TW201318184A - Solar cell - Google Patents

Solar cell Download PDF

Info

Publication number
TW201318184A
TW201318184A TW100138637A TW100138637A TW201318184A TW 201318184 A TW201318184 A TW 201318184A TW 100138637 A TW100138637 A TW 100138637A TW 100138637 A TW100138637 A TW 100138637A TW 201318184 A TW201318184 A TW 201318184A
Authority
TW
Taiwan
Prior art keywords
layer
solar cell
light scattering
patterns
scattering portion
Prior art date
Application number
TW100138637A
Other languages
Chinese (zh)
Other versions
TWI470814B (en
Inventor
John Liu
Original Assignee
Au Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Au Optronics Corp filed Critical Au Optronics Corp
Priority to TW100138637A priority Critical patent/TWI470814B/en
Priority to CN201110402586.0A priority patent/CN102420267B/en
Publication of TW201318184A publication Critical patent/TW201318184A/en
Application granted granted Critical
Publication of TWI470814B publication Critical patent/TWI470814B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A solar cell including a reflector layer, plural semiconductor layers, and a cover layer is provided. The reflector layer has a first surface and a light scattering portion under the first surface. The light scattering portion has a relative dielectric constant variation along a lateral direction on the first surface, wherein the variation of relative dielectric constant is greater than about 3 in a circle formed by taking any point in the light scattering portion as a center with a radius of 1 μ m. The semiconductor layers are stacked on the first surface in sequence for receiving external light and producing electric energy. The cover layer is disposed on the semiconductor layers, wherein at least a first interface between the reflector layer and the bottom semiconductor layer or a second interface between the cover layer and the top semiconductor layer is substantially a smooth surface.

Description

太陽能電池Solar battery

本申請是有關於一種太陽能電池,且特別是有關於一種矽基(silicon-based)太陽能電池。This application relates to a solar cell, and more particularly to a silicon-based solar cell.

近年來環保意識高漲,為了因應石化能源的短缺與減低使用石化能源對環境帶來的衝擊,替代能源與再生能源的研發便成了熱門的議題,其中又以太陽能電池(solar cell)最受矚目。太陽能電池可將太陽能直接轉換成電能,且發電過程中不會產生二氧化碳或氮化物等有害物質,不會對環境造成污染。In recent years, environmental awareness has risen. In response to the shortage of petrochemical energy and the impact of the use of petrochemical energy on the environment, the research and development of alternative energy and renewable energy has become a hot topic, among which solar cells are the most popular. . Solar cells convert solar energy directly into electrical energy, and do not generate harmful substances such as carbon dioxide or nitride during power generation, and do not pollute the environment.

矽基太陽能電池是常見的一種太陽能電池,其原理是將高純度的半導體基材,例如矽(Si),加入一些不純物使其呈現不同的性質,以形成p型半導體及n型半導體。並且,將p型半導體與n型半導體相接合,形成一pn接面(pn junction),而在pn接面上便存在著一個內建電位(built-in potential)。此內建電位可驅動在此區域中的可移動載子。當太陽光照射到一個pn結構的半導體時,光子所提供的能量可能會把半導體中的電子激發出來並產生電子-電洞對。被激發出來的自由電子與電洞會受到內建電位的影響,使電洞往p型半導體方向移動,而自由電子則往n型半導體方向移動。若將兩電極分別連接p型與n型半導體,並連接至外部電路及負載,便會有電流通過,可供利用。Tantalum-based solar cells are a common type of solar cell. The principle is to add a high-purity semiconductor substrate, such as germanium (Si), to some impurities to exhibit different properties to form a p-type semiconductor and an n-type semiconductor. Further, a p-type semiconductor is bonded to the n-type semiconductor to form a pn junction, and a built-in potential exists on the pn junction. This built-in potential drives the movable carrier in this area. When sunlight hits a pn-structured semiconductor, the energy provided by the photons may excite electrons in the semiconductor and create electron-hole pairs. The free electrons and holes that are excited are affected by the built-in potential, causing the holes to move toward the p-type semiconductor, while the free electrons move toward the n-type semiconductor. If the two electrodes are connected to p-type and n-type semiconductors respectively, and connected to an external circuit and a load, current will pass and be available.

然而,現有太陽能電池在應用推廣上仍存在技術上的難題需要被克服。特別是,外界光線不易被保留於太陽能電池內,使得太陽能電池的光電轉換效率的提升受到了相當程度的限制。However, there are still technical problems in the application of existing solar cells to be overcome. In particular, external light is not easily retained in the solar cell, so that the photoelectric conversion efficiency of the solar cell is limited to a considerable extent.

本申請提供一種太陽能電池,係藉由物質的相對介電常數與折射率的變化來達到吸(陷)光效果,藉以提高光電轉換效率。此太陽能電池包括一反射層、多個半導體層以及一蓋層。反射層具有一第一表面,且反射層在第一表面之下具有一光散射部。所述光散射部在平行於第一表面的一橫向上具有相對介電常數的變化,且在以光散射部中任意一點為圓心並且沿橫向輻射半徑約為1微米的圓內,相對介電常數變化約大於3。所述多個半導體層依序堆疊於第一表面上,用以吸收外界的光能以產生電能。蓋層配置於半導體層上,其中反射層與最下層的半導體層之間具有一第一介面,蓋層與最上層的半導體層之間具有一第二介面,且第一介面與第二介面中至少一個實質上為平滑面。The present application provides a solar cell that achieves a light absorption effect by a change in a relative dielectric constant and a refractive index of a substance, thereby improving photoelectric conversion efficiency. The solar cell includes a reflective layer, a plurality of semiconductor layers, and a cap layer. The reflective layer has a first surface, and the reflective layer has a light scattering portion below the first surface. The light scattering portion has a change in relative dielectric constant in a lateral direction parallel to the first surface, and is in a circle centered at any point in the light scattering portion and in a circle having a lateral radiation radius of about 1 μm. The constant varies by more than about 3. The plurality of semiconductor layers are sequentially stacked on the first surface for absorbing external light energy to generate electrical energy. The cap layer is disposed on the semiconductor layer, wherein the reflective layer and the lowermost semiconductor layer have a first interface, and the cap layer and the uppermost semiconductor layer have a second interface, and the first interface and the second interface are At least one is substantially smooth.

本申請更提出一種太陽能電池,包括一反射層、多個半導體層以及一蓋層。反射層具有一第一表面,且反射層在第一表面之下具有一光散射部。光散射部包括分布於反射層內的多個圖案。相鄰兩圖案的中心點的節距約介於200奈米至325奈米之間。所述多個圖案的分布密度介於3×108個/平方公分至1×109個/平方公分之間,且相鄰兩圖案的間隔約介於60奈米至130奈米之間。所述多個半導體層依序堆疊於第一表面上,用以吸收外界的光能以產生電能。其中,該些半導體層中主要吸收光的材料,例如:包括單晶矽、多晶矽、微晶矽、或奈米晶矽其中至少一種。蓋層配置於半導體層上,其中反射層與最下層的半導體層之間具有一第一介面,蓋層與最上層的半導體層之間具有一第二介面,且第一介面與第二介面中至少一個實質上為平滑面。The present application further provides a solar cell comprising a reflective layer, a plurality of semiconductor layers, and a cap layer. The reflective layer has a first surface, and the reflective layer has a light scattering portion below the first surface. The light scattering portion includes a plurality of patterns distributed within the reflective layer. The pitch of the center points of the adjacent two patterns is between about 200 nm and 325 nm. The distribution density of the plurality of patterns is between 3×10 8 /cm 2 and 1×10 9 /cm 2 , and the interval between adjacent patterns is between 60 nm and 130 nm. The plurality of semiconductor layers are sequentially stacked on the first surface for absorbing external light energy to generate electrical energy. The material mainly absorbing light in the semiconductor layers, for example, includes at least one of a single crystal germanium, a polycrystalline germanium, a microcrystalline germanium, or a nanocrystalline germanium. The cap layer is disposed on the semiconductor layer, wherein the reflective layer and the lowermost semiconductor layer have a first interface, and the cap layer and the uppermost semiconductor layer have a second interface, and the first interface and the second interface are At least one is substantially smooth.

本申請另提出一種太陽能電池,包括一反射層、多個半導體層以及一蓋層。反射層具有一第一表面,且反射層在第一表面之下具有一光散射部。光散射部包括分布於反射層內的多個圖案。相鄰兩圖案的中心點的節距約介於100至200奈米之間。所述多個圖案的分布密度約介於9×108個/平方公分至4×109個/平方公分之間,且相鄰兩圖案的間隔約介於25奈米至80奈米之間。所述多個半導體層依序堆疊於第一表面上,用以吸收外界的光能以產生電能。其中,該些半導體層中主要吸收光的材料為非晶矽,蓋層配置於半導體層上,其中反射層與最下層的半導體層之間具有一第一介面,蓋層與最上層的半導體層之間具有一第二介面,且第一介面與第二介面中至少一個實質上為平滑面。The present application further provides a solar cell comprising a reflective layer, a plurality of semiconductor layers, and a cap layer. The reflective layer has a first surface, and the reflective layer has a light scattering portion below the first surface. The light scattering portion includes a plurality of patterns distributed within the reflective layer. The pitch of the center points of the adjacent two patterns is between about 100 and 200 nanometers. The distribution density of the plurality of patterns is between about 9×10 8 /cm 2 and 4×10 9 /cm 2 , and the interval between adjacent patterns is between 25 nm and 80 nm. . The plurality of semiconductor layers are sequentially stacked on the first surface for absorbing external light energy to generate electrical energy. Wherein, the material mainly absorbing light in the semiconductor layers is amorphous germanium, and the cap layer is disposed on the semiconductor layer, wherein the reflective layer and the lowermost semiconductor layer have a first interface, the cap layer and the uppermost semiconductor layer There is a second interface between the two, and at least one of the first interface and the second interface is substantially a smooth surface.

為讓本申請之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above-described features and advantages of the present application will become more apparent and understood.

圖1繪示依照本申請之一實施例的一種太陽能電池。本實施例的太陽能電池100包括反射層110、半導體疊層120以及蓋層130。反射層110具有第一表面112。半導體疊層120配置於第一表面112上,且半導體疊層120例如是由多個半導體層所構成,用以吸收外界的光能以產生電能。蓋層130配置於半導體疊層120上。為了提高太陽能電池100的吸(陷)光效果,本實施例在反射層110的第一表面112之下製作具有相對介電常數變化的光散射部160,其中藉由物質的相對介電常數與折射率呈正相關的特性,來提供具有折射率變化的吸(陷)光結構。FIG. 1 illustrates a solar cell in accordance with an embodiment of the present application. The solar cell 100 of the present embodiment includes a reflective layer 110, a semiconductor laminate 120, and a cap layer 130. The reflective layer 110 has a first surface 112. The semiconductor stack 120 is disposed on the first surface 112, and the semiconductor stack 120 is composed of, for example, a plurality of semiconductor layers for absorbing external light energy to generate electrical energy. The cap layer 130 is disposed on the semiconductor stack 120. In order to improve the light absorption effect of the solar cell 100, the present embodiment fabricates a light scattering portion 160 having a relative dielectric constant change under the first surface 112 of the reflective layer 110, wherein the relative dielectric constant of the substance is The refractive index is positively correlated to provide a structure of light having a refractive index change.

更詳細而言,光線在介質中的折射率與介質的相對介電常數有如下關係:n2=ε×μ,其中n為折射率,ε為介質的相對介電常數,或稱電容率(relative permittivity),而μ為介質的相對磁導率(relative permeability)。因此,吾人為了便於說明與操作,可以藉由對相對介電常數的調變來反應物質的折射率變化。在本實施例或下列其他實施例中,相對介電常數的數值定義是對應於波長為400奈米至1200奈米之間的光線。In more detail, the refractive index of light in the medium has the following relationship with the relative dielectric constant of the medium: n 2 = ε × μ, where n is the refractive index, ε is the relative dielectric constant of the medium, or the permittivity ( Relative permittivity), and μ is the relative permeability of the medium. Therefore, for convenience of explanation and operation, the refractive index change of the substance can be reflected by the modulation of the relative dielectric constant. In this embodiment or other embodiments below, the numerical definition of the relative dielectric constant corresponds to light having a wavelength between 400 nm and 1200 nm.

在本實施例中,光散射部160是分布於整個第一表面112之下,且光散射部160在平行於第一表面112的橫向T上具有相對介電常數的變化。此變化的範圍為:在以光散射部160中任意一點為圓心並且沿橫向T輻射半徑約為1微米的圓內,相對介電常數變化約大於3。亦即,在所述半徑約1微米的圓形範圍內,相對介電常數的最大值與最小值的差值實質上不會超過3。In the present embodiment, the light scattering portion 160 is distributed over the entire first surface 112, and the light scattering portion 160 has a change in relative dielectric constant in the lateral direction T parallel to the first surface 112. The range of this variation is that the relative dielectric constant changes by more than about 3 in a circle centered at any point in the light scattering portion 160 and having a radius of radiation of about 1 micrometer in the lateral direction T. That is, in the circular range of the radius of about 1 micrometer, the difference between the maximum value and the minimum value of the relative dielectric constant does not substantially exceed 3.

換言之,本實施例的光散射部160可以作為具有折射率變化的吸(陷)光結構,其有助於提高太陽能電池的光電轉換效率,且可取代已知太陽能電池中用來提供吸(陷)光效果的粗糙面。因此,本實施例不需刻意在太陽能電池100的任何膜層上形成粗糙面,任兩相鄰膜層的介面皆可為平滑面。例如,反射層110與半導體疊層120之間的第一介面S1,或者蓋層130與半導體疊層120之間的第二介面S2都可為平滑面。或者,甚至半導體疊層120中的任兩相鄰半導體層之間的介面也可為平滑面。此處平滑面的定義例如是指表面的均方根粗糙度(Root Mean Square roughness)實質上小於20奈米。In other words, the light scattering portion 160 of the present embodiment can be used as a light absorption structure having a refractive index change, which contributes to an improvement in photoelectric conversion efficiency of a solar cell, and can be used in place of a known solar cell for providing suction. ) The rough side of the light effect. Therefore, the embodiment does not need to form a rough surface on any film layer of the solar cell 100, and the interface of any two adjacent film layers can be a smooth surface. For example, the first interface S1 between the reflective layer 110 and the semiconductor stack 120, or the second interface S2 between the cap layer 130 and the semiconductor stack 120 may be a smooth surface. Alternatively, even the interface between any two adjacent semiconductor layers in the semiconductor stack 120 can be a smooth surface. Here, the definition of the smooth surface means, for example, that the root mean square roughness (Root Mean Square roughness) is substantially less than 20 nm.

如此,可大幅降低粗糙面引起的表面復合損失(surface recombination loss)。此外,由於本實施例可以減少或甚至完全省略太陽能電池100中的粗糙面,因此可避免後續膜層對粗糙面覆蓋不全造成的缺陷。再者,由於不需顧慮後續膜層的覆蓋效果,因此可減少後續膜層的厚度,有助於降低太陽能電池100的整體再結合損失(bulk recombination loss)。In this way, the surface recombination loss caused by the rough surface can be greatly reduced. In addition, since the present embodiment can reduce or even completely omit the rough surface in the solar cell 100, the defects of the subsequent film layer on the rough surface coverage can be avoided. Moreover, since there is no need to worry about the covering effect of the subsequent film layer, the thickness of the subsequent film layer can be reduced, which contributes to reducing the bulk recombination loss of the solar cell 100.

基於前述設計,本申請還可以視需求調整光散射部160的相對介電常數變化的範圍。例如,在本申請的其他實施例中,可以進一步將光散射部160的相對介電常數變化的範圍定義為:在光散射部160中任意橫向距離實質上為1微米的範圍內,相對介電常數變化實質上大於3。亦即,在所述長度約1微米的直線範圍內,相對介電常數的最大值與最小值的差值實質上不會超過3。Based on the foregoing design, the present application can also adjust the range of the relative dielectric constant variation of the light scattering portion 160 as needed. For example, in other embodiments of the present application, the range of the relative dielectric constant change of the light scattering portion 160 may be further defined as: a relative dielectric distance in the range of substantially 1 micrometer in the light scattering portion 160, relative dielectric The constant change is substantially greater than three. That is, the difference between the maximum value and the minimum value of the relative dielectric constant does not substantially exceed 3 in the straight line range of about 1 micrometer in length.

此外,光散射部160在橫向上的相對介電常數變化實質上小於120。亦即,在整個光散射部160中,相對介電常數的最大值與最小值的差值實質上不會超過120。Further, the relative dielectric constant change of the light scattering portion 160 in the lateral direction is substantially less than 120. That is, in the entire light scattering portion 160, the difference between the maximum value and the minimum value of the relative dielectric constant does not substantially exceed 120.

另外,鑑於光散射部160的深度會影響光線在光散射部160的光散射效果,本申請可以對光散射部160的深度進行控制。例如,在圖1所示的實施例中,光散射部160的頂部與第一表面112的距離D1可保持在一定的深度內,例如約小於10奈米。亦即,光散射部160的頂部可與第一表面112齊平,或者埋入第一表面112以下實質上不超過10奈米的距離。此外,光散射部160的底部與第一表面的距離D2可實質上大於40奈米。亦即,光散射部160的底部可深入第一表面112以下實質上超過40奈米的距離,甚至可貫穿反射層110。In addition, in view of the fact that the depth of the light scattering portion 160 affects the light scattering effect of the light on the light scattering portion 160, the present application can control the depth of the light scattering portion 160. For example, in the embodiment illustrated in FIG. 1, the distance D1 between the top of the light scattering portion 160 and the first surface 112 can be maintained within a certain depth, such as less than about 10 nanometers. That is, the top of the light scattering portion 160 may be flush with the first surface 112 or buried below the first surface 112 by substantially no more than 10 nanometers. Further, the distance D2 between the bottom of the light scattering portion 160 and the first surface may be substantially greater than 40 nm. That is, the bottom of the light scattering portion 160 may penetrate deeper than the first surface 112 to a distance substantially exceeding 40 nanometers, and may even penetrate the reflective layer 110.

在圖1所示的實施例中,光散射部160例如是由分布於反射層110內的多個圖案162所構成。圖2繪示了光散射部160在反射層110內的分布情形。請參考圖1與2,相鄰兩圖案162的中心點具有節距(pitch)p,而相鄰兩圖案162的最小間隔(gap)為g。所述多個圖案162在反射層110內的平面上具有分布密度D。此外,本實施例的圖案162,較佳地是圓形,具有半徑r。於其它實施例中,圖案162亦可為多邊形,例如:楕圓形、三角形、正方形、菱形、扇形、梯形、或其它合適的形狀、或上述至少二種的混雜圖形。針對半導體疊層12中適用的材料、其相應的陷光波長(light trapping wavelength)或者稱為吸光波長(light absorbing wavelength)以及與圖案162搭配設計,本實施例給出如下表的幾種參考方案:In the embodiment shown in FIG. 1, the light scattering portion 160 is composed of, for example, a plurality of patterns 162 distributed in the reflective layer 110. FIG. 2 illustrates the distribution of the light scattering portion 160 within the reflective layer 110. Referring to FIGS. 1 and 2, the center point of the adjacent two patterns 162 has a pitch p, and the minimum gap (gap) of the adjacent two patterns 162 is g. The plurality of patterns 162 have a distribution density D on a plane within the reflective layer 110. Further, the pattern 162 of the present embodiment is preferably circular with a radius r. In other embodiments, the pattern 162 can also be a polygon, such as: a circle, a triangle, a square, a diamond, a sector, a trapezoid, or other suitable shape, or a hybrid pattern of at least two of the above. For the materials suitable for the semiconductor stack 12, their corresponding light trapping wavelengths or light absorbing wavelengths, and the design of the pattern 162, the present embodiment provides several reference schemes as shown in the following table. :

上述表格中,光散射部160是以實質上為圓形圖案當作範例,但不限於此。於上述其它實施例中所述的其它圖案時,則光散射部160之圖案設計條件,就以分佈密度與間隔為主要考量依據來對應不同的半導體疊層其中至少一層為主要吸(陷)光材料。當然,若半導體疊層中的主要吸(陷)光材料包含上述二個不同群組,則在上述光散射部搭配表格中,選取可包含二個不同群組之吸(陷)光材料條件,例如:分配密度約介於9×108(個/平方公分)~1×109(個/平方公分)以及間隔約介於60奈米~80奈米;或者是依據半導體疊層中的何者為主要的吸(陷)光材料,則就依上述所述的群組來選擇所需要的光散射部160之圖案來搭配。In the above table, the light scattering portion 160 is an example of a substantially circular pattern, but is not limited thereto. In the other patterns described in the other embodiments, the pattern design conditions of the light scattering portion 160 are based on the distribution density and spacing as the main considerations, and at least one of the different semiconductor laminates is the main absorption (trap) light. material. Of course, if the main absorption (trap) light material in the semiconductor stack comprises the above two different groups, in the light scattering portion matching table, the conditions of the absorption (trap) light material that can include two different groups are selected. For example, the distribution density is about 9×108 (pieces/cm 2 )~1×109 (pieces/cm 2 ) and the interval is about 60 nm to 80 nm; or which of the semiconductor laminates is mainly The absorbing (trapping) light material is selected in accordance with the pattern of the light scattering portion 160 required by the group described above.

另一方面,為了達到良好的光散射效果與吸(陷)光效果,本實施例除了單獨使用相對介電常數為正值的材料或是相對介電常數為負值的材料之外,還可以對光散射部160的材料組成進行混搭。舉例而言,光散射部可以包括相對介電常數為正值的第一材料,例如氧化矽(SiO2)、氧化鈦(TiO2)、氧化鋁(Al2O3)、氣體(gas)或真空孔洞(vacuum voids)等;以及相對介電常數為負值的第二材料,例如銀(Ag)或鋁(Al)等金屬材料。特別是,若此相對介電常數為正值的第一材料相對於反射層其他部位或是半導體疊層具有高對比,則更有助於提高散射效果。舉例而言,第一材料的相對介電常數例如是1,而第二材料的相對介電常數小於-1。此外,第一材料與第二材料的體積總和在光散射部內所佔的比例例如約為50%,以得到良好的對比。On the other hand, in order to achieve a good light scattering effect and a light sinking effect, the present embodiment can be used in addition to a material having a positive relative dielectric constant or a material having a negative relative dielectric constant. The material composition of the light scattering portion 160 is mashed. For example, the light scattering portion may include a first material having a positive relative dielectric constant, such as yttrium oxide (SiO 2 ), titanium oxide (TiO 2 ), aluminum oxide (Al 2 O 3 ), gas (gas), or Vacuum voids, etc.; and a second material having a negative relative dielectric constant, such as a metal material such as silver (Ag) or aluminum (Al). In particular, if the first material having a positive relative dielectric constant has a high contrast with respect to other portions of the reflective layer or the semiconductor stack, it is more advantageous to improve the scattering effect. For example, the relative dielectric constant of the first material is, for example, 1 and the relative dielectric constant of the second material is less than -1. Further, the ratio of the total volume of the first material to the second material in the light scattering portion is, for example, about 50% to obtain a good contrast.

如前述圖2所提供的是具有週期性圖案162的光散射部160。實際上,本申請適用的光散射部160不限於此。例如,光散射部160也可以由任意大小、任意排列的圖案所構成。就另一個角度而言,此由任意大小、任意排列的圖案所構成的光散射部160可能對特定波長的光線提供比週期性結構更好的光散射效果。在採用非週期性圖案來構成光散射部的情況下,前述節距、間隔、半徑等是指平均數值。Provided as previously described in FIG. 2 is a light scattering portion 160 having a periodic pattern 162. Actually, the light scattering portion 160 to which the present application is applied is not limited thereto. For example, the light scattering portion 160 may be formed of a pattern of any size and arbitrarily arranged. On the other hand, the light scattering portion 160, which is composed of an arbitrarily sized, arbitrarily arranged pattern, may provide a light scattering effect for a specific wavelength of light over a periodic structure. In the case where the light-scattering portion is constituted by a non-periodic pattern, the aforementioned pitch, interval, radius, and the like mean an average value.

前述實施例提出的太陽能電池100的架構可被體現為各種型態的太陽能電池。尤其,隨著實際製程的差異,所得到的太陽能電池會有所不同。下文列舉幾個適用於本申請的設計的太陽能電池作為可能的實施範例。The architecture of the solar cell 100 proposed in the foregoing embodiments can be embodied as various types of solar cells. In particular, the resulting solar cells will vary with actual process variations. Several solar cells suitable for the design of the present application are listed below as possible possible examples.

圖3繪示依照本發明之另一實施例的一種太陽能電池。如圖3所示的太陽能電池300首先提供作為蓋層的平滑的透明基板(例如玻璃基板)310,並且在透明基板310表面製作一透明導電層(例如:銦錫氧化物、銦鋅氧化物、銦鎵氧化物、氧化鋁、或其它合適的材料、或上述至少二種之組合)320。此透明導電層320表面可具有良好的平坦度,例如高低落差(peak-to-valley roughness)實質上不超過100奈米。接著,在透明導電層320表面依序形成P型摻雜的非晶矽層330、非晶矽(a-Si)的本質層(intrinsic layer)340以及N型摻雜的微晶矽(uc-Si)層350。之後,接合反射層370與微晶矽層350,且反射層370具有如同前述實施例記載的光散射部360,以提供吸(陷)光效果。本實施例的本質層340當作半導體疊層中的吸(陷)光層,其厚度,例如:約為150奈米。3 illustrates a solar cell in accordance with another embodiment of the present invention. The solar cell 300 shown in FIG. 3 first provides a smooth transparent substrate (for example, a glass substrate) 310 as a cap layer, and a transparent conductive layer (for example, indium tin oxide, indium zinc oxide, or the like) is formed on the surface of the transparent substrate 310. Indium gallium oxide, aluminum oxide, or other suitable material, or a combination of at least two of the foregoing) 320. The surface of the transparent conductive layer 320 may have good flatness, for example, a peak-to-valley roughness of substantially no more than 100 nm. Next, a P-type doped amorphous germanium layer 330, an amorphous germanium (a-Si) intrinsic layer 340, and an N-type doped microcrystalline germanium (uc-) are sequentially formed on the surface of the transparent conductive layer 320. Si) layer 350. Thereafter, the reflective layer 370 and the microcrystalline germanium layer 350 are bonded, and the reflective layer 370 has the light scattering portion 360 as described in the foregoing embodiment to provide a light trapping effect. The intrinsic layer 340 of this embodiment acts as a light-sinking layer in the semiconductor stack, having a thickness of, for example, about 150 nm.

圖4繪示依照本發明之又一實施例的一種太陽能電池。如圖4所示的太陽能電池400的結構與圖3的太陽能電池300類似,兩者主要的差異在於製程。太陽能電池400在製作上是以具有如同前述實施例記載的光散射部460的反射層470作為基底,依序在反射層470上形成N型摻雜微晶矽層450、厚度約為150奈米的非晶矽本質層440、P型摻雜非晶矽層430、透明導電層420以及作為蓋層的抗反射(anti-reflection)層410。4 illustrates a solar cell in accordance with yet another embodiment of the present invention. The structure of the solar cell 400 shown in FIG. 4 is similar to that of the solar cell 300 of FIG. 3, the main difference being the process. The solar cell 400 is formed by using a reflective layer 470 having a light scattering portion 460 as described in the foregoing embodiment as a substrate, and sequentially forming an N-type doped microcrystalline layer 450 on the reflective layer 470, and having a thickness of about 150 nm. The amorphous germanium in essence layer 440, the P-type doped amorphous germanium layer 430, the transparent conductive layer 420, and an anti-reflection layer 410 as a cap layer.

圖5分別繪示依照本發明之另一實施例的一種太陽能電池。如圖5所示的太陽能電池500為串結式(tandem junction)的架構,是以作為蓋層的透明基板510為基底,而依序在透明基板510上形成透明導電層520、P型摻雜非晶矽層530、非晶矽本質層540以及N型摻雜微晶矽層550、P型摻雜非晶矽層560、微晶矽本質層570以及N型摻雜微晶矽層580等。之後,接合反射層590與微晶矽層580,且反射層590具有如同前述實施例記載的光散射部592,以提供吸(陷)光效果。本實施例的透明導電層520的高低落差實質上不超過100奈米,非晶矽本質層540與微晶矽本質層570當作半導體疊層中的吸(陷)光層,其中非晶矽本質層540的厚度,例如:約為300奈米,而微晶矽本質層570的厚度,例如:約為1500奈米。FIG. 5 illustrates a solar cell in accordance with another embodiment of the present invention. The solar cell 500 shown in FIG. 5 is a tandem junction structure, and a transparent conductive layer 520 is formed on the transparent substrate 510, and a P-type doping is sequentially formed on the transparent substrate 510 as a cap layer. The amorphous germanium layer 530, the amorphous germanium in essence layer 540, the N-type doped microcrystalline germanium layer 550, the P-type doped amorphous germanium layer 560, the microcrystalline germanium in essence layer 570, and the N-type doped microcrystalline germanium layer 580, etc. . Thereafter, the reflective layer 590 and the microcrystalline germanium layer 580 are bonded, and the reflective layer 590 has the light scattering portion 592 as described in the foregoing embodiment to provide a light trapping effect. The height difference of the transparent conductive layer 520 of the present embodiment is substantially no more than 100 nm, and the amorphous germanium intrinsic layer 540 and the microcrystalline germanium intrinsic layer 570 are used as a light absorption layer in the semiconductor stack, wherein the amorphous germanium layer The thickness of the intrinsic layer 540 is, for example, about 300 nm, and the thickness of the microcrystalline intrinsic layer 570 is, for example, about 1500 nm.

圖6繪示依照本發明之又一實施例的一種太陽能電池。如圖6所示的太陽能電池600的結構與圖5的太陽能電池500類似,兩者主要的差異在於製程。太陽能電池600在製作上是以具有如同前述實施例記載的光散射部692的反射層690作為基底,依序在反射層690上形成N型摻雜微晶矽層680、微晶矽本質層670、P型摻雜非晶矽層660、N型摻雜微晶矽層650、非晶矽本質層640、P型摻雜非晶矽層630、透明導電層620以及作為蓋層的抗反射層610。6 illustrates a solar cell in accordance with yet another embodiment of the present invention. The structure of the solar cell 600 shown in FIG. 6 is similar to that of the solar cell 500 of FIG. 5, the main difference being the process. The solar cell 600 is formed by using the reflective layer 690 having the light scattering portion 692 as described in the foregoing embodiment as a substrate, and sequentially forming an N-type doped microcrystalline layer 680 and a microcrystalline germanium layer 670 on the reflective layer 690. a P-type doped amorphous germanium layer 660, an N-type doped microcrystalline germanium layer 650, an amorphous germanium intrinsic layer 640, a P-type doped amorphous germanium layer 630, a transparent conductive layer 620, and an anti-reflective layer as a cap layer 610.

圖7繪示依照本發明之又一實施例的一種太陽能電池。如圖7所示的太陽能電池700是以N型摻雜的單晶矽基板710作為基底,在單晶矽基板710的上側形成作為射極(emitter)的P型摻雜單晶矽層720以及抗反射層730,並且在單晶矽基板710的下側形成具有如同前述實施例記載的光散射部750的反射層740。其中,單晶矽基板當作半導體疊層中主要吸(陷)光材料層。此外,太陽能電池700還包括多個電極760配置於P型摻雜單晶矽層720上,並且暴露於抗反射層730之外。本實施例的單晶矽基板710的厚度,例如:約為100微米。FIG. 7 illustrates a solar cell in accordance with yet another embodiment of the present invention. The solar cell 700 shown in FIG. 7 is an N-type doped single crystal germanium substrate 710 as a base, and a P-type doped single crystal germanium layer 720 as an emitter is formed on the upper side of the single crystal germanium substrate 710 and The antireflection layer 730 is formed, and a reflective layer 740 having the light scattering portion 750 as described in the foregoing embodiment is formed on the lower side of the single crystal germanium substrate 710. Among them, the single crystal germanium substrate is used as a main layer of light-absorbing material in the semiconductor laminate. In addition, the solar cell 700 further includes a plurality of electrodes 760 disposed on the P-type doped single crystal germanium layer 720 and exposed to the outside of the anti-reflective layer 730. The thickness of the single crystal germanium substrate 710 of the present embodiment is, for example, about 100 μm.

雖然本申請已以實施例揭露如上,然其並非用以限定本申請,任何所屬技術領域中具有通常知識者,在不脫離本申請之精神和範圍內,當可作些許之更動與潤飾,故本申請之保護範圍當視後附之申請專利範圍所界定者為準。Although the present application has been disclosed in the above embodiments, it is not intended to limit the present application, and any person skilled in the art can make some changes and refinements without departing from the spirit and scope of the present application. The scope of protection of this application is subject to the definition of the scope of the patent application.

100...太陽能電池100. . . Solar battery

110...反射層110. . . Reflective layer

112...第一表面112. . . First surface

120...半導體疊層120. . . Semiconductor stack

130...蓋層130. . . Cover

160...光散射部160. . . Light scattering section

162...圖案162. . . pattern

D1、D2...距離D1, D2. . . distance

S1...第一介面S1. . . First interface

S2...第二介面S2. . . Second interface

T...橫向T. . . Landscape

r...半徑r. . . radius

g...間隔g. . . interval

p...節距p. . . Pitch

300...太陽能電池300. . . Solar battery

310...透明基板310. . . Transparent substrate

320...透明導電層320. . . Transparent conductive layer

330...P型摻雜非晶矽層330. . . P-type doped amorphous germanium layer

340...非晶矽的本質層340. . . Amorphous layer of amorphous germanium

350...N型摻雜微晶矽層350. . . N-type doped microcrystalline layer

360...光散射部360. . . Light scattering section

370...反射層370. . . Reflective layer

300...太陽能電池300. . . Solar battery

410...抗反射層410. . . Antireflection layer

420...透明導電層420. . . Transparent conductive layer

430...P型摻雜非晶矽層430. . . P-type doped amorphous germanium layer

440...非晶矽的本質層440. . . Amorphous layer of amorphous germanium

450...N型摻雜微晶矽層450. . . N-type doped microcrystalline layer

460...光散射部460. . . Light scattering section

470...反射層470. . . Reflective layer

500...太陽能電池500. . . Solar battery

510...透明基板510. . . Transparent substrate

520...透明導電層520. . . Transparent conductive layer

530...P型摻雜非晶矽層530. . . P-type doped amorphous germanium layer

540...非晶矽本質層540. . . Amorphous germanium

550...N型摻雜微晶矽層550. . . N-type doped microcrystalline layer

560...P型摻雜非晶矽層560. . . P-type doped amorphous germanium layer

570...微晶矽本質層570. . . Microcrystalline layer

580...N型摻雜微晶矽層580. . . N-type doped microcrystalline layer

590...反射層590. . . Reflective layer

592...光散射部592. . . Light scattering section

600...太陽能電池600. . . Solar battery

610...抗反射層610. . . Antireflection layer

620...透明導電層620. . . Transparent conductive layer

630...P型摻雜非晶矽層630. . . P-type doped amorphous germanium layer

640...非晶矽本質層640. . . Amorphous germanium

650...N型摻雜微晶矽層650. . . N-type doped microcrystalline layer

660...P型摻雜非晶矽層660. . . P-type doped amorphous germanium layer

670...微晶矽本質層670. . . Microcrystalline layer

680...N型摻雜微晶矽層680. . . N-type doped microcrystalline layer

690...反射層690. . . Reflective layer

692...光散射部692. . . Light scattering section

700...太陽能電池700. . . Solar battery

710...N型摻雜單晶矽基板710. . . N-type doped single crystal germanium substrate

720...P型摻雜單晶矽層720. . . P-type doped single crystal germanium layer

730...抗反射層730. . . Antireflection layer

740...反射層740. . . Reflective layer

750...光散射部750. . . Light scattering section

圖1繪示依照本申請之一實施例的一種太陽能電池。FIG. 1 illustrates a solar cell in accordance with an embodiment of the present application.

圖2繪示了圖1之光散射部在反射層內的分布情形。FIG. 2 illustrates the distribution of the light scattering portion of FIG. 1 within the reflective layer.

圖3~7繪示依照本發明之多個實施例的多種太陽能電池。3-7 illustrate various solar cells in accordance with various embodiments of the present invention.

100...太陽能電池100. . . Solar battery

110...反射層110. . . Reflective layer

112...第一表面112. . . First surface

120...半導體疊層120. . . Semiconductor stack

130...蓋層130. . . Cover

160...光散射部160. . . Light scattering section

D1、D2...距離D1, D2. . . distance

S1...第一介面S1. . . First interface

S2...第二介面S2. . . Second interface

T...橫向T. . . Landscape

Claims (33)

一種太陽能電池,包括:一反射層,具有一第一表面,且該反射層在該第一表面之下具有一光散射部,該光散射部在平行於該第一表面的一橫向上具有相對介電常數的變化,其中在以該光散射部中任意一點為圓心並且沿該橫向輻射半徑約為1微米的圓內,相對介電常數變化約大於3;多個半導體層,依序堆疊於該第一表面上,用以吸收外界的光能以產生電能;以及一蓋層,配置於該些半導體層上,其中該反射層與最下層的該半導體層之間具有一第一介面,該蓋層與最上層的該半導體層之間具有一第二介面,且該第一介面與該第二介面中至少一個實質上為平滑面。A solar cell comprising: a reflective layer having a first surface, and the reflective layer has a light scattering portion below the first surface, the light scattering portion having a relative lateral direction parallel to the first surface a change in dielectric constant, wherein a relative dielectric constant varies by more than about 3 in a circle centered at any point in the light scattering portion and having a radius of about 1 micrometer; the plurality of semiconductor layers are sequentially stacked The first surface is configured to absorb external light energy to generate electrical energy; and a cap layer is disposed on the semiconductor layers, wherein the reflective layer and the lowermost layer of the semiconductor layer have a first interface. The cover layer and the uppermost layer of the semiconductor layer have a second interface, and at least one of the first interface and the second interface is substantially smooth. 如申請專利範圍第1項所述的太陽能電池,其中該平滑面的均方根粗糙度(Root Mean Square roughness)約小於20奈米。The solar cell of claim 1, wherein the smooth surface has a Root Mean Square roughness of less than about 20 nm. 如申請專利範圍第1項所述的太陽能電池,其中該些半導體層之間的該些介面皆實質上為平滑面。The solar cell of claim 1, wherein the interfaces between the semiconductor layers are substantially smooth surfaces. 如申請專利範圍第3項所述的太陽能電池,其中各該平滑面的均方根粗糙度約小於20奈米。The solar cell of claim 3, wherein the smooth surface has a root mean square roughness of less than about 20 nm. 如申請專利範圍第1項所述的太陽能電池,其中在該光散射部中任意一橫向距離約為1微米的範圍內,相對介電常數變化約大於3。The solar cell according to claim 1, wherein the relative dielectric constant changes by more than about 3 in a range in which the lateral distance of the light scattering portion is about 1 μm. 如申請專利範圍第1項所述的太陽能電池,其中該光散射部在該橫向上的相對介電常數變化約小於120。The solar cell of claim 1, wherein the light scattering portion has a relative dielectric constant change of less than about 120 in the lateral direction. 如申請專利範圍第1項所述的太陽能電池,其中該光散射部的頂部與該第一表面的距離約小於10奈米。The solar cell of claim 1, wherein a distance between a top of the light scattering portion and the first surface is less than about 10 nm. 如申請專利範圍第7項所述的太陽能電池,其中該光散射部的底部與該第一表面的距離約大於40奈米。The solar cell of claim 7, wherein a distance between a bottom of the light scattering portion and the first surface is greater than about 40 nm. 如申請專利範圍第1項所述的太陽能電池,其中該光散射部包括一第一材料以及一第二材料,該第一材料的相對介電常數為正值,該第二材料的相對介電常數為負值。The solar cell of claim 1, wherein the light scattering portion comprises a first material and a second material, the relative dielectric constant of the first material is a positive value, and the relative dielectric of the second material The constant is a negative value. 如申請專利範圍第9項所述的太陽能電池,其中該第一材料的相對介電常數接近1。The solar cell of claim 9, wherein the first material has a relative dielectric constant close to one. 如申請專利範圍第9項所述的太陽能電池,其中該第二材料的相對介電常數約小於-1。The solar cell of claim 9, wherein the second material has a relative dielectric constant of less than about -1. 如申請專利範圍第9項所述的太陽能電池,其中該第一材料與該第二材料的體積總和在該光散射部內所佔的比例實質上約為50%。The solar cell of claim 9, wherein the ratio of the volume of the first material to the second material in the light scattering portion is substantially about 50%. 如申請專利範圍第1項所述的太陽能電池,其中該些半導體層包括:一第一半導體層,為第一導電型,該第一半導體層配置於該反射層上;以及一第二半導體層,為第二導電型,該第二半導體層配置於該第一半導體層上,該第一導電型與該第二導電型互為N型與P型。The solar cell of claim 1, wherein the semiconductor layers comprise: a first semiconductor layer, a first conductivity type, the first semiconductor layer is disposed on the reflective layer; and a second semiconductor layer The second conductive layer is disposed on the first semiconductor layer, and the first conductive type and the second conductive type are N-type and P-type. 如申請專利範圍第13項所述的太陽能電池,其中該些半導體層更包括一第一本質層,配置於該第一半導體層與該第二半導體層之間。The solar cell of claim 13, wherein the semiconductor layers further comprise a first intrinsic layer disposed between the first semiconductor layer and the second semiconductor layer. 如申請專利範圍第14項所述的太陽能電池,其中該些半導體層更包括:一第三半導體層,為第一導電型,該第三半導體層配置於該反射層與該第一半導體層之間;一第四半導體層,為第二導電型,該第四半導體層配置於該第三半導體層與該第一半導體層之間;以及一第二本質層,配置於該第三半導體層與該第四半導體層之間。The solar cell of claim 14, wherein the semiconductor layers further comprise: a third semiconductor layer, the first conductivity type, the third semiconductor layer being disposed on the reflective layer and the first semiconductor layer a fourth semiconductor layer having a second conductivity type disposed between the third semiconductor layer and the first semiconductor layer; and a second intrinsic layer disposed on the third semiconductor layer Between the fourth semiconductor layers. 如申請專利範圍第13項所述的太陽能電池,更包括一透明導電層,配置於該蓋層與該第二半導體層之間。The solar cell of claim 13, further comprising a transparent conductive layer disposed between the cap layer and the second semiconductor layer. 如申請專利範圍第13項所述的太陽能電池,更包括多個電極,配置於該第二半導體層上,且該蓋層暴露出該些電極。The solar cell of claim 13, further comprising a plurality of electrodes disposed on the second semiconductor layer, and the cap layer exposing the electrodes. 如申請專利範圍第1項所述的太陽能電池,其中該蓋層包括一透明基板或一抗反射層。The solar cell of claim 1, wherein the cover layer comprises a transparent substrate or an anti-reflection layer. 如申請專利範圍第1項所述的太陽能電池,其中該光散射部包括分布於該反射層內的多個圖案。The solar cell of claim 1, wherein the light scattering portion comprises a plurality of patterns distributed in the reflective layer. 如申請專利範圍第1項所述的太陽能電池,其中,該些半導體層中主要吸收光的材料包括單晶矽、多晶矽、微晶矽、或奈米晶矽其中至少一種。The solar cell according to claim 1, wherein the material mainly absorbing light in the semiconductor layers comprises at least one of a single crystal germanium, a polycrystalline germanium, a microcrystalline germanium, or a nanocrystalline germanium. 如申請專利範圍第20項所述的太陽能電池,其中相鄰兩圖案的中心點的節距(pitch)約介於200奈米至325奈米之間。The solar cell of claim 20, wherein a pitch of a center point of two adjacent patterns is between about 200 nm and 325 nm. 如申請專利範圍第20項所述的太陽能電池,其中該些圖案的分布密度約介於3×108個/平方公分至1×109個/平方公分之間。The solar cell of claim 20, wherein the patterns have a distribution density of between about 3 x 10 8 /cm 2 and 1 x 10 9 /cm 2 . 如申請專利範圍第20項所述的太陽能電池,其中各該圖案為圓形圖案,且該圓形圖案的半徑約介於50奈米至125奈米之間。The solar cell of claim 20, wherein each of the patterns is a circular pattern, and the radius of the circular pattern is between about 50 nm and 125 nm. 如申請專利範圍第20項所述的太陽能電池,其中相鄰兩圖案的間隔(gap)約介於60奈米至130奈米之間。The solar cell of claim 20, wherein the gap between adjacent patterns is between about 60 nm and 130 nm. 如申請專利範圍第19項所述的太陽能電池,其中,該些半導體層中主要吸收光的材料為非晶矽。The solar cell according to claim 19, wherein the material mainly absorbing light in the semiconductor layers is amorphous germanium. 如申請專利範圍第25項所述的太陽能電池,其中相鄰兩圖案的中心點的節距約介於奈米100至200奈米之間。The solar cell of claim 25, wherein the center point of the adjacent two patterns has a pitch of between about 100 and 200 nm. 如申請專利範圍第25項所述的太陽能電池,其中該些圖案的分布密度約介於9×108個/平方公分至4×109個/平方公分之間。The solar cell of claim 25, wherein the patterns have a distribution density of between about 9×10 8 /cm 2 and 4×10 9 /cm 2 . 如申請專利範圍第25項所述的太陽能電池,其中各該圖案為圓形圖案,且該圓形圖案的半徑約介於25奈米至75奈米之間。The solar cell of claim 25, wherein each of the patterns is a circular pattern, and the radius of the circular pattern is between about 25 nm and 75 nm. 如申請專利範圍第25項所述的太陽能電池,其中相鄰兩圖案的間隔約介於25奈米至80奈米之間。The solar cell of claim 25, wherein the interval between adjacent two patterns is between about 25 nm and 80 nm. 一種太陽能電池,包括:一反射層,具有一第一表面,且該反射層在該第一表面之下具有一光散射部,該光散射部包括分布於該反射層內的多個圖案,相鄰兩圖案的中心點的節距約介於200奈米至325奈米之間,該些圖案的分布密度約介於3×108個/平方公分至1×109個/平方公分之間,且相鄰兩圖案的間隔約介於60奈米至130奈米之間;多個半導體層,依序堆疊於該第一表面上,用以吸收外界的光能以產生電能,其中,該些半導體層中主要吸收光的材料包含單晶矽、多晶矽、微晶矽、或奈米晶矽其中至少一種;以及一蓋層,配置於該些半導體層上,其中該反射層與最下層的該半導體層之間具有一第一介面,該蓋層與最上層的該半導體層之間具有一第二介面,且該第一介面與該第二介面中至少一個實質上為平滑面。A solar cell comprising: a reflective layer having a first surface, and the reflective layer has a light scattering portion below the first surface, the light scattering portion comprising a plurality of patterns distributed in the reflective layer, The pitch of the center points of the adjacent two patterns is between 200 nm and 325 nm, and the distribution density of the patterns is between 3×10 8 /cm 2 and 1×10 9 /cm 2 . And the spacing between the adjacent two patterns is between about 60 nm and 130 nm; a plurality of semiconductor layers are sequentially stacked on the first surface for absorbing external light energy to generate electric energy, wherein The material mainly absorbing light in the semiconductor layer comprises at least one of a single crystal germanium, a polycrystalline germanium, a microcrystalline germanium, or a nanocrystalline germanium; and a cap layer disposed on the semiconductor layers, wherein the reflective layer and the lowermost layer The semiconductor layer has a first interface between the cover layer and the uppermost layer of the semiconductor layer, and at least one of the first interface and the second interface is substantially smooth. 如申請專利範圍第30項所述的太陽能電池,其中各該圖案為圓形圖案,且該圓形圖案的半徑約介於50奈米至125奈米之間。The solar cell of claim 30, wherein each of the patterns is a circular pattern, and the radius of the circular pattern is between about 50 nm and 125 nm. 一種太陽能電池,包括:一反射層,具有一第一表面,且該反射層在該第一表面之下具有一光散射部,該光散射部包括分布於該反射層內的多個圖案,相鄰兩圖案的中心點的節距約介於100奈米至200奈米之間,該些圖案的分布密度介於9×108個/平方公分至4×109個/平方公分之間,且相鄰兩圖案的間隔約介於25奈米至80奈米之間;多個半導體層,依序堆疊於該第一表面上,用以吸收外界的光能以產生電能,其中,該些半導體層中主要吸收光的材料為非晶矽;以及一蓋層,配置於該些半導體層上,其中該反射層與最下層的該半導體層之間具有一第一介面,該蓋層與最上層的該半導體層之間具有一第二介面,且該第一介面與該第二介面中至少一個實質上為平滑面。A solar cell comprising: a reflective layer having a first surface, and the reflective layer has a light scattering portion below the first surface, the light scattering portion comprising a plurality of patterns distributed in the reflective layer, The pitch of the center point of the adjacent two patterns is between 100 nm and 200 nm, and the distribution density of the patterns is between 9×10 8 /cm 2 and 4×10 9 /cm 2 . And the spacing between the two adjacent patterns is between about 25 nm and 80 nm; a plurality of semiconductor layers are sequentially stacked on the first surface for absorbing external light energy to generate electric energy, wherein a material that mainly absorbs light in the semiconductor layer is amorphous germanium; and a cap layer disposed on the semiconductor layers, wherein the reflective layer and the lowermost layer of the semiconductor layer have a first interface, the cap layer and the most A second interface is disposed between the semiconductor layers of the upper layer, and at least one of the first interface and the second interface is substantially a smooth surface. 如申請專利範圍第32項所述的太陽能電池,其中各該圖案為圓形圖案,且該圓形圖案的半徑約介於25奈米至75奈米之間。The solar cell of claim 32, wherein each of the patterns is a circular pattern, and the radius of the circular pattern is between about 25 nm and 75 nm.
TW100138637A 2011-10-25 2011-10-25 Solar cell TWI470814B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW100138637A TWI470814B (en) 2011-10-25 2011-10-25 Solar cell
CN201110402586.0A CN102420267B (en) 2011-10-25 2011-11-30 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100138637A TWI470814B (en) 2011-10-25 2011-10-25 Solar cell

Publications (2)

Publication Number Publication Date
TW201318184A true TW201318184A (en) 2013-05-01
TWI470814B TWI470814B (en) 2015-01-21

Family

ID=45944575

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100138637A TWI470814B (en) 2011-10-25 2011-10-25 Solar cell

Country Status (2)

Country Link
CN (1) CN102420267B (en)
TW (1) TWI470814B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779432B (en) * 2012-10-25 2016-08-03 茂迪股份有限公司 Solaode and module thereof
CN103107238B (en) * 2012-12-06 2016-03-23 杭州赛昂电力有限公司 Monocrystaline silicon solar cell and preparation method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2991183B2 (en) * 1998-03-27 1999-12-20 日本電気株式会社 Organic electroluminescence device
KR100563046B1 (en) * 2003-03-06 2006-03-24 삼성에스디아이 주식회사 Organic electro luminescence display device
DE10311645A1 (en) * 2003-03-14 2004-09-23 Degussa Ag Mixed indium and tin oxide powder, used in coatings, solar cells, UV absorbers and medical technology, has increased electrical conductivity
KR100563059B1 (en) * 2003-11-28 2006-03-24 삼성에스디아이 주식회사 Electroluminescence display device and laser induced thermal imaging donor film for the electroluminescence display device
TWI239658B (en) * 2004-03-11 2005-09-11 Univ Nat Chiao Tung Solar-pumped active device
KR100730121B1 (en) * 2004-11-29 2007-06-19 삼성에스디아이 주식회사 An organic electroluminescent display device and method for preparing the same
WO2008097517A1 (en) * 2007-02-06 2008-08-14 American Solar Technologies, Inc. Solar electric module
US20090178704A1 (en) * 2007-02-06 2009-07-16 Kalejs Juris P Solar electric module with redirection of incident light
TWI446555B (en) * 2007-12-27 2014-07-21 Ind Tech Res Inst Back contact for solar cell
CN101483200A (en) * 2008-01-09 2009-07-15 中华映管股份有限公司 Solar cell
KR20110096680A (en) * 2010-02-23 2011-08-31 엘지이노텍 주식회사 Light emitting device, method for fabricating the light emitting device and light emitting device package

Also Published As

Publication number Publication date
TWI470814B (en) 2015-01-21
CN102420267B (en) 2014-06-04
CN102420267A (en) 2012-04-18

Similar Documents

Publication Publication Date Title
KR101292061B1 (en) Thin film solar cell
TWI420700B (en) Solar cell
US20120031454A1 (en) Efficient nanoscale solar cell and fabrication method
US20130220406A1 (en) Vertical junction solar cell structure and method
JP2010062593A (en) Substrate for photoelectric converter
JP2010123944A (en) Solar cell having reflective structure
WO2012037379A2 (en) Single and multi-junction light and carrier collection management cells
CN103493215A (en) Thin film silicon solar cell in multi-junction configuration on textured glass
JP2016029675A (en) Light-transmissible insulation board for thin film solar battery and integration type thin film silicon solar battery
US20140090705A1 (en) Photoelectric conversion element
TWI470814B (en) Solar cell
KR101622088B1 (en) Solar cell
JP2011124474A (en) Multi-junction solar cell, solar cell module equipped with multi-junction solar cell, and method of manufacturing multi-junction solar cell
KR101584376B1 (en) Silicon thin film solar cell
JP5266375B2 (en) Thin film solar cell and manufacturing method thereof
JP5542038B2 (en) Thin film solar cell and method for manufacturing the same, thin film solar cell module
JP2010272651A (en) Thin-film solar cell and method of manufacturing the same
TWI543383B (en) Buried electrode solar cells, production methods, and multi - face Solar module
JP6209682B2 (en) Method for producing silicon substrate for solar cell
CN102709345A (en) Superfine crystal silicon battery structure
JP5667511B2 (en) Photoelectric conversion element
TW201327869A (en) Tandem thin-film solar cell and manufacturing method thereof
JP2010103347A (en) Thin film photoelectric converter
TWI445193B (en) Thin-film solar cell and manufacturing method thereof
WO2013018287A1 (en) Photovoltaic device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees