b, 102c. Communication with an enabled IP device.
The core network 106 facilitates communication with other networks. For example, core network 106 may provide WTRUs 102a, 102b, 102c with access to a circuit-switched network, such as PSTN 108, to facilitate communications between WTRUs 102a, 102b, 102c and conventional landline communication devices. For example, core network 106 may include or be in communication with an IP gateway (e.g., an IP Multimedia Subsystem (IMS) server) that interfaces between core network 106 and PSTN 108. In addition, core network 106 can provide WTRUs 102a, 102b, 102c with access to network 112, which can include other wired or wireless networks that are owned and/or operated by other service providers.
While some of the figures show LTE components, other mobile telecommunications technologies such as UMTS, CDMA, and/or LTE-A may be expected to be applied, for example, for UMTS, the RAN 104 may include, for example, Node-B and RNC.
Home Node B (HNB) and Home eNodeB (HeNB), which may be referred to as H(e)NB, are 3GPP terminology and are not limited to use only for homes, but also for enterprise and metro deployments. The term "Femto Access Point" (FAP) can be considered synonymous with H(e)NB.
The H(e)NB can be connected to the cellular operator's network via a UMTS Terrestrial Radio Access Network (UTRAN) or Long Term Evolution (LTE) wireless air interface using broadband IP backhaul.
By providing additional intelligence in the evolved HNB platform and providing new value-added services via broadband IP back-up, there may be additional opportunities for integration or interaction via the HNB platform and other digital home/neighbor/enterprise components. Value-added services can include lower cost communication and entertainment options (such as "quadruple play"), simplified home network management (including remote access), extended applications for personal devices (including audio) / Videoconferencing transition and / or universal remote control capabilities), "local" services that enable IP multimedia conversations (IMS), improved personal/home security, and/or network security support for operator support. New capabilities may include wireless broadband backhaul options (including 3G technology and/or higher bandwidth 4G technologies such as WiMAX, LTE and/or LTE-A).
New capabilities may include HNB support for a large number of machine-to-machine (M2M) devices and/or M2M gateways, cooperative multi-RAT delivery of multimedia data (including simultaneous multi-RAT connections), and interconnections with neighboring HNBs to form neighbor regions Or corporate local area network, which facilitates local P2P communication including access to local cached content.
New capabilities may also include an interface between the HNB and wireless access in a vehicle environment (WAVE) enabled vehicle. Such an interface can help the continuity of user conversations in the vehicle and the delivery of vehicle data to the network when the user reaches or leaves home.
The following are examples of service requirements that can be supported by the CGW hybrid network architecture: (1) simplified deployment and operation, including automatic configuration; and (2) WTRU services (such as all WTRU services) provided by the cellular network operator, including Movement to/from macrocells, support for IMS and/or M2M gateways, etc.; (3) local device communication using messaging and data via CGW; (4) use of messaging via CGW and via local devices Local device communication of peer-to-peer (P2P) connected data; (5) local IP access from the WTRU to the home network; (6) remote access from the WTRU to the home network; (7) public alert system to Expansion of the home network; and/or (8) expansion of cellular Internet TV services (eg, multimedia broadcast multicast services including bandwidth management for home networks).
Examples of access requirements that may be supported by the CGW hybrid network architecture may include support for: (1) IP-based broadband backhaul for the cellular core network of the cellular operator; (2) blocking of access to the cellular and WLAN, Open and hybrid subscriber groups; (3) UMTS air interface, including support for legacy terminals; (4) LTE/LTE-A air interface; (5) 802.1I-based WLAN air interface, including legacy terminals and 802.11 Support for p WAVE devices; (6) use of hive/WLAN interface/gateway and/or M2M directly via optional M2M interface such as ZigBee and/or Bluetooth; (7) inter-RAT and/or inter-HNB access /service delivery; (8) multi-RAT access/service; and/or (9) local admission control and/or local resource control.
The CGW may provide the following features: (1) CGW components including 3GPP HNB, local GW, IEEE 802.11 AP, IEEE 802.15.4 WPAN, RF sensing module and/or M2M GW, and CGW application including Dynamic Spectrum Management (DSM) (2) registration of CGW elements to one or more external operator networks and/or one or more service providers, including support for IMS and non-IMS services and/or external M2M servers; 3) Local IP access (LIPA) between the WTRU and the residential/enterprise network via the CGW; (4) selected IP traffic offload via the CGW (SIPTO); (5) enhanced CGW via bandwidth management to Access to local and mobile core operator (MCN) services; (6) idle and/or active mobility from HNB to HNB, HNB to macrocells and macrocells to HNB; (7) assisted self-organizing Network (SON) forward view interference management (pIM); and / or (8) M2M gateway function.
Active HNB mobility can support combined hard handoffs and Service Radio Network Subsystem (SRNS) redirection procedures including support for lossless handoff. The bandwidth management in the CGW may include a bandwidth management (BWM) server that provides IP packet data between the cellular (eg, UMTS) and 802.11 air interfaces for devices with multimode capable BWM clients. RAT distribution. In some example embodiments, the BWM server may be integrated into a CGW that includes BWM server function integration in the HNB, or the BWM server may be a separate entity between the standard HNB and the MCN.
In some example embodiments, the BWM server may be integrated with multiple HNBs, which may be useful in an enterprise arrangement.
The home or business network can be configured to have a cable modem or digital subscriber line (DSL) connection to the public internet. The network may have HNB and BWM servers that can be interconnected in the same Home Area Network (HAN) or Enterprise Area (EAN), and HNB and BWM servers with IP addresses on the HAN or EAN.
Figures 2A and 2B (collectively including a system distributed over two pages, where the data machine 207 displayed on both pages shows where the two figures overlap/meet) is an example infrastructure for a CGW hybrid network . Entity implementations may vary depending on the particular function of interest. The description of the main components is outlined here.
In the architecture shown in Figure 2, a special interface (referred to as a logical interface) can be implemented by more than one physical interface. For example, a terminal device such as a cellular telephone 202 can have both a Wi-Fi interface 206 and a cellular interface 204. In this example, the logical interface can be a physical multi-radio access technology (multi-RAT). This may facilitate multiple transmissions to increase data rate or provide link robustness (eg, multi-RAT diversity), or provide flexibility to select each RAT in an adaptive manner depending on the RAT's applicability to the data to be transmitted. .
The CGW infrastructure may consist of a family "core network" component that includes any hardwired facility (eg, Category 5 cable, coaxial cable, telephone line, wire and/or fiber optics, etc.).
In FIG. 2, certain functions of the CGW platform 201 are shown in the block labeled CGW function 210. These functions may exist logically in the CGW platform, but may be implemented in a centralized form, such as in an HNB or in a distributed form, between multiple nodes.
The higher order components of the CGW infrastructure network can be separate entities or modules. However, commercial implementations of general architectures can incorporate various components to improve performance and reduce size/cost/energy consumption. For example, the HNB 203 can be physically integrated with a home gateway, WLAN access point 208, and/or TV STB 211 to provide a single box multi-technology "fusion gateway." To support such a structure, HNB 203, HeNB 205, broadband modem 207, and/or STB 211 may share a common application layer protocol for remote management based on TR-069 or other standards of the Broadband Forum. In some example embodiments, the femtocell base station may be integrated with a home gateway and a Wi-Fi router.
In some example embodiments, HNB 203 may include the ability to provide a WTRU-enabled device with a Home Based Network or "Local IP Access" (LIPA) to an external Internet. HNBs can support logical and/or physical connections to other networks, and/or integrate with other networks via gateways such as WLAN APs.
The HNB 203 can be connected to the customer's home gateway via an Ethernet network, which can provide access to the cellular operator's core network 208 via, for example, broadband, cable, fiber optic or DSL. Fixed wireless broadband access can also be an option, such as WiMAX or LTE cellular technology. Non-operator WLAN APs can be used in home networks. The CGW may also use an 802.11n-based AP managed by a cellular operator.
The systems and methods described herein generally relate to bandwidth management techniques, IP flow mobility, and seamless WLAN offload (IFOM). In some embodiments, the controlling entity may be a CGW, BWM server 224, or an action core network itself that makes a packet to the WTRU, such as a user device. As described in more detail below, the systems and methods described herein can use feedback as input to an IFOM decision engine. For example, the feedback may come from a home eNodeB and/or an eNodeB (hereinafter collectively referred to as a (H)eNB). The systems and methods described herein are not solely directed to an eNodeB embodiment or a home eNodeB embodiment. Rather, the systems and methods described herein are applicable to architectures having either or both of an eNodeB or a home eNodeB. Thus, any embodiment for eNodeB can also be implemented using a home eNodeB, and vice versa, unless otherwise explicitly stated.
This feedback may include, for example, congestion and/or load measured at the (H)eNB, or other measurements of performance parameters. This feedback, such as interference measured at the eNodeB, can be provided to the IFOM decision engine using any of a variety of suitable techniques (or combinations). In one embodiment, for example, the feedback is provided via an X2 interface. In another embodiment, the feedback is received directly from the (H)eNB that has been configured to report various performance measurements. In yet another embodiment, the feedback is received from a Home eNodeB Management System (HeMS).
In some embodiments, upon receiving this feedback information, routing decisions can be made based on the following logic. If the (H)eNB reports interference and/or overload conditions via any of the interfaces listed above, and the WTRU using this overloaded or interfering (H) eNB has both 3GPP and non-3GPP transmissions, and originates from/sinks (sink) To) the IP flow of the user equipment allows the IP flow to be offloaded to non-3GPP transmissions, then some or all of the WTRU's IP flows are moved from 3GPP radio access technologies (eg, hives) to non-3GPP radio access technologies (eg, Wi -Fi).
CGW-based IFOM using eSON
In some embodiments, a CGW-based IFOM evolved ad hoc network (eSON) system and method can be used. The IFOM Decision Engine functionality currently in the CGW can be used by employing the Home eNodeB requirement in 3GPP TS 32.581 v9.1.0, incorporated herein by reference:
REQ-OAMP_CM-FUN-016 The HeNB should be able to inform the HeMS of changes in the radio environment and the required radio bandwidth.
It should be noted that although the illustrated embodiment is illustrated using a CGW located in a building that controls several home eNodeBs, this disclosure is not so limited. Rather, some systems and methods may use CGWs located in the mobile core network and control several small cell eNodeBs or macro eNodeBs without departing from the scope of the present disclosure.
In a CGW-based IFOM, the CGW may have a decision engine that decides how to move IP flows between two RATs, such as a cellular and Wi-Fi, based on several input functions, for example. Inputs may include, but are not limited to, the number of IP flows, the amount of traffic consumed by each IP flow, the routing policy per IP flow, and Received Signal Strength Indication (RSSI) measurements made at the WTRU. In some embodiments, additional input to this decision process may include feedback information from the (H)eNB. The feedback information may include interference measured by the (H)eNB, level or resource load at the (H)eNB, or other performance parameters.
In order to receive this feedback information, in some embodiments, the CGW can configure the (H) eNB to make measurements and report it to the CGW. Once one or more measurements are received, the CGW can then process the measurements and decide to remove the IP stream from the hive transmission based on the measured interference. Therefore, (H) inter-eNB interference can be reduced.
Figure 3 - Figure 8 illustrates a non-limiting embodiment of the CGW based IFOM-eSON architecture at various operational stages. Referring first to Figure 3, in the illustrated embodiment, there are a number of home eNodeBs 303a, 303b in the building 301, and a number of user devices 305a, 305b, 305c, 305d, some (e.g., devices 305a and 305d). At the same time, it is connected to one of the home eNodeBs 303a or 303b and one of the Wi-Fi APs 311a or 311b. Other user devices, such as user devices 305b and 305c, are only connected via Wi-Fi. As will be appreciated, for any particular building, there may be n home eNode Bs and m Wi-Fi APs, where n is any positive integer and m is any positive integer. Additionally, for purposes of explanation, let us assume that each user device 305a-305d actively participates in data transfer, as indicated by line 320. In the illustrated embodiment, there is a single CGW 310 in the building that manages the home eNodeB.
Referring to FIG. 4, although each of the user devices 305a-305d connected to the home eNodeB 303a or 303b actively participates in the material conversation, the home eNodeB may begin to interfere with each other, as indicated by arrow 402 in FIG. That way. The eSON server 315 in the CGW 310 can configure each of the home eNodeBs 303a, 303b to collect measurements of its environment.
Referring next to Figure 5, after collecting these measurements, each home eNodeB can send these measurements to CGW 310, as indicated by arrow 502 shown in Figure 5. How often each home eNodeB sends a measurement report can be based on how it is configured by the CGW. Referring now to Figure 6, after receiving these measurements, the eSON server 315 in the CGW 310 can pass this performance data to the IFOM decision engine 317, as indicated by arrow 602 in Figure 6.
After analyzing the performance data, the IFOM decision engine 317 can determine that there is an unacceptable level of interference 402 between the home eNodeBs 303a and 303b. Referring to Figure 7, to mitigate this interference, the IFOM decision engine 317 can then attempt to use the IFOM function to move the IP stream away from the cellular transmission and move to a non-homed transmission (e.g., Wi-Fi), as shown in Figure 7. As indicated by IP flow 702. After one or more of the IP flows have moved from the cellular transmission to the non-homing transmission, the inter-eNode inter-B interference can be effectively reduced to no longer adversely affect performance, as shown in FIG.
Figure 9 shows a non-protocol-specific high-order message sequence diagram showing the interaction between CGW 901 and eNodeB 903 in accordance with a non-limiting embodiment. A similar message sequence diagram can be applied to a home eNodeB. Via message 902, CGW 901 can configure eNodeB 903 for environmental measurements. Via message 904, eNodeB 903 can acknowledge the configuration message. At 906, the eNodeB 903 can begin to obtain data (ie, interference measurements, congestion measurements, resource loads, or other performance metrics) for provision to the CGW 901. Via message 908, the eNodeB can send a measurement report. At 910, the CGW 901 can analyze the feedback material provided by the eNodeB 903.
The flow shown in dashed box 914 occurs if the CGW determines that interference (or at least an unacceptable level of interference) exists. In particular, CGW 901 moves IP flows from cellular radio access technology to non-homed radio access technology (ie, Wi-Fi) as shown at 916. By comparison, if CGW 901 determines that interference does not exist (or at least an acceptable level of interference exists), the flow shown in dashed box 917 occurs. In particular, CGW 901 does not move IP flows from cellular radio access technology to non-homed radio access technologies, as shown at 918.
In one embodiment, the messaging interface between the CGW 901 and the home eNodeB 903 can use the CPE WAN Management Protocol (refer to TR-069). Other embodiments may use different protocols that perform similar functions without departing from the scope of the disclosure. Using the CPE WAN Management Agreement may require a TR-069 client in the Home eNodeB. However, the eNodeB already has a TR-069 client that is used for initial provision by the HeMS, as described in 3GPP TS 32.581 v9.1.0:
REQ-OAMP_CM-FUN-001 HeNB configuration should be managed by HeMS using the TR-069 CWMP protocol.
The configuration of the home eNodeB that made the measurements according to one non-limiting embodiment and the transmission of these measurements to the CGW using the TR-069 protocol are shown in Figures 10A and 10B. At 1001, the CGW can open a TR-069 connection with the home eNodeB. At 1002, the CGW and the home eNodeB can establish a secure connection. At 1003, the CGW can establish a conversation with the home eNodeB by sending a connection request message.
Multiple events can trigger the CGW to establish a conversation. For example, in some embodiments, the provision of a home eNodeB by HeMS can be used as a trigger. In some embodiments, logic can be used to determine that interference is possible based on the number of home eNodeBs operating in one location. In any event, at 1004, the home eNodeB can send a notification request to the CGW to identify itself. This notification request may include parameters that uniquely identify the home eNodeB. In some embodiments, the notification request can be similar to step 2.1 of 3GPP TS 32.593 v9.1.0 part 5.1.2.2. At 1005, the CGW can send a notification response to the home eNodeB. In some embodiments, the notification response can be similar to step 2.1 of 3GPP TS 32.593 v9.1.0 part 5.1.2.2. At 1006, the CGW can send a set parameter value request message that can include various parameters. In some embodiments, these parameters may include, for example, a list of measured frequencies, what are measured in those frequencies, and how often these measurements are performed. These parameters may include, for example, the EUTRA ARFCN minimum, the EUTRA ARFCN maximum, and a list of measurements (eg, RSSI, RSRP, etc.). The set parameter value request message can also indicate a period, such as "once" or once every "x" seconds. It may also include an execution measurement flag when it is set to indicate that the home eNodeB should begin performing measurements.
At 1007, the home eNodeB can send a set parameter value response message to the CGW. At 1008, the TR-069 session between the CGW and the home eNodeB ends. It should be noted that although the illustrated embodiment shows that the TR-069 session ends at 1008, the disclosure is not so limited. In fact, in some embodiments, the conversation between the CGW and the home eNodeB may remain open while the eNodeB is performing measurements. In some embodiments, the CGW can determine whether to keep the conversation open based on the messaging needs. For example, if the CGW and the home eNodeB have a relatively active relationship, keeping the conversation open is beneficial to reduce overall messaging because several signals are required to establish a TR-069 conversation. On the other hand, if the CGW only needs information from the CGW relatively infrequently, it may be beneficial to end the conversation and re-initiate it later (as shown in Figures 10A and 10B).
Once configured, the home eNodeB performs the indicated measurements at 1009. After the measurement is taken, at 1010 the home eNodeB opens a TR-069 connection with the CGW. At 1011, the CGW and the home eNodeB can establish a secure connection. At 1012, the home eNodeB can establish a TR-069 session by sending a notification request to the CGW. Note that if the measurement is configured to "once" then the message 1009-1016 will only occur once. If the measurements are configured to occur periodically or at least re-occur, then appropriate measurements can occur after each cycle of measurement. At 1013, the CGW sends a notification response to the home eNodeB. The notification request and subsequent notification responses may be similar to step 2.1 of 3GPP TS 32.593 v9.1.0 part 5.1.2.2. At 1014, the CGW may send a Get Parameter Value Request message to query the measurements that the Home eNodeB has made. At 1015, the home eNodeB can return these values in the Get Parameter Response message. At 1016, the TR-069 session between the CGW and the home eNodeB ends.
Once the measurement information is received, at 1017, the CGW can act on these measurements to determine if the IP flow needs to be moved from the hive to Wi-Fi (or other non-homed network) to avoid interference. If the IP flows can be moved (based on user device capabilities and routing rules), the CGW will transfer these IP flows to Wi-Fi.
Referring now to FIG. 10B, if the CGW determines that it no longer needs the home eNodeB to perform measurements, it will command the home eNodeB to stop performing measurements. To stop the home eNodeB from making any additional measurements, the CGW can open a TR-069 connection with the home eNodeB, as shown at 1018. At 1019, the CGW and the home eNodeB can establish a secure connection. At 1020, the CGW can contact the home eNodeB to request it to establish a TR-069 session via a connection request message. At 1021, the home eNodeB can send a notification request to the CGW to identify itself. This notification request may include parameters that uniquely identify the home eNodeB. In some embodiments, the notification request can be similar to step 2.1 of 3GPP TS 32.593 v9.1.0 part 5.1.2.2. At 1022, the CGW can send a notification response to the home eNodeB that can be similar to step 2.1 of 3GPP TS 32.593 v9.1.0 part 5.1.2.2. At 1023, the CGW may send a set parameter value request message including an execution measurement flag that is reset to indicate that the home eNodeB should stop performing measurements. At 1024, the home eNodeB can send a set parameter value response message to the CGW. At 1025, the TR-069 conversation between the CGW and the home eNodeB can end.
The home eNodeB in Figures 10A and 10B may include structures (i.e., memory) to which the CGW may write to configure measurements and read actual measurements therefrom.
After the measurements have been taken and received from the (H) eNB, the CGW will know the radio environment in which each eNodeB operates. The CGW can then analyze the results and decide whether to attempt to offload the IP flow from the cellular transmission to one or more non-homed transmissions. In some embodiments, the decision may be based on the principle that if all (H)eNBs measure low interference, nothing is done; if there is no non-homing AP, nothing is done; and if the (H)eNB does measure high Interference, devices attached to it may suffer from unfavorable throughput/performance. If any of those connected devices are IFOM capable, one or more IP flows can be moved (ie, those IP flows with routing rules that do not require "honeycomb only" can be moved to non-homed transmissions (eg Wi-Fi transmission)).
In various embodiments, the CGW may configure (H) the eNB to measure the frequency around the transmission frequency allocated to each (H) eNB. When the measurement is received from one (H) eNB (or several (H) eNBs), this logic may receive a reported received signal strength indication (RSSI) and reference signal reception at frequencies near the transmission frequency of the (H) eNB. The power (RSRP) level is compared to the threshold RSSI and RSRP levels stored in the CGW. If the measured value is below the critical value, no IP flow is attempted. If the measured value is above the threshold, the CGW may attempt to move the stream. If the CGW determines that the IP flow should be moved, it can traverse the list of existing IP flows routed via the reported interfered (H) eNB. For each of these IP flows, the CGW may determine if the WTRU (ie, the destination) also has an active linked non-homed connection and will determine if the IP flow routing rule allows IP flow movement from the cellular to the non-homed transmission. After discovering all IP flows that can be moved from the hive to the non-homed, the CGW will perform the movement of these IP flows.
Figure 11 illustrates a process flow 1100 for measurement-based home e-Node B interference based on a non-limiting embodiment. As will be appreciated, a similar process flow can be used to measure inter-E-B interference. This process flow 1100 can be performed for each home eNodeB that has measured interference. At 1102, it is determined whether the home eNodeB has been reported to have detected interference on a frequency near its transmission frequency. If no interference is measured, the process ends. However, if interference has been measured, the process flow continues to 1104 where the IP flows through the CGW and the home eNodeB that are experiencing interference are identified. In those IP flows, it is determined which arrives at the WTRU with an existing Wi-Fi connection that is linked to the 3GPP PDP context via this home eNodeB. It is also determined whether the IP flow has a routing policy that is not "honeycomb only" or otherwise can restrict offloading. At 1106, one or more IP flows identified at 1104 are offloaded to Wi-Fi transmissions (or other non-homed transmissions). In some embodiments, all IP flows identified at 1104 can be moved to non-homed transmissions. In other embodiments, a single IP stream may be sequentially unloaded via an interference level re-evaluation performed after each unload.
The systems and methods described herein may be WTRU device agnostic. Instead, from a WTRU's perspective, for some embodiments, all of the systems and methods required to perform the systems described herein are IFOM capable WTRU devices. Also, the systems and methods described herein can be implemented to perform self-optimization and self-recovery via mitigation of interference.
CGW-based IFOM using the X2 interface
The LTE X2 interface is designed for (H) inter-eNB communication. 3GPP TS 36.420 v10.1.0 has additional details regarding the X2 interface and is incorporated herein by reference. There are several defined procedures based on traversing the X2 interface for execution in the (H)eNB. The main scope of these procedures is found in 3GPP TS 36.423 v10.2.0, which is incorporated herein by reference. These programs include interface management, measurement, and switching collaboration. Additional details regarding the X2 Application Protocol (AP) for the X2 interface can also be found in 3GPP TS 36.423 v10.2.0.
According to various embodiments, the IFOM decision engine function already present in the CGW may be used in conjunction with the X2 interface defined between the (H) eNB and the (H)eNB supporting the definition of the result of the X2 interface. While the various embodiments described herein are explained in the context of a CGW located in a building that controls several home eNodeBs, the system and method are not so limited. Rather, the system and method are applicable to embodiments having a CGW located in the MCN and controlling a number of small cell eNodeBs or macro eNodeBs. Also, in other embodiments, the systems and methods described herein can be extended to existing PDN gateway based IFOMs.
According to one embodiment of the CGW-based IFOM, the CGW may have a decision engine that determines how to move IP flows between the cellular access network and the non-homed access network (eg, Wi-Fi) based on one or more input functions. These inputs are for example but not limited to: the number of IP flows, the amount of traffic consumed by each IP flow, the routing policy per IP flow, and the RSSI measurements made at the UE. Also, the CGW may also use an input indicating interference measured by one or more (H)eNBs, an overload of (H) eNB resources, and/or other performance related metrics.
In general, the (H)eNB may transmit a message including interference measured by the (H)eNB and a load of the (H)eNB resource to another (H) eNB. In accordance with the systems and methods described herein, a (H)eNB can be configured to operate as if the CGW is another (H) eNB. In order to cause the eNodeB to operate like this, the CGW can emulate the (H)eNB and establish an X2 connection with the (H) eNB. Thus, in some embodiments, the CGW has functionality associated with creating an X2 proxy in the CGW. One or more associated (H)eNBs will perform as they are communicating with another (H)eNB. Via this X2 connection, the CGW knows that the cell is within the (H)eNB range. It can then configure the (H)eNB to perform the already defined measurements to support the X2 interface. The (H)eNB can then perform (or collect from the cells it manages) the required measurements and send these measurements to the CGW. The CGW can then use these as input to the IFOM decision engine. If the (H) eNB (and its cells) are tied (eg, from an interference or resource load perspective), the CGW can decide to move the IP flow away from the cellular transmission based on the measured interference or resource load. By offloading IP flows from the cellular access network, (H) inter-eNB interference can be reduced and resource overloading can be mitigated.
Figures 12 - 17 illustrate a CGW-based IFOM using the X2 interface in accordance with one non-limiting embodiment. Although the illustrated embodiment shows two home eNodeBs 1203a, 1203b and two Wi-Fi APs 1211a, 1211b, the disclosure is not so limited. Instead, any suitable number of home eNodeBs and/or eNodeBs 1211a, 1211b and an appropriate number of non-homed APs can be used. For example, in some embodiments, a building may include 3 eNodeBs, 7 Wi-Fi APs, and a Bluetooth access point. Additionally, for purposes of illustration, several user devices 1205a, 1205b, 1205c, 1205d are shown, some of which (1205b and 1205c) are connected to one of the home eNodeBs 1203a, 1203b and Wi-Fi APs 1211a, 1211b And other devices (1205a, 1205d) connected only via Wi-Fi. In addition, for the purpose of explanation, let us assume that each user actively participates in data transmission. Moreover, for purposes of explanation, assume that a single CGW 1210 is managing a home eNodeB in this building 1201. Figure 12 illustrates the CGW-based IFOM-X2 architecture.
Referring now to Figure 13, although each user device connected to the home eNodeB actively participates in the data session, the home eNodeBs may begin to interfere with each other, as indicated by arrow 1302 in Figure 13. Also, in some embodiments, the home eNodeB may be overloaded even if there is no interference (ie, the smallest idle resource is available). Also, in some embodiments, the home eNodeB may additionally suffer from degraded performance. As shown in FIG. 14, the X2 agent 1216 in the CGW 1210 can configure each home eNodeB 1203a, 1203b via the X2 interface 1404 to collect measurements of its environment. This configuration can occur at the appropriate time, including before there is interference. After collecting these measurements, each home eNodeB can send measurements to the CGW via the X2 interface 1404. In some embodiments, how often each home eNodeB sends a measurement report can be based on how it is configured by the CGW. For example, measurement reports can be sent periodically.
As shown in FIG. 15, after receiving these measurements, the X2 agent in the CGW can pass this data to the IFOM decision engine 1217 as indicated by arrow 1502. After analyzing the interference and/or load profile, the IFOM decision engine 1217 can determine that one or more of the home eNodeBs 1203a, 1203b are experiencing interference. In some cases, it may be determined that one or more home eNodeBs may be experiencing an overload condition and/or other potentially harmful operational conditions that have been reported by the X2 interface 1404. In any event, to alleviate the interference, overload or performance related issues experienced by the home eNodeB, the IFOM decision engine 1217 may attempt to use the IFOM function to move the IP stream 1220 from the cellular transmission to the Wi-Fi transmission, as shown in FIG. Shown. As shown in Fig. 16, the IP stream 1220 to the user device is moved from the home eNodeB 1203a to the Wi-Fi AP 1211a.
After one or more of the IP flows have been moved from the cellular transmission to the Wi-Fi transmission, the interference, overload and/or other harmful conditions measured by the home eNodeB can be effectively reduced to no longer adversely affect performance. . This repaired operating environment is shown in Figure 17.
Referring now to Figure 18, there is shown a non-contracted specific high-order message sequence diagram showing the interaction between CGW 1801 and (H)eNB 1803 in accordance with one non-limiting embodiment. Via message 1802, CGW 1801 configures (H) the eNB for environmental measurements. The message (1), (H)eNB 1803 acknowledges the configuration message. At 1806, the (H)eNB 1803 performs the measurement. Via message 1808, (H)eNB 1803 sends a measurement report to CGW 1801. At 1810, the CGW 1801 analyzes these measurements. Dashed box 1812 shows the sequence of messages if CGW 1801 determines that interference occurred in 1810. In particular, as shown at 1818, CGW 1801 moves one or more IP flows from the hive to Wi-Fi. In another aspect, dashed box 1814 illustrates the message flow if it is determined that (H) eNB 1803 is overloaded. In particular, as shown at 1820, CGW 1801 moves the IP stream from the hive to Wi-Fi. Finally, dashed box 1816 illustrates the presence of a message at the (H) eNB if there is no interference, overload, or other harmful condition as determined by CGW 1801. In particular, as shown at 1822, the IP stream is not moved.
In some embodiments, the communication interface between the CGW and the (H) eNB will reuse the LTE X2 interface designed for (H) inter-eNB communication (refer to 3GPP TS 36.420 v10.1.0). In other words, in some embodiments, the CGW can generally mimic the actions of the (H) eNB by performing (H)eNB configuration under the control of the CGW to perform and report measurements defined in 3GPP TS 36.423.
While some embodiments use the X2 interface, other embodiments may use different protocols that perform similar functions. If the existing X2 interface is used, no changes need to be made to the (H)eNB. The X2 interface can communicate between the (H) eNBs using the X2 Application Protocol (refer to 3GPP TS 36.423 v10.2.0) and SCTP/IP. Existing defined procedures via the X2 interface can be reused to cause the (H)eNB to perform measurements and report measurements to the CGW. The CGW can use these results to decide whether to move certain IP flows from the cellular transmission (traversing the reported (H) eNBs) to non-homing transmissions (also under the control of the CGW).
Figure 19 illustrates a communication diagram for configuring (H) eNB 1903 to perform measurements using the X2 interface and pass those measurements to CGW 1901, according to one non-limiting embodiment. At 1902, CGW 1901 sends an X2 Setup message to (H)eNB 1903. The setup message can be as defined in 3GPP TS 36.423 v10.2.0 part 9.1.2.3. The triggering of the CGW 1901 to perform this step can be a variety of suitable triggers. For example, it may be the result of a home eNodeB provided by HeMS. Alternatively, it may be intuitive knowledge established in a CGW with several home eNode Bs in one location and possibly interference. In any event, the X2 Setup message 1902 requires the sending entity to have a (H)eNB ID. Thus, in some embodiments, CGW 1901 will have to be assigned (H) eNB ID (even if it is not (H) eNB). The X2 Setup message 1902 may also have a list of cells within the scope of the entity that sent the message. The receiving entity uses this information to determine which entities to send interference messages to. If two (H) eNBs use the same frequency, once they have an X2 conversation, each can send interference information to the other. In order for the CGW 1901 to force the (H)eNB 1903 to transmit interference information, the CGW will have to include cell information including the (H)eNB transmitting interference information. These will be done by setting the EUARFCN to the frequency used by the (H)eNB. In some embodiments, the CGW may eavesdrop on the home eNodeB-HeMS interaction to learn the EUARFCN when the home eNodeB is provided, or the CGW may be pre-configured with this information.
At 1904, the (H)eNB 1903 can send an X2 response message to the CGW 1901 as defined in section 9.2.1.4 of 3GPP TS 36.423 V10.2.0. Based on this message, the CGW 1901 can learn about the messages of all cells served by the responding (H)eNB 1903. At 1906, the CGW can send a resource status request message to the (H) eNB as defined in section 9.2.1.11 of 3GPP TS 36.423 V10.2.0. The CGW 1901 can set this message to configure the following measurements for each cell reported by the (H)eNB in 1904: PRB period, TNL load indicator period, HW load indicator period, and composite available capacity period. The CGW can set the period so that the (H)eNB will periodically report these measurements. The CGW may set a "partial success indicator" to allow the (H)eNB to report those measurements it supports if it does not support all of the above measurements. The CGW may set a "registration request" to begin causing the (H)eNB to perform and send measurements.
At 1908, the (H)eNB may send a resource status response message to the CGW, for example, as defined in section 9.2.1.12 of 3GPP TS 36.423 V10.2.0. At 1910, once configured, the (H)eNB 1903 can perform the indicated measurements. At 1912, the (H)eNB may periodically send a resource status update message to the CGW as defined in section 9.2.1.14 of 3GPP TS 36.423 V10.2.0. At 1914, the (H)eNB may send the load information message to the CGW asynchronously as defined in section 9.1.2.1 of 3GPP TS 36.423 V10.2.0.
At 1916, the CGW can act on the measurements received at 1912 and 1914 to determine if IP flows need to be moved from the homing to Wi-Fi (or other radio access technology) to avoid interference, reduce on the (H) eNB. Load or improve operational performance. If the (H)eNB is experiencing interference or is in an overload condition, and if the IP flow can be moved (based on user equipment capabilities and routing rules), the CGW can transfer one or more IP flows to Wi-Fi.
If the CGW determines that it no longer needs the (H)eNB to perform the measurement, it may send a resource status request message with the "registration request" set to stop to the (H) eNB to inform the (H)eNB to stop performing the measurement, As shown at 1918. Then, as shown at 1920, although the (H)eNB may suspend transmitting the resource status update message to the CGW, it may continue to send the load information message to the CGW.
In some embodiments, the (H)eNB may provide the load experienced by the (H)eNB (via a resource status update message) and/or the interference measured by the (H) eNB (via a load information message). Since both of these indicate (H) whether the eNB is in a bond (although for different reasons), the interference decision algorithm can consider both cases. However, regardless of why the (H)eNB is in a binding situation, the resulting actions may be the same, in particular, attempting to move the IP stream from the cellular transmission to the non-homing transmission.
A process flow considering interference measurement and overload according to a non-limiting embodiment is shown in FIG.
In step 2001, the CGW determines if the home eNodeB has measured interference (load information message) on the uplink or downlink frequency that the home eNodeB is using. If not, the flow continues to step 2003 where the CGW determines if the home eNodeB is overloaded (radio status update message). If not, there is no need to do anything to transfer IP traffic, and thus the process ends.
On the other hand, if it is determined in step 2001 that the home eNodeB has measured interference on the uplink or downlink frequency that the home eNodeB is using or that the home eNodeB is overloaded in step 2003, the flow Continue to step 2005. In step 2005, the CGW determines all IP flows that meet the following criteria: (1) through this CGW and the home eNodeB that is experiencing interference; (2) arrives to have an existing link to the 3GPP PDP context via this home eNodeB Wi-Fi connected user devices; and (3) have routing policies that are not "honeycomb only". Then, at step 2007, the CGW moves one or more (in this example all) IP flows that satisfy the above criteria to the Wi-Fi transmission, and the process ends.
In some embodiments, some principles of the mobile algorithm may include the following: if the (H)eNB measures low interference and is not overloaded, nothing is done. If you don't have a Wi-Fi AP, don't do anything. If the (H) eNB measures high interference or overload, the device connected to it may suffer from unfavorable throughput/performance. If any of those devices are IFOM capable, one or more IP flows that can be moved (such as those with routing rules that do not require "honeycomb only") will be moved to Wi-Fi transmission.
When the CGW receives the load information message from the (H) eNB, it can decode the following information elements (IEs) from the message: the uplink interference overload indication and the associated narrowband transmission power (RNTP). Each of these IEs reports its own information per physical resource block (PRB). The uplink interference overload indication reports the uplink interference level measured by the (H) eNB cell and reports the interference of each PRB as an enumerated value (high, medium or low). The RNTP reports whether the downlink power delivered by the eNodeB cell in each PRB is greater than the RNTP threshold provided in the same IE.
In some embodiments, the CGW can analyze the reported values and determine if there is an unacceptable amount of up- or down-chain interference. To determine if there is uplink interference, the CGW can calculate the percentage of PRBs that are experiencing high interference. For example, if this percentage exceeds a threshold stored in the CGW, the CGW may attempt to move at least one IP stream from the cellular transmission to the Wi-Fi transmission (or other non-homed transmission). In order to determine if there is downlink interference, the CGW may use the RNTP per PRB received from the (H) eNB. If the (H)eNB plans to "many" PRBs exceed the downlink power threshold, the (H)eNB may operate well in a heavy interference environment. Similar to the up-chain interference calculation, the CGW can calculate the percentage of PRBs that are projected to exceed the lower-chain power threshold. For example, if this percentage exceeds a threshold stored in the CGW, the CGW may attempt to move at least one IP stream from the cellular transmission to the Wi-Fi transmission (or other non-homed transmission). Thus, according to some embodiments, if the eNodeB cell is experiencing uplink and/or downlink interference, the CGW may attempt to move the IP flow from the cellular transmission to the non-homed transmission.
When the CGW receives the resource status update message from the (H) eNB, it can decode the following IE from the message: hardware load indicator; S1 transport network layer (TNL) load indicator; radio resource indicator and composite Available capacity group. The hardware load indicator IE consists of a hard-chain hardware load indicator and a downlink hardware load indicator. Each of these can be reported as an enumeration parameter (low load, medium load, high load, and overload). Similarly, the S1 TNL load indicator IE consists of an uplink S1 TNL load indicator and a downlink S1 TNL load indicator. Each of these can also be reported as an enumeration parameter (low load, medium load, high load, and overload). The Radio Resource Indicator IE consists of several parameters including the percentage of the total PRB of the uplink and downlink that are currently in use. The percentage of each includes a value of 0 to 100%. The composite available capacity group IE consists of two items, a composite available capacity uplink and a composite available capacity downlink. Each of these items can be split into several components, including capacity values. The capacity value is a percentage of the available eNodeB capacity. For example, 0 means that there is no remaining capacity, and 100 means that all capacity of the (H) eNB remains.
The CGW can analyze the reported values and determine if (H) the eNB is overloaded. If the parameter indicates an overloaded (H) eNB (eg, exceeding a threshold stored in the CGW), the CGW may attempt to move at least one IP flow from the cellular transmission to the Wi-Fi transmission.
In various embodiments, various parameters can be used to determine when an overload condition exists. In one embodiment, the following eight parameters can be used to determine a metric for evaluating the load condition:
Winding hardware load indicator (UHLI)
Downlink hardware load indicator (DHLI)
Winding S1 TNL load indicator (USTLI)
Downlink S1 TNL load indicator (DSTLI)
Upstream total PRB (UTPU) currently in use
Downlink total PRB (DTPU) currently in use
Composite Available Capacity Winding - Capacity Value (UCV)
Composite Available Capacity Downlink - Capacity Value (DCV)
The individual weights for each of these parameters can be stored in the CGW. Since the following algorithms calculate these parameters proportionally based on weights, in some embodiments, the only restriction on weights is that they are non-negative.
One process for determining (H) eNB status (overloaded or not overloaded) is as follows. First, sum the weights stored in the CGW (total weight):

接下來,將8個參數的總和(sum)設定為0:Next, set the sum (sum) of the 8 parameters to 0:

sum=0

如果UHLI = “超載”,則:
Sum=0

If UHLI = "overload" then:

sum=sum+wUHLI

如果UHLI = “高負載”,則:
Sum=sum+w UHLI

If UHLI = "high load" then:

如果UHLI = “中負載”或“低負載”,則不做任何事
如果DHLI = “超載”,則:
If UHLI = "Medium Load" or "Low Load", do nothing if DHLI = "Overload":



如果DHLI = “高負載”,則:


If DHLI = "high load" then:



如果DHLI = “中負載”或“低負載”,則不做任何事
如果USTLI = “超載”,則:


If DHLI = "Medium Load" or "Low Load", do nothing if USTLI = "overload":



如果USTLI = “高負載”,則:


If USTLI = "high load" then:



如果USTLI = “中負載”或“低負載”,則不做任何事
如果DSTLI = “超載”,則:


If USTLI = "Medium Load" or "Low Load", do nothing if DSTLI = "Overload":



如果DSTLI = “高負載”,則:


If DSTLI = "High Load" then:



如果DSTLI = “中負載”或“低負載”,則不做任何事:
對於UTPU:


If DSTLI = "Medium Load" or "Low Load", nothing is done:
For UTPU:



對於DTPU:


For DTPU:



對於UCV:


For UCV:



對於DCV:


For DCV:



然後可使用以下等式來計算經加權的負載百分比(weighted % of load):


The following equation can then be used to calculate the weighted % of load:



在一些實施例中,如果經加權的負載%比儲存在CGW中的限制大,則(H)eNB可被認為超載。否則,(H)eNB不被認為超載。在一些實施例中,可進一步量化超載的“等級”可進一步得以量化。例如,如果經加權的負載%落入上限範圍內,認為(H)eNB重度超載。如果經加權的負載%落入中等範圍內,認為(H)eNB中度超載。如果經加權的負載%落入下限範圍內,則認為(H)eNB不超載。由CGW採取的行動可取決於(H)eNB是重度還是中度超載而改變。例如,如果重度超載,CGW可卸載被認為可卸載的所有IP流。然而,如果(H)eNB是中度超載,CGW可卸載比被認為可卸載的IP流總數少的若干IP流。
如將理解那樣,其他因素可被用來加權各種參數。例如,評定為“中”負載等級的參數可給定1/4的加權。在一些實施例中,具有“高”負載等級的參數例如可給定2/3的加權。本揭露不受限於任何特定的加權方案。
在一些實施例中,用於基於CGW的IFOM的使用X2介面的系統和方法可以是WTRU裝置和(H)eNB無關的。另外,在此描述的系統和方法通常藉由緩解干擾及/或其他妨礙性能的情況來進行自優化和自恢復。
第21圖圖釋了結合第12圖-第17圖揭露的可選實施例,但也使用X2介面。此實施例可使用(H)eNB間現有的X2對話、並經由CGW路由這些X2對話,如第21圖所示那樣。特別地,獨立於任何CGW,現有的X2介面可在(H)eNB間存在,例如在(H)eNB 2101和2103之間的X2介面2105。這樣的X2介面使用如在3GPP TS 36.423中定義的X2應用協定來在(H)eNB間攜帶資訊。其允許一個(H)eNB通知另一個(H)eNB關於該(H)eNB正在經歷的負載情況,以及允許一個(H)eNB配置另一個(H)eNB報告其觀察的干擾。在此實施例中,(H)eNB 2101和2103間的現有X2對話2105將經由CGW 2107被路由,如第21圖所示那樣。經由CGW 2107路由現有的X2介面2105允許CGW存取遍歷現有X2連接2105的負載資訊和干擾資訊,而CGW不必創建其自己到(H)eNB的X2對話。作為對此實施例的初始條件,(H)eNB必須被配置使得其建立X2連接並且互相配置以報告干擾和負載資訊。
此實施例可使用以上結合第12圖-第20圖在此描述的基本上相同的概念、機制和過程。
基於巨集的IFOM
在一些實施例中,上述eSON功能可被置於行動核心網路中的任何核心網路元件中,例如在PDN閘道(PGW)中。在這樣的實施例中,其幫助IFOM引擎引導IP流通過具有干擾的(H)eNB到不同的傳輸,例如Wi-Fi。在第22圖-第27圖中示出根據一個實施例的基於巨集的IFOM eSON架構。所示實施例包括建築物2201中的若干示例家用e節點B 2203a、2203b和若干示例用戶裝置2205a、2205b、2205c、2205d。用戶裝置的一些(例如用戶裝置2205d)可連結於家用e節點B中的一者(例如HeNB 2203b)以及Wi-Fi AP 2211。其他用戶裝置,例如用戶裝置2205a、2205b、2205c僅經由家用e節點B(2203a)來與網路連接。其他的(未示出)可僅經由Wi-Fi AP連接。對於任何特定的建築物,可有n個家用e節點B和m個Wi-Fi AP,其中,n是任何正整數,m是任何正整數。另外,出於解釋的目的,假設每個用戶裝置主動地參與資料傳輸。網路的蜂巢部分包括MME 2221和(H)eNB可與其通訊的服務閘道2223。服務閘道2223與包括eSON伺服器2227和IFOM決定引擎2229的PND閘道2225進行通訊。Wi-Fi AP 2211如由S2a鏈路2233所示與PDN閘道2225直接耦合,或如由SW鏈路2235和S2b鏈路2237所示經由演進型封包資料閘道2231與其耦合。
參考第23圖,如上所述,(H)eNB 2203a、2203b可被配置在其各自的環境中執行和報告測量,如由第23圖中的雙向鏈路2302所示。第23圖顯示了在存在(H)eNB間干擾(由箭頭2304指示)的情況下(H)eNB 2203a、2203b和PDN閘道2225之間的互動。
一旦eSON伺服器2227接收到測量,資料將被分析,並且輸入可被發送給用於用戶裝置2305d的IP流應當從蜂巢傳輸移動到Wi-Fi傳輸的IFOM決定引擎2209。第24圖闡明了在IFOM決定引擎2229已將IP流2239a從蜂巢(如第23圖所示)移動到Wi-Fi(如第24圖中在2239b處所示)後的資料流程。
又在其他實施例中,例如在第25圖-第27圖中所示,如上結合第12圖-第21圖所述的X2代理功能可併入PDN閘道(PGW)2525。X2代理功能可在巨集環境中以類似的方式起作用,以便其一般地幫助IFOM引擎引導IP流通過具有干擾的家用e節點B 到不同的傳輸(例如Wi-Fi)。如所示那樣,X2介面2502在PGW 2525和e節點B 2203a、2203b之間形成。雖然未示出,但應理解類似的架構可與(H)eNB一起使用,而不脫離本揭露的範圍。
藉由PGW 2525中的X2代理2527和(H)eNB 2503a、2503b中的X2代理(未示出),(H)eNB可經由源於PGW 2525的X2介面2502被配置為在其各自的環境中執行和報告測量,如第26圖中的箭頭2602指示那樣。第26圖亦顯示了(H)eNB間干擾的存在,如箭頭2604指示那樣。
一旦X2代理2527接收到測量,資料可被分析,並且輸入可被發送給用於用戶裝置2205d的IP流應當從蜂巢傳輸(第26圖中所示的2608a)移動到Wi-Fi傳輸(第27圖中所示的2608b)的IFOM決定引擎2529。
又在其他實施例中,如由第28圖-第30圖所示的一個非限制實施例中那樣,IFOM引擎2827可位於PDN閘道2825中、並與HeMS 2840通訊以擷取從家用e節點B 2803a、2803b提供給HeMS的警報和性能度量(IFOM引擎可駐留在任何核心網路元件中)。對於PDN閘道2825擷取該資訊,其可聯繫HeMS 2840並請求此資訊,如第29圖中的箭頭2902指示那樣。在由PDN閘道2825聯繫後,HeMS 2840可使用從家用e節點B 2803a、2803b接收的、報告給HeMS 2840的性能度量和警報來回應,如第30圖中的箭頭3004指示那樣。
第31圖是根據一個非限制實施例的顯示PDN閘道3101和HeMS 3102間以及HeMS和HeNB 3103a、3103b間互動的非協定特定訊息序列圖。在一些實施例中,TR-069協定可被用作將此資料從HeMS 3102傳送到PDN閘道3101的機制。由於HeMS已經具有TR-069伺服器,在一些實施例中,TR-069用戶端可被安裝在PDN閘道中。在PDN閘道中的TR-069用戶端可週期性地與在HeMS中的TR-069伺服器建立對話、並獲得儲存在HeMS中的警報和性能測量。
經由訊息3104和3106,HeMS 3102分別配置家用e節點B 3103b和家用e節點B 3103a,以向該HeMS發送警報和性能測量。經由訊息3108和3110,家用e節點B 3103b和家用e節點B 3103a分別將其配置的警報及/或週期性能測量發送給HeMS 3102。經由訊息3112,PGW 3101請求HeMS 3102以向其發送從家用e節點B 3103a、3103b接收的警報及/或週期性能測量。經由訊息3114,HeMS將從家用e節點B接收的那些警報及/或週期測量發送給PGW。
在3116處,在PGW 3101中的IFOM決定引擎使用該警報和週期測量資訊來確定已經註冊警報或性能度量的任何家用e節點B是否指明超載或擁塞。如果是,則在3118處,PGW嘗試將IP流從蜂巢移動到非蜂巢傳輸。
實施例
在一個實施例中,該方法可以包括:配置代管IP流的(H)eNB來測量性能參數;接收反饋資料,其中該反饋資料包括性能參數的測量;和基於該反饋資料,確定IP流的卸載。
在實施例中,該方法更可以包括將IP流從第一無線電存取技術卸載到第二無線電存取技術。
在上述方法的一或多個方法中,第一無線電存取技術可以是蜂巢技術,而第二無線電存取技術可以是非蜂巢技術。
在上述方法的一或多個方法中,非蜂巢技術可以是Wi-Fi技術。
在上述方法的一或多個方法中,性能參數可以是干擾的等級、擁塞的等級及/或資源負載的等級。
在上述方法的一或多個方法中,可以使用CPE WAN管理協定TR-069來接收反饋資料。
在上述方法的一或多個方法中,可使用CPE WAN管理協定TR-069來配置(H)eNB。
在上述方法的一或多個方法中,使用CPE WAN管理協定TR-069來配置e節點B和家用e節點B中的一者。
在上述方法的一或多個方法中,反饋資料可包括接收信號強度指示(RSSI)等級、參考信號接收功率(RSRP)等級和(H)eNB資源的負載中的至少一個。
在上述方法的一或多個方法中,確定IP流的卸載可包括比較RSSI等級與RSSI臨界值等級、並且亦可以包括當RSSI等級超過RSSI臨界值時卸載IP流。
在上述方法的一或多個方法中,確定IP流的卸載可包括比較RSRP等級和RSRP臨界值等級、並且亦可以包括當RSRP等級超過RSRP臨界值時卸載IP流。
在上述方法的一或多個方法中,反饋資料可由封包資料網路閘道來接收。
在上述方法的一或多個方法中,反饋資料可由融合閘道來接收。
在上述方法的一或多個方法中,該確定可基於以下原理:如果所有(H)eNB測量到低干擾,不做任何事情;如果無非蜂巢AP,不做任何事情;以及如果(H)eNB確實測量到高干擾,與其連結的裝置可能正遭受不利的流通量/性能。如果任何那些連結的裝置是具有IFOM能力的,則一或多個IP流可被移動(即那些具有不要求“僅蜂巢”的路由規則的IP流可被移動到非蜂巢傳輸(例如Wi-Fi傳輸))。
上述方法的一或多個方法可包括,如果已偵測到干擾,識別流過正經歷干擾的(H)eNB的IP流;並且確定那些IP流中的哪些IP流到達具有經由此(H)eNB鏈結到3GPP PDP上下文的現有Wi-Fi連接的WRTU;確定該IP流是否具有不是“僅蜂巢”或可以限制卸載的路由策略;以及將識別的IP流的一或多個卸載到例如Wi-Fi傳輸或其他非蜂巢傳輸。
在上述實施例的一或多個方法中,所有識別的IP流可被卸載。
可選地,在上述實施例的一或多個方法中,利用在每次卸載後執行的干擾等級重新評估,可依序地卸載單一IP流。
在另一實施例中,該方法可包括:經由X2介面從代管IP流的(H)eNB接收反饋資料,其中該反饋資料包括性能參數的測量;和基於該反饋資料來確定IP流的卸載。
上述方法的一或多個方法更可以包括將IP流從第一無線電存取技術卸載到第二無線電存取技術。
在上述方法的一或多個方法中,第一無線電存取技術可以是蜂巢技術,並且第二無線電存取技術可以是非蜂巢技術。
在上述方法的一或多個方法中,非蜂巢技術可以是Wi-Fi技術。
上述方法的一或多個方法更可以包括配置(H)eNB以測量性能參數。
在上述方法的一或多個方法中,反饋資料可由封包資料網路閘道來接收。
在上述方法的一或多個方法中,反饋資料可由與(H)eNB相關聯的融合閘道來接收。
在上述方法的一或多個方法中,確定可包括以下:(1)如果所有(H)eNB測量到低干擾並且未超載,則不做任何事情;(2)如果無Wi-Fi AP,則不做任何事情;和(3)如果(H)eNB測量到高干擾或超載,則(a)如果那些裝置中的任何裝置是具有IFOM功能的,則可移動的一或多個IP流(具有不要求“僅蜂巢”的路由規則的那些IP流)可被移動到Wi-Fi傳輸。
在另一個實施例中,該方法可包括:經由介面以從(H)eNB接收干擾測量,其中IP流正遍歷該(H)eNB;當干擾測量超過干擾臨界值時,將該IP流從該(H)eNB移動到非蜂巢無線電存取技術;確定在該(H)eNB上的負載;並且當在該(H)eNB的負載超過負載臨界值時,將該IP流從該(H)eNB移動到非蜂巢無線電存取技術。
在另一個實施例中,該方法可包括:經由介面以從(H)eNB接收干擾測量,其中IP流正遍歷該(H)eNB;當干擾測量超過干擾臨界值時,將該IP流從該(H)eNB移動到非蜂巢無線電存取技術;當干擾測量未超過干擾臨界值時,確定在該(H)eNB上的負載;並且,如果在該(H)eNB上的負載超過負載臨界值,將該IP流從該(H)eNB移動到非蜂巢無線電存取技術。
在上述方法的一或多個方法中可使用由該(H)eNB報告的上鏈干擾超載指示和相關窄帶傳輸功率(RNTP)來確定,(H)eNB上的負載。
在上述方法的一或多個方法中,上鏈干擾可藉由計算正經歷高干擾的PRB的百分比來確定;並且確定該百分比是否超過特定臨界值。
在上述方法的一或多個方法中,可藉由使用從(H)eNB接收的每PRB的RNTP以確定計劃超過下鏈功率臨界值的PRB的百分比是否超過特定臨界值來確定下鏈干擾。
在上述方法的一或多個方法中,來自(H)eNB的資源狀態更新訊息的以下IE中的一或多個IE可被用來確定在(H)eNB處的負載:硬體負載指示符;S1傳輸網路層(TNL)負載指示符;無線電資源指示符;和複合可用容量群組。
在以上方法的一或多個方法中,可使用經加權參數的總和來確定(H)eNB上的負載。
在上述方法的一或多個方法中,經加權的參數可包括上鏈硬體負載指示符、下鏈硬體負載指示符、上鏈S1 TNL負載指示符、下鏈S1 TNL負載指示符、和目前使用的上鏈總PRB、目前使用的下鏈總PRB、複合可用容量上鏈——容量值以及複合可用容量下鏈——容量值中的至少一者。
在上述實施例的一或多個方法中,以下參數的中一或多個可被用來確定用於評估負載情況的度量:上鏈硬體負載指示符(UHLI);下鏈硬體負載指示符(DHLI);上鏈S1 TNL負載指示符(USTLI);下鏈S1 TNL負載指示符(DSTLI);目前使用的上鏈總PRB(UTPU);目前使用的下鏈總PRB(DTPU);複合可用容量上鏈——容量值(UCV)和複合可用容量下鏈——容量值(DCV)。
在又一個實施例中,在包括至少第一和第二(H)eNB的網路中,該方法可包括:配置第一和第二(H)eNB以經由第一和第二(H)eNB間的X2介面來交換性能參數資料,該X2介面經由閘道節點被路由;該閘道節點存取第一和第二(H)eNB的性能參數資料;以及基於反饋資料,確定IP流的卸載。
在又一個實施例中,該方法可包括:請求來自(H)eNB管理系統的性能參數測量;從(H)eNB管理系統接收性能參數測量;並基於性能參數測量,確定從(H)eNB的IP流的卸載。
在上述方法的一或多個方法中,性能參數測量可指明(H)eNB間干擾等級。
上述實施例可由包含在任何數目的網路節點中及/或被分佈在多個網路節點間的處理器實現,該網路節點包括但不限於PGW、(H)eNB、HeMS、CGW。
仍然在其他實施例中,一種裝置包括:處理器被配置為:配置代管IP流的(H)eNB以測量性能參數;接收反饋資料,其中該反饋資料包括性能參數的測量;和基於該反饋資料,確定IP流的卸載。
在上述實施例的一或多個實施例中,處理器更可以被配置為:將IP流從第一無線電存取技術卸載到第二無線電存取技術。
在上述實施例的一或多個實施例中,性能參數可包括干擾等級和資源負載等級中的至少一個。
在上述實施例的一或多個實施例中,可使用CPE WAN管理協定TR-069來接收反饋資料。
在上述實施例的一或多個實施例中,可經由X2介面來接收反饋資料。
在上述實施例的一或多個實施例中,該裝置可以是融合閘道。
在上述實施例的一或多個實施例中,該裝置可以是封包資料網路閘道。
儘管以上以特定的組合描述了特徵和元素,但是本領域中具有通常知識者將理解,每個特徵或元素可以單獨地或與其其特徵和元素任何組合地使用。此外,在此描述的方法可在包括在由電腦或處理器執行的電腦可讀媒體中的電腦程式、軟體或韌體中實現。電腦可讀媒體的示例包括電子信號(經由有線或無線連接傳送)和電腦可讀儲存媒體。電腦可讀儲存媒體的示例包括但不限制為唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、快取記憶體、半導體記憶體裝置、諸如內部硬碟和可移式磁片這樣磁性媒體、磁光媒體和諸如CD-ROM盤和數位多功能光碟(DVD)這樣的光學媒體。與軟體相關聯的處理器可用來實現在WTRU、UE、終端、基地台、RNC或任何主電腦中使用的射頻收發器。
上述方法、裝置和系統的變型是可能的,並不脫離本發明的範圍。考慮到可應用的各種實施例,應理解闡述的實施例僅是示例性的,不應被理解為對以下申請專利範圍的範圍的限制。
此外,在上述的實施例中,應注意處理平臺、計算系統、控制器和其他包括處理器的裝置。這些裝置可包括至少一個中央處理單元(“CPU”)和記憶體。根據電腦編程領域中具有通常知識者的實踐,涉及動作和操作或指令的符號表示可由各種CPU和記憶體來執行。這樣的動作和操作或指令可被稱為“執行”、“電腦執行”或“CPU執行”。
本領域中具有通常知識者將理解動作和符號表示的操作或指令包括由CPU操作的電子信號。電子系統表示能引起電信號的結果變換或減少和在記憶體系統中的儲存位置維護資料位元,從而重配置或改變CPU操作的資料位元,和信號的其他處理。維護資料位元的儲存位置是具有相應於或代表該資料位元的特定電、磁、光或有機性質的實體位置。應當理解,示例性實施例並不限於上述平臺或CPU以及可支持上述方法的其他平臺和CPU。
資料位元亦可以在電腦可讀媒體上維護,包括CPU可讀的磁片、光碟和任何其他揮發(例如隨機存取記憶體(“RAM”))或非揮發(例如唯讀記憶體(“ROM”))海量儲存系統。電腦可讀媒體可包括協作或互連的電腦可讀媒體,其排他地存在在處理系統上,或分佈在多個可以是本地或遠端於處理系統的互連處理系統間。應當理解,示例性實施例並不限於上述記憶體和其他可支持上述方法的平臺和記憶體。
在本申請的說明中使用的元件、動作或指令都不應當被解釋為對本發明至關重要或必不可少的,除非明確地這麼描述。同樣地,如在此使用的那樣,冠詞“一”旨在包括一個或多個項。在旨在僅一個項的情況下,使用術語“一個”或類似語言。另外,其後跟隨著多個項及/或多個類別的項的術語“任一個”,如在此使用的那樣,旨在包括這些項及/或這些項的類別的“任一個”、“任何組合”、“任何多個”及/或“多個的任何組合”,獨立於或結合於其他項及/或其他類別的項。另外,如在此使用的那樣,術語“集合”旨在包括任何數目的項,包括0。此外,如在此使用的那樣,術語“數目”旨在包括任何數目,包括0。
並且,申請專利範圍不應當被理解為受限於描述的順序或元件,除非說明該效果。此外,在任何申請專利範圍中使用術語“手段(means)”旨在援引35 U.S.C. §112, ¶ 6,沒有措詞“手段”的任何申請專利範圍沒有這樣的涵義。


In some embodiments, the (H)eNB may be considered overloaded if the weighted load % is greater than the limit stored in the CGW. Otherwise, the (H) eNB is not considered overloaded. In some embodiments, the "level" that can further quantify the overload can be further quantified. For example, if the weighted load % falls within the upper limit, the (H) eNB is considered to be heavily overloaded. If the weighted load % falls within the medium range, the (H) eNB is considered to be moderately overloaded. If the weighted load % falls within the lower limit range, then the (H) eNB is considered not to be overloaded. The actions taken by the CGW may vary depending on whether the (H) eNB is heavily or moderately overloaded. For example, if heavily overloaded, the CGW can offload all IP flows that are considered to be offloadable. However, if the (H) eNB is moderately overloaded, the CGW can offload several IP flows that are less than the total number of IP flows that are considered to be offloadable.
As will be appreciated, other factors can be used to weight various parameters. For example, a parameter rated as a "medium" load level may be given a weight of 1/4. In some embodiments, a parameter having a "high" load level, for example, may be given a weight of 2/3. The disclosure is not limited to any particular weighting scheme.
In some embodiments, the system and method for using the X2 interface for a CGW based IFOM may be WTRU device and (H)eNB independent. Additionally, the systems and methods described herein typically perform self-optimization and self-recovery by mitigating interference and/or other conditions that impede performance.
Figure 21 illustrates an alternative embodiment disclosed in connection with Figures 12-17, but also using the X2 interface. This embodiment may use (H) existing X2 conversations between eNBs and route these X2 conversations via the CGW, as shown in FIG. In particular, independent of any CGW, existing X2 interfaces may exist between (H) eNBs, such as the X2 interface 2105 between (H) eNBs 2101 and 2103. Such an X2 interface uses X2 application protocols as defined in 3GPP TS 36.423 to carry information between (H) eNBs. It allows one (H)eNB to inform another (H)eNB about the load conditions that the (H)eNB is experiencing, and allows one (H)eNB to configure another (H)eNB to report its observed interference. In this embodiment, the existing X2 session 2105 between the (H) eNBs 2101 and 2103 will be routed via the CGW 2107, as shown in FIG. Routing the existing X2 interface 2105 via the CGW 2107 allows the CGW to access the load information and interference information traversing the existing X2 connection 2105 without the CGW having to create its own X2 session to the (H)eNB. As an initial condition for this embodiment, the (H)eNB must be configured such that it establishes an X2 connection and configures each other to report interference and load information.
This embodiment may use substantially the same concepts, mechanisms, and processes described above in connection with Figures 12-20.
Macro based IFOM
In some embodiments, the eSON functionality described above can be placed in any core network element in the mobile core network, such as in a PDN Gateway (PGW). In such an embodiment, it assists the IFOM engine in directing the IP flow through the interfering (H) eNB to a different transmission, such as Wi-Fi. A macro-based IFOM eSON architecture in accordance with one embodiment is shown in Figures 22-27. The illustrated embodiment includes several example home eNodeBs 2203a, 2203b and several example user devices 2205a, 2205b, 2205c, 2205d in building 2201. Some of the user devices (e.g., user device 2205d) may be coupled to one of the home eNodeBs (e.g., HeNB 2203b) and the Wi-Fi AP 2211. Other user devices, such as user devices 2205a, 2205b, 2205c, are only connected to the network via the home eNodeB (2203a). Other (not shown) may be connected only via the Wi-Fi AP. For any particular building, there may be n home eNode Bs and m Wi-Fi APs, where n is any positive integer and m is any positive integer. Additionally, for purposes of explanation, assume that each user device actively participates in data transfer. The cellular portion of the network includes a serving gateway 2223 with which the MME 2221 and (H)eNB can communicate. The service gateway 2223 is in communication with a PND gateway 2225 that includes an eSON server 2227 and an IFOM decision engine 2229. Wi-Fi AP 2211 is directly coupled to PDN gateway 2225 as indicated by S2a link 2233, or coupled thereto via evolved packet data gateway 2231 as indicated by SW link 2235 and S2b link 2237.
Referring to Figure 23, as described above, the (H) eNBs 2203a, 2203b can be configured to perform and report measurements in their respective environments, as illustrated by the bidirectional link 2302 in Figure 23. Figure 23 shows the interaction between (H) eNBs 2203a, 2203b and PDN gateway 2225 in the presence of (H) inter-eNB interference (indicated by arrow 2304).
Once the eSON server 2227 receives the measurements, the data will be analyzed and the input can be sent to the IFOM decision engine 2209 for the IP flow for the user device 2305d to be moved from the cellular transmission to the Wi-Fi transmission. Figure 24 illustrates the data flow after the IFOM decision engine 2229 has moved the IP stream 2239a from the hive (as shown in Figure 23) to Wi-Fi (as shown at 2239b in Figure 24).
In still other embodiments, such as shown in Figures 25-27, the X2 proxy function as described above in connection with Figures 12-21 may be incorporated into a PDN Gateway (PGW) 2525. The X2 proxy function can function in a similar manner in a macro environment so that it generally assists the IFOM engine in directing IP flows through interfering home eNodeBs to different transmissions (e.g., Wi-Fi). As shown, the X2 interface 2502 is formed between the PGW 2525 and the eNodeBs 2203a, 2203b. Although not shown, it should be understood that a similar architecture may be used with the (H)eNB without departing from the scope of the present disclosure.
With the X2 proxy 2527 in the PGW 2525 and the X2 proxy (not shown) in the (H)eNB 2503a, 2503b, the (H)eNB can be configured in its respective environment via the X2 interface 2502 from the PGW 2525. The measurements are performed and reported as indicated by arrow 2602 in Figure 26. Figure 26 also shows the presence of (H) inter-eNB interference, as indicated by arrow 2604.
Once the X2 agent 2527 receives the measurement, the data can be analyzed and the input can be sent to the IP flow for the user device 2205d should be moved from the cellular transmission (2608a shown in Figure 26) to Wi-Fi transmission (27th) The IFOM of the 2608b) shown in the figure determines the engine 2529.
In still other embodiments, as in a non-limiting embodiment illustrated by Figures 28-30, the IFOM engine 2827 can be located in the PDN gateway 2825 and communicate with the HeMS 2840 to retrieve the slave e-node. B 2803a, 2803b provides alerts and performance metrics for HeMS (the IFOM engine can reside in any core network element). This information is retrieved for the PDN gateway 2825, which can contact the HeMS 2840 and request this information, as indicated by arrow 2902 in Figure 29. After being contacted by the PDN gateway 2825, the HeMS 2840 can respond with performance metrics and alerts received from the home eNodeBs 2803a, 2803b that are reported to the HeMS 2840, as indicated by arrow 3004 in FIG.
Figure 31 is a non-contracted specific message sequence diagram showing interaction between PDN gateway 3101 and HeMS 3102 and between HeMS and HeNB 3103a, 3103b, according to one non-limiting embodiment. In some embodiments, the TR-069 protocol can be used as a mechanism to transfer this material from the HeMS 3102 to the PDN gateway 3101. Since the HeMS already has a TR-069 server, in some embodiments, the TR-069 client can be installed in the PDN gateway. The TR-069 client in the PDN gateway periodically establishes a dialogue with the TR-069 server in the HeMS and obtains alarm and performance measurements stored in the HeMS.
Via messages 3104 and 3106, HeMS 3102 configures home eNodeB 3103b and home eNodeB 3103a, respectively, to send alerts and performance measurements to the HeMS. Via the messages 3108 and 3110, the home eNodeB 3103b and the home eNodeB 3103a send their configured alert and/or periodic performance measurements to the HeMS 3102, respectively. Via message 3112, PGW 3101 requests HeMS 3102 to send thereto an alert and/or periodic performance measurement received from home eNodeBs 3103a, 3103b. Via message 3114, the HeMS sends those alerts and/or periodic measurements received from the home eNodeB to the PGW.
At 3116, the IFOM decision engine in the PGW 3101 uses the alert and period measurement information to determine if any home eNodeBs that have registered alarms or performance metrics indicate overload or congestion. If so, then at 3118, the PGW attempts to move the IP stream from the hive to the non-homed transmission.
Embodiments In an embodiment, the method may include: configuring a (H)eNB that hosts the IP flow to measure performance parameters; receiving feedback data, wherein the feedback data includes measurement of performance parameters; and determining IP based on the feedback data Unloading of the stream.
In an embodiment, the method may further comprise offloading the IP stream from the first radio access technology to the second radio access technology.
In one or more of the above methods, the first radio access technology may be a cellular technology and the second radio access technology may be a non-homed technology.
In one or more of the above methods, the non-homed technology may be a Wi-Fi technology.
In one or more of the above methods, the performance parameter may be a level of interference, a level of congestion, and/or a level of resource load.
In one or more of the above methods, the CPE WAN Management Protocol TR-069 can be used to receive feedback material.
In one or more methods of the above methods, the (H) eNB may be configured using the CPE WAN Management Protocol TR-069.
In one or more of the above methods, one of the eNodeB and the home eNodeB is configured using the CPE WAN Management Protocol TR-069.
In one or more methods of the above method, the feedback data may include at least one of a received signal strength indication (RSSI) level, a reference signal received power (RSRP) level, and a (H) eNB resource load.
In one or more of the above methods, determining that the offloading of the IP flow can include comparing the RSSI level to the RSSI threshold level, and can also include offloading the IP flow when the RSSI level exceeds the RSSI threshold.
In one or more of the above methods, determining that the offloading of the IP flow may include comparing the RSRP level and the RSRP threshold level, and may also include offloading the IP flow when the RSRP level exceeds the RSRP threshold.
In one or more of the above methods, the feedback data can be received by the packet data network gateway.
In one or more of the above methods, the feedback data can be received by the fused gate.
In one or more of the above methods, the determination may be based on the principle that if all (H)eNBs measure low interference, nothing is done; if there is no non-homed AP, nothing is done; and if (H)eNB It is true that high interference is measured and the devices connected to it may be experiencing unfavorable throughput/performance. If any of the connected devices are IFOM capable, one or more IP flows can be moved (ie those IP flows with routing rules that do not require "honeycomb only" can be moved to non-homed transmissions (eg Wi-Fi) transmission)).
One or more methods of the above methods may include identifying an IP flow flowing through the (H)eNB that is experiencing interference if interference has been detected; and determining which IP flows in those IP flows have arrived via this (H) The eNB links the WRTU of the existing Wi-Fi connection to the 3GPP PDP context; determines whether the IP flow has a routing policy that is not "honeycomb only" or can restrict offloading; and offloads one or more of the identified IP flows to, for example, Wi -Fi transmission or other non-homed transmission.
In one or more of the above embodiments, all identified IP flows may be unloaded.
Alternatively, in one or more of the above-described embodiments, a single IP flow may be sequentially offloaded using an interference level re-evaluation performed after each unload.
In another embodiment, the method can include receiving feedback data from the (H)eNB of the escrow IP flow via the X2 interface, wherein the feedback data includes measurement of performance parameters; and determining offloading of the IP flow based on the feedback data .
One or more methods of the above methods may further include offloading the IP stream from the first radio access technology to the second radio access technology.
In one or more of the above methods, the first radio access technology may be a cellular technology and the second radio access technology may be a non-homed technology.
In one or more of the above methods, the non-homed technology may be a Wi-Fi technology.
One or more methods of the above methods may further include configuring (H) the eNB to measure performance parameters.
In one or more of the above methods, the feedback data can be received by the packet data network gateway.
In one or more of the methods described above, the feedback material may be received by a merged gateway associated with the (H)eNB.
In one or more of the above methods, the determining may include the following: (1) if all (H)eNBs measure low interference and are not overloaded, do nothing; (2) if there is no Wi-Fi AP, then Do nothing; and (3) if the (H)eNB measures high interference or overload, then (a) if any of those devices are IFOM-enabled, then one or more IP flows are movable (with Those IP flows that do not require a "honeycomb only" routing rule can be moved to Wi-Fi transmission.
In another embodiment, the method can include receiving an interference measurement from the (H)eNB via the interface, wherein the IP flow is traversing the (H)eNB; when the interference measurement exceeds an interference threshold, the IP flow is from the (H) the eNB moves to a non-homed radio access technology; determines a load on the (H)eNB; and when the load of the (H)eNB exceeds a load threshold, the IP flow is from the (H)eNB Move to non-homed radio access technology.
In another embodiment, the method can include receiving an interference measurement from the (H)eNB via the interface, wherein the IP flow is traversing the (H)eNB; when the interference measurement exceeds an interference threshold, the IP flow is from the (H) the eNB moves to a non-homed radio access technology; when the interference measurement does not exceed the interference threshold, the load on the (H) eNB is determined; and if the load on the (H) eNB exceeds the load threshold Moving the IP flow from the (H) eNB to a non-homed radio access technology.
The uplink interference overload indication and associated narrowband transmission power (RNTP) reported by the (H)eNB may be used in one or more methods of the above methods to determine (H) the load on the eNB.
In one or more of the above methods, the uplink interference can be determined by calculating the percentage of PRBs that are experiencing high interference; and determining if the percentage exceeds a particular threshold.
In one or more methods of the above methods, downlink interference may be determined by using an RNTP per PRB received from the (H) eNB to determine if the percentage of PRBs that are scheduled to exceed the downlink power threshold exceeds a certain threshold.
In one or more of the methods described above, one or more of the following IEs of the resource status update message from the (H)eNB may be used to determine the load at the (H)eNB: hardware load indicator ; S1 Transport Network Layer (TNL) load indicator; radio resource indicator; and composite available capacity group.
In one or more methods of the above methods, the sum of the weighted parameters can be used to determine (H) the load on the eNB.
In one or more methods of the above method, the weighted parameters may include a uplink hardware load indicator, a downlink hardware load indicator, an uplink S1 TNL load indicator, a downlink S1 TNL load indicator, and At least one of the currently used total chain PRB, the currently used down-chain total PRB, the composite available capacity winding-capacity value, and the composite available capacity downlink-capacity value.
In one or more of the above embodiments, one or more of the following parameters may be used to determine a metric for evaluating a load condition: a chained hardware load indicator (UHLI); a downlink hardware load indication (HH); uplink S1 TNL load indicator (USTLI); downlink S1 TNL load indicator (DSTLI); currently used total uplink PRB (UTPU); currently used downlink total PRB (DTPU); composite Available capacity winding - capacity value (UCV) and composite available capacity down chain - capacity value (DCV).
In still another embodiment, in a network comprising at least first and second (H) eNBs, the method can include configuring the first and second (H) eNBs to pass the first and second (H) eNBs The X2 interface exchanges performance parameter data, the X2 interface is routed through the gateway node; the gateway node accesses performance parameter data of the first and second (H)eNBs; and determines the unloading of the IP stream based on the feedback data .
In still another embodiment, the method can include: requesting performance parameter measurements from the (H)eNB management system; receiving performance parameter measurements from the (H)eNB management system; and determining from the (H)eNB based on the performance parameter measurements Unloading of IP flows.
In one or more of the above methods, the performance parameter measurement may indicate (H) an inter-eNB interference level.
The above embodiments may be implemented by a processor included in any number of network nodes and/or distributed among a plurality of network nodes including, but not limited to, PGW, (H)eNB, HeMS, CGW.
In still other embodiments, an apparatus includes: a processor configured to: configure a (H)eNB that hosts an IP flow to measure performance parameters; receive feedback data, wherein the feedback data includes measurements of performance parameters; and based on the feedback Data to determine the offload of the IP stream.
In one or more embodiments of the above embodiments, the processor is further configured to offload the IP flow from the first radio access technology to the second radio access technology.
In one or more embodiments of the above embodiments, the performance parameter may include at least one of an interference level and a resource load level.
In one or more embodiments of the above embodiments, the CPE WAN Management Protocol TR-069 can be used to receive feedback material.
In one or more embodiments of the above embodiments, the feedback material may be received via the X2 interface.
In one or more embodiments of the above embodiments, the device may be a merged gateway.
In one or more embodiments of the above embodiments, the device may be a packet data network gateway.
Although the features and elements are described above in a particular combination, it will be understood by those of ordinary skill in the art that each feature or element can be used alone or in any combination with its features and elements. Moreover, the methods described herein can be implemented in a computer program, software or firmware embodied in a computer readable medium executed by a computer or processor. Examples of computer readable media include electronic signals (transmitted via a wired or wireless connection) and computer readable storage media. Examples of computer readable storage media include, but are not limited to, read only memory (ROM), random access memory (RAM), scratchpad, cache memory, semiconductor memory devices, such as internal hard drives and removable Magnetic sheets such as magnetic media, magneto-optical media, and optical media such as CD-ROM discs and digital versatile discs (DVDs). A processor associated with the software can be used to implement a radio frequency transceiver for use in a WTRU, UE, terminal, base station, RNC, or any host computer.
Variations of the above methods, devices and systems are possible without departing from the scope of the invention. The embodiments are to be considered in all respects as illustrative and not restrictive
Moreover, in the above-described embodiments, attention should be paid to processing platforms, computing systems, controllers, and other devices including processors. These devices may include at least one central processing unit ("CPU") and memory. Depending on the practice of those of ordinary skill in the computer programming arts, symbolic representations involving actions and operations or instructions may be performed by various CPUs and memory. Such actions and operations or instructions may be referred to as "execution,""computerexecution," or "CPU execution."
Those of ordinary skill in the art will appreciate that the operations or instructions of the acts and symbolic representations include electronic signals that are operated by the CPU. The electronic system representation can cause the conversion or reduction of the result of the electrical signal and maintain the data bit in the storage location in the memory system, thereby reconfiguring or changing the data bits of the CPU operation, and other processing of the signal. The storage location of the maintenance data bit is a physical location having a particular electrical, magnetic, optical or organic property corresponding to or representing the data bit. It should be understood that the exemplary embodiments are not limited to the above-described platforms or CPUs and other platforms and CPUs that can support the above methods.
The data bits can also be maintained on a computer readable medium, including a CPU readable magnetic disk, a compact disc, and any other volatile (eg, random access memory ("RAM")) or non-volatile (eg, read only memory ("ROM")) Mass storage system. The computer readable medium can comprise a cooperating or interconnected computer readable medium, which is present exclusively on the processing system or distributed across a plurality of interconnected processing systems, which may be local or remote to the processing system. It should be understood that the exemplary embodiments are not limited to the above-described memory and other platforms and memories that can support the above methods.
No element, act, or instruction used in the description of the present application should be construed as essential or essential to the invention, unless explicitly described. As such, the article "a" is intended to include one or more items. In the case where only one item is intended, the term "one" or a similar language is used. In addition, the term "any one" followed by a plurality of items and/or items of a plurality of categories, as used herein, is intended to include "any" of these items and/or categories of such items, " Any combination, "any number of" and/or "any combination of the plurality" is independent of or in combination with other items and/or other categories of items. Also, as used herein, the term "set" is intended to include any number of items, including zero. Moreover, as used herein, the term "number" is intended to include any number, including zero.
Also, the scope of patent application should not be construed as being limited to the described order or elements unless the effect is described. Moreover, the use of the term "means" in any patent application is intended to invoke 35 USC § 112, ¶ 6, and any patent application scope without the word "means" does not have such a meaning.

100...示例通訊系統100. . . Example communication system

102、102a、102b、102c、102d...無線傳輸/接收單元(WTRU)102, 102a, 102b, 102c, 102d. . . Wireless transmit/receive unit (WTRU)

104...無線電存取網路(RAN)104. . . Radio access network (RAN)

106...核心網路106106. . . Core network 106

108...公共交換電話網路(PSTN)108. . . Public switched telephone network (PSTN)

110...網際網路110. . . Internet

112...其他網路112. . . Other network

114a、114b...基地台114a, 114b. . . Base station

116...空氣介面116. . . Air interface

118...處理器118. . . processor

120...收發器120. . . transceiver

122...傳輸/接收元件122. . . Transmission/reception component

124...揚聲器/麥克風124. . . Speaker/microphone

126...鍵盤126. . . keyboard

128...顯示器/觸控板128. . . Display/trackpad

130...不可移式記憶體130. . . Non-removable memory

132...可移式記憶體132. . . Removable memory

134...電源134. . . power supply

136...全球定位系統(GPS)碼片組136. . . Global Positioning System (GPS) chipset

138...週邊裝置138. . . Peripheral device

140a、140b、140c、903...e節點B140a, 140b, 140c, 903. . . eNodeB

142a、142b...無線電網路控制器(RNC)142a, 142b. . . Radio Network Controller (RNC)

144、2223...服務閘道144, 2223. . . Service gateway

146...封包資料網路(PDN)閘道146. . . Packet Data Network (PDN) gateway

148...服務GPRS支援節點(SGSN)148. . . Serving GPRS Support Node (SGSN)

201...CGW平臺201. . . CGW platform

202...蜂巢電話202. . . Honeycomb phone

203...3GPP家用節點B(HNB)203. . . 3GPP Home Node B (HNB)

204...蜂巢介面204. . . Honeycomb interface

205、303a、303b、1203a、1203b、1803、1903、2101、2103、2203a、2203b、2803a、2803b...家用e節點B(HeNB)205, 303a, 303b, 1203a, 1203b, 1803, 1903, 2101, 2103, 2203a, 2203b, 2803a, 2803b. . . Home eNodeB (HeNB)

206...Wi-Fi介面206. . . Wi-Fi interface

207...數據機207. . . Data machine

208...WLAN存取點208. . . WLAN access point

210...CGW功能210. . . CGW function

211...TV STB211. . . TV STB

224...頻寬管理(BWM)伺服器224. . . Bandwidth Management (BWM) Server

301、1201、2201...建築物301, 1201, 2201. . . building

305a、305b、305c、305d、1205a、1205b、1205c、1205d、2205a、2205b、2205c、2205d...用戶裝置305a, 305b, 305c, 305d, 1205a, 1205b, 1205c, 1205d, 2205a, 2205b, 2205c, 2205d. . . User device

310、1210...單一CGW310, 1210. . . Single CGW

311a、311b、1211a、1211b、2211...Wi-Fi Ap311a, 311b, 1211a, 1211b, 2211. . . Wi-Fi Ap

315、2227...演進型自組織網路(eSON)伺服器315, 2227. . . Evolved Self-Organizing Network (eSON) Server

317、1217、2229、2529...IFOM決定引擎317, 1217, 2229, 2529. . . IFOM decides the engine

320...線320. . . line

402、1302、1502、2602、2902...箭頭402, 1302, 1502, 2602, 2902. . . arrow

901、1801、1901、2107...融合閘道(CGW)901, 1801, 1901, 2107. . . Fusion Gateway (CGW)

1220、2239a...IP流1220, 2239a. . . IP flow

1404、2105、2502...X2介面1404, 2105, 2502. . . X2 interface

2221...移動管理閘道(MME)2221. . . Mobile Management Gateway (MME)

2223...演進型封包資料閘道2223. . . Evolved packet data gateway

2225、2525、2825...PND閘道2225, 2525, 2825. . . PND gateway

2233...S2a鏈路2233. . . S2a link

2235...SW鏈路2235. . . SW link

2237...S2b鏈路2237. . . S2b link

2527...X2代理2527. . . X2 agent

2840...(H)eNB管理系統(HeMS)2840. . . (H) eNB Management System (HeMS)

2827...IFOM引擎2827. . . IFOM engine

RAT...無線電存取技術RAT. . . Radio access technology

SON...自組織網路SON. . . Self-organizing network

RF...射頻RF. . . Radio frequency

DSM...動態頻譜管理DSM. . . Dynamic spectrum management

M2M...機器對機器M2M. . . Machine to machine

IMS...IP多媒體子系統IMS. . . IP Multimedia Subsystem

MCN...行動核心網路MCN. . . Mobile core network

更詳細的理解可從以下以結合所附圖式以示例的方式給出的實施方式得到。在這樣的附圖中的圖,如具體實施方式一樣,都是示例。因此,圖和實施方式將不被認為是限制,並且其他等同有效的示例是可以和可能的。強調的是,根據一般實踐,附圖的各種特徵/元件不是按比例繪製的。相反地,各種特徵/元件的大小出於清楚的目的可被任何擴大或縮小。並且,在附圖中,相同的元件符號可被用來表示類似的特徵/元件。包括在附圖中的是以下圖:
第1A圖是在其中可以實現一個或多個揭露的實施例的示例通訊系統的系統圖;
第1B圖是可在第1A圖所示的通訊系統中使用的示例無線傳輸/接收單元(WTRU)的系統圖;
第1C圖是可在第1A圖所示的通訊系統中使用的示例無線電存取網路和示例核心網路的系統圖;
第2A圖和第2B圖共同形成CGW混合網路架構的示例圖;
第3圖-第8圖是根據一個實施例在各個操作階段基於CGW的IFOM-eSON架構的示例圖;
第9圖是顯示CGW和e節點B之間互動的非協定特定訊息序列圖的示例圖;
第10A圖-第10B圖共同包括根據一個非限制實施例顯示使用TR-069協定的CGW和e節點B之間互動的訊息序列圖的示例圖;
第11圖是基於經測量的家用e節點B間干擾的IP流移動的處理流程示例圖;
第12圖-第17圖是根據一個實施例在操作各個操作中使用X2介面的基於CGW的IFOM的示例圖;
第18圖是顯示根據一個非限制實施例的CGW和e節點B之間互動的非協定特定高級訊息序列流程;
第19圖闡明了根據一個非限制實施例使用X2介面的傳訊圖;
第20圖闡明了根據一個非限制實施例的處理流程;
第21圖是根據一個非限制實施例的HeNB之間使用X2介面的IFOM的示例圖;
第22圖-第24圖是根據一個實施例在各個操作階段中的基於巨集的IFOM eSON架構的示例圖;
第25圖-第27圖是根據一個實施例在各個操作階段中具有合併到PDN閘道中的X2代理功能的架構的示例圖;
第28圖-第30圖闡明了根據一個實施例在各個操作階段中根據一個非限制實施例的架構;以及
第31圖是根據一個非限制實施例的非協定特定訊息序列流程。
A more detailed understanding can be obtained from the following examples, which are given by way of example with reference to the accompanying drawings. The figures in such figures are as examples, as in the detailed description. Therefore, the figures and implementations are not to be considered as limiting, and other equivalent effective examples are possible and possible. It is emphasized that the various features/elements of the drawings are not drawn to scale. Conversely, the size of various features/components can be expanded or reduced in any way for the sake of clarity. Also, in the figures, the same element symbols may be used to indicate similar features/components. Included in the drawing is the following figure:
1A is a system diagram of an example communication system in which one or more disclosed embodiments may be implemented;
Figure 1B is a system diagram of an example wireless transmit/receive unit (WTRU) that can be used in the communication system shown in Figure 1A;
1C is a system diagram of an example radio access network and an example core network that can be used in the communication system shown in FIG. 1A;
2A and 2B together form an example diagram of a CGW hybrid network architecture;
3 through 8 are exemplary diagrams of CGW-based IFOM-eSON architectures at various stages of operation in accordance with one embodiment;
Figure 9 is a diagram showing an example of a non-contract-specific message sequence chart showing interaction between a CGW and an eNodeB;
10A-FIG. 10B collectively include an exemplary diagram showing a sequence of message sequences for interaction between a CGW and an eNodeB using the TR-069 protocol in accordance with one non-limiting embodiment;
11 is a diagram showing an example of a processing flow of IP flow movement based on measured interference between home eNodeBs;
12 through 17 are exemplary diagrams of a CGW-based IFOM using an X2 interface in operating various operations in accordance with one embodiment;
Figure 18 is a flowchart showing a non-contracted specific advanced message sequence for interaction between a CGW and an eNodeB in accordance with one non-limiting embodiment;
Figure 19 illustrates a communication diagram using the X2 interface in accordance with a non-limiting embodiment;
Figure 20 illustrates a process flow in accordance with one non-limiting embodiment;
Figure 21 is a diagram showing an example of an IFOM using an X2 interface between HeNBs according to one non-limiting embodiment;
22 through 24 are exemplary diagrams of a macro-based IFOM eSON architecture in various operational stages, in accordance with one embodiment;
25 through 27 are exemplary diagrams of architectures having X2 proxy functionality incorporated into a PDN gateway in various operational phases, in accordance with one embodiment;
Figures 28 - 30 illustrate an architecture according to one non-limiting embodiment in various stages of operation in accordance with one embodiment; and Figure 31 is a non-contracted specific message sequence flow in accordance with a non-limiting embodiment.

901...融合閘道(CGW)901. . . Fusion Gateway (CGW)

903...家用e節點B903. . . Home eNodeB

Claims (27)

一種方法,該方法包括:
配置代管一IP流的一(H)eNB來測量一性能參數;
接收一反饋資料,其中該反饋資料包括該性能參數的一測量;以及
基於該反饋資料,確定該IP流的一卸載。
A method comprising:
Configuring a (H)eNB hosting an IP flow to measure a performance parameter;
Receiving a feedback data, wherein the feedback data includes a measurement of the performance parameter; and determining an offload of the IP flow based on the feedback data.
如申請專利範圍第1項所述的方法,該方法更包括:
將該IP流從一第一無線電存取技術卸載到一第二無線電存取技術。
The method of claim 1, wherein the method further comprises:
The IP stream is offloaded from a first radio access technology to a second radio access technology.
如申請專利範圍第2項所述的方法,其中該第一無線電存取技術是一蜂巢技術,並且該第二無線電存取技術是一非蜂巢技術。The method of claim 2, wherein the first radio access technology is a cellular technology and the second radio access technology is a non-homed technology. 如申請專利範圍第3項所述的方法,其中該非蜂巢技術是一Wi-Fi技術。The method of claim 3, wherein the non-homed technology is a Wi-Fi technology. 如申請專利範圍第1項所述的方法,其中該性能參數包括一干擾等級、一擁塞等級和一資源負載等級中的至少一者。The method of claim 1, wherein the performance parameter comprises at least one of an interference level, a congestion level, and a resource load level. 如申請專利範圍第1項所述的方法,其中,使用一CPE WAN管理協定TR-069來接收該反饋資料。The method of claim 1, wherein the feedback material is received using a CPE WAN Management Protocol TR-069. 如申請專利範圍第1項所述的方法,其中,使用一CPE WAN管理協定TR-069來配置該(H)eNB。The method of claim 1, wherein the (H)eNB is configured using a CPE WAN Management Protocol TR-069. 如申請專利範圍第1項所述的方法,其中該反饋資料包括一接收信號強度指示(RSSI)等級和一參考信號接收功率(RSRP)等級中的至少一者。The method of claim 1, wherein the feedback data comprises at least one of a Received Signal Strength Indication (RSSI) level and a Reference Signal Received Power (RSRP) level. 如申請專利範圍第1項所述的方法,其中該反饋資料由一封包資料網路閘道來接收。The method of claim 1, wherein the feedback data is received by a packet data network gateway. 如申請專利範圍第1項所述的方法,其中該反饋資料由一融合閘道來接收。The method of claim 1, wherein the feedback data is received by a merged gateway. 一種方法,該方法包括:
經由一X2介面以從代管一IP流的一(H)eNB接收一反饋資料,其中該反饋資料包括一性能參數的一測量;以及
基於該反饋資料,確定該IP流的一卸載。
A method comprising:
Receiving, by an X2 interface, a feedback data from a (H)eNB that hosts an IP flow, wherein the feedback data includes a measurement of a performance parameter; and determining an offload of the IP flow based on the feedback data.
如申請專利範圍第11項所述的方法,該方法更包括:
將該IP流從一第一無線電存取技術卸載到一第二無線電存取技術。
The method of claim 11, wherein the method further comprises:
The IP stream is offloaded from a first radio access technology to a second radio access technology.
如申請專利範圍第12項所述的方法,其中該第一無線電存取技術是一蜂巢技術,並且該第二無線電存取技術是一非蜂巢技術。The method of claim 12, wherein the first radio access technology is a cellular technology and the second radio access technology is a non-homed technology. 如申請專利範圍第13項所述的方法,其中該非蜂巢技術是一Wi-Fi技術。The method of claim 13, wherein the non-homed technology is a Wi-Fi technology. 如申請專利範圍第11項所述的方法,該方法更包括:
配置該(H)eNB來測量該性能參數。
The method of claim 11, wherein the method further comprises:
The (H)eNB is configured to measure the performance parameter.
如申請專利範圍第11項所述的方法,其中該反饋資料由一封包資料網路閘道來接收。The method of claim 11, wherein the feedback data is received by a packet data network gateway. 一種方法,該方法包括:
經由一介面以從一(H)eNB接收一干擾測量,其中一IP流正遍歷該(H)eNB;
當該干擾測量超過一干擾臨界值,將該IP流從該(H)eNB移動到一非蜂巢無線電存取技術;
確定該(H)eNB上的一負載;以及
當該(H)eNB上的該負載超過一負載臨界值時,將該IP流從該(H)eNB移動到一非蜂巢無線電存取技術。
A method comprising:
Receiving, by an interface, an interference measurement from a (H)eNB, wherein an IP flow is traversing the (H)eNB;
Moving the IP flow from the (H)eNB to a non-homed radio access technology when the interference measurement exceeds an interference threshold;
Determining a load on the (H)eNB; and moving the IP flow from the (H)eNB to a non-homed radio access technology when the load on the (H)eNB exceeds a load threshold.
如申請專利範圍第17項所述的方法,其中,使用經加權的參數的一總和來確定該(H)eNB上的該負載。The method of claim 17, wherein the load on the (H)eNB is determined using a sum of weighted parameters. 如申請專利範圍第18項所述的方法,其中該經加權的參數包括一上鏈硬體負載指示符、一下鏈硬體負載指示符、一上鏈S1 TNL負載指示符、一下鏈S1 TNL負載指示符、目前使用的一上鏈總PRB、目前使用的一下鏈總PRB、一複合可用容量上鏈-容量值、和一複合可用容量下鏈-容量值中的至少一者。The method of claim 18, wherein the weighted parameter comprises a uplink hardware load indicator, a downlink hardware load indicator, an uplink S1 TNL load indicator, a downlink S1 TNL load At least one of an indicator, a total uplink PRB currently in use, a currently used total chain PRB, a composite available capacity uplink-capacity value, and a composite available capacity downlink-capacity value. 一種在包括至少第一和第二(H)eNB的一網路中的方法,該方法包括:
配置該第一和第二(H)eNB以經由該第一與第二(H)eNB間的一X2介面來交換一性能參數資料,經由一閘道節點路由該X2介面;
該閘道節點存取該第一和第二(H)eNB的該性能參數資料;以及
基於該反饋資料,確定該IP流的一卸載。
A method in a network comprising at least first and second (H) eNBs, the method comprising:
Configuring the first and second (H)eNBs to exchange a performance parameter data via an X2 interface between the first and second (H) eNBs, and routing the X2 interface via a gateway node;
The gateway node accesses the performance parameter data of the first and second (H)eNBs; and based on the feedback data, determines an offload of the IP flow.
一種方法,該方法包括:
請求來自一(H)eNB管理系統(HeMS)的一性能參數測量;
從該HeMS管理系統接收該性能參數測量;以及
基於該性能參數測量,確定從該HeMS的一IP流的一卸載。
A method comprising:
Requesting a performance parameter measurement from a (H)eNB management system (HeMS);
Receiving the performance parameter measurement from the HeMS management system; and determining an offload of an IP flow from the HeMS based on the performance parameter measurement.
如申請專利範圍第21項所述的方法,其中該性能參數測量指明一(H)eNB間干擾等級。The method of claim 21, wherein the performance parameter measurement indicates a (H) inter-eNB interference level. 一種裝置,該裝置包括:
一處理器,該處理器被配置為:
配置代管一IP流的一(H)eNB來測量一性能參數;
接收一反饋資料,其中該反饋資料包括該性能參數的一測量;以及
基於該反饋資料,確定該IP流的一卸載。
A device comprising:
A processor configured to:
Configuring a (H)eNB hosting an IP flow to measure a performance parameter;
Receiving a feedback data, wherein the feedback data includes a measurement of the performance parameter; and determining an offload of the IP flow based on the feedback data.
如申請專利範圍第23項所述的裝置,其中該處理器更被配置為:
將該IP流從一第一無線電存取技術卸載到一第二無線電存取技術。
The device of claim 23, wherein the processor is further configured to:
The IP stream is offloaded from a first radio access technology to a second radio access technology.
如申請專利範圍第23項所述的裝置,其中該性能參數包括一干擾等級和一資源負載等級中的至少一者。The device of claim 23, wherein the performance parameter comprises at least one of an interference level and a resource load level. 如申請專利範圍第23項所述的裝置,其中該反饋資料是使用一CPE WAN管理協定TR-069來接收。The apparatus of claim 23, wherein the feedback data is received using a CPE WAN Management Protocol TR-069. 如申請專利範圍第23項所述的裝置,其中該反饋資料是經由一X2介面來接收。The device of claim 23, wherein the feedback data is received via an X2 interface.
TW101135065A 2011-10-03 2012-09-25 Methods, apparatus and systems for managing IP flow mobility TW201320698A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201161542396P 2011-10-03 2011-10-03

Publications (1)

Publication Number Publication Date
TW201320698A true TW201320698A (en) 2013-05-16

Family

ID=47018516

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101135065A TW201320698A (en) 2011-10-03 2012-09-25 Methods, apparatus and systems for managing IP flow mobility

Country Status (2)

Country Link
TW (1) TW201320698A (en)
WO (1) WO2013052312A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114245970A (en) * 2019-08-22 2022-03-25 华为技术有限公司 Method and apparatus for securing communications

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105612776A (en) * 2013-07-11 2016-05-25 诺基亚通信公司 Method and system for proxy base station
EP3033905B1 (en) * 2013-08-12 2018-06-27 Intel Corporation Resource management in multiple radio access networks
US9301211B2 (en) 2013-08-20 2016-03-29 Telefonaktiebolaget L M Ericsson (Publ) Reporting performance and controlling mobility between different radio access technologies
WO2016072897A1 (en) * 2014-11-07 2016-05-12 Telefonaktiebolaget L M Ericsson (Publ) Selectively utilising mobility of ip flows
EP3577829A1 (en) * 2017-02-03 2019-12-11 Telefonaktiebolaget LM Ericsson (publ) Non-anchor carrier configuration for nb-iot
US11917654B2 (en) * 2021-10-26 2024-02-27 Dell Products, Lp System and method for intelligent wireless carrier link management system at user equipment devices

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140068261A (en) 2009-12-04 2014-06-05 인터디지탈 패튼 홀딩스, 인크 Extended local ip access for a converged gateway in a hybrid network
US8588793B2 (en) 2009-12-04 2013-11-19 Interdigital Patent Holdings, Inc. Bandwidth management for a converged gateway in a hybrid network

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114245970A (en) * 2019-08-22 2022-03-25 华为技术有限公司 Method and apparatus for securing communications
CN114245970B (en) * 2019-08-22 2023-12-08 华为技术有限公司 Method and apparatus for securing communications

Also Published As

Publication number Publication date
WO2013052312A1 (en) 2013-04-11

Similar Documents

Publication Publication Date Title
JP6012844B2 (en) Method and apparatus for offloading backhaul traffic
JP5555777B2 (en) Extended local IP access for convergent gateways in hybrid networks
EP3107330B1 (en) Method, system and computer program product to facilitate service hand-outs using user equipment groups in a network environment
US9629033B2 (en) System and method to facilitate service hand-outs using user equipment groups in a network environment
TWI544827B (en) Methods, apparatus, and systems for managing converged gateway communications
TW201320698A (en) Methods, apparatus and systems for managing IP flow mobility
US20160057679A1 (en) Cson-aided small cell load balancing based on backhaul information
KR20190073555A (en) Limited network slice availability handling
US20150245272A1 (en) Method, Apparatus and Computer Program for Backhaul Management
KR20140002066A (en) Switching between radio access technologies at a multi- mode access point
US8805380B2 (en) System and method for tuning in heterogeneous networks
Peng et al. Understanding and diagnosing real-world femtocell performance problems
Bhargavi et al. A novel handover algorithm for LTE based macro-femto heterogeneous networks
WO2016031123A1 (en) Communication apparatus, communication system, control method, and nontemporary computer readable medium on which communication program has been stored
JP6037147B2 (en) Flow control in dual-mode femto AP
JP5870700B2 (en) Radio base station apparatus, communication control method, and communication control program
Wu et al. Overview of heterogeneous networks
JP5935345B2 (en) Radio base station apparatus, communication system, communication control method, and communication control program
Komala et al. Seamless mobility in 4G heterogeneous wireless networks
JP2013198089A (en) Radio base station device, communication control method and communication control program
Corici et al. Massive deployment of small coverage area cells in the all-IP wireless system-Opportunities, issues and solutions
Maiwada A Discussion on Macrocell-Femtocell LTE Network Handover Decision Algorithm
Guo et al. INFSO-ICT-248523 BeFEMTO D5. 3
Lobillo Vilela et al. TROPIC-D22 Design of network architecture for femto-cloud computing