TW201318032A - Semiconductor device and method of forming epitaxial layer - Google Patents

Semiconductor device and method of forming epitaxial layer Download PDF

Info

Publication number
TW201318032A
TW201318032A TW100139566A TW100139566A TW201318032A TW 201318032 A TW201318032 A TW 201318032A TW 100139566 A TW100139566 A TW 100139566A TW 100139566 A TW100139566 A TW 100139566A TW 201318032 A TW201318032 A TW 201318032A
Authority
TW
Taiwan
Prior art keywords
epitaxial layer
thickness
epitaxial
equal
semiconductor substrate
Prior art date
Application number
TW100139566A
Other languages
Chinese (zh)
Other versions
TWI527088B (en
Inventor
Chin-I Liao
Teng-Chun Hsuan
Chin-Cheng Chien
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW100139566A priority Critical patent/TWI527088B/en
Publication of TW201318032A publication Critical patent/TW201318032A/en
Application granted granted Critical
Publication of TWI527088B publication Critical patent/TWI527088B/en

Links

Abstract

A semiconductor device includes a semiconductor substrate and a plurality of transistors. The semiconductor substrate includes at least an iso region (namely an open region) and at least a dense region. The transistors are disposed in the iso region and the dense region respectively. Each transistor includes at least a source/drain region. The source/drain region includes a first epitaxial layer having a bottom thickness and a side thickness, and the bottom thickness is substantially larger than or equal to the side thickness.

Description

半導體裝置及製作磊晶層的方法Semiconductor device and method of fabricating epitaxial layer

本發明係關於一種半導體裝置及其製作方法,尤指一種具有磊晶層的半導體裝置及其磊晶層的製作方法。The present invention relates to a semiconductor device and a method of fabricating the same, and more particularly to a semiconductor device having an epitaxial layer and a method of fabricating the epitaxial layer thereof.

隨著半導體朝向微細化尺寸之發展,電晶體的閘極、源極、汲極的尺寸也隨著特徵尺寸的減小而跟著不斷地縮小。但由於材料物理性質的限制,閘極、源極、汲極的尺寸減小會造成電晶體元件中決定電流大小的載子量減少,進而影響電晶體的效能。因此,提升載子遷移率以增加MOS電晶體之速度已成為目前半導體技術領域中之一大課題。As semiconductors move toward miniaturized sizes, the size of the gate, source, and drain of the transistor continues to shrink as the feature size decreases. However, due to the limitation of the physical properties of the material, the reduction of the size of the gate, the source and the drain may cause a decrease in the amount of the current-determining carrier in the transistor element, thereby affecting the performance of the transistor. Therefore, increasing the carrier mobility to increase the speed of the MOS transistor has become a major issue in the field of semiconductor technology.

在目前已知的技術中,可使用選擇性磊晶成長(selective epitaxial growth,SEG)製程形成應變矽層。例如於閘極形成之後,在源極/汲極預定區域形成一矽鍺磊晶層,其中矽的晶格常數為5.431埃(angstrom,A),鍺的晶格常數為5.646埃,藉由矽鍺磊晶層的晶格常數(lattice constant)比矽大,使得矽的帶結構(band structure)發生改變,而形成受壓擠的應變矽層。應變矽層有助於提供應力於PMOS電晶體之通道區,以改善其載子遷移率。In the currently known technique, a strained germanium layer can be formed using a selective epitaxial growth (SEG) process. For example, after the gate is formed, a germanium epitaxial layer is formed in a predetermined region of the source/drain, wherein the lattice constant of germanium is 5.431 angstroms (angstrom, A), and the lattice constant of germanium is 5.646 angstroms. The lattice constant of the germanium epitaxial layer is larger than that of the germanium, so that the band structure of the germanium changes, and the strained germanium layer is formed. The strained ruthenium layer helps to provide stress to the channel region of the PMOS transistor to improve its carrier mobility.

此外,由於目前電子產品需同時具有多種不同功能的元件區以符合消費者的多樣化需求,且各元件區因規格、特性等需求不同而具有不同的元件圖案密度(pattern density)。為降低微負荷效應(micro-loading effect)造成的製程變異性,可根據元件圖案密度分別進行相對應區域的半導體製程例如選擇性磊晶成長製程,然而,此作法將增加生產成本及時間。因此,如何克服微負荷效應以相同半導體製程同時完成具有不同圖案密度之元件區的元件實為相關技術者所欲改進之課題。In addition, since electronic products currently need to have a plurality of component regions of different functions at the same time to meet the diversified needs of consumers, and each component region has a different pattern density due to different specifications, characteristics, and the like. In order to reduce the process variability caused by the micro-loading effect, a semiconductor process such as a selective epitaxial growth process of a corresponding region may be separately performed according to the element pattern density, however, this method will increase the production cost and time. Therefore, how to overcome the micro-load effect and simultaneously complete the component regions having different pattern densities in the same semiconductor process is a problem that the related art desires to improve.

本發明之目的之一在於提供一種具有磊晶層的半導體裝置及其磊晶層的製作方法,以克服元件圖案密度造成的微負荷效應(micro-loading effect)引起之製程變異性。It is an object of the present invention to provide a semiconductor device having an epitaxial layer and a method of fabricating the epitaxial layer thereof to overcome process variability caused by a micro-loading effect caused by element pattern density.

本發明之一較佳實施例係提供一種製作磊晶層的方法,其步驟如下。提供一半導體基底,且半導體基底具有至少一凹槽。進行一第一選擇性磊晶成長(selective epitaxial growth,SEG)製程,於凹槽內形成一第一磊晶層,其中第一選擇性磊晶成長製程具有一操作壓力,且操作壓力係實質上小於或等於10托耳(torr)。A preferred embodiment of the present invention provides a method of making an epitaxial layer, the steps of which are as follows. A semiconductor substrate is provided and the semiconductor substrate has at least one recess. Performing a first selective epitaxial growth (SEG) process to form a first epitaxial layer in the recess, wherein the first selective epitaxial growth process has an operating pressure, and the operating pressure is substantially Less than or equal to 10 torr.

本發明之一較佳實施例係提供一種製作磊晶層的方法,其步驟如下。提供一半導體基底,且半導體基底具有至少一凹槽。進行一第一選擇性磊晶成長製程,於凹槽內形成一第一磊晶層,其中第一選擇性磊晶成長製程包括通入一氣體,該氣體包括二氯矽烷(Dichlorosilane,DCS)、鍺烷(GeH4)以及氯化氫(HCl)等,且二氯矽烷、鍺烷以及氯化氫等氣體具有一濃度比係(0.5-2.1):(1.5-3.3):1。A preferred embodiment of the present invention provides a method of making an epitaxial layer, the steps of which are as follows. A semiconductor substrate is provided and the semiconductor substrate has at least one recess. Performing a first selective epitaxial growth process to form a first epitaxial layer in the recess, wherein the first selective epitaxial growth process comprises introducing a gas, the gas comprising Dichlorosilane (DCS), Hydrane (GeH 4 ), hydrogen chloride (HCl), etc., and gases such as dichloromethane, decane, and hydrogen chloride have a concentration ratio (0.5-2.1): (1.5-3.3):1.

本發明之一較佳實施例係提供一種半導體裝置,包括一半導體基底以及複數個電晶體。半導體基底具有至少一寬疏區域(iso region)或稱為開放區域(open region),以及至少一密集區域(dense region)。複數個電晶體分別設置於寬疏區域及密集區域,且各電晶體包括至少一源極/汲極區,其中源極/汲極區均包括一具有一底部厚度以及一側邊厚度的第一磊晶層,且第一磊晶層之底部厚度係實質上大於或等於第一磊晶層之側邊厚度。A preferred embodiment of the present invention provides a semiconductor device including a semiconductor substrate and a plurality of transistors. The semiconductor substrate has at least one iso region or open region, and at least one dense region. A plurality of transistors are respectively disposed in the wide area and the dense area, and each of the transistors includes at least one source/drain region, wherein the source/drain regions each include a first portion having a bottom thickness and a side thickness The epitaxial layer, and the bottom thickness of the first epitaxial layer is substantially greater than or equal to the thickness of the side of the first epitaxial layer.

本發明提供一種低操作壓力的選擇性磊晶成長製程以於凹槽內形成底部厚度大於側邊厚度的磊晶層,並進一步將此低操作壓力的選擇性磊晶成長製程運用於半導體基底上具有不同圖案密度之複數個區域,以同時形成具有底部厚度係實質上大於或等於側邊厚度之結構特徵的磊晶層於凹槽中,避免微負荷效應造成的製程變異性,例如避免在寬疏區域的凹槽內形成底部厚度實質上小於側邊厚度的磊晶層,有助於提升半導體裝置電性表現的可靠度。The invention provides a selective epitaxial growth process with low operating pressure to form an epitaxial layer having a bottom thickness greater than a side thickness in the groove, and further applying the low operating pressure selective epitaxial growth process to the semiconductor substrate a plurality of regions having different pattern densities to simultaneously form an epitaxial layer having a structural feature having a bottom thickness substantially greater than or equal to the thickness of the side edges in the recess to avoid process variability caused by microloading effects, such as avoiding wide An epitaxial layer having a bottom thickness substantially smaller than the thickness of the side is formed in the groove of the sparse region, which contributes to improving the reliability of the electrical performance of the semiconductor device.

為使熟習本發明所屬技術領域之一般技藝者能更進一步了解本發明,下文特列舉本發明之較佳實施例,並配合所附圖式,詳細說明本發明的構成內容及所欲達成之功效。The present invention will be further understood by those of ordinary skill in the art to which the present invention pertains. .

請參考第1圖至第6圖。第1圖至第6圖繪示了本發明之第一較佳實施例之製作磊晶層的方法之示意圖。如第1圖所示,提供包括至少一凹槽12的一半導體基底10。半導體基底10可定義有複數個區域(圖未示)於其上,且各區域具有各自的元件密度(pattern density)。為簡化說明,現以形成具有任一元件密度的區域中之一電晶體為例。半導體基底10可包含例如一由砷化鎵、矽覆絕緣(SOI)層、磊晶層、矽鍺層或其他半導體基底材料所構成的基底。半導體基底10可另包括至少一閘極結構14以及至少一淺溝渠隔離16,且凹槽12位於閘極結構14與淺溝渠隔離16之間的主動區域中。閘極結構14包含有一閘極介電層18、一閘極導電層20設置於閘極介電層18上以及一蓋層22設置於閘極導電層20上。閘極介電層18可由利用熱氧化或沈積等製程所形成之矽氧化物、氮氧化物或介電常數大於4的高介電常數介電層等絕緣材料所構成。閘極導電層20可由多晶矽、金屬矽化物或具有特定功函數的金屬材料等導電材料所構成。選擇性形成的蓋層22可由氮化矽、氧化矽或氮氧化矽等介電材料所構成。淺溝渠隔離16可包含矽氧化物等絕緣材料。形成閘極結構14與淺溝渠隔離16的方法係為習知該項技藝者與通常知識者所熟知,在此不多加贅述。Please refer to Figures 1 to 6. 1 to 6 are schematic views showing a method of fabricating an epitaxial layer according to a first preferred embodiment of the present invention. As shown in FIG. 1, a semiconductor substrate 10 including at least one recess 12 is provided. The semiconductor substrate 10 can define a plurality of regions (not shown) thereon, and each region has a respective pattern density. To simplify the description, it is now exemplified to form a transistor in a region having any element density. The semiconductor substrate 10 can comprise, for example, a substrate comprised of a gallium arsenide, a blanket overlying (SOI) layer, an epitaxial layer, a germanium layer, or other semiconductor substrate material. The semiconductor substrate 10 can further include at least one gate structure 14 and at least one shallow trench isolation 16 and the recess 12 is located in the active region between the gate structure 14 and the shallow trench isolation 16. The gate structure 14 includes a gate dielectric layer 18, a gate conductive layer 20 disposed on the gate dielectric layer 18, and a cap layer 22 disposed on the gate conductive layer 20. The gate dielectric layer 18 may be formed of an insulating material such as tantalum oxide, oxynitride or a high-k dielectric layer having a dielectric constant greater than 4 formed by a process such as thermal oxidation or deposition. The gate conductive layer 20 may be composed of a conductive material such as polysilicon, metal halide or a metal material having a specific work function. The selectively formed cap layer 22 may be composed of a dielectric material such as tantalum nitride, hafnium oxide or hafnium oxynitride. The shallow trench isolation 16 may comprise an insulating material such as tantalum oxide. The method of forming the gate structure 14 and the shallow trench isolation 16 is well known to those skilled in the art and will not be further described herein.

而形成凹槽12的方法可包括下列步驟:首先,選擇性形成一第一側壁子24於各閘極結構14之側壁;之後,以已形成的閘極結構14與第一側壁子24作為遮罩進行一蝕刻製程,例如一非等向性之乾蝕刻製程,於閘極結構14之兩側的半導體基底10中形成凹槽12。此外,也可混合搭配乾、濕蝕刻製程以形成各種形狀如桶形(邊較直的形狀)、六角形、多角形的凹槽12,在後續製程中,形成於此類形狀之凹槽12中的磊晶層將可對通道區提供更大的應力。其中,第一側壁子24之材料可包括氧化矽或氮化矽等單一薄膜層或複合薄膜層結構,而第一側壁子24可作為一種臨時性的側壁子(disposable spacer),因此第一側壁子24在選擇性磊晶生長製程完成後會被選擇性地部分或完全移除,但不以此為限。The method of forming the recess 12 may include the following steps: first, selectively forming a first sidewall 24 on the sidewall of each gate structure 14; thereafter, using the formed gate structure 14 and the first sidewall spacer 24 as a mask The mask is subjected to an etching process, such as an anisotropic dry etching process, in which the recesses 12 are formed in the semiconductor substrate 10 on both sides of the gate structure 14. In addition, a dry and wet etching process may be mixed to form various shapes such as a barrel shape (a straight shape), a hexagonal shape, and a polygonal groove 12, which are formed in the groove 12 of such a shape in a subsequent process. The epitaxial layer in the layer will provide greater stress to the channel region. The material of the first sidewall 24 may include a single film layer or a composite film layer structure such as yttrium oxide or tantalum nitride, and the first sidewall 24 may serve as a temporary spacer spacer, and thus the first sidewall The sub- 24 is selectively partially or completely removed after the selective epitaxial growth process is completed, but is not limited thereto.

為形成品質較佳的磊晶層於凹槽12中,在進行後續的磊晶層製程前,可另先進行一預清洗(pre-clean)步驟,例如利用稀釋氫氟酸水溶液、或含有硫酸、過氧化氫、與去離子水的SPM混合溶液等清洗液以去除凹槽12表面之不純物質例如原生氧化物(native oxide)層。此外,可再進行一預烤步驟(pre-bake),例如在通入氫氣的腔室中加熱半導體基底10,以清除凹槽12表面之原生氧化物層或殘留的清洗液。In order to form a better quality epitaxial layer in the recess 12, a pre-clean step may be performed before the subsequent epitaxial layer process, for example, by diluting a hydrofluoric acid aqueous solution or containing sulfuric acid. A cleaning solution such as hydrogen peroxide or a SPM mixed solution of deionized water to remove an impurity such as a native oxide layer on the surface of the groove 12. In addition, a pre-bake may be performed, such as heating the semiconductor substrate 10 in a chamber in which hydrogen is introduced to remove the native oxide layer or residual cleaning liquid on the surface of the recess 12.

如第2圖所示,進行一第一選擇性磊晶成長(selective epitaxial growth,SEG)製程,於凹槽12表面形成一第一磊晶層26。本較佳實施例之第一選擇性磊晶成長製程包括一操作壓力,且操作壓力係實質上小於或等於10托耳(torr)。例如在操作壓力實質上小於或等於10托耳的腔室中,通入一氣體包括二氯矽烷(Dichlorosilane,DCS)、鍺烷(GeH4)以及氯化氫(HCl)等以形成第一磊晶層26於凹槽12內,使得第一磊晶層26包含有晶格常數不同於半導體基底10之晶格常數的一第一材料,例如包括矽鍺(SiGe)。其中,二氯矽烷(DCS)係為矽源材料氣體,鍺烷(GeH4)係為鍺源材料氣體,而二氯矽烷之濃度比例與鍺烷之濃度比例可決定第一材料所包含之一第一鍺(Ge)濃度,較佳者,二氯矽烷之濃度比例係實質上小於鍺烷之濃度比例。此外,氯化氫係用來協助第一磊晶層的選擇性形成,以使矽鍺磊晶層只形成於凹槽12表面之矽基底上,而不形成於氧化物或氮化矽等材料構成的淺溝渠隔離16或第一側壁子24上。較佳者,氯化氫之濃度比例係實質上介於二氯矽烷之濃度比例與鍺烷之濃度比例之間。在形成第一磊晶層26的混合氣體中,二氯矽烷、鍺烷以及氯化氫等氣體之濃度比可為(0.5-2.1):(1.5-3.3):1,以形成具有第一鍺濃度係介於20%至30%的第一磊晶層26。例如在本實施例中,二氯矽烷、鍺烷以及氯化氫等氣體之較佳濃度比係0.97:2.2:1,以形成具有第一鍺濃度係25%的第一磊晶層26,但不以此為限。As shown in FIG. 2, a first selective epitaxial growth (SEG) process is performed to form a first epitaxial layer 26 on the surface of the recess 12. The first selective epitaxial growth process of the preferred embodiment includes an operating pressure and the operating pressure is substantially less than or equal to 10 torr. For example, in a chamber having an operating pressure substantially less than or equal to 10 Torr, a gas including Dichlorosilane (DCS), decane (GeH 4 ), and hydrogen chloride (HCl) is introduced to form a first epitaxial layer. 26 is within the recess 12 such that the first epitaxial layer 26 comprises a first material having a lattice constant different from the lattice constant of the semiconductor substrate 10, for example including germanium (SiGe). Among them, dichlorosilane (DCS) is a helium source material gas, decane (GeH 4 ) is a source material gas, and the concentration ratio of dichlorosilane to the concentration of decane can determine one of the first materials. The first enthalpy (Ge) concentration, preferably, the concentration ratio of chlorin is substantially less than the concentration ratio of decane. In addition, hydrogen chloride is used to assist in the selective formation of the first epitaxial layer, so that the germanium epitaxial layer is formed only on the germanium substrate on the surface of the recess 12, and is not formed of a material such as oxide or tantalum nitride. The shallow trench isolation 16 or the first sidewall sub-section 24. Preferably, the concentration ratio of hydrogen chloride is substantially between the concentration ratio of dichlorosilane and the concentration ratio of decane. In the mixed gas forming the first epitaxial layer 26, the concentration ratio of the gas such as dichloromethane, decane, and hydrogen chloride may be (0.5 - 2.1): (1.5 - 3.3): 1 to form the first ruthenium concentration system. The first epitaxial layer 26 is between 20% and 30%. For example, in the present embodiment, a preferred concentration ratio of a gas such as dichloromethane, decane, and hydrogen chloride is 0.97:2.2:1 to form a first epitaxial layer 26 having a first concentration of 25%, but not This is limited.

值得注意的是,本較佳實施例之第一磊晶層26包括一底部厚度t1以及一側邊厚度t2,且第一磊晶層26之底部厚度t1係實質上小於凹槽12之一深度h1,也就是說,第一磊晶層26未完全填滿凹槽12。另外,第一磊晶層26之底部厚度t1係實質上大於或等於第一磊晶層26之側邊厚度t2,亦即底部厚度t1與側邊厚度t2之比值係實質上大於或等於1,換句話說,形成於凹槽12底面上的第一磊晶層26之厚度係實質上大於或等於形成於凹槽12側壁上的第一磊晶層26之厚度。在本實施例中,底部厚度t1與側邊厚度t2之比值較佳係實質上大於或等於1.4。It should be noted that the first epitaxial layer 26 of the preferred embodiment includes a bottom thickness t1 and a side edge thickness t2, and the bottom thickness t1 of the first epitaxial layer 26 is substantially smaller than the depth of the groove 12. H1, that is, the first epitaxial layer 26 does not completely fill the recess 12. In addition, the bottom thickness t1 of the first epitaxial layer 26 is substantially greater than or equal to the side thickness t2 of the first epitaxial layer 26, that is, the ratio of the bottom thickness t1 to the side thickness t2 is substantially greater than or equal to 1, In other words, the thickness of the first epitaxial layer 26 formed on the bottom surface of the recess 12 is substantially greater than or equal to the thickness of the first epitaxial layer 26 formed on the sidewall of the recess 12. In the present embodiment, the ratio of the bottom thickness t1 to the side thickness t2 is preferably substantially greater than or equal to 1.4.

如第3圖所示,接下來,進行一第二選擇性磊晶成長製程,於第一磊晶層26上形成一第二磊晶層28。本較佳實施例之第二選擇性磊晶成長製程包括一操作壓力,且操作壓力係實質上介於1托耳與10托耳之間。例如同樣通入二氯矽烷、鍺烷以及氯化氫等氣體至形成第一磊晶層26時所用的同一腔室中以形成第二磊晶層28於第一磊晶層26上。其中,第二磊晶層28包含有晶格常數不同於半導體基底10之晶格常數的一第二材料,例如包括矽鍺,且第二磊晶層28之第二材料的一第二鍺濃度係實質上大於第一磊晶層26之第一材料的第一鍺濃度,例如具有第二鍺濃度36%的第二磊晶層28。進而使第二磊晶層28可用以提供閘極結構14下方之通道區29的應力。As shown in FIG. 3, next, a second selective epitaxial growth process is performed to form a second epitaxial layer 28 on the first epitaxial layer 26. The second selective epitaxial growth process of the preferred embodiment includes an operating pressure and the operating pressure is substantially between 1 and 10 torr. For example, a gas such as methylene chloride, decane or hydrogen chloride is introduced into the same chamber used to form the first epitaxial layer 26 to form a second epitaxial layer 28 on the first epitaxial layer 26. The second epitaxial layer 28 includes a second material having a lattice constant different from the lattice constant of the semiconductor substrate 10, for example, including germanium, and a second germanium concentration of the second material of the second epitaxial layer 28. The first germanium concentration is substantially greater than the first germanium concentration of the first material of the first epitaxial layer 26, such as the second epitaxial layer 28 having a second germanium concentration of 36%. The second epitaxial layer 28 is then made available to provide stress to the channel region 29 below the gate structure 14.

此外,如第4圖所示,第二選擇性磊晶成長製程亦可為現場同時摻雜(in-situ doped)離子磊晶成長製程,因此,當形成第二磊晶層28時,亦可以同時於第二磊晶層28中摻雜所需的導電型摻質,以形成相對應的一源極/汲極摻雜區30。在本實施例中,第二選擇性磊晶成長製程可為一現場同時摻雜硼離子磊晶成長製程,例如後續欲形成的電晶體為PMOS電晶體時,當形成含矽鍺之第二磊晶層28時,同時於第二磊晶層28中植入所需的硼離子,以作為相對應的源極/汲極摻雜區30,此外,也可選擇性另進行一退火製程以活化源極/汲極摻雜區30。In addition, as shown in FIG. 4, the second selective epitaxial growth process may also be an in-situ doped ion epitaxial growth process. Therefore, when the second epitaxial layer 28 is formed, At the same time, the second epitaxial layer 28 is doped with a desired conductivity type dopant to form a corresponding source/drain doping region 30. In this embodiment, the second selective epitaxial growth process may be a field-doping boron ion epitaxial growth process, for example, when the transistor to be formed is a PMOS transistor, when forming a second barium containing germanium In the case of the seed layer 28, the desired boron ions are simultaneously implanted in the second epitaxial layer 28 to serve as the corresponding source/drain doping region 30. Alternatively, an annealing process may be selectively performed to activate Source/drain doping region 30.

值得注意的是,第一磊晶層26與第二磊晶層28較佳係包含相同種類的材料例如矽鍺磊晶層,但具有不同的成分比例,例如第二磊晶層28的鍺濃度實質上大於第一磊晶層26的鍺濃度。此外,第二磊晶層28包括導電型摻質例如硼離子,而第一磊晶層26較佳不包括導電型摻質,第一磊晶層26設置於第二磊晶層28與半導體基底10之間,以避免第二磊晶層28的導電型摻質藉由磊晶層與半導體基底10之間的晶格錯位(dislocation)而直接擴散至半導體基底10,造成後續形成的電晶體32之漏電等異常電性表現。另外,本實施例之第一選擇性磊晶成長製程的操作壓力係實質上小於或等於10托耳,與另一實施例之第一選擇性磊晶成長製程的操作壓力係實質上等於50托耳相比,本實施例之第二磊晶層28的一體積係實質上大於另一實施例之第二磊晶層28的一體積,也就是說,本發明之第二磊晶層28可直接提供通道區29較大的應力。另外,第二磊晶層28可高於、等於或低於半導體基底10表面。It should be noted that the first epitaxial layer 26 and the second epitaxial layer 28 preferably comprise the same kind of material, such as a germanium epitaxial layer, but have different composition ratios, such as the germanium concentration of the second epitaxial layer 28. It is substantially larger than the germanium concentration of the first epitaxial layer 26. In addition, the second epitaxial layer 28 includes a conductive dopant such as boron ions, and the first epitaxial layer 26 preferably does not include a conductive dopant, and the first epitaxial layer 26 is disposed on the second epitaxial layer 28 and the semiconductor substrate. 10, to avoid the conductive type dopant of the second epitaxial layer 28 being directly diffused to the semiconductor substrate 10 by lattice dislocation between the epitaxial layer and the semiconductor substrate 10, resulting in the subsequently formed transistor 32. Abnormal electrical performance such as leakage. In addition, the operating pressure of the first selective epitaxial growth process of the embodiment is substantially less than or equal to 10 Torr, and the operating pressure of the first selective epitaxial growth process of another embodiment is substantially equal to 50 Torr. Compared with the ear, a volume of the second epitaxial layer 28 of the embodiment is substantially larger than a volume of the second epitaxial layer 28 of the other embodiment, that is, the second epitaxial layer 28 of the present invention can be Directly providing greater stress in the channel region 29. Additionally, the second epitaxial layer 28 can be higher, equal to, or lower than the surface of the semiconductor substrate 10.

之後,如第5圖所示,進行一第三選擇性磊晶成長製程,於第二磊晶層28上形成一第三磊晶層36。本較佳實施例之第三選擇性磊晶成長製程包括一操作壓力,且操作壓力係實質上介於1托耳與10托耳之間。例如第三選擇性磊晶成長製程可在形成第一磊晶層26、第二磊晶層28時所使用的同一腔室中進行,且關閉鍺烷等之鍺源氣體,以單獨通入二氯矽烷等之矽源氣體至腔室中以形成第三磊晶層36於第二磊晶層28上。Thereafter, as shown in FIG. 5, a third selective epitaxial growth process is performed to form a third epitaxial layer 36 on the second epitaxial layer 28. The third selective epitaxial growth process of the preferred embodiment includes an operating pressure and the operating pressure is substantially between 1 and 10 torr. For example, the third selective epitaxial growth process can be performed in the same chamber used to form the first epitaxial layer 26 and the second epitaxial layer 28, and the germanium source gas such as decane is turned off to separately enter the second A source gas of chlorodecane or the like is introduced into the chamber to form a third epitaxial layer 36 on the second epitaxial layer 28.

隨後如第6圖所示,在完成第三選擇性磊晶成長製程後,可選擇性完全去除或部分去除第一側壁子24後,再形成一第二側壁子34。第二側壁子34可為單一層或多層結構,或可包括襯層(liner)等一起組成。第二側壁子34之材料可包括高溫氧化矽層(high temperature oxide,HTO)、氮化矽、氧化矽或使用六氯二矽烷(hexachlorodisilane,Si2Cl6)形成的氮化矽(HCD-SiN),但不以此為限。在本實施例中,第二側壁子34未重疊第三磊晶層36,但不以此為限,第二側壁子34也可跨設在第三磊晶層36上,亦即部分重疊第三磊晶層36。最後再對第三磊晶層36進行一自行對準金屬矽化物(salicide)的製程,至此完成一電晶體32。由於第三磊晶層36之材料為磊晶矽,因此第三磊晶層36可覆蓋第二磊晶層28表面之缺陷,確保在後續進行自行對準金屬矽化物(salicide)的製程時,能正確形成金屬矽化物層於第三磊晶層36上。Then, as shown in FIG. 6, after the third selective epitaxial growth process is completed, the first sidewall spacers 24 are selectively removed or partially removed, and then a second sidewall spacer 34 is formed. The second side wall sub- 34 may be a single layer or a multi-layer structure, or may include a liner or the like. The material of the second sidewall 34 may include a high temperature oxide (HTO), tantalum nitride, hafnium oxide or tantalum nitride (HCD-SiN) formed using hexachlorodisilane (Si 2 Cl 6 ). ), but not limited to this. In this embodiment, the second sidewall sub-layer 34 does not overlap the third epitaxial layer 36, but not limited thereto, the second sidewall sub-34 may also be disposed on the third epitaxial layer 36, that is, partially overlapped. Three epitaxial layer 36. Finally, the third epitaxial layer 36 is subjected to a self-aligned metal salicide process, and a transistor 32 is thus completed. Since the material of the third epitaxial layer 36 is epitaxial germanium, the third epitaxial layer 36 can cover the defects of the surface of the second epitaxial layer 28, ensuring a subsequent process of self-aligning the salicide. The metal telluride layer can be formed correctly on the third epitaxial layer 36.

此外,源極/汲極摻雜製程及選擇性磊晶成長製程施行的順序,可依電晶體之設計需求而調整。例如在一較佳實施例中,可以閘極結構14及第二側壁子34作為遮罩,對第二磊晶層28與第三磊晶層36進行一離子佈植製程及退火製程,以形成源極/汲極摻雜區30。而在另一較佳實施例中,更可於形成於凹槽12之前,即對半導體基底10進行一離子佈植製程,然後再進行各選擇性磊晶成長製程以形成源極/汲極摻雜區30。In addition, the order of the source/drain doping process and the selective epitaxial growth process can be adjusted according to the design requirements of the transistor. For example, in a preferred embodiment, the gate structure 14 and the second sidewall 34 can be used as a mask, and the second epitaxial layer 28 and the third epitaxial layer 36 are subjected to an ion implantation process and an annealing process to form a mask. Source/drain doping region 30. In another preferred embodiment, before the recess 12 is formed, an ion implantation process is performed on the semiconductor substrate 10, and then each selective epitaxial growth process is performed to form a source/drain doping. Miscellaneous area 30.

本發明也適用於非平面式電晶體。請參考第7圖至第9圖。第7圖至第9圖繪示了本發明之第二較佳實施例之製作磊晶層的方法之示意圖。如第7圖所示,首先提供具有至少一鰭狀結構38的半導體基底10。半導體基底10包括複數個鰭狀結構38以及淺溝渠隔離16。鰭狀結構38之材質包含例如砷化鎵、矽覆絕緣(SOI)層、磊晶層、矽鍺層或其他半導體材料。淺溝渠隔離16可由介電材料填滿且設置於鰭狀結構38之間或由矽覆絕緣(SOI)之底氧化層所構成。The invention is also applicable to non-planar transistors. Please refer to Figures 7 to 9. 7 to 9 are schematic views showing a method of fabricating an epitaxial layer according to a second preferred embodiment of the present invention. As shown in FIG. 7, a semiconductor substrate 10 having at least one fin structure 38 is first provided. The semiconductor substrate 10 includes a plurality of fin structures 38 and shallow trench isolations 16. The material of the fin structure 38 includes, for example, gallium arsenide, a blanket insulating (SOI) layer, an epitaxial layer, a germanium layer, or other semiconductor material. The shallow trench isolation 16 may be filled with a dielectric material and disposed between the fin structures 38 or a bottom oxide layer of a SOI.

接著形成至少一閘極結構14部分覆蓋鰭狀結構38,並選擇性形成第一側壁子24於閘極結構14的側壁,其中閘極結構14之延伸方向係與鰭狀結構38之延伸方向交錯。如第8圖所示,以一圖案化光阻層(圖未示)作為遮罩進行一蝕刻製程,例如一非等向性之乾蝕刻製程,去除部分鰭狀結構,以形成凹槽12於閘極結構14之兩側的鰭狀結構38中。如第9圖所示,接著依序進行上述之第一選擇性磊晶成長製程、第二選擇性磊晶成長製程以及第三選擇性磊晶成長製程,以形成上述之第一磊晶層26、第二磊晶層28與第三磊晶層36於凹槽12中,其中第一選擇性磊晶成長製程之操作壓力實質上小於或等於10托耳,因此形成的第一磊晶層26具有底部厚度t1係實質上大於或等於其側邊厚度t2。此外,可搭配離子植入製程使第二磊晶層28包括有源極/汲極摻雜區30。Then, at least one gate structure 14 is formed to partially cover the fin structure 38, and the first sidewall portion 24 is selectively formed on the sidewall of the gate structure 14, wherein the extension direction of the gate structure 14 is staggered with the extending direction of the fin structure 38. . As shown in FIG. 8, an etching process is performed by using a patterned photoresist layer (not shown) as a mask, for example, an anisotropic dry etching process to remove a portion of the fin structure to form the recess 12 In the fin structure 38 on both sides of the gate structure 14. As shown in FIG. 9, the first selective epitaxial growth process, the second selective epitaxial growth process, and the third selective epitaxial growth process are sequentially performed to form the first epitaxial layer 26 described above. The second epitaxial layer 28 and the third epitaxial layer 36 are in the recess 12, wherein the operating pressure of the first selective epitaxial growth process is substantially less than or equal to 10 Torr, and thus the first epitaxial layer 26 is formed. The bottom thickness t1 is substantially greater than or equal to its side thickness t2. In addition, the second epitaxial layer 28 can be included with the source/drain doping region 30 in conjunction with an ion implantation process.

請參考第10圖。第10圖繪示了本發明之一較佳實施例之半導體裝置的示意圖。如第10圖所示,半導體基底10包含有不同元件圖案密度(pattern density)的至少一寬疏區域(iso region) 42或稱為開放區域(open region),以及至少一密集區域(dense region) 44,以及複數個電晶體46/48分別設置於寬疏區域42及密集區域44中。各電晶體46/48包括至少一閘極結構50/52以及至少一源極/汲極區54/56,且源極/汲極區54/56分別設置於閘極結構50/52之兩側的半導體基底10中。在本實施例中,源極/汲極區54之開口寬度係實質上等於源極/汲極區56之開口寬度,但不以此為限,源極/汲極區54之開口寬度也可實質上大於或小於源極/汲極區56之開口寬度,此外,本發明也適用於定義在相同元件圖案密度的區域中,具有不同開口寬度的源極/汲極區,例如本發明適用於在寬疏區域42中各自具有不同開口寬度的複數個源極/汲極區54。各閘極結構50/52包含有一閘極介電層18、一閘極導電層20設置於閘極介電層18上以及一蓋層22設置於閘極導電層20上。閘極介電層18可由利用熱氧化或沈積等製程所形成之矽氧化物、氮氧化物或介電常數大於4的高介電常數介電層等絕緣材料所構成。閘極導電層20可由多晶矽、金屬矽化物或具有特定功函數的金屬材料等導電材料所構成。選擇性形成的蓋層22可由氮化矽、氧化矽或氮氧化矽等介電材料所構成。第一側壁子24選擇性設置於閘極結構50/52之側壁。源極/汲極區54/56均包括以上述之第一選擇性磊晶成長製程、第二選擇性磊晶成長製程以及第三選擇性磊晶成長製程形成的一第一磊晶層26、一第二磊晶層28以及一第三磊晶層36,且寬疏區域42中源極/汲極區54之分佈密度實質上小於密集區域44中源極/汲極區56之分佈密度。Please refer to Figure 10. Figure 10 is a schematic view of a semiconductor device in accordance with a preferred embodiment of the present invention. As shown in FIG. 10, the semiconductor substrate 10 includes at least one iso region 42 or an open region, and at least one dense region, having different element pattern densities. 44, and a plurality of transistors 46/48 are disposed in the wide area 42 and the dense area 44, respectively. Each of the transistors 46/48 includes at least one gate structure 50/52 and at least one source/drain region 54/56, and the source/drain regions 54/56 are respectively disposed on both sides of the gate structure 50/52. In the semiconductor substrate 10. In the present embodiment, the opening width of the source/drain region 54 is substantially equal to the opening width of the source/drain region 56, but not limited thereto, the opening width of the source/drain region 54 may also be It is substantially larger or smaller than the opening width of the source/drain region 56. Furthermore, the present invention is also applicable to source/drain regions having different opening widths in regions of the same element pattern density, for example, the present invention is applicable to A plurality of source/drain regions 54 each having a different opening width in the wide region 42 are provided. Each of the gate structures 50/52 includes a gate dielectric layer 18, a gate conductive layer 20 disposed on the gate dielectric layer 18, and a cap layer 22 disposed on the gate conductive layer 20. The gate dielectric layer 18 may be formed of an insulating material such as tantalum oxide, oxynitride or a high-k dielectric layer having a dielectric constant greater than 4 formed by a process such as thermal oxidation or deposition. The gate conductive layer 20 may be composed of a conductive material such as polysilicon, metal halide or a metal material having a specific work function. The selectively formed cap layer 22 may be composed of a dielectric material such as tantalum nitride, hafnium oxide or hafnium oxynitride. The first sidewalls 24 are selectively disposed on sidewalls of the gate structures 50/52. The source/drain regions 54/56 each include a first epitaxial layer 26 formed by the first selective epitaxial growth process, the second selective epitaxial growth process, and the third selective epitaxial growth process. A second epitaxial layer 28 and a third epitaxial layer 36, and the distribution density of the source/drain regions 54 in the wide region 42 is substantially smaller than the distribution density of the source/drain regions 56 in the dense region 44.

本較佳實施例之第一選擇性磊晶成長製程包括一操作壓力,且操作壓力係實質上小於或等於10托耳(torr),使得寬疏區域42與密集區域44中的第一磊晶層26均分別具有一底部厚度t3/t5以及一側邊厚度t4/t6,且各底部厚度t3/t5係實質上大於或等於相對應的各側邊厚度t4/t6,也就是說,在各區域中各底部厚度與各側邊厚度之比值,亦即t3/t4與t5/t6,均係實質上大於或等於1,較佳係實質上大於或等於1.4。第二磊晶層28設置於第一磊晶層26上,第一磊晶層26與第二磊晶層28分別包含有晶格常數不同於半導體基底10之晶格常數的一第一材料與一第二材料,且第一材料與第二材料均係包括矽鍺,其中第一材料之一第一鍺濃度係實質上小於第二材料之一第二鍺濃度。第三磊晶層36設置於第二磊晶層28上,且第三磊晶層36之材料包括矽。The first selective epitaxial growth process of the preferred embodiment includes an operating pressure, and the operating pressure is substantially less than or equal to 10 torr, such that the first epitaxial region in the wide region 42 and the dense region 44 The layers 26 each have a bottom thickness t3/t5 and a side edge thickness t4/t6, and each bottom thickness t3/t5 is substantially greater than or equal to the corresponding side thickness t4/t6, that is, in each The ratio of the thickness of each bottom portion to the thickness of each side in the region, that is, t3/t4 and t5/t6, is substantially greater than or equal to 1, preferably substantially greater than or equal to 1.4. The second epitaxial layer 28 is disposed on the first epitaxial layer 26, and the first epitaxial layer 26 and the second epitaxial layer 28 respectively comprise a first material having a lattice constant different from the lattice constant of the semiconductor substrate 10. A second material, and both the first material and the second material comprise ruthenium, wherein the first ruthenium concentration of one of the first materials is substantially less than the second ruthenium concentration of one of the second materials. The third epitaxial layer 36 is disposed on the second epitaxial layer 28, and the material of the third epitaxial layer 36 includes germanium.

值得注意的是,第一磊晶層26較佳係不包括導電型摻質,而第二磊晶層28包括對應於電晶體46/48類型之導電型摻質包括N型摻質或P型摻質,例如P型電晶體中第二磊晶層28具有硼離子,也就是說,部分第二磊晶層28可作為源極/汲極摻雜區。第一磊晶層26設置於第二磊晶層28與半導體基底10之間,使第二磊晶層28不直接接觸半導體基底10,以避免第二磊晶層28的導電型摻質藉由磊晶層與半導體基底10之間的晶格錯位(dislocation)而直接擴散至半導體基底10,造成後續形成的電晶體46/48之漏電等異常電性表現。由於本較佳實施例之第一選擇性磊晶成長製程的操作壓力係實質上小於或等於10托耳(torr),即使寬疏區域42及密集區域44分別具有不同的源極/汲極區54/56之分佈密度,也就是說,寬疏區域42及密集區域44分別具有不同的源極/汲極區54/56之間距,各第一磊晶層26之底部厚度t3/t5仍均實質上大於各第一磊晶層26之側邊厚度t4/t6,以克服習知技術中寬疏區域的第一磊晶層之底部厚度小於第一磊晶層之側邊厚度等問題,使本發明之第一磊晶層26可提供不受微負荷效應(micro-loading effect)影響的較佳阻隔效果。It should be noted that the first epitaxial layer 26 preferably does not include a conductive type dopant, and the second epitaxial layer 28 includes a conductive type dopant corresponding to the type of the transistor 46/48, including an N-type dopant or a P-type. In the dopant, for example, the second epitaxial layer 28 in the P-type transistor has boron ions, that is, a portion of the second epitaxial layer 28 can serve as a source/drain doping region. The first epitaxial layer 26 is disposed between the second epitaxial layer 28 and the semiconductor substrate 10 such that the second epitaxial layer 28 does not directly contact the semiconductor substrate 10 to prevent the conductive dopant of the second epitaxial layer 28 from being used. The lattice dislocation between the epitaxial layer and the semiconductor substrate 10 directly diffuses to the semiconductor substrate 10, causing abnormal electrical performance such as leakage of the subsequently formed transistor 46/48. Since the operating pressure of the first selective epitaxial growth process of the preferred embodiment is substantially less than or equal to 10 torr, even if the wide region 42 and the dense region 44 have different source/drain regions, respectively. The distribution density of 54/56, that is, the wide area 42 and the dense area 44 have different source/drain regions 54/56, respectively, and the bottom thickness t3/t5 of each first epitaxial layer 26 is still The thickness of the side of the first epitaxial layer is substantially smaller than the thickness t4/t6 of the first epitaxial layer 26 to overcome the problem that the thickness of the bottom of the first epitaxial layer in the widened region is smaller than the thickness of the side of the first epitaxial layer. The first epitaxial layer 26 of the present invention provides a better barrier effect that is unaffected by the micro-loading effect.

綜上所述,本發明提供一種低操作壓力的選擇性磊晶成長製程以於凹槽內形成底部厚度大於側邊厚度的磊晶層,並進一步將此低操作壓力的選擇性磊晶成長製程運用於半導體基底上具有不同圖案密度之複數個區域,以同時形成具有底部厚度係實質上大於或等於側邊厚度之結構特徵的磊晶層於凹槽中,避免微負荷效應造成的製程變異性,例如避免在寬疏區域的凹槽內形成底部厚度實質上小於側邊厚度的磊晶層,有助於提升半導體裝置電性表現的可靠度。In summary, the present invention provides a selective epitaxial growth process with low operating pressure to form an epitaxial layer having a bottom thickness greater than the thickness of the side in the recess, and further performing the selective epitaxial growth process of the low operating pressure. Applying a plurality of regions having different pattern densities on a semiconductor substrate to simultaneously form an epitaxial layer having a structural feature having a bottom thickness substantially greater than or equal to the thickness of the sidewalls in the recess to avoid process variability caused by microloading effects For example, it is avoided to form an epitaxial layer having a bottom thickness substantially smaller than the thickness of the side in the groove of the wide area, which contributes to improving the reliability of the electrical performance of the semiconductor device.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

10...基底10. . . Base

12...凹槽12. . . Groove

14...閘極結構14. . . Gate structure

16...淺溝渠隔離16. . . Shallow trench isolation

18...閘極介電層18. . . Gate dielectric layer

20...閘極導電層20. . . Gate conductive layer

22...蓋層twenty two. . . Cover

24...第一側壁子twenty four. . . First side wall

26...第一磊晶層26. . . First epitaxial layer

28...第二磊晶層28. . . Second epitaxial layer

29...通道區29. . . Channel area

30...源極/汲極摻雜區30. . . Source/drain-doped region

32...電晶體32. . . Transistor

34...第二側壁子34. . . Second side wall

36...第三磊晶層36. . . Third epitaxial layer

38...鰭狀結構38. . . Fin structure

42...寬疏區域42. . . Wide area

44...密集區域44. . . Dense area

46...電晶體46. . . Transistor

48...電晶體48. . . Transistor

50...閘極結構50. . . Gate structure

52...閘極結構52. . . Gate structure

54...源極/汲極區54. . . Source/bungee area

56...源極/汲極區56. . . Source/bungee area

h1...深度H1. . . depth

t1,t3,t5...底部厚度T1, t3, t5. . . Bottom thickness

t2,t4,t6...側邊厚度T2, t4, t6. . . Side thickness

第1圖至第6圖繪示了本發明之第一較佳實施例之製作磊晶層的方法之示意圖。1 to 6 are schematic views showing a method of fabricating an epitaxial layer according to a first preferred embodiment of the present invention.

第7圖至第9圖繪示了本發明之第二較佳實施例之製作磊晶層的方法之示意圖。7 to 9 are schematic views showing a method of fabricating an epitaxial layer according to a second preferred embodiment of the present invention.

第10圖繪示了本發明之一較佳實施例之半導體裝置的示意圖。Figure 10 is a schematic view of a semiconductor device in accordance with a preferred embodiment of the present invention.

10...基底10. . . Base

16...淺溝渠隔離16. . . Shallow trench isolation

18...閘極介電層18. . . Gate dielectric layer

20...閘極導電層20. . . Gate conductive layer

22...蓋層twenty two. . . Cover

24...第一側壁子twenty four. . . First side wall

26...第一磊晶層26. . . First epitaxial layer

28...第二磊晶層28. . . Second epitaxial layer

29...通道區29. . . Channel area

30...源極/汲極摻雜區30. . . Source/drain-doped region

36...第三磊晶層36. . . Third epitaxial layer

Claims (29)

一種製作磊晶層的方法,包括:提供一半導體基底,且該半導體基底包括至少一凹槽;以及進行一第一選擇性磊晶成長(selective epitaxial growth,SEG)製程,於該凹槽內形成一第一磊晶層,其中該第一選擇性磊晶成長製程包括一操作壓力,且該操作壓力係實質上小於或等於10托耳(torr)。A method of fabricating an epitaxial layer, comprising: providing a semiconductor substrate, wherein the semiconductor substrate includes at least one recess; and performing a first selective epitaxial growth (SEG) process to form in the recess A first epitaxial layer, wherein the first selective epitaxial growth process comprises an operating pressure, and the operating pressure is substantially less than or equal to 10 torr. 如請求項1所述之製作磊晶層的方法,其中該第一磊晶層包括一底部厚度以及一側邊厚度。The method of fabricating an epitaxial layer according to claim 1, wherein the first epitaxial layer comprises a bottom thickness and a side edge thickness. 如請求項2所述之製作磊晶層的方法,其中該第一磊晶層之該底部厚度係實質上小於該凹槽之一深度。The method of fabricating an epitaxial layer according to claim 2, wherein the bottom thickness of the first epitaxial layer is substantially smaller than a depth of the recess. 如請求項2所述之製作磊晶層的方法,其中該底部厚度係實質上大於或等於該側邊厚度,且該底部厚度與該側邊厚度之比值係實質上大於或等於1。The method of fabricating an epitaxial layer according to claim 2, wherein the bottom thickness is substantially greater than or equal to the thickness of the side, and the ratio of the thickness of the bottom to the thickness of the side is substantially greater than or equal to one. 如請求項4所述之製作磊晶層的方法,其中該底部厚度與該側邊厚度之比值係實質上大於或等於1.4。The method of producing an epitaxial layer according to claim 4, wherein the ratio of the thickness of the bottom portion to the thickness of the side portion is substantially greater than or equal to 1.4. 如請求項1所述之製作磊晶層的方法,其中進行該第一選擇性磊晶成長製程時,係通入一氣體包括二氯矽烷(Dichlorosilane,DCS)、鍺烷(GeH4)以及氯化氫(HCl)等。The method for producing an epitaxial layer according to claim 1, wherein when the first selective epitaxial growth process is performed, a gas including dichlorosilane (DCS), decane (GeH 4 ), and hydrogen chloride is introduced. (HCl) and the like. 如請求項6所述之製作磊晶層的方法,其中該二氯矽烷之一濃度比例係實質上小於該鍺烷之一濃度比例。The method of producing an epitaxial layer according to claim 6, wherein a concentration ratio of one of the dichlorosilanes is substantially smaller than a concentration ratio of the decane. 如請求項7所述之製作磊晶層的方法,其中該氯化氫之一濃度比例係實質上介於該二氯矽烷之該濃度比例與該鍺烷之該濃度比例之間。The method of producing an epitaxial layer according to claim 7, wherein a concentration ratio of the hydrogen chloride is substantially between the concentration ratio of the dichlorosilane and the concentration ratio of the decane. 如請求項1所述之製作磊晶層的方法,其中另包括進行一第二選擇性磊晶成長製程,於該第一磊晶層上形成一第二磊晶層。The method for fabricating an epitaxial layer according to claim 1, further comprising performing a second selective epitaxial growth process to form a second epitaxial layer on the first epitaxial layer. 如請求項9所述之製作磊晶層的方法,其中該第一磊晶層與該第二磊晶層分別包含有晶格常數不同於該半導體基底之晶格常數的一第一材料與一第二材料。The method for producing an epitaxial layer according to claim 9, wherein the first epitaxial layer and the second epitaxial layer respectively comprise a first material and a lattice constant having a lattice constant different from a lattice constant of the semiconductor substrate Second material. 如請求項10所述之製作磊晶層的方法,其中該第一材料與該第二材料均係包括矽鍺。The method of producing an epitaxial layer according to claim 10, wherein the first material and the second material both comprise ruthenium. 如請求項11所述之製作磊晶層的方法,其中該第一材料之一第一鍺濃度係實質上小於該第二材料之一第二鍺濃度。The method of producing an epitaxial layer according to claim 11, wherein the first concentration of the first material is substantially less than the concentration of the second one of the second material. 如請求項10所述之製作磊晶層的方法,其中另包括進行一第三選擇性磊晶成長製程,於該第二磊晶層上形成一第三磊晶層。The method for fabricating an epitaxial layer according to claim 10, further comprising performing a third selective epitaxial growth process to form a third epitaxial layer on the second epitaxial layer. 如請求項13所述之製作磊晶層的方法,其中該第三磊晶層之材料包括矽。The method of producing an epitaxial layer according to claim 13, wherein the material of the third epitaxial layer comprises germanium. 一種半導體裝置,包括:一半導體基底,包含有至少一寬疏區域(iso region)及至少一密集區域(dense region);以及複數個電晶體分別設置於該寬疏區域及該密集區域,且各電晶體包括至少一源極/汲極區,其中各該源極/汲極區均包括一具有一底部厚度以及一側邊厚度的一第一磊晶層,且各該底部厚度係實質上大於或等於相對應的各該側邊厚度。A semiconductor device comprising: a semiconductor substrate comprising at least one iso region and at least one dense region; and a plurality of transistors respectively disposed in the wide region and the dense region, and each The transistor includes at least one source/drain region, wherein each of the source/drain regions includes a first epitaxial layer having a bottom thickness and a side thickness, and each of the bottom thicknesses is substantially greater than Or equal to the corresponding thickness of each side. 如請求項15所述之半導體裝置,其中各該底部厚度與各該側邊厚度之比值係實質上大於或等於1.4。The semiconductor device of claim 15 wherein the ratio of each of the bottom thickness to the thickness of each of the sides is substantially greater than or equal to 1.4. 如請求項15所述之半導體裝置,其中該源極/汲極區均另包括一第二磊晶層設置於該第一磊晶層上。The semiconductor device of claim 15, wherein the source/drain regions further comprise a second epitaxial layer disposed on the first epitaxial layer. 如請求項17所述之半導體裝置,其中該第一磊晶層與該第二磊晶層分別包含有晶格常數不同於該半導體基底之晶格常數的一第一材料與一第二材料。The semiconductor device of claim 17, wherein the first epitaxial layer and the second epitaxial layer respectively comprise a first material and a second material having a lattice constant different from a lattice constant of the semiconductor substrate. 如請求項18所述之半導體裝置,其中該第一材料與該第二材料均係包括矽鍺。The semiconductor device of claim 18, wherein the first material and the second material both comprise germanium. 如請求項19所述之半導體裝置,其中該第一材料之一第一鍺濃度係實質上小於該第二材料之一第二鍺濃度。The semiconductor device of claim 19, wherein the first concentration of the first material is substantially less than the second concentration of the second material. 如請求項17所述之半導體裝置,其中另包括一第三磊晶層設置於該第二磊晶層上。The semiconductor device of claim 17, further comprising a third epitaxial layer disposed on the second epitaxial layer. 如請求項21所述之半導體裝置,其中該第三磊晶層之材料包括矽。The semiconductor device of claim 21, wherein the material of the third epitaxial layer comprises germanium. 如請求項15所述之半導體裝置,其中各電晶體另包括至少一閘極結構,且該源極/汲極區分別設置於該閘極結構之兩側的該半導體基底中。The semiconductor device of claim 15, wherein each of the transistors further comprises at least one gate structure, and the source/drain regions are respectively disposed in the semiconductor substrate on both sides of the gate structure. 一種製作磊晶層的方法,包括:提供一半導體基底,且該半導體基底包括至少一凹槽;以及進行一第一選擇性磊晶成長(selective epitaxial growth,SEG)製程,於該凹槽內形成一第一磊晶層,其中該第一選擇性磊晶成長製程包括通入一氣體,該氣體包括二氯矽烷(Dichlorosilane,DCS)、鍺烷(GeH4)以及氯化氫(HCl)等,且二氯矽烷、鍺烷以及氯化氫等氣體具有一濃度比係(0.5-2.1):(1.5-3.3):1。A method of fabricating an epitaxial layer, comprising: providing a semiconductor substrate, wherein the semiconductor substrate includes at least one recess; and performing a first selective epitaxial growth (SEG) process to form in the recess a first epitaxial layer, wherein the first selective epitaxial growth process comprises introducing a gas comprising Dichlorosilane (DCS), decane (GeH 4 ), hydrogen chloride (HCl), etc. Gases such as chlorodecane, decane, and hydrogen chloride have a concentration ratio (0.5-2.1): (1.5-3.3): 1. 如請求項24所述之製作磊晶層的方法,其中該第一選擇性磊晶成長製程包括一操作壓力,且該操作壓力係實質上小於或等於10托耳(torr)。The method of fabricating an epitaxial layer of claim 24, wherein the first selective epitaxial growth process comprises an operating pressure and the operating pressure is substantially less than or equal to 10 torr. 如請求項24所述之製作磊晶層的方法,其中該第一磊晶層包含有一第一材料,且該第一材料係包括矽鍺。The method of fabricating an epitaxial layer according to claim 24, wherein the first epitaxial layer comprises a first material, and the first material comprises germanium. 如請求項26所述之製作磊晶層的方法,其中該第一磊晶層具有一第一鍺濃度係介於20%至30%。The method of producing an epitaxial layer according to claim 26, wherein the first epitaxial layer has a first germanium concentration system of between 20% and 30%. 如請求項24所述之製作磊晶層的方法,其中該第一磊晶層之一底部厚度係實質上大於或等於該第一磊晶層之一側邊厚度,且該底部厚度與該側邊厚度之比值係實質上大於或等於1。The method of fabricating an epitaxial layer according to claim 24, wherein a bottom thickness of the first epitaxial layer is substantially greater than or equal to a side thickness of the first epitaxial layer, and the bottom thickness and the side The ratio of edge thicknesses is substantially greater than or equal to one. 如請求項28所述之製作磊晶層的方法,其中該底部厚度與該側邊厚度之比值係實質上大於或等於1.4。The method of making an epitaxial layer of claim 28, wherein the ratio of the thickness of the bottom to the thickness of the side is substantially greater than or equal to 1.4.
TW100139566A 2011-10-31 2011-10-31 Semiconductor device and method of forming epitaxial layer TWI527088B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100139566A TWI527088B (en) 2011-10-31 2011-10-31 Semiconductor device and method of forming epitaxial layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100139566A TWI527088B (en) 2011-10-31 2011-10-31 Semiconductor device and method of forming epitaxial layer

Publications (2)

Publication Number Publication Date
TW201318032A true TW201318032A (en) 2013-05-01
TWI527088B TWI527088B (en) 2016-03-21

Family

ID=48872023

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100139566A TWI527088B (en) 2011-10-31 2011-10-31 Semiconductor device and method of forming epitaxial layer

Country Status (1)

Country Link
TW (1) TWI527088B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106024767A (en) * 2015-03-30 2016-10-12 台湾积体电路制造股份有限公司 Structure and formation method of semiconductor device structure
TWI564940B (en) * 2013-12-27 2017-01-01 英特爾股份有限公司 Diffused tip extension transistor and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10763328B2 (en) * 2018-10-04 2020-09-01 Globalfoundries Inc. Epitaxial semiconductor material grown with enhanced local isotropy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI564940B (en) * 2013-12-27 2017-01-01 英特爾股份有限公司 Diffused tip extension transistor and manufacturing method thereof
US10304956B2 (en) 2013-12-27 2019-05-28 Intel Corporation Diffused tip extension transistor
US10872977B2 (en) 2013-12-27 2020-12-22 Intel Corporation Diffused tip extension transistor
US11664452B2 (en) 2013-12-27 2023-05-30 Intel Corporation Diffused tip extension transistor
CN106024767A (en) * 2015-03-30 2016-10-12 台湾积体电路制造股份有限公司 Structure and formation method of semiconductor device structure
TWI596707B (en) * 2015-03-30 2017-08-21 台灣積體電路製造股份有限公司 Semiconductor device structures and methods for forming the same
CN106024767B (en) * 2015-03-30 2019-09-06 台湾积体电路制造股份有限公司 The structure and forming method of semiconductor device structure

Also Published As

Publication number Publication date
TWI527088B (en) 2016-03-21

Similar Documents

Publication Publication Date Title
US11626508B2 (en) Structure of a fin field effect transistor (FinFET)
US8927376B2 (en) Semiconductor device and method of forming epitaxial layer
US9721829B2 (en) FinFETs with different fin height and EPI height setting
US9224737B2 (en) Dual epitaxial process for a finFET device
US9425102B2 (en) FinFETs with different fin heights
US8759943B2 (en) Transistor having notched fin structure and method of making the same
US9443769B2 (en) Wrap-around contact
US8946060B2 (en) Methods of manufacturing strained semiconductor devices with facets
US8835267B2 (en) Semiconductor device and fabrication method thereof
US10134897B2 (en) Semiconductor device and fabrication method thereof
US20110133292A1 (en) FinFETs with Multiple Fin Heights
TWI729539B (en) Semiconductor device and the methods for forming the same
US9214552B2 (en) Method for fabricating a strain feature in a gate spacer of a semiconductor device
CN104517901A (en) Method for forming CMOS transistor
US20090085075A1 (en) Method of fabricating mos transistor and mos transistor fabricated thereby
CN103107070B (en) Semiconductor device and the method for making epitaxial layer
TWI527088B (en) Semiconductor device and method of forming epitaxial layer
US11037836B2 (en) Semiconductor device and transistor thereof
US11043576B2 (en) FinFET device and method
CN109087890B (en) Semiconductor device, manufacturing method thereof and electronic device
US11296080B2 (en) Source/drain regions of semiconductor devices and methods of forming the same
US20230317791A1 (en) Semiconductor device and manufacturing method thereof
CN107527815B (en) Method for manufacturing epitaxial layer
TW202303984A (en) Semiconductor device and method of manufacturing same