TW201318181A - Solar cell and electrode and manufacturing method thereof - Google Patents

Solar cell and electrode and manufacturing method thereof Download PDF

Info

Publication number
TW201318181A
TW201318181A TW100137598A TW100137598A TW201318181A TW 201318181 A TW201318181 A TW 201318181A TW 100137598 A TW100137598 A TW 100137598A TW 100137598 A TW100137598 A TW 100137598A TW 201318181 A TW201318181 A TW 201318181A
Authority
TW
Taiwan
Prior art keywords
electrode
compound
layer
solar cell
cadmium
Prior art date
Application number
TW100137598A
Other languages
Chinese (zh)
Inventor
Hsi-Sheng Teng
Tzung-Luen Li
Original Assignee
Of Energy Ministry Of Economic Affairs Bureau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Of Energy Ministry Of Economic Affairs Bureau filed Critical Of Energy Ministry Of Economic Affairs Bureau
Priority to TW100137598A priority Critical patent/TW201318181A/en
Publication of TW201318181A publication Critical patent/TW201318181A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A solar cell, an electrode of the solar cell and a method of manufacturing the electrode are provided. The solar cell includes a first electrode, a second electrode and an electrolyte. The first electrode includes CuInS2 quantum dots and CdS. The second electrode includes CuS. The electrolyte is disposed between the first and second electrodes.

Description

太陽能電池、電極及其製造方法Solar cell, electrode and method of manufacturing same

本發明係關於太陽能電池、太陽能電池的電極以及製造該電極的方法,特別是關於量子點敏化太陽能電池的電極及其製造方法。The present invention relates to a solar cell, an electrode of the solar cell, and a method of manufacturing the same, and more particularly to an electrode of a quantum dot sensitized solar cell and a method of manufacturing the same.

隨著日益嚴重的地球暖化問題以及對綠色能源的高需求,迫切需要低成本且高效率之光能發電裝置。近數十年來,可取代傳統以矽為基材之太陽能電池的染料敏化太陽能電池(dye-sensitized solar cell,DSSC)在學術研究或產業應用上皆引起極大關注,DSSC即為一種極具潛力的低成本的光能發電裝置。With the increasing global warming problem and the high demand for green energy, there is an urgent need for a low-cost and high-efficiency photovoltaic power generation device. In recent decades, dye-sensitized solar cells (DSSCs), which can replace traditional solar cells based on germanium, have attracted great attention in academic research or industrial applications. DSSC is a potential Low-cost photovoltaic power generation device.

DSSC主要係使用有機的染料分子(例如釕)作為吸光介質,其具有染料容易變質以及缺乏長效穩定性等缺點。近年來,利用無機的量子點(quantum dot,QD)取代有機染料係太陽能電池技術領域中的新興科技,相較於有機染料,量子點敏化太陽能電池具有易於調整光學能隙、降低裝置厚度、較高穩定性以及可能達更高的光電轉換效率的優勢。DSSC mainly uses organic dye molecules (such as hydrazine) as a light absorbing medium, which has the disadvantages that the dye is easily deteriorated and lacks long-term stability. In recent years, inorganic quantum dots (QD) have been used to replace the emerging technologies in the field of organic dye-based solar cells. Compared with organic dyes, quantum dot-sensitized solar cells have the ability to easily adjust the optical energy gap and reduce the thickness of the device. Higher stability and the potential for higher photoelectric conversion efficiency.

儘管許多材料或化合物的量子點已被證實可應用於量子點敏化太陽能電池,但目前已知的量子點敏化太陽能電池的光電轉換效率都相當低,因而如何配置出最佳的量子點敏化太陽能電池結構以達成高轉換效率為重要的研究發展方向。Although quantum dots of many materials or compounds have been proven to be applicable to quantum dot sensitized solar cells, the quantum dot sensitized solar cells of the presently known are relatively low in photoelectric conversion efficiency, so how to configure the optimal quantum dot sensitivity The solar cell structure is an important research and development direction to achieve high conversion efficiency.

本發明之一方面提供一種太陽能電池,其包含第一電極、第二電極以及電解質,該第一電極包含硫化銅銦量子點以及硫化鎘,該第二電極包含硫化銅,以及該電解質係配置於該第一電極和該第二電極之間。One aspect of the invention provides a solar cell comprising a first electrode, a second electrode, and an electrolyte, the first electrode comprising copper indium sulfide quantum dots and cadmium sulfide, the second electrode comprising copper sulfide, and the electrolyte system being disposed on Between the first electrode and the second electrode.

本發明之另一方面提供一種製造太陽能電池之電極的方法,包含下列步驟:提供一半導體材料層;配置一第一化合物的量子點於該半導體材料層上;以及配置一第二化合物於該半導體材料層上,其中該第一化合物選自下列其中之一:硫化銅銦、硒化銅銦以及碲化銅銦,且該第二化合物選自下列其中之一:硫化鎘、硒化鎘以及碲化鎘。Another aspect of the present invention provides a method of fabricating an electrode for a solar cell, comprising the steps of: providing a layer of a semiconductor material; arranging a quantum dot of a first compound on the layer of semiconductor material; and disposing a second compound in the semiconductor The material layer, wherein the first compound is selected from the group consisting of copper indium sulfide, copper indium selenide, and copper indium telluride, and the second compound is selected from one of the following: cadmium sulfide, cadmium selenide, and antimony. Cadmium.

本發明之再一方面提供一種太陽能電池之電極,其包含一第一化合物的量子點以及與該第一化合物的量子點相接觸的鎘化合物,其中該第一化合物選自下列其中之一:硫化銅銦、硒化銅銦以及碲化銅銦。A further aspect of the present invention provides an electrode for a solar cell comprising a quantum dot of a first compound and a cadmium compound in contact with a quantum dot of the first compound, wherein the first compound is selected from the group consisting of: vulcanization Copper indium, copper indium selenide, and copper indium telluride.

本發明得藉由下列之圖式及具體實施例的詳細說明,俾得一更深入之了解:The invention can be further understood by the following drawings and detailed description of specific embodiments:

本發明之技術手段將詳細說明如下,相信本發明之目的、特徵與特點,當可由此得一深入且具體之了解,然而下列實施方式與圖式僅提供參考與說明用,並非用來對本發明加以限制。The technical means of the present invention will be described in detail below, and it is believed that the objects, features, and characteristics of the present invention will become more apparent and understood. Limit it.

請參考第一圖,其為本發明之太陽能電池之電極的實施方式的示意圖。電極1包含第一化合物的量子點12以及與該第一化合物的量子點12相接觸的鎘化合物14,該第一化合物例如為硫化銅銦(CuInS2),硒化銅銦(CuInSe2)或碲化銅銦(CuInTe2)。Please refer to the first figure, which is a schematic diagram of an embodiment of an electrode of a solar cell of the present invention. The electrode 1 comprises a quantum dot 12 of a first compound and a cadmium compound 14 in contact with the quantum dot 12 of the first compound, such as copper indium sulfide (CuInS 2 ), copper indium selenide (CuInSe 2 ) or Copper indium telluride (CuInTe 2 ).

於第一圖中,電極1可進一步包含一半導體材料層10,該半導體材料層10例如為二氧化鈦(TiO2),且該第一化合物的量子點12和該鎘化合物14實質上完全覆蓋該半導體材料層10的表面100。In the first figure, the electrode 1 may further comprise a semiconductor material layer 10, such as titanium dioxide (TiO 2 ), and the quantum dots 12 of the first compound and the cadmium compound 14 substantially completely cover the semiconductor The surface 100 of the material layer 10.

於上述實施方式中,該鎘化合物14例如可為硫化鎘(CdS)、硒化鎘(CdSe)或碲化鎘(CdTe)。此外,電極1可進一步包含一連結分子16,用以將該第一化合物的量子點12吸附於該半導體材料層10的表面100,該連結分子16例如為氫硫基化合物,例如丙酸硫醇(3-mercaptopropionic acid,MPA)或3-硫醇基矽烷(3-mercaptopropyl trimethoxysilane,MPTMS)。In the above embodiment, the cadmium compound 14 may be, for example, cadmium sulfide (CdS), cadmium selenide (CdSe) or cadmium telluride (CdTe). In addition, the electrode 1 may further include a bonding molecule 16 for adsorbing the quantum dots 12 of the first compound to the surface 100 of the semiconductor material layer 10, such as a thiol compound, such as thiol propionate. (3-mercaptopropionic acid, MPA) or 3-mercaptopropyl trimethoxysilane (MPTMS).

於上述實施方式中,電極1可進一步包含透明導電玻璃作為基板(未示出),例如FTO基板。此外,電極1係作為太陽能電池的工作電極,且該工作電極1的吸光範圍將可包含所有可見光。In the above embodiment, the electrode 1 may further include a transparent conductive glass as a substrate (not shown), such as an FTO substrate. Furthermore, the electrode 1 serves as the working electrode of the solar cell, and the light absorption range of the working electrode 1 will contain all visible light.

請參考第二圖,其為本發明之太陽能電池的實施方式的示意圖。太陽能電池2使用如第一圖所示的電極1作為其工作電極,於此實施例中,主要使用硫化銅銦(CuInS2)的量子點和硫化鎘(CdS)的複合材料作為該工作電極的敏化材料。Please refer to the second figure, which is a schematic diagram of an embodiment of a solar cell of the present invention. The solar cell 2 uses the electrode 1 as shown in the first figure as its working electrode. In this embodiment, a composite material of a quantum dot of copper indium sulfide (CuInS 2 ) and cadmium sulfide (CdS) is mainly used as the working electrode. Sensitized material.

請繼續參考第二圖,太陽能電池2包含第一電極21、第二電極23以及配置於該第一電極21和該第二電極23之間的電解質25,其中該第一電極21包含二氧化鈦210、硫化銅銦的量子點212以及硫化鎘214,且該第二電極23包含硫化銅230。Referring to the second figure, the solar cell 2 includes a first electrode 21, a second electrode 23, and an electrolyte 25 disposed between the first electrode 21 and the second electrode 23. The first electrode 21 includes titanium dioxide 210, The quantum dots 212 of copper indium sulfide and cadmium sulfide 214, and the second electrode 23 contains copper sulfide 230.

於上述實施方式中,該第一電極21和該第二電極23分別包含透明導電玻璃作為基板,例如FTO基板。該第一電極21係為太陽能電池2的工作電極,該第二電極23係為太陽能電池2的相對電極。In the above embodiment, the first electrode 21 and the second electrode 23 respectively comprise a transparent conductive glass as a substrate, such as an FTO substrate. The first electrode 21 is a working electrode of the solar cell 2, and the second electrode 23 is a counter electrode of the solar cell 2.

於上述實施方式中,該第一電極21中的二氧化鈦210較佳為奈米多孔性二氧化鈦薄膜,且實際上該硫化銅銦的量子點212以及該硫化鎘214係能夠幾乎完全覆蓋該二氧化鈦210的表面。In the above embodiment, the titanium dioxide 210 in the first electrode 21 is preferably a nanoporous titanium dioxide film, and in fact, the copper indium sulfide quantum dot 212 and the cadmium sulfide 214 can cover the titanium dioxide 210 almost completely. surface.

於上述實施方式中,該電解質25較佳為包含硫的多硫電解質(polysulfide electrolyte),且該電解質25可為液態、膠態或全固態。In the above embodiment, the electrolyte 25 is preferably a sulfur-containing polysulfide electrolyte, and the electrolyte 25 may be in a liquid state, a colloidal state, or an all-solid state.

於上述實施方式中,由於奈米多孔性二氧化鈦薄膜210具有相當高的比表面積,因此能提供大量的CuInS2(或可替代地為CuInSe2或CuInTe2)的量子點212吸附於其表面上,接著將CdS(或可替代地為CdSe或CdTe)214沉積於CuInS2量子點211的外圍,並完整覆蓋該二氧化鈦210的表面,即形成量子點敏化太陽能電池2的工作電極21。再者,包含硫化銅的相對電極23擁有相對低的電荷轉移阻力(將電子轉移至電解質),其阻力比傳統用於染料敏化太陽能電池所使用的白金或金相對電極低了兩個數量級。In the above embodiment, since the nanoporous titania film 210 has a relatively high specific surface area, the quantum dots 212 capable of providing a large amount of CuInS 2 (or alternatively CuInSe 2 or CuInTe 2 ) are adsorbed on the surface thereof, CdS (or alternatively CdSe or CdTe) 214 is then deposited on the periphery of the CuInS 2 quantum dot 211 and completely covers the surface of the titanium dioxide 210, i.e., the working electrode 21 of the quantum dot sensitized solar cell 2. Furthermore, the opposite electrode 23 comprising copper sulphide possesses a relatively low charge transfer resistance (transfer electrons to the electrolyte) which is two orders of magnitude lower than the platinum or gold counter electrode conventionally used in dye sensitized solar cells.

根據本發明上述實施方式的太陽能電池2在一個太陽光強度照射下,其閉環電流為17 mA cm-2,開環電壓為0.56 V,填充因子為0.45,光電轉換效率為4.2%。CdS與CuInS2量子點兩者之光學能隙值分別為2.4 eV和2.1 eV,其紫外光-可見光吸收光譜起始位置分別為520 nm和600 nm,而當本發明所提出的CdS與CuInS2量子點兩者形成複合結構時,由於CuInS2量子點中量子侷限效應的緩解,其吸收光譜和外部量子效率(IPCE或EQE)之光應答起始波長將可因發生紅位移而延伸至約800 nm,因此太陽能電池2之工作電極21的吸光範圍將可涵蓋太陽光中整個可見光,使其外部量子效率最高值可達將近80%(於波長510 nm)。The solar cell 2 according to the above embodiment of the present invention has a closed-loop current of 17 mA cm -2 , an open-loop voltage of 0.56 V, a fill factor of 0.45, and a photoelectric conversion efficiency of 4.2% under irradiation of a sunlight. The optical energy gap values of both CdS and CuInS 2 quantum dots are 2.4 eV and 2.1 eV, respectively, and the ultraviolet-visible absorption spectra start positions are 520 nm and 600 nm, respectively, while the CdS and CuInS 2 proposed by the present invention are respectively. When the quantum dots form a composite structure, the optical response initiation wavelength of the absorption spectrum and external quantum efficiency (IPCE or EQE) will be extended to about 800 due to the red shift due to the relaxation of the quantum confinement effect in the CuInS 2 quantum dots. Nm, so the absorption range of the working electrode 21 of the solar cell 2 will cover the entire visible light in the sunlight, and the external quantum efficiency is up to nearly 80% (at a wavelength of 510 nm).

請參考第三圖(A),其為使用複合型敏化材料(CuInS2量子點-CdS)和個別敏化材料CuInS2量子點、CdS之紫外光-可見光吸收光譜的比較圖。由第三圖(A)可看出,複合型敏化材料(CuInS2量子點-CdS)的吸收光譜可涵蓋整個可見光範圍。Please refer to the third diagram (A), which is a comparison diagram of the ultraviolet-visible absorption spectrum of the composite sensitizing material (CuInS 2 quantum dot-CdS) and the individual sensitizing material CuInS 2 quantum dots and CdS. As can be seen from the third graph (A), the absorption spectrum of the composite sensitizing material (CuInS 2 quantum dot-CdS) can cover the entire visible light range.

請參考第三圖(B),其為使用複合型敏化材料(CuInS2量子點-CdS)和個別敏化材料CuInS2量子點、CdS組裝成量子點敏化太陽能電池後之外部量子效率(IPCE)比較圖。由第三圖(B)可看出,複合型敏化材料(CuInS2量子點-CdS)相較於個別敏化材料組成之太陽能電池元件於外部量子效率有明顯大幅度的提升。Please refer to the third figure (B), which is the external quantum efficiency after assembly of a quantum sensitized solar cell using a composite sensitizing material (CuInS 2 quantum dot-CdS) and an individual sensitizing material CuInS 2 quantum dot and CdS ( IPCE) comparison chart. As can be seen from the third graph (B), the composite sensitizing material (CuInS 2 quantum dot-CdS) has a significant increase in external quantum efficiency compared to the solar cell component composed of individual sensitized materials.

請參考第三圖(C),其為使用複合型敏化材料(CuInS2量子點-CdS)和個別敏化材料CuInS2量子點、CdS組裝成量子點敏化太陽能電池後之光電流-電壓曲線(I-V curve)。由第三圖(C)可看出,複合型敏化材料(CuInS2量子點-CdS)相較於個別敏化材料組成之太陽能電池元件,其光伏特性明顯大幅度的提升。Please refer to the third figure (C), which is a photocurrent-voltage after assembly of a quantum sensitized solar cell using a composite sensitizing material (CuInS 2 quantum dot-CdS) and an individual sensitizing material CuInS 2 quantum dot and CdS. Curve ( IV curve). As can be seen from the third graph (C), the composite sensitized material (CuInS 2 quantum dot-CdS) has a significantly improved photovoltaic characteristic compared to the solar cell component composed of individual sensitized materials.

請參考第四圖,其為本發明之太陽能電池之電極的製造方法的一實施方式的流程圖。方法4包含下列步驟:提供一半導體材料層(步驟41);配置第一化合物的量子點於該半導體材料層上(步驟43);以及配置第二化合物於該半導體材料層上(步驟45)。Please refer to the fourth figure, which is a flow chart of an embodiment of a method for manufacturing an electrode for a solar cell of the present invention. The method 4 comprises the steps of: providing a layer of semiconductor material (step 41); arranging quantum dots of the first compound on the layer of semiconductor material (step 43); and configuring a second compound on the layer of semiconductor material (step 45).

於上述實施方式中,該第一化合物例如選自下列其中之一:硫化銅銦、硒化銅銦以及碲化銅銦;以及該第二化合物例如選自下列其中之一:硫化鎘、硒化鎘以及碲化鎘。In the above embodiment, the first compound is, for example, selected from the group consisting of copper indium sulfide, copper indium selenide, and copper indium telluride; and the second compound is, for example, selected from one of the following: cadmium sulfide, selenization Cadmium and cadmium telluride.

於上述實施方式中,於步驟43之前,可包含下列步驟:以化學液相合成法合成該第一化合物的量子點及/或該第二化合物。In the above embodiment, before step 43, a step of synthesizing the quantum dots of the first compound and/or the second compound by chemical liquid phase synthesis may be included.

於上述實施方式中,步驟43可包含下列步驟:利用一連結分子(例如MPA或MPTMS)將該第一化合物的量子點吸附於該半導體材料層的表面。In the above embodiment, step 43 may comprise the step of adsorbing the quantum dots of the first compound onto the surface of the layer of semiconductor material using a linking molecule such as MPA or MPTMS.

於上述實施方式中,步驟45可包含下列步驟:以連續離子層吸附與反應法將該第二化合物沉積於該半導體材料層上。In the above embodiment, step 45 may comprise the step of depositing the second compound on the layer of semiconductor material by continuous ion layer adsorption and reaction.

於步驟45完成後,該第一化合物的量子點以及該第二化合物實質上係完全覆蓋該半導體材料層的表面。由於該複合型敏化材料能夠幾乎完全覆蓋在半導體薄膜表面,因此能有效的抑制半導體材料層中的電子與電解質進行再結合反應,進而有效提高電子的存活時間與太陽能電池的開環電壓。After completion of step 45, the quantum dots of the first compound and the second compound substantially completely cover the surface of the layer of semiconductor material. Since the composite sensitizing material can cover the surface of the semiconductor film almost completely, the recombination reaction between the electrons and the electrolyte in the semiconductor material layer can be effectively suppressed, thereby effectively improving the electron survival time and the open-loop voltage of the solar cell.

於上述實施方式中,該半導體材料層例如為奈米多孔性二氧化鈦薄膜,其亦可由液相合成法合成,故本發明之工作電極的複合材料,即第一化合物的量子點、鎘化合物與半導體材料層皆可由成本低的液相合成法來合成,大幅降低太陽能電池整體的生產成本。In the above embodiment, the semiconductor material layer is, for example, a nanoporous titanium dioxide film, which can also be synthesized by a liquid phase synthesis method. Therefore, the composite material of the working electrode of the present invention, that is, the quantum dot, the cadmium compound and the semiconductor of the first compound. The material layers can be synthesized by a low-cost liquid phase synthesis method, which greatly reduces the overall production cost of the solar cell.

此外,於上述實施方式中,還可透過第一化合物的量子點的尺寸控制和第二化合物的沉積量的多寡來改變光電極的太陽光吸收範圍,當第二化合物的沉積量越多,太陽光吸收範圍將會越大。In addition, in the above embodiment, the solar light absorption range of the photoelectrode can be changed by the size control of the quantum dots of the first compound and the deposition amount of the second compound, and the more the second compound is deposited, the sun The light absorption range will be larger.

除了CdS和CuInS2量子點可作為較佳的太陽能電池之電極的複合敏化材料外,本發明另提出利用CdSe和CuInS2量子點搭配為複合敏化材料以製造太陽能電池之電極的實施方式如下:In addition to the composite sensitizing material in which CdS and CuInS 2 quantum dots can be used as electrodes of a preferred solar cell, the present invention further proposes an embodiment in which a CdSe and CuInS 2 quantum dot are combined as a composite sensitizing material to manufacture an electrode of a solar cell. :

(a) 將已配置CuInS2量子點之奈米多孔性TiO2電極浸泡於0.03 M的Cd(NO3)2溶液中(甲醇、乙醇或水皆可作為溶劑),浸泡時間為30秒。(a) A nanoporous TiO 2 electrode equipped with a CuInS 2 quantum dot was immersed in a 0.03 M Cd(NO 3 ) 2 solution (methanol, ethanol or water was used as a solvent), and the immersion time was 30 seconds.

(b) 用水清洗上述電極。(b) Wash the above electrodes with water.

(c) 將上述電極浸泡於0.03 M的NaHSe溶液(NaHSe溶液作法為:將0.071克硒粉慢慢加入含有0.1克NaBH4之水溶液,甲醇或乙醇皆可作為溶劑),浸泡時間為30秒。(c) The above electrode was immersed in a 0.03 M NaHSe solution (NaHSe solution was prepared by slowly adding 0.071 g of selenium powder to an aqueous solution containing 0.1 g of NaBH 4 , methanol or ethanol as a solvent), and soaking for 30 seconds.

(d) 用水清洗上述電極。(d) Wash the above electrodes with water.

(e) 步驟(a)-(d)係沉積一次CdSe的方式,重複步驟(a)-(d)以增加CdSe的沉積量。(e) Steps (a)-(d) are the ones in which CdSe is deposited once, and steps (a)-(d) are repeated to increase the amount of CdSe deposited.

根據上述各實施方式,本發明提出以特定化合物(CuInS2或CuInSe2或CuInTe2)的量子點和另一特定化合物(CdS或CdSe或CdTe)構成量子點敏化太陽能電池之工作電極的複合型敏化材料,所組成之太陽能電池具有低成本、涵蓋整個可見光吸收範圍以及高光電流等優勢,並已證實其光電轉換效率優於目前許多已知的量子點敏化太陽能電池(例如CdS敏化太陽能電池)。According to the above embodiments, the present invention proposes a composite type in which a quantum dot of a specific compound (CuInS 2 or CuInSe 2 or CuInTe 2 ) and another specific compound (CdS or CdSe or CdTe) constitute a working electrode of a quantum dot sensitized solar cell. The sensitizing materials, the solar cells are composed of low cost, covering the entire visible light absorption range and high photocurrent, and have been confirmed to have better photoelectric conversion efficiency than many known quantum dot sensitized solar cells (for example, CdS sensitized solar energy). battery).

實施例:Example:

1. 一種太陽能電池,其包含第一電極、第二電極,以及配置於該第一電極和該第二電極之間的電解質。A solar cell comprising a first electrode, a second electrode, and an electrolyte disposed between the first electrode and the second electrode.

2. 根據實施例1所述的太陽能電池,該第一電極包含硫化銅銦量子點以及硫化鎘。2. The solar cell of embodiment 1, the first electrode comprising copper indium sulfide quantum dots and cadmium sulfide.

3. 根據上述實施例中任一實施例所述的太陽能電池,該第二電極包含硫化銅。3. The solar cell of any of the above embodiments, the second electrode comprising copper sulfide.

4. 根據上述實施例中任一實施例所述的太陽能電池,該第一電極係為一工作電極,且該第二電極係為一相對電極。4. The solar cell of any of the above embodiments, wherein the first electrode is a working electrode and the second electrode is an opposite electrode.

5. 根據上述實施例中任一實施例所述的太陽能電池,該第一電極更包含一二氧化鈦層5. The solar cell according to any of the above embodiments, wherein the first electrode further comprises a titanium dioxide layer

6. 根據上述實施例中任一實施例所述的太陽能電池,該二氧化鈦層係為一奈米多孔性二氧化鈦薄膜。6. The solar cell according to any of the above embodiments, wherein the titanium dioxide layer is a nanoporous titanium dioxide film.

7. 根據上述實施例中任一實施例所述的太陽能電池,該硫化銅銦量子點以及該硫化鎘實質上完全覆蓋該二氧化鈦層的表面。7. The solar cell of any of the above embodiments, the copper indium sulfide quantum dots and the cadmium sulfide substantially completely covering the surface of the titanium dioxide layer.

8. 根據上述實施例中任一實施例所述的太陽能電池,該電解質包含硫。8. The solar cell of any of the above embodiments, the electrolyte comprising sulfur.

9. 一種製造一太陽能電池之電極的方法,包含下列步驟:提供一半導體材料層;配置一第一化合物的量子點於該半導體材料層上;以及配置一第二化合物於該半導體材料層上。9. A method of fabricating an electrode for a solar cell comprising the steps of: providing a layer of semiconductor material; arranging a quantum dot of a first compound on the layer of semiconductor material; and disposing a second compound on the layer of semiconductor material.

10. 根據實施例9所述的方法,其中該第一化合物選自下列其中之一:硫化銅銦、硒化銅銦以及碲化銅銦。10. The method of embodiment 9, wherein the first compound is selected from the group consisting of copper indium sulfide, copper indium selenide, and copper indium telluride.

11. 根據實施例9-10中任一實施例所述的方法,其中該第二化合物選自下列其中之一:硫化鎘、硒化鎘以及碲化鎘。The method of any one of embodiments 9-10, wherein the second compound is selected from the group consisting of cadmium sulfide, cadmium selenide, and cadmium telluride.

12. 根據實施例9-11中任一實施例所述的方法,更包含以一化學液相合成法合成該第一化合物的量子點的步驟。12. The method of any of embodiments 9-11, further comprising the step of synthesizing the quantum dots of the first compound by a chemical liquid phase synthesis.

13. 根據實施例9-12中任一實施例所述的方法,更包含以一化學液相合成法合成該第二化合物的步驟。13. The method of any of embodiments 9-12, further comprising the step of synthesizing the second compound by a chemical liquid phase synthesis.

14. 根據實施例9-13中任一實施例所述的方法,更包含利用一連結分子將該第一化合物的量子點吸附於該半導體材料層的表面的步驟。14. The method of any of embodiments 9-13, further comprising the step of adsorbing the quantum dots of the first compound onto the surface of the layer of semiconductor material using a linker molecule.

15. 根據實施例9-14中任一實施例所述的方法,更包含以一連續離子層吸附與反應法將該第二化合物沉積於該半導體材料層上的步驟。15. The method of any of embodiments 9-14, further comprising the step of depositing the second compound onto the layer of semiconductor material by a continuous ion layer adsorption and reaction process.

16. 根據實施例9-15中任一實施例所述的方法,其中該半導體材料層包含二氧化鈦。The method of any of embodiments 9-15, wherein the layer of semiconducting material comprises titanium dioxide.

17. 根據實施例9-16中任一實施例所述的方法,該第一化合物的量子點和該第二化合物實質上完全覆蓋該半導體材料層的表面。17. The method of any of embodiments 9-16, wherein the quantum dots of the first compound and the second compound substantially completely cover the surface of the layer of semiconductor material.

18. 一種太陽能電池之電極,其包含一第一化合物的量子點以及與該第一化合物的量子點接觸的一鎘化合物。18. An electrode for a solar cell comprising a quantum dot of a first compound and a cadmium compound in contact with a quantum dot of the first compound.

19. 根據實施例18所述的電極,其中該第一化合物選自下列其中之一:硫化銅銦、硒化銅銦以及碲化銅銦。19. The electrode of embodiment 18, wherein the first compound is selected from the group consisting of copper indium sulfide, copper indium selenide, and copper indium telluride.

20. 根據實施例18-19中任一實施例所述的電極,更包含一半導體材料層,且該第一化合物的量子點和該鎘化合物實質上完全覆蓋該半導體材料層的表面。The electrode of any of embodiments 18-19, further comprising a layer of semiconductor material, and the quantum dots of the first compound and the cadmium compound substantially completely cover the surface of the layer of semiconductor material.

21. 根據實施例18-20中任一實施例所述的電極,其為該太陽能電池的工作電極。21. The electrode of any of embodiments 18-20, which is the working electrode of the solar cell.

22. 根據實施例18-21中任一實施例所述的電極,其中該鎘化合物選自下列其中之一:硫化鎘、硒化鎘以及碲化鎘。The electrode of any one of embodiments 18-21, wherein the cadmium compound is selected from the group consisting of cadmium sulfide, cadmium selenide, and cadmium telluride.

23. 根據實施例18-22中任一實施例所述的電極,其吸光範圍包含所有可見光。23. The electrode of any of embodiments 18-22, wherein the light absorption range comprises all visible light.

本發明雖以上述數個實施方式或實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。The present invention has been described above in terms of several embodiments or examples, which are not intended to limit the invention, and those skilled in the art can make some modifications and refinements without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

1...電極1. . . electrode

10...半導體材料層10. . . Semiconductor material layer

100...半導體材料層之表面100. . . Surface of the semiconductor material layer

12...第一化合物的量子點12. . . Quantum dot of the first compound

14...鎘化合物14. . . Cadmium compound

16...連結分子16. . . Linking molecule

2...太陽能電池2. . . Solar battery

21...第一電極twenty one. . . First electrode

210...二氧化鈦210. . . Titanium dioxide

212...硫化銅銦的量子點212. . . Quantum dots of copper indium sulfide

214...硫化鎘214. . . Cadmium sulfide

23...第二電極twenty three. . . Second electrode

230...硫化銅230. . . Copper sulphide

25...電解質25. . . Electrolyte

4...電極製造方法4. . . Electrode manufacturing method

41...提供一半導體材料層的步驟41. . . Step of providing a layer of semiconductor material

43...配置第一化合物的量子點於該半導體材料層上的步驟43. . . Step of configuring a quantum dot of the first compound on the layer of semiconductor material

45...配置第二化合物於該半導體材料層上的步驟45. . . The step of configuring the second compound on the layer of semiconductor material

第一圖為本發明之太陽能電池之電極之一實施方式的示意圖;The first figure is a schematic diagram of an embodiment of an electrode of a solar cell of the present invention;

第二圖為本發明之太陽能電池之一實施方式的示意圖;2 is a schematic view of an embodiment of a solar cell of the present invention;

第三圖(A)為本發明之太陽能電池之電極的吸光範圍與習知技術的比較圖;The third diagram (A) is a comparison diagram of the light absorption range of the electrode of the solar cell of the present invention and the prior art;

第三圖(B)為本發明之太陽能電池之電極的光電轉換效率與習知技術的比較圖;The third diagram (B) is a comparison diagram of the photoelectric conversion efficiency of the electrode of the solar cell of the present invention and a conventional technique;

第三圖(C)為本發明之太陽能電池之電極的光電流-電壓曲線圖與習知技術的比較圖;以及The third diagram (C) is a comparison diagram of the photocurrent-voltage graph of the electrode of the solar cell of the present invention with a conventional technique;

第四圖為本發明之太陽能電池之電極的製造方法的一實施方式的流程圖。Fig. 4 is a flow chart showing an embodiment of a method of manufacturing an electrode for a solar cell of the present invention.

2...太陽能電池2. . . Solar battery

21...第一電極twenty one. . . First electrode

210...二氧化鈦210. . . Titanium dioxide

212...硫化銅銦的量子點212. . . Quantum dots of copper indium sulfide

214...硫化鎘214. . . Cadmium sulfide

23...第二電極twenty three. . . Second electrode

230...硫化銅230. . . Copper sulphide

25...電解質25. . . Electrolyte

Claims (10)

一種太陽能電池,包含:一第一電極,其包含一硫化銅銦量子點以及一硫化鎘;一第二電極,其包含一硫化銅;以及一電解質,其配置於該第一電極和該第二電極之間。A solar cell comprising: a first electrode comprising a copper indium sulfide quantum dot and a cadmium sulfide; a second electrode comprising a copper sulfide; and an electrolyte disposed on the first electrode and the second Between the electrodes. 如申請專利範圍第1項所述的太陽能電池,其中該第一電極係為一工作電極,該第二電極係為一相對電極,該第一電極更包含一二氧化鈦層,且該二氧化鈦層係為一奈米多孔性二氧化鈦薄膜。The solar cell of claim 1, wherein the first electrode is a working electrode, the second electrode is an opposite electrode, the first electrode further comprises a titanium dioxide layer, and the titanium dioxide layer is One nanometer porous titanium dioxide film. 如申請專利範圍第2項所述的太陽能電池,其中該硫化銅銦量子點以及該硫化鎘實質上完全覆蓋該二氧化鈦層的一表面。The solar cell of claim 2, wherein the copper sulfide indium quantum dot and the cadmium sulfide substantially completely cover a surface of the titanium dioxide layer. 如申請專利範圍第1項所述的太陽能電池,其中該電解質包含硫。The solar cell of claim 1, wherein the electrolyte comprises sulfur. 一種製造一太陽能電池之電極的方法,包含:提供一半導體材料層;配置一第一化合物的量子點於該半導體材料層上,其中該第一化合物選自下列其中之一:硫化銅銦、硒化銅銦以及碲化銅銦;以及配置一第二化合物於該半導體材料層上,其中該第二化合物選自下列其中之一:硫化鎘、硒化鎘以及碲化鎘。A method of manufacturing an electrode for a solar cell, comprising: providing a layer of a semiconductor material; arranging a quantum dot of a first compound on the layer of semiconductor material, wherein the first compound is selected from the group consisting of copper indium sulfide, selenium sulfide Copper indium and copper indium telluride; and a second compound disposed on the layer of semiconductor material, wherein the second compound is selected from the group consisting of cadmium sulfide, cadmium selenide, and cadmium telluride. 如申請專利範圍第5項所述的方法,更包含下列步驟:以一化學液相合成法合成該第一化合物的量子點以及該第二化合物;利用一連結分子將該第一化合物的量子點吸附於該半導體材料層的一表面;以及以一連續離子層吸附與反應法將該第二化合物沉積於該半導體材料層上。The method of claim 5, further comprising the steps of: synthesizing the quantum dot of the first compound and the second compound by a chemical liquid phase synthesis method; and using the quantum dot of the first compound by using a linking molecule Adsorbing on a surface of the layer of semiconductor material; and depositing the second compound on the layer of semiconductor material by a continuous ion layer adsorption and reaction method. 如申請專利範圍第5項所述的方法,其中該半導體材料層包含二氧化鈦,且該第一化合物的量子點和該第二化合物實質上完全覆蓋該半導體材料層的一表面。The method of claim 5, wherein the layer of semiconductor material comprises titanium dioxide, and the quantum dots of the first compound and the second compound substantially completely cover a surface of the layer of semiconductor material. 一種太陽能電池之電極,包含:一第一化合物的量子點,其中該第一化合物選自下列其中之一:硫化銅銦、硒化銅銦以及碲化銅銦;以及一鎘化合物,與該第一化合物的量子點接觸。An electrode for a solar cell, comprising: a quantum dot of a first compound, wherein the first compound is selected from the group consisting of copper indium sulfide, copper indium selenide, and copper indium telluride; and a cadmium compound, and the first Quantum point contact of a compound. 如申請專利範圍第8項的電極,更包含一半導體材料層,且該第一化合物的量子點和該鎘化合物實質上完全覆蓋該半導體材料層的一表面。The electrode of claim 8 further comprising a layer of semiconductor material, and the quantum dots of the first compound and the cadmium compound substantially completely cover a surface of the layer of semiconductor material. 如申請專利範圍第9項的電極,其為該太陽能電池的一工作電極,其中該鎘化合物選自下列其中之一:硫化鎘、硒化鎘以及碲化鎘,且該工作電極的一吸光範圍包含所有可見光。An electrode according to claim 9 which is a working electrode of the solar cell, wherein the cadmium compound is selected from one of the following: cadmium sulfide, cadmium selenide and cadmium telluride, and a light absorption range of the working electrode Contains all visible light.
TW100137598A 2011-10-17 2011-10-17 Solar cell and electrode and manufacturing method thereof TW201318181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100137598A TW201318181A (en) 2011-10-17 2011-10-17 Solar cell and electrode and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100137598A TW201318181A (en) 2011-10-17 2011-10-17 Solar cell and electrode and manufacturing method thereof

Publications (1)

Publication Number Publication Date
TW201318181A true TW201318181A (en) 2013-05-01

Family

ID=48872064

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100137598A TW201318181A (en) 2011-10-17 2011-10-17 Solar cell and electrode and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TW201318181A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113643902A (en) * 2021-08-11 2021-11-12 电子科技大学长三角研究院(湖州) Copper indium selenium tellurium/cadmium sulfide core-shell structure quantum dot and preparation method thereof, and preparation method of photo-anode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113643902A (en) * 2021-08-11 2021-11-12 电子科技大学长三角研究院(湖州) Copper indium selenium tellurium/cadmium sulfide core-shell structure quantum dot and preparation method thereof, and preparation method of photo-anode
CN113643902B (en) * 2021-08-11 2023-01-20 电子科技大学长三角研究院(湖州) Copper indium selenium tellurium/cadmium sulfide core-shell structure quantum dot and preparation method thereof, and preparation method of photo-anode

Similar Documents

Publication Publication Date Title
Husain et al. A review of transparent solar photovoltaic technologies
Carella et al. Research progress on photosensitizers for DSSC
Kouhnavard et al. A review of semiconductor materials as sensitizers for quantum dot-sensitized solar cells
Błaszczyk Strategies to improve the performance of metal-free dye-sensitized solar cells
Gong et al. Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends
Kumar et al. Quantum-sized nanomaterials for solar cell applications
Grätzel Dye-sensitized solar cells
Ali et al. Advances in nanostructured thin film materials for solar cell applications
Jasim Dye sensitized solar cells-working principles, challenges and opportunities
Adedokun et al. Review on natural dye-sensitized solar cells (DSSCs)
Sharifi et al. Recent Developments in Dye‐Sensitized Solar Cells
Yum et al. Panchromatic engineering for dye-sensitized solar cells
Grätzel Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells
Bonomo et al. Beneficial effect of electron-withdrawing groups on the sensitizing action of squaraines for p-type dye-sensitized solar cells
Francis et al. Review of dye-sensitized solar cell (DSSCs) development
Liu et al. Fabrication of ZnO/CuS core/shell nanoarrays for inorganic–organic heterojunction solar cells
Kodati et al. A review of solar cell fundamentals and technologies
Bhuiyan et al. Effect of Combination of Natural Dyes and the Blocking Layer on the Performance of DSSC
González-García et al. Charge collection properties of dye-sensitized solar cells based on 1-dimensional TiO2 porous nanostructures and ionic-liquid electrolytes
US20130042906A1 (en) Quantum-dot sensitized solar cell
Yum et al. Panchromatic light harvesting by dye-and quantum dot-sensitized solar cells
Bhambhani Quantum dot-sensitized solar cells: a review
TWI500176B (en) Metal flexible dye-sensitized solar cell using double coating metal substrate and manufacturing method thereof
Baviskar et al. Dye-sensitized solar cells
TW201318181A (en) Solar cell and electrode and manufacturing method thereof