TW201314787A - Power MOSFET with low RDSON and fabrication method thereof - Google Patents

Power MOSFET with low RDSON and fabrication method thereof Download PDF

Info

Publication number
TW201314787A
TW201314787A TW100134815A TW100134815A TW201314787A TW 201314787 A TW201314787 A TW 201314787A TW 100134815 A TW100134815 A TW 100134815A TW 100134815 A TW100134815 A TW 100134815A TW 201314787 A TW201314787 A TW 201314787A
Authority
TW
Taiwan
Prior art keywords
layer
substrate
type
epitaxial layer
metal
Prior art date
Application number
TW100134815A
Other languages
Chinese (zh)
Other versions
TWI478245B (en
Inventor
Yi Su
Daniel Ng
Anup Bhalla
Jun Lu
Original Assignee
Alpha & Omega Semiconductor
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alpha & Omega Semiconductor filed Critical Alpha & Omega Semiconductor
Priority to TW100134815A priority Critical patent/TWI478245B/en
Publication of TW201314787A publication Critical patent/TW201314787A/en
Application granted granted Critical
Publication of TWI478245B publication Critical patent/TWI478245B/en

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

This invention is aims to providing a Power MOSFET with low RDSON structure and relative assembly method. A universal concave matrix array on back side of wafer is used reducing substrate contribution on RDSON of the power MOSFET. And a matching convex matrix array on the lead frame is used for die attaching and package. The matrix concave array on back side of wafer can be independent of die size. In this invention, no photo alignment with wafer front side is required for making this universal concave matrix array.

Description

一種低導通電阻的功率MOS電晶體裝置及其製備方法Power MOS transistor device with low on-resistance and preparation method thereof

本發明一般涉及一種功率半導體器件及其製備方法,更確切的說,本發明旨在提供一種減薄矽襯底來降低功率MOS電晶體導通電阻的方法及該方法所製備的功率MOS電晶體器件。
The present invention generally relates to a power semiconductor device and a method of fabricating the same, and more particularly to a method for thinning a germanium substrate to reduce the on-resistance of a power MOS transistor and a power MOS transistor device prepared by the method .

對於功率電晶體而言,大的導通電阻RDSON將導致比較大的功耗,而我們所期望是盡可能的降低導通電阻從而減少器件損耗。在一些導通電阻可以模擬計算的電晶體內,例如在0.8微米單元間隔的溝槽柵極MOS電晶體中,在10V電壓下一平方毫米裏的總導通電阻為4.1毫歐,而矽襯底的導通電阻就佔有2毫歐,襯底的導通電阻幾乎達到總通電阻的49%;如在4.5V電壓下一平方毫米裏的總導通電阻為5.7毫歐,矽襯底的導通電阻大致為2毫歐,襯底的導通電阻幾乎達到總通電阻的35%。由此可見,消除矽襯底可以在功率器件中實現理想的低導通電阻。
矽襯底的刻蝕通常可以用標準工藝所採用的一些刻蝕方法。此外,電動化學刻蝕法同樣也可以對矽襯底進行刻蝕,主要原理是利用N型半導體基板和P型半導體基板的交界處所產生的PN結在反偏的條件下,對需要被刻蝕的半導體基板進行電化學腐蝕。例如附圖1所示意出將結合在一起的N型半導體基板和P型半導體基板浸入刻蝕液中,在刻蝕液中裸露出需要被刻蝕的P型半導體基板,然後在N型半導體基板上連通陽極,而將陰極放置在刻蝕液中,同時刻蝕液中還可以放置參考電極作為參照,此刻蝕過程中,濕法刻蝕到達PN結時刻蝕停止,而且其刻蝕狀況可以通過測量電流ICE來監測。
專利號為US6111280的美國專利公開了一種在矽襯底中形成開口的氣體感測器,其目地是基於提高氣體感測器的氣體檢測靈敏度;專利號為US4618397的美國專利公開了一種在矽襯底中形成開口的壓力感測器,其主要是為了提高壓力感測器的壓力感受度;此外,專利號為US6927102 B2的美國專利公開了一種在矽襯底中形成開口的MOSFET器件,主要是為了橫向降低功率MOSFET的寄生電容,此方法不會降低電阻。
For power transistors, the large on-resistance RDSON will result in a relatively large power dissipation, and we expect to reduce the on-resistance as much as possible to reduce device losses. In some transistors whose on-resistance can be simulated, for example, in a 0.8 μm cell-spaced trench gate MOS transistor, the total on-resistance in a square millimeter at 10 V is 4.1 milliohms, while the 矽 substrate The on-resistance occupies 2 milliohms, and the on-resistance of the substrate is almost 49% of the total on-resistance; if the total on-resistance is 5.7 milliohms in the square millimeter of 4.5V, the on-resistance of the germanium substrate is approximately 2 In milliohms, the on-resistance of the substrate is almost 35% of the total on-resistance. It can be seen that eliminating the germanium substrate can achieve an ideal low on-resistance in a power device.
The etching of the germanium substrate can usually be done by some etching methods used in standard processes. In addition, the electro-chemical etching method can also etch the germanium substrate. The main principle is that the PN junction generated at the junction of the N-type semiconductor substrate and the P-type semiconductor substrate is reverse-biased and needs to be etched. The semiconductor substrate is subjected to electrochemical etching. For example, FIG. 1 shows that the N-type semiconductor substrate and the P-type semiconductor substrate combined together are immersed in an etching liquid, and a P-type semiconductor substrate to be etched is exposed in the etching liquid, and then on the N-type semiconductor substrate. The anode is connected to the anode, and the cathode is placed in the etching liquid, and the reference electrode can also be placed in the etching liquid as a reference. During the etching process, the etching stops when the wet etching reaches the PN junction, and the etching condition can pass. The current ICE is measured to monitor.
U.S. Patent No. 6,111, 280, issued to U.S. Pat. A pressure sensor that forms an opening in the bottom is primarily intended to increase the pressure sensitivity of the pressure sensor; in addition, U.S. Patent No. 6,927,102 B2 discloses a MOSFET device that forms an opening in a ruthenium substrate, primarily In order to laterally reduce the parasitic capacitance of the power MOSFET, this method does not reduce the resistance.

鑒於上述問題,本發明提出了一種製備低導通電阻的功率MOS電晶體器件的方法,在一襯底所支撐的外延層中形成有垂直MOS電晶體單元,外延層的底面構成垂直MOS電晶體單元的底部電極,且該襯底與外延層之間還設置有一層刻蝕阻擋層,該方法主要包括以下步驟:沉積一層底部鈍化層覆蓋在所述襯底的底面上;在底部鈍化層中形成一個或多個開口,利用底部鈍化層上的開口對襯底進行刻蝕,刻蝕停止在刻蝕阻擋層上,並通過該刻蝕過程形成襯底中的一個或多個凹槽;進一步對刻蝕阻擋層的暴露在凹槽中的區域進行刻蝕,刻蝕停止在外延層上,形成依次貫穿襯底和刻蝕阻擋層的一個或多個底部凹槽;於外延層的暴露在底部凹槽的頂部的區域內注入與外延層摻雜類型相同的摻雜物,形成外延層中位於底部凹槽的頂部的上方的重摻雜的底部電極接觸區;沉積一層金屬層覆蓋在所述襯底的底面上,該金屬層還同時覆蓋在所述底部凹槽的側壁和頂部上;其中,金屬層位於底部凹槽頂部的區域與所述底部電極接觸區保持接觸,並且所述金屬層用於構成功率MOS電晶體器件的第一金屬電極。
上述的方法,對襯底進行刻蝕是利用濕法刻蝕或深反應摻雜物刻蝕實現的。上述的方法,對襯底進行濕法刻蝕所用到的刻蝕液為四甲基氫氧化銨溶液(TMAH)或氫氧化鉀溶液(KOH)或乙二胺鄰苯二酚溶液(EDP)。上述的方法,所述刻蝕阻擋層為一層掩埋二氧化矽層。上述的方法,對刻蝕阻擋層進行濕法刻蝕所用到的刻蝕液為緩衝氫氟酸溶液。上述的方法,所述襯底為輕摻雜N型襯底,所述外延層為輕摻雜N型外延層,所述垂直MOS電晶體單元為N型溝道的溝槽式MOS電晶體。上述的方法,所述襯底為輕摻雜P型襯底,所述外延層為輕摻雜P型外延層,所述垂直MOS電晶體單元為P型溝道的溝槽式MOS電晶體。
上述的方法,還包括以下步驟:在一基座的頂面上製備凸出於基座的頂面的數個金屬凸塊,金屬凸塊的數量與所述底部凹槽的數量保持一致,並且金屬凸塊的形貌與所述底部凹槽的槽體結構相適配;以及利用導電粘合材料將功率MOS電晶體器件粘貼在基座的頂面,其中,任意一個金屬凸塊相對應的嵌入在一個底部凹槽中,並且導電粘合材料位於金屬層與基座之間,導電粘合材料還填充在底部凹槽的頂部與金屬凸塊之間及底部凹槽的側壁與金屬凸塊之間。
上述的方法,在襯底所支撐的外延層中形成垂直MOS電晶體單元,包括以下步驟:在外延層中進行刻蝕形成多個第一類槽溝和至少一個第二類溝槽;在第一、第二類溝槽的側壁及底部覆蓋一層氧化物層並在第一、第二類槽溝內填充多晶矽;在外延層的位於第一類槽溝側壁周圍的區域中注入第一導電類型的摻雜物,形成從外延層的頂面向下延伸至外延層中的一個體區;以及在體區的位於第一類槽溝的較上部分的側壁周圍的區域中注入第二導電類型的摻雜物,形成從體區的頂面向下延伸至體區中的一個頂部電極摻雜區,使得任意一個第一類槽溝均依次貫穿所述頂部電極摻雜區和所述體區並延伸至位於體區下方的外延層中;沉積一絕緣介質層覆蓋在外延層上,且絕緣介質層同時還覆蓋在所述體區、頂部電極摻雜區以及第一類槽溝和第二類溝槽中所填充的多晶矽上;在所述絕緣介質層、頂部電極摻雜區、體區中進行刻蝕,形成依次貫穿緣介質層、頂部電極摻雜區並延伸至體區中的多個第一類通孔,以及形成至少一個貫穿緣介質層並接觸第二類溝槽中填充的多晶矽的第二類通孔;在第一類通孔的底部周圍的體區中注入重摻雜的第一導電類型的摻雜物,形成包圍第一類通孔的底部的接觸區;沉積一層勢壘材料層覆蓋在所述絕緣介質層上,勢壘材料層同時還覆蓋在第一、第二類通孔的底部及側壁上;在第一、第二類通孔中填充導電材料,並沉積一層金屬層覆蓋在位於絕緣介質層上方的勢壘材料層上,該金屬層同時還覆蓋在第一、第二類通孔中所填充的導電材料上並與之形成電接觸;對金屬層和位於絕緣介質層上方的勢壘材料層進行刻蝕,將金屬層分割成與第一類通孔中所填充的導電材料電性連接的第二金屬電極,金屬層還被分割成與第二類通孔中所填充的導電材料電性連接的第三金屬電極,覆蓋在絕緣介質層上方的勢壘材料層經刻蝕後的剩餘部分保留在第二、第三金屬電極的下方。
上述的方法,在襯底所支撐的外延層中形成垂直MOS電晶體單元,包括以下步驟:在外延層中進行刻蝕形成多個第一類槽溝和至少一個第二類溝槽;在第一、第二類溝槽的側壁及底部覆蓋一層氧化物層並在第一、第二類槽溝內填充多晶矽;在外延層的位於第一類槽溝側壁周圍的區域中注入第一導電類型的摻雜物,形成從外延層的頂面向下延伸至外延層中的一個體區;以及在體區的位於每個第一類槽溝的較上部分的側壁周圍的區域中注入第二導電類型的摻雜物,形成體區中的多個頂部電極摻雜區,並且任意一個頂部電極摻雜區相對應的圍繞在一個第一類槽溝的較上部分的側壁的周圍,使得任意一個第一類槽溝均依次貫穿一個頂部電極摻雜區和所述體區並延伸至位於體區下方的外延層中;沉積一絕緣介質層覆蓋在外延層上,且絕緣介質層同時還覆蓋在所述體區、多個頂部電極摻雜區以及第一類槽溝和第二類溝槽中所填充的多晶矽上;在所述絕緣介質層中進行刻蝕,形成貫穿緣介質層的多個第一類通孔,以及形成至少一個貫穿緣介質層並接觸第二類溝槽中填充的多晶矽的第二類通孔;在體區的暴露在第一類通孔的底部的區域中注入重摻雜的第一導電類型的摻雜物,形成位於第一類通孔的底部的接觸區;沉積一層勢壘材料層覆蓋在所述絕緣介質層上,勢壘材料層同時還覆蓋在第一、第二類通孔的底部及側壁上;在第二類通孔中填充導電材料,並沉積一層金屬層覆蓋在位於絕緣介質層上方的勢壘材料層上且該金屬層的一部分還填充在第一類通孔中,該金屬層同時還覆蓋在第二類通孔中所填充的導電材料上並與之形成電接觸;對金屬層和位於絕緣介質層上方的勢壘材料層進行刻蝕,將金屬層分割成與第一類通孔中所填充的所述金屬層的一部分電性連接的第二金屬電極,金屬層還被分割成與第二類通孔中所填充的導電材料電性連接的第三金屬電極,覆蓋在絕緣介質層上方的勢壘材料層經刻蝕後的剩餘部分保留在第二、第三金屬電極的下方。
上述的方法,在沉積一層底部鈍化層覆蓋在襯底的底面上的同時,還沉積一層頂部鈍化層覆蓋在絕緣介質層上,頂部鈍化層同時將第二、第三金屬電極予以覆蓋;之後將覆蓋第二、第三金屬電極的部分頂部鈍化層移除,以在頂部鈍化層中將第二、第三金屬電極予以暴露。上述的方法,利用所注入的第一導電類型的摻雜物形成所述體區的同時,還在外延層中形成圍繞在體區周圍的保護環摻雜區,保護環摻雜區與體區的摻雜類型相同並與體區相互間隔開。上述的方法,利用注入的第二導電類型的摻雜物形成頂部電極摻雜區的同時,還在外延層中形成圍繞在保護環摻雜區周圍的通道阻斷摻雜區,通道阻斷摻雜區與頂部電極摻雜區的摻雜類型相同並與保護環摻雜區相互間隔開。
本發明還提供一種製備低導通電阻的功率MOS電晶體器件的方法,在一襯底所支撐的外延層中形成有垂直MOS電晶體單元,其中,外延層的底面構成垂直MOS電晶體單元的底部電極,並且襯底與外延層的摻雜類型相反,該方法主要包括以下步驟:沉積一層底部鈍化層覆蓋在所述襯底的底面上;在底部鈍化層中形成一個或多個開口,並且襯底與外延層兩者的交界面所產生的PN結在反偏的條件下,利用底部鈍化層上的開口對襯底進行刻蝕,刻蝕停止在外延層上,並通過該刻蝕過程形成襯底中的一個或多個底部凹槽;於外延層的暴露在底部凹槽的頂部的區域內注入與外延層摻雜類型相同的摻雜物,形成外延層中位於底部凹槽的頂部的上方的重摻雜的底部電極接觸區;沉積一層金屬層覆蓋在所述襯底的底面上,該金屬層還同時覆蓋在所述底部凹槽的側壁和頂部上;其中,金屬層位於底部凹槽頂部的區域與所述底部電極接觸區保持接觸,並且所述金屬層用於構成所述功率MOS電晶體器件的第一金屬電極。
上述的方法,對襯底進行刻蝕是利用電化學刻蝕法實現的。上述的方法,對襯底進行電化學刻蝕法所用到的刻蝕液為四甲基氫氧化銨溶液(TMAH)或氫氧化鉀溶液(KOH)或乙二胺鄰苯二酚溶液(EDP)。上述的方法,所述襯底為輕摻雜P型襯底,所述外延層為輕摻雜N型外延層,所述垂直MOS電晶體單元為N型溝道的溝槽式MOS電晶體。上述的方法,所述襯底為輕摻雜N型襯底,所述外延層為輕摻雜P型外延層,所述垂直MOS電晶體單元為P型溝道的溝槽式MOS電晶體。
上述的方法,還包括以下步驟:在一基座的頂面上製備凸出於基座的頂面的數個金屬凸塊,金屬凸塊的數量與所述底部凹槽的數量保持一致,並且金屬凸塊的形貌與所述底部凹槽的槽體結構相適配;以及利用導電粘合材料將功率MOS電晶體器件粘貼在基座的頂面,其中,任意一個金屬凸塊相對應的嵌入在一個底部凹槽中,並且導電粘合材料位於金屬層與基座之間,導電粘合材料還填充在底部凹槽的頂部與金屬凸塊之間及底部凹槽的側壁與金屬凸塊之間。
上述的方法,在襯底所支撐的外延層中形成垂直MOS電晶體單元,包括以下步驟:在外延層中進行刻蝕形成多個第一類槽溝和至少一個第二類溝槽;在第一、第二類溝槽的側壁及底部覆蓋一層氧化物層並在第一、第二類槽溝內填充多晶矽;在外延層的位於第一類槽溝側壁周圍的區域中注入第一導電類型的摻雜物,形成從外延層的頂面向下延伸至外延層中的一個體區;以及在體區的位於第一類槽溝的較上部分的側壁周圍的區域中注入第二導電類型的摻雜物,形成從體區的頂面向下延伸至體區中的一個頂部電極摻雜區,使得任意一個第一類槽溝均依次貫穿所述頂部電極摻雜區和所述體區並延伸至位於體區下方的外延層中;沉積一絕緣介質層覆蓋在外延層上,且絕緣介質層同時還覆蓋在所述體區、頂部電極摻雜區以及第一類槽溝和第二類溝槽中所填充的多晶矽上;在所述絕緣介質層、頂部電極摻雜區、體區中進行刻蝕,形成依次貫穿緣介質層、頂部電極摻雜區並延伸至體區中的多個第一類通孔,以及形成至少一個貫穿緣介質層並接觸第二類溝槽中填充的多晶矽的第二類通孔;在第一類通孔的底部周圍的體區中注入重摻雜的第一導電類型的摻雜物,形成包圍第一類通孔的底部的接觸區;沉積一層勢壘材料層覆蓋在所述絕緣介質層上,勢壘材料層同時還覆蓋在第一、第二類通孔的底部及側壁上;在第一、第二類通孔中填充導電材料,並沉積一層金屬層覆蓋在位於絕緣介質層上方的勢壘材料層上,該金屬層同時還覆蓋在第一、第二類通孔中所填充的導電材料上並與之形成電接觸;對金屬層和位於絕緣介質層上方的勢壘材料層進行刻蝕,將金屬層分割成與第一類通孔中所填充的導電材料電性連接的第二金屬電極,金屬層還被分割成與第二類通孔中所填充的導電材料電性連接的第三金屬電極,覆蓋在絕緣介質層上方的勢壘材料層經刻蝕後的剩餘部分保留在第二、第三金屬電極的下方。
上述的方法,在襯底所支撐的外延層中形成垂直MOS電晶體單元,包括以下步驟:在外延層中進行刻蝕形成多個第一類槽溝和至少一個第二類溝槽;在第一、第二類溝槽的側壁及底部覆蓋一層氧化物層並在第一、第二類槽溝內填充多晶矽;在外延層的位於第一類槽溝側壁周圍的區域中注入第一導電類型的摻雜物,形成從外延層的頂面向下延伸至外延層中的一個體區;以及在體區的位於每個第一類槽溝的較上部分的側壁周圍的區域中注入第二導電類型的摻雜物,形成體區中的多個頂部電極摻雜區,並且任意一個頂部電極摻雜區相對應的圍繞在一個第一類槽溝的較上部分的側壁的周圍,使得任意一個第一類槽溝均依次貫穿一個頂部電極摻雜區和所述體區並延伸至位於體區下方的外延層中;沉積一絕緣介質層覆蓋在外延層上,且絕緣介質層同時還覆蓋在所述體區、多個頂部電極摻雜區以及第一類槽溝和第二類溝槽中所填充的多晶矽上;在所述絕緣介質層中進行刻蝕,形成貫穿緣介質層的多個第一類通孔,以及形成至少一個貫穿緣介質層並接觸第二類溝槽中填充的多晶矽的第二類通孔;在體區的暴露在第一類通孔的底部的區域中注入重摻雜的第一導電類型的摻雜物,形成位於第一類通孔的底部的接觸區;沉積一層勢壘材料層覆蓋在所述絕緣介質層上,勢壘材料層同時還覆蓋在第一、第二類通孔的底部及側壁上;在第二類通孔中填充導電材料,並沉積一層金屬層覆蓋在位於絕緣介質層上方的勢壘材料層上且該金屬層的一部分還填充在第一類通孔中,該金屬層同時還覆蓋在第二類通孔中所填充的導電材料上並與之形成電接觸;對金屬層和位於絕緣介質層上方的勢壘材料層進行刻蝕,將金屬層分割成與第一類通孔中所填充的所述金屬層的一部分電性連接的第二金屬電極,金屬層還被分割成與第二類通孔中所填充的導電材料電性連接的第三金屬電極,覆蓋在絕緣介質層上方的勢壘材料層經刻蝕後的剩餘部分保留在第二、第三金屬電極的下方。
上述的方法,在沉積一層底部鈍化層覆蓋在襯底的底面上的同時,還沉積一層頂部鈍化層覆蓋在絕緣介質層上,頂部鈍化層同時將第二、第三金屬電極予以覆蓋;之後將覆蓋第二、第三金屬電極的部分頂部鈍化層移除,以在頂部鈍化層中將第二、第三金屬電極予以暴露。上述的方法,利用所注入的第一導電類型的摻雜物形成所述體區的同時,還在外延層中形成圍繞在體區周圍的保護環摻雜區,保護環摻雜區與體區的摻雜類型相同並與體區相互間隔開。上述的方法,利用所述注入的第二導電類型的摻雜物形成頂部電極摻雜區的同時,還在外延層中形成圍繞在保護環摻雜區周圍的通道阻斷摻雜區,通道阻斷摻雜區與頂部電極摻雜區的摻雜類型相同並與保護環摻雜區相互間隔開。
本發明提供一種製備低導通電阻的功率MOS電晶體器件的方法,在一襯底所支撐的外延層中形成有垂直MOS電晶體單元,襯底的底面構成垂直MOS電晶體單元的底部電極,該襯底與外延層之間還設置有一層由掩埋重摻雜層所構成的刻蝕阻擋層,且該方法主要包括以下步驟:沉積一層底部鈍化層覆蓋在所述襯底的底面上;在底部鈍化層中形成一個或多個開口,利用底部鈍化層上的開口對襯底進行刻蝕,刻蝕停止在由掩埋重摻雜層所構成的刻蝕阻擋層上,並通過該刻蝕過程形成襯底中的一個或多個底部凹槽;沉積一層金屬層覆蓋在所述襯底的底面上,該金屬層還同時覆蓋在所述底部凹槽的側壁和頂部上;其中,金屬層位於底部凹槽頂部的區域與所述掩埋重摻雜層保持接觸,並且所述金屬層用於構成功率MOS電晶體器件的第一金屬電極。
上述的方法,對襯底進行刻蝕是利用濕法刻蝕或深反應摻雜物刻蝕實現的。上述的方法,對襯底進行濕法刻蝕所用到的刻蝕液為四甲基氫氧化銨溶液(TMAH)或氫氧化鉀溶液(KOH)或乙二胺鄰苯二酚溶液(EDP)。上述的方法,所述襯底為輕摻雜P型襯底,所述外延層為輕摻雜P型外延層,所述垂直MOS電晶體單元為P型溝道的溝槽式MOS電晶體。上述的方法,所述掩埋重摻雜層為P型的重摻雜層,且該P型重摻雜層的摻雜濃度超過1e19/cm3。
上述的方法,還包括以下步驟:在一基座的頂面上製備凸出於基座的頂面的數個金屬凸塊,金屬凸塊的數量與所述底部凹槽的數量保持一致,並且金屬凸塊的形貌與所述底部凹槽的槽體結構相適配;以及利用導電粘合材料將功率MOS電晶體器件粘貼在基座的頂面,其中,任意一個金屬凸塊相對應的嵌入在一個底部凹槽中,並且導電粘合材料位於金屬層與基座之間,導電粘合材料還填充在底部凹槽的頂部與金屬凸塊之間及底部凹槽的側壁與金屬凸塊之間。
上述的方法,在襯底所支撐的外延層中形成垂直MOS電晶體單元,包括以下步驟:在外延層中進行刻蝕形成多個第一類槽溝和至少一個第二類溝槽;在第一、第二類溝槽的側壁及底部覆蓋一層氧化物層並在第一、第二類槽溝內填充多晶矽;在外延層的位於第一類槽溝側壁周圍的區域中注入第一導電類型的摻雜物,形成從外延層的頂面向下延伸至外延層中的一個體區;以及在體區的位於第一類槽溝的較上部分的側壁周圍的區域中注入第二導電類型的摻雜物,形成從體區的頂面向下延伸至體區中的一個頂部電極摻雜區,使得任意一個第一類槽溝均依次貫穿所述頂部電極摻雜區和所述體區並延伸至位於體區下方的外延層中;沉積一絕緣介質層覆蓋在外延層上,且絕緣介質層同時還覆蓋在所述體區、頂部電極摻雜區以及第一類槽溝和第二類溝槽中所填充的多晶矽上;在所述絕緣介質層、頂部電極摻雜區、體區中進行刻蝕,形成依次貫穿緣介質層、頂部電極摻雜區並延伸至體區中的多個第一類通孔,以及形成至少一個貫穿緣介質層並接觸第二類溝槽中填充的多晶矽的第二類通孔;在第一類通孔的底部周圍的體區中注入重摻雜的第一導電類型的摻雜物,形成包圍第一類通孔的底部的接觸區;沉積一層勢壘材料層覆蓋在所述絕緣介質層上,勢壘材料層同時還覆蓋在第一、第二類通孔的底部及側壁上;在第一、第二類通孔中填充導電材料,並沉積一層金屬層覆蓋在位於絕緣介質層上方的勢壘材料層上,該金屬層同時還覆蓋在第一、第二類通孔中所填充的導電材料上並與之形成電接觸;對金屬層和位於絕緣介質層上方的勢壘材料層進行刻蝕,將金屬層分割成與第一類通孔中所填充的導電材料電性連接的第二金屬電極,金屬層還被分割成與第二類通孔中所填充的導電材料電性連接的第三金屬電極,覆蓋在絕緣介質層上方的勢壘材料層經刻蝕後的剩餘部分保留在第二、第三金屬電極的下方。
上述的方法,在襯底所支撐的外延層中形成垂直MOS電晶體單元,包括以下步驟:在外延層中進行刻蝕形成多個第一類槽溝和至少一個第二類溝槽;在第一、第二類溝槽的側壁及底部覆蓋一層氧化物層並在第一、第二類槽溝內填充多晶矽;在外延層的位於第一類槽溝側壁周圍的區域中注入第一導電類型的摻雜物,形成從外延層的頂面向下延伸至外延層中的一個體區;以及在體區的位於每個第一類槽溝的較上部分的側壁周圍的區域中注入第二導電類型的摻雜物,形成體區中的多個頂部電極摻雜區,並且任意一個頂部電極摻雜區相對應的圍繞在一個第一類槽溝的較上部分的側壁的周圍,使得任意一個第一類槽溝均依次貫穿一個頂部電極摻雜區和所述體區並延伸至位於體區下方的外延層中;沉積一絕緣介質層覆蓋在外延層上,且絕緣介質層同時還覆蓋在所述體區、多個頂部電極摻雜區以及第一類槽溝和第二類溝槽中所填充的多晶矽上;在所述絕緣介質層中進行刻蝕,形成貫穿緣介質層的多個第一類通孔,以及形成至少一個貫穿緣介質層並接觸第二類溝槽中填充的多晶矽的第二類通孔;在體區的暴露在第一類通孔的底部的區域中注入重摻雜的第一導電類型的摻雜物,形成位於第一類通孔的底部的接觸區;沉積一層勢壘材料層覆蓋在所述絕緣介質層上,勢壘材料層同時還覆蓋在第一、第二類通孔的底部及側壁上;在第二類通孔中填充導電材料,並沉積一層金屬層覆蓋在位於絕緣介質層上方的勢壘材料層上且該金屬層的一部分還填充在第一類通孔中,該金屬層同時還覆蓋在第二類通孔中所填充的導電材料上並與之形成電接觸;對金屬層和位於絕緣介質層上方的勢壘材料層進行刻蝕,將金屬層分割成與第一類通孔中所填充的所述金屬層的一部分電性連接的第二金屬電極,金屬層還被分割成與第二類通孔中所填充的導電材料電性連接的第三金屬電極,覆蓋在絕緣介質層上方的勢壘材料層經刻蝕後的剩餘部分保留在第二、第三金屬電極的下方。
上述的方法,在沉積一層底部鈍化層覆蓋在襯底的底面上的同時,還沉積一層頂部鈍化層覆蓋在絕緣介質層上,頂部鈍化層同時將第二、第三金屬電極予以覆蓋;之後將覆蓋第二、第三金屬電極的部分頂部鈍化層移除,以在頂部鈍化層中將第二、第三金屬電極予以暴露。上述的方法,利用所注入的第一導電類型的摻雜物形成所述體區的同時,還在外延層中形成圍繞在體區周圍的保護環摻雜區,保護環摻雜區與體區的摻雜類型相同並與體區相互間隔開。上述的方法,利用所述注入的第二導電類型的摻雜物形成頂部電極摻雜區的同時,還在外延層中形成圍繞在保護環摻雜區周圍的通道阻斷摻雜區,通道阻斷摻雜區與頂部電極摻雜區的摻雜類型相同並與保護環摻雜區相互間隔開。
本發明提供一種製備低導通電阻的功率MOS電晶體器件的方法,在一襯底所支撐的外延層中形成有垂直MOS電晶體單元,襯底的底面構成垂直MOS電晶體單元的底部電極,該方法主要包括以下步驟:沉積一層底部鈍化層覆蓋在所述襯底的底面上;在底部鈍化層中形成一個或多個開口,利用底部鈍化層上的開口對襯底進行刻蝕,刻蝕停止在襯底中,並通過該刻蝕過程形成襯底中的一個或多個底部凹槽;沉積一層金屬層覆蓋在所述襯底的底面上,該金屬層還同時覆蓋在所述底部凹槽的側壁和頂部上;其中,所述金屬層用於構成功率MOS電晶體器件的第一金屬電極。
上述的方法,對襯底進行刻蝕是利用濕法刻蝕或深反應摻雜物刻蝕實現的。上述的方法,對襯底進行濕法刻蝕所用到的刻蝕液為四甲基氫氧化銨溶液(TMAH)或氫氧化鉀溶液(KOH)或乙二胺鄰苯二酚溶液(EDP)。上述的方法,所述襯底為重摻雜P型襯底,所述外延層為輕摻雜P型外延層,所述垂直MOS電晶體單元為P型溝道的溝槽式MOS電晶體。上述的方法,所述襯底為重摻雜N型襯底,所述外延層為輕摻雜N型外延層,所述垂直MOS電晶體單元為N型溝道的溝槽式MOS電晶體。上述的方法,在對襯底進行刻蝕的過程中,所形成的底部凹槽的頂部與外延層的頂面之間的距離保持在10um至20um之間。
上述的方法,還包括以下步驟:在一基座的頂面上製備凸出於基座的頂面的數個金屬凸塊,金屬凸塊的數量與所述底部凹槽的數量保持一致,並且金屬凸塊的形貌與所述底部凹槽的槽體結構相適配;以及利用導電粘合材料將功率MOS電晶體器件粘貼在基座的頂面,其中,任意一個金屬凸塊相對應的嵌入在一個底部凹槽中,並且導電粘合材料位於金屬層與基座之間,導電粘合材料還填充在底部凹槽的頂部與金屬凸塊之間及底部凹槽的側壁與金屬凸塊之間。
上述的方法,在襯底所支撐的外延層中形成垂直MOS電晶體單元,包括以下步驟:在外延層中進行刻蝕形成多個第一類槽溝和至少一個第二類溝槽;在第一、第二類溝槽的側壁及底部覆蓋一層氧化物層並在第一、第二類槽溝內填充多晶矽;在外延層的位於第一類槽溝側壁周圍的區域中注入第一導電類型的摻雜物,形成從外延層的頂面向下延伸至外延層中的一個體區;以及在體區的位於第一類槽溝的較上部分的側壁周圍的區域中注入第二導電類型的摻雜物,形成從體區的頂面向下延伸至體區中的一個頂部電極摻雜區,使得任意一個第一類槽溝均依次貫穿所述頂部電極摻雜區和所述體區並延伸至位於體區下方的外延層中;沉積一絕緣介質層覆蓋在外延層上,且絕緣介質層同時還覆蓋在所述體區、頂部電極摻雜區以及第一類槽溝和第二類溝槽中所填充的多晶矽上;在所述絕緣介質層、頂部電極摻雜區、體區中進行刻蝕,形成依次貫穿緣介質層、頂部電極摻雜區並延伸至體區中的多個第一類通孔,以及形成至少一個貫穿緣介質層並接觸第二類溝槽中填充的多晶矽的第二類通孔;在第一類通孔的底部周圍的體區中注入重摻雜的第一導電類型的摻雜物,形成包圍第一類通孔的底部的接觸區;沉積一層勢壘材料層覆蓋在所述絕緣介質層上,勢壘材料層同時還覆蓋在第一、第二類通孔的底部及側壁上;在第一、第二類通孔中填充導電材料,並沉積一層金屬層覆蓋在位於絕緣介質層上方的勢壘材料層上,該金屬層同時還覆蓋在第一、第二類通孔中所填充的導電材料上並與之形成電接觸;對金屬層和位於絕緣介質層上方的勢壘材料層進行刻蝕,將金屬層分割成與第一類通孔中所填充的導電材料電性連接的第二金屬電極,金屬層還被分割成與第二類通孔中所填充的導電材料電性連接的第三金屬電極,覆蓋在絕緣介質層上方的勢壘材料層經刻蝕後的剩餘部分保留在第二、第三金屬電極的下方。
上述的方法,在襯底所支撐的外延層中形成垂直MOS電晶體單元,包括以下步驟:在外延層中進行刻蝕形成多個第一類槽溝和至少一個第二類溝槽;在第一、第二類溝槽的側壁及底部覆蓋一層氧化物層並在第一、第二類槽溝內填充多晶矽;在外延層的位於第一類槽溝側壁周圍的區域中注入第一導電類型的摻雜物,形成從外延層的頂面向下延伸至外延層中的一個體區;以及在體區的位於每個第一類槽溝的較上部分的側壁周圍的區域中注入第二導電類型的摻雜物,形成體區中的多個頂部電極摻雜區,並且任意一個頂部電極摻雜區相對應的圍繞在一個第一類槽溝的較上部分的側壁的周圍,使得任意一個第一類槽溝均依次貫穿一個頂部電極摻雜區和所述體區並延伸至位於體區下方的外延層中;沉積一絕緣介質層覆蓋在外延層上,且絕緣介質層同時還覆蓋在所述體區、多個頂部電極摻雜區以及第一類槽溝和第二類溝槽中所填充的多晶矽上;在所述絕緣介質層中進行刻蝕,形成貫穿緣介質層的多個第一類通孔,以及形成至少一個貫穿緣介質層並接觸第二類溝槽中填充的多晶矽的第二類通孔;在體區的暴露在第一類通孔的底部的區域中注入重摻雜的第一導電類型的摻雜物,形成位於第一類通孔的底部的接觸區;沉積一層勢壘材料層覆蓋在所述絕緣介質層上,勢壘材料層同時還覆蓋在第一、第二類通孔的底部及側壁上;在第二類通孔中填充導電材料,並沉積一層金屬層覆蓋在位於絕緣介質層上方的勢壘材料層上且該金屬層的一部分還填充在第一類通孔中,該金屬層同時還覆蓋在第二類通孔中所填充的導電材料上並與之形成電接觸;對金屬層和位於絕緣介質層上方的勢壘材料層進行刻蝕,將金屬層分割成與第一類通孔中所填充的所述金屬層的一部分電性連接的第二金屬電極,金屬層還被分割成與第二類通孔中所填充的導電材料電性連接的第三金屬電極,覆蓋在絕緣介質層上方的勢壘材料層經刻蝕後的剩餘部分保留在第二、第三金屬電極的下方。
上述的方法,其特徵在於,在沉積一層底部鈍化層覆蓋在襯底的底面上的同時,還沉積一層頂部鈍化層覆蓋在絕緣介質層上,頂部鈍化層同時將第二、第三金屬電極予以覆蓋;之後將覆蓋第二、第三金屬電極的部分頂部鈍化層移除,以在頂部鈍化層中將第二、第三金屬電極予以暴露。上述的方法,利用所注入的第一導電類型的摻雜物形成所述體區的同時,還在外延層中形成圍繞在體區周圍的保護環摻雜區,保護環摻雜區與體區的摻雜類型相同並與體區相互間隔開。上述的方法,利用所述注入的第二導電類型的摻雜物形成頂部電極摻雜區的同時,還在外延層中形成圍繞在保護環摻雜區周圍的通道阻斷摻雜區,通道阻斷摻雜區與頂部電極摻雜區的摻雜類型相同並與保護環摻雜區相互間隔開。
本發明提供一種製備低導通電阻的功率MOS電晶體器件的方法,在一襯底所支撐的外延層中形成有垂直MOS電晶體單元,襯底的底面構成垂直MOS電晶體單元的底部電極,該方法主要包括以下步驟:沉積一層底部鈍化層覆蓋在所述襯底的底面上;在底部鈍化層中形成一個或多個開口,利用底部鈍化層上的開口對襯底進行刻蝕,刻蝕停止在襯底中,並通過該刻蝕過程形成襯底中的一個或多個底部通孔;在所述底部通孔的側壁和頂部沉積一層勢壘材料層之後再在所述底部通孔中填充導電材料;再沉積一層金屬層覆蓋在所述襯底的底面上,該金屬層還同時與所述底部通孔中所填充的導電材料保持電性接觸;其中,所述金屬層用於構成功率MOS電晶體器件的第一金屬電極。
上述的方法,對襯底進行刻蝕是利用幹法刻蝕或鐳射刻蝕實現的。上述的方法,所述襯底為重摻雜P型襯底,所述外延層為輕摻雜P型外延層,所述垂直MOS電晶體單元為P型溝道的溝槽式MOS電晶體。上述的方法,所述襯底為重摻雜N型襯底,所述外延層為輕摻雜N型外延層,所述垂直MOS電晶體單元為N型溝道的溝槽式MOS電晶體。上述的方法,在對襯底進行刻蝕的過程中,所形成的底部通孔的頂部與外延層的頂面之間的距離保持在5um至20um之間。
上述的方法,在襯底所支撐的外延層中形成垂直MOS電晶體單元,包括以下步驟:在外延層中進行刻蝕形成多個第一類槽溝和至少一個第二類溝槽;在第一、第二類溝槽的側壁及底部覆蓋一層氧化物層並在第一、第二類槽溝內填充多晶矽;在外延層的位於第一類槽溝側壁周圍的區域中注入第一導電類型的摻雜物,形成從外延層的頂面向下延伸至外延層中的一個體區;以及在體區的位於第一類槽溝的較上部分的側壁周圍的區域中注入第二導電類型的摻雜物,形成從體區的頂面向下延伸至體區中的一個頂部電極摻雜區,使得任意一個第一類槽溝均依次貫穿所述頂部電極摻雜區和所述體區並延伸至位於體區下方的外延層中;沉積一絕緣介質層覆蓋在外延層上,且絕緣介質層同時還覆蓋在所述體區、頂部電極摻雜區以及第一類槽溝和第二類溝槽中所填充的多晶矽上;在所述絕緣介質層、頂部電極摻雜區、體區中進行刻蝕,形成依次貫穿緣介質層、頂部電極摻雜區並延伸至體區中的多個第一類通孔,以及形成至少一個貫穿緣介質層並接觸第二類溝槽中填充的多晶矽的第二類通孔;在第一類通孔的底部周圍的體區中注入重摻雜的第一導電類型的摻雜物,形成包圍第一類通孔的底部的接觸區;沉積一層勢壘材料層覆蓋在所述絕緣介質層上,勢壘材料層同時還覆蓋在第一、第二類通孔的底部及側壁上;在第一、第二類通孔中填充導電材料,並沉積一層金屬層覆蓋在位於絕緣介質層上方的勢壘材料層上,該金屬層同時還覆蓋在第一、第二類通孔中所填充的導電材料上並與之形成電接觸;對金屬層和位於絕緣介質層上方的勢壘材料層進行刻蝕,將金屬層分割成與第一類通孔中所填充的導電材料電性連接的第二金屬電極,金屬層還被分割成與第二類通孔中所填充的導電材料電性連接的第三金屬電極,覆蓋在絕緣介質層上方的勢壘材料層經刻蝕後的剩餘部分保留在第二、第三金屬電極的下方。
上述的方法,在襯底所支撐的外延層中形成垂直MOS電晶體單元,包括以下步驟:在外延層中進行刻蝕形成多個第一類槽溝和至少一個第二類溝槽;在第一、第二類溝槽的側壁及底部覆蓋一層氧化物層並在第一、第二類槽溝內填充多晶矽;在外延層的位於第一類槽溝側壁周圍的區域中注入第一導電類型的摻雜物,形成從外延層的頂面向下延伸至外延層中的一個體區;以及在體區的位於每個第一類槽溝的較上部分的側壁周圍的區域中注入第二導電類型的摻雜物,形成體區中的多個頂部電極摻雜區,並且任意一個頂部電極摻雜區相對應的圍繞在一個第一類槽溝的較上部分的側壁的周圍,使得任意一個第一類槽溝均依次貫穿一個頂部電極摻雜區和所述體區並延伸至位於體區下方的外延層中;沉積一絕緣介質層覆蓋在外延層上,且絕緣介質層同時還覆蓋在所述體區、多個頂部電極摻雜區以及第一類槽溝和第二類溝槽中所填充的多晶矽上;在所述絕緣介質層中進行刻蝕,形成貫穿緣介質層的多個第一類通孔,以及形成至少一個貫穿緣介質層並接觸第二類溝槽中填充的多晶矽的第二類通孔;在體區的暴露在第一類通孔的底部的區域中注入重摻雜的第一導電類型的摻雜物,形成位於第一類通孔的底部的接觸區;沉積一層勢壘材料層覆蓋在所述絕緣介質層上,勢壘材料層同時還覆蓋在第一、第二類通孔的底部及側壁上;在第二類通孔中填充導電材料,並沉積一層金屬層覆蓋在位於絕緣介質層上方的勢壘材料層上且該金屬層的一部分還填充在第一類通孔中,該金屬層同時還覆蓋在第二類通孔中所填充的導電材料上並與之形成電接觸;對金屬層和位於絕緣介質層上方的勢壘材料層進行刻蝕,將金屬層分割成與第一類通孔中所填充的所述金屬層的一部分電性連接的第二金屬電極,金屬層還被分割成與第二類通孔中所填充的導電材料電性連接的第三金屬電極,覆蓋在絕緣介質層上方的勢壘材料層經刻蝕後的剩餘部分保留在第二、第三金屬電極的下方。
上述的方法,在沉積一層底部鈍化層覆蓋在襯底的底面上的同時,還沉積一層頂部鈍化層覆蓋在絕緣介質層上,頂部鈍化層同時將第二、第三金屬電極予以覆蓋;之後將覆蓋第二、第三金屬電極的部分頂部鈍化層移除,以在頂部鈍化層中將第二、第三金屬電極予以暴露。上述的方法,利用所注入的第一導電類型的摻雜物形成所述體區的同時,還在外延層中形成圍繞在體區周圍的保護環摻雜區,保護環摻雜區與體區的摻雜類型相同並與體區相互間隔開。上述的方法,利用所述注入的第二導電類型的摻雜物形成頂部電極摻雜區的同時,還在外延層中形成圍繞在保護環摻雜區周圍的通道阻斷摻雜區,通道阻斷摻雜區與頂部電極摻雜區的摻雜類型相同並與保護環摻雜區相互間隔開。本發明所提供的一種低導通電阻的功率MOS電晶體器件,是利用上述方法所製備的。
本領域的技術人員閱讀以下較佳實施例的詳細說明,並參照附圖之後,本發明的這些和其他方面的優勢無疑將顯而易見。

In view of the above problems, the present invention provides a method of fabricating a low-on-resistance power MOS transistor device in which a vertical MOS transistor unit is formed in an epitaxial layer supported by a substrate, and a bottom surface of the epitaxial layer constitutes a vertical MOS transistor unit. a bottom electrode, and an etch stop layer is disposed between the substrate and the epitaxial layer, the method mainly comprises the steps of: depositing a bottom passivation layer overlying the bottom surface of the substrate; forming in the bottom passivation layer One or more openings, etching the substrate with an opening on the bottom passivation layer, etching stops on the etch barrier layer, and forming one or more recesses in the substrate by the etching process; further Etching the region of the barrier layer exposed in the recess for etching, the etching stops on the epitaxial layer, forming one or more bottom recesses sequentially penetrating the substrate and the etch stop layer; the epitaxial layer is exposed at the bottom Doping a dopant of the same type as the epitaxial layer doping in the region of the top of the recess to form a heavily doped bottom electrode contact region in the epitaxial layer above the top of the bottom trench; a metal layer covering the bottom surface of the substrate, the metal layer also covering the sidewalls and the top of the bottom recess; wherein the metal layer is located at the top of the bottom recess and the bottom electrode contact area remains Contact, and the metal layer is used to form a first metal electrode of the power MOS transistor device.
In the above method, etching the substrate is performed by wet etching or deep reactive dopant etching. In the above method, the etching solution used for wet etching the substrate is tetramethylammonium hydroxide solution (TMAH) or potassium hydroxide solution (KOH) or ethylenediamine catechol solution (EDP). In the above method, the etch barrier layer is a layer of buried ruthenium dioxide layer. In the above method, the etching solution used for wet etching the etching stopper layer is a buffered hydrofluoric acid solution. In the above method, the substrate is a lightly doped N-type substrate, the epitaxial layer is a lightly doped N-type epitaxial layer, and the vertical MOS transistor unit is an N-type channel trench MOS transistor. In the above method, the substrate is a lightly doped P-type substrate, the epitaxial layer is a lightly doped P-type epitaxial layer, and the vertical MOS transistor unit is a P-type trenched MOS transistor.
The above method further includes the steps of: preparing a plurality of metal bumps protruding from a top surface of the pedestal on a top surface of the susceptor, the number of the metal bumps being consistent with the number of the bottom recesses, and The topography of the metal bump is adapted to the groove structure of the bottom groove; and the power MOS transistor device is pasted on the top surface of the base by a conductive adhesive material, wherein any one of the metal bumps corresponds to Embedded in a bottom groove, and the conductive adhesive material is located between the metal layer and the base, and the conductive adhesive material is also filled between the top of the bottom groove and the metal bump and the sidewall of the bottom groove and the metal bump between.
The above method, forming a vertical MOS transistor unit in the epitaxial layer supported by the substrate, comprising the steps of: etching in the epitaxial layer to form a plurality of first type trenches and at least one second type trench; 1. The sidewalls and the bottom of the second type of trench are covered with an oxide layer and filled with polysilicon in the first and second types of trenches; the first conductivity type is implanted in the region of the epitaxial layer around the sidewall of the first type of trench a dopant extending from a top surface of the epitaxial layer to a body region in the epitaxial layer; and implanting a second conductivity type in a region of the body region around the sidewall of the upper portion of the first type of trench The dopant is formed to extend from a top surface of the body region to a top electrode doped region in the body region such that any one of the first type of trenches sequentially penetrates the top electrode doped region and the body region and extends Up to an epitaxial layer below the body region; depositing an insulating dielectric layer overlying the epitaxial layer, and simultaneously covering the body region, the top electrode doped region, and the first type of trench and the second type of trench Filled in the slot Was etched in the insulating dielectric layer, the top electrode doped region, and the body region to form a plurality of first type of via holes that sequentially penetrate the edge dielectric layer, the top electrode doped region, and extend into the body region. And forming a second type of via hole forming at least one through-edge dielectric layer and contacting the polysilicon filled in the second type of trench; implanting a heavily doped first conductivity type in the body region around the bottom of the first type of via a foreign matter forming a contact region surrounding a bottom portion of the first type of via hole; depositing a layer of barrier material overlying the insulating dielectric layer, the barrier material layer simultaneously covering the bottom of the first and second types of via holes and On the sidewall; filling the conductive material in the first and second types of via holes, and depositing a metal layer over the barrier material layer above the insulating dielectric layer, the metal layer also covering the first and second types of vias And electrically contacting the conductive material filled in the hole; etching the metal layer and the barrier material layer above the insulating dielectric layer to divide the metal layer into a conductive material filled in the first type of via hole Electrically connected second gold The electrode, the metal layer is further divided into a third metal electrode electrically connected to the conductive material filled in the second type of via hole, and the remaining portion of the barrier material layer overlying the insulating dielectric layer is left in the 2. Below the third metal electrode.
The above method, forming a vertical MOS transistor unit in the epitaxial layer supported by the substrate, comprising the steps of: etching in the epitaxial layer to form a plurality of first type trenches and at least one second type trench; 1. The sidewalls and the bottom of the second type of trench are covered with an oxide layer and filled with polysilicon in the first and second types of trenches; the first conductivity type is implanted in the region of the epitaxial layer around the sidewall of the first type of trench a dopant extending from a top surface of the epitaxial layer to a body region in the epitaxial layer; and implanting a second conductive region in a region of the body region around a sidewall of the upper portion of each of the first type of trenches a type of dopant forming a plurality of top electrode doped regions in the body region, and any one of the top electrode doped regions surrounding the sidewall of the upper portion of a first type of trench, such that any one The first type of trenches sequentially penetrate through a top electrode doped region and the body region and extend into an epitaxial layer located below the body region; an insulating dielectric layer is deposited over the epitaxial layer, and the insulating dielectric layer is also covered at the same time. Place a body region, a plurality of top electrode doped regions, and a polysilicon layer filled in the first type of trenches and the second type of trenches; etching in the insulating dielectric layer to form a plurality of first through dielectric layers a via-like hole, and a second type of via hole forming at least one through-edge dielectric layer and contacting the polysilicon filled in the second type of trench; implanting a heavily doped region in a region of the body region exposed to the bottom of the first type of via hole a dopant of a first conductivity type forming a contact region at a bottom of the first type of via hole; depositing a layer of barrier material overlying the dielectric dielectric layer, the barrier material layer simultaneously covering the first and the a second type of via hole is filled with a conductive material, and a second type of via hole is filled with a conductive material, and a metal layer is deposited over the barrier material layer above the insulating dielectric layer and a portion of the metal layer is further filled in the first In the via-like hole, the metal layer also covers and is in electrical contact with the conductive material filled in the second type of via hole; etching the metal layer and the barrier material layer above the insulating dielectric layer, Metal layer is divided into a second metal electrode electrically connected to a portion of the metal layer filled in the via hole, the metal layer is further divided into a third metal electrode electrically connected to the conductive material filled in the second type of via hole, covering The remaining portion of the barrier material layer over the insulating dielectric layer remains under the second and third metal electrodes.
In the above method, while depositing a bottom passivation layer overlying the bottom surface of the substrate, a top passivation layer is deposited over the insulating dielectric layer, and the top passivation layer simultaneously covers the second and third metal electrodes; A portion of the top passivation layer covering the second and third metal electrodes is removed to expose the second and third metal electrodes in the top passivation layer. In the above method, the implanted first conductivity type dopant is used to form the body region, and a guard ring doping region surrounding the body region is formed in the epitaxial layer, and the guard ring doped region and the body region are formed. The doping types are the same and are spaced apart from the body regions. In the above method, while the implanted second conductivity type dopant is used to form the top electrode doped region, a channel blocking doping region surrounding the doped region of the guard ring is formed in the epitaxial layer, and the channel is blocked. The doping region has the same doping type as the top electrode doping region and is spaced apart from the guard ring doping region.
The present invention also provides a method of fabricating a low on-resistance power MOS transistor device in which a vertical MOS transistor unit is formed in an epitaxial layer supported by a substrate, wherein a bottom surface of the epitaxial layer constitutes a bottom of a vertical MOS transistor unit An electrode, and the substrate is opposite to the doping type of the epitaxial layer, the method mainly comprising the steps of: depositing a bottom passivation layer overlying the bottom surface of the substrate; forming one or more openings in the bottom passivation layer, and lining The PN junction generated at the interface between the bottom and the epitaxial layer is etched by the opening on the bottom passivation layer under the condition of reverse bias, and the etching stops on the epitaxial layer and is formed by the etching process. One or more bottom recesses in the substrate; implanting dopants of the same type as the epitaxial layer doping in a region of the epitaxial layer exposed at the top of the bottom trench to form a top of the bottom trench in the epitaxial layer a heavily doped bottom electrode contact region above; a metal layer is deposited over the bottom surface of the substrate, the metal layer also overlying the sidewall and top of the bottom trench Wherein the metal layer is located in a region of the bottom electrode contact region held in contact with the top of the bottom of the recess, and the metal layer is composed of a first metal electrode of the power MOS transistor devices.
In the above method, etching the substrate is performed by electrochemical etching. In the above method, the etching solution used for the electrochemical etching of the substrate is tetramethylammonium hydroxide solution (TMAH) or potassium hydroxide solution (KOH) or ethylenediamine catechol solution (EDP). . In the above method, the substrate is a lightly doped P-type substrate, the epitaxial layer is a lightly doped N-type epitaxial layer, and the vertical MOS transistor unit is an N-type trenched MOS transistor. In the above method, the substrate is a lightly doped N-type substrate, the epitaxial layer is a lightly doped P-type epitaxial layer, and the vertical MOS transistor unit is a P-type trenched MOS transistor.
The above method further includes the steps of: preparing a plurality of metal bumps protruding from a top surface of the pedestal on a top surface of the susceptor, the number of the metal bumps being consistent with the number of the bottom recesses, and The topography of the metal bump is adapted to the groove structure of the bottom groove; and the power MOS transistor device is pasted on the top surface of the base by a conductive adhesive material, wherein any one of the metal bumps corresponds to Embedded in a bottom groove, and the conductive adhesive material is located between the metal layer and the base, and the conductive adhesive material is also filled between the top of the bottom groove and the metal bump and the sidewall of the bottom groove and the metal bump between.
The above method, forming a vertical MOS transistor unit in the epitaxial layer supported by the substrate, comprising the steps of: etching in the epitaxial layer to form a plurality of first type trenches and at least one second type trench; 1. The sidewalls and the bottom of the second type of trench are covered with an oxide layer and filled with polysilicon in the first and second types of trenches; the first conductivity type is implanted in the region of the epitaxial layer around the sidewall of the first type of trench a dopant extending from a top surface of the epitaxial layer to a body region in the epitaxial layer; and implanting a second conductivity type in a region of the body region around the sidewall of the upper portion of the first type of trench The dopant is formed to extend from a top surface of the body region to a top electrode doped region in the body region such that any one of the first type of trenches sequentially penetrates the top electrode doped region and the body region and extends Up to an epitaxial layer below the body region; depositing an insulating dielectric layer overlying the epitaxial layer, and simultaneously covering the body region, the top electrode doped region, and the first type of trench and the second type of trench Filled in the slot Was etched in the insulating dielectric layer, the top electrode doped region, and the body region to form a plurality of first type of via holes that sequentially penetrate the edge dielectric layer, the top electrode doped region, and extend into the body region. And forming a second type of via hole forming at least one through-edge dielectric layer and contacting the polysilicon filled in the second type of trench; implanting a heavily doped first conductivity type in the body region around the bottom of the first type of via a foreign matter forming a contact region surrounding a bottom portion of the first type of via hole; depositing a layer of barrier material overlying the insulating dielectric layer, the barrier material layer simultaneously covering the bottom of the first and second types of via holes and On the sidewall; filling the conductive material in the first and second types of via holes, and depositing a metal layer over the barrier material layer above the insulating dielectric layer, the metal layer also covering the first and second types of vias And electrically contacting the conductive material filled in the hole; etching the metal layer and the barrier material layer above the insulating dielectric layer to divide the metal layer into a conductive material filled in the first type of via hole Electrically connected second gold The electrode, the metal layer is further divided into a third metal electrode electrically connected to the conductive material filled in the second type of via hole, and the remaining portion of the barrier material layer overlying the insulating dielectric layer is left in the 2. Below the third metal electrode.
The above method, forming a vertical MOS transistor unit in the epitaxial layer supported by the substrate, comprising the steps of: etching in the epitaxial layer to form a plurality of first type trenches and at least one second type trench; 1. The sidewalls and the bottom of the second type of trench are covered with an oxide layer and filled with polysilicon in the first and second types of trenches; the first conductivity type is implanted in the region of the epitaxial layer around the sidewall of the first type of trench a dopant extending from a top surface of the epitaxial layer to a body region in the epitaxial layer; and implanting a second conductive region in a region of the body region around a sidewall of the upper portion of each of the first type of trenches a type of dopant forming a plurality of top electrode doped regions in the body region, and any one of the top electrode doped regions surrounding the sidewall of the upper portion of a first type of trench, such that any one The first type of trenches sequentially penetrate through a top electrode doped region and the body region and extend into an epitaxial layer located below the body region; an insulating dielectric layer is deposited over the epitaxial layer, and the insulating dielectric layer is also covered at the same time. Place a body region, a plurality of top electrode doped regions, and a polysilicon layer filled in the first type of trenches and the second type of trenches; etching in the insulating dielectric layer to form a plurality of first through dielectric layers a via-like hole, and a second type of via hole forming at least one through-edge dielectric layer and contacting the polysilicon filled in the second type of trench; implanting a heavily doped region in a region of the body region exposed to the bottom of the first type of via hole a dopant of a first conductivity type forming a contact region at a bottom of the first type of via hole; depositing a layer of barrier material overlying the dielectric dielectric layer, the barrier material layer simultaneously covering the first and the a second type of via hole is filled with a conductive material, and a second type of via hole is filled with a conductive material, and a metal layer is deposited over the barrier material layer above the insulating dielectric layer and a portion of the metal layer is further filled in the first In the via-like hole, the metal layer also covers and is in electrical contact with the conductive material filled in the second type of via hole; etching the metal layer and the barrier material layer above the insulating dielectric layer, Metal layer is divided into a second metal electrode electrically connected to a portion of the metal layer filled in the via hole, the metal layer is further divided into a third metal electrode electrically connected to the conductive material filled in the second type of via hole, covering The remaining portion of the barrier material layer over the insulating dielectric layer remains under the second and third metal electrodes.
In the above method, while depositing a bottom passivation layer overlying the bottom surface of the substrate, a top passivation layer is deposited over the insulating dielectric layer, and the top passivation layer simultaneously covers the second and third metal electrodes; A portion of the top passivation layer covering the second and third metal electrodes is removed to expose the second and third metal electrodes in the top passivation layer. In the above method, the implanted first conductivity type dopant is used to form the body region, and a guard ring doping region surrounding the body region is formed in the epitaxial layer, and the guard ring doped region and the body region are formed. The doping types are the same and are spaced apart from the body regions. In the above method, the implanted second conductivity type dopant is used to form the top electrode doped region, and a channel blocking doping region around the doped region of the guard ring is formed in the epitaxial layer. The doped region and the top electrode doped region have the same doping type and are spaced apart from the guard ring doped region.
The invention provides a method for preparing a low-on-resistance power MOS transistor device, wherein a vertical MOS transistor unit is formed in an epitaxial layer supported by a substrate, and a bottom surface of the substrate constitutes a bottom electrode of a vertical MOS transistor unit, An etch stop layer composed of a buried heavily doped layer is further disposed between the substrate and the epitaxial layer, and the method mainly comprises the steps of: depositing a bottom passivation layer overlying the bottom surface of the substrate; at the bottom Forming one or more openings in the passivation layer, etching the substrate by using an opening on the bottom passivation layer, stopping on the etch stop layer formed by the buried heavily doped layer, and forming through the etching process One or more bottom grooves in the substrate; a metal layer is deposited over the bottom surface of the substrate, the metal layer also covering the sidewalls and the top of the bottom groove; wherein the metal layer is at the bottom A region at the top of the recess remains in contact with the buried heavily doped layer and the metal layer is used to form a first metal electrode of the power MOS transistor device.
In the above method, etching the substrate is performed by wet etching or deep reactive dopant etching. In the above method, the etching solution used for wet etching the substrate is tetramethylammonium hydroxide solution (TMAH) or potassium hydroxide solution (KOH) or ethylenediamine catechol solution (EDP). In the above method, the substrate is a lightly doped P-type substrate, the epitaxial layer is a lightly doped P-type epitaxial layer, and the vertical MOS transistor unit is a P-type trenched MOS transistor. In the above method, the buried heavily doped layer is a P-type heavily doped layer, and the P-type heavily doped layer has a doping concentration exceeding 1e19/cm3.
The above method further includes the steps of: preparing a plurality of metal bumps protruding from a top surface of the pedestal on a top surface of the susceptor, the number of the metal bumps being consistent with the number of the bottom recesses, and The topography of the metal bump is adapted to the groove structure of the bottom groove; and the power MOS transistor device is pasted on the top surface of the base by a conductive adhesive material, wherein any one of the metal bumps corresponds to Embedded in a bottom groove, and the conductive adhesive material is located between the metal layer and the base, and the conductive adhesive material is also filled between the top of the bottom groove and the metal bump and the sidewall of the bottom groove and the metal bump between.
The above method, forming a vertical MOS transistor unit in the epitaxial layer supported by the substrate, comprising the steps of: etching in the epitaxial layer to form a plurality of first type trenches and at least one second type trench; 1. The sidewalls and the bottom of the second type of trench are covered with an oxide layer and filled with polysilicon in the first and second types of trenches; the first conductivity type is implanted in the region of the epitaxial layer around the sidewall of the first type of trench a dopant extending from a top surface of the epitaxial layer to a body region in the epitaxial layer; and implanting a second conductivity type in a region of the body region around the sidewall of the upper portion of the first type of trench The dopant is formed to extend from a top surface of the body region to a top electrode doped region in the body region such that any one of the first type of trenches sequentially penetrates the top electrode doped region and the body region and extends Up to an epitaxial layer below the body region; depositing an insulating dielectric layer overlying the epitaxial layer, and simultaneously covering the body region, the top electrode doped region, and the first type of trench and the second type of trench Filled in the slot Was etched in the insulating dielectric layer, the top electrode doped region, and the body region to form a plurality of first type of via holes that sequentially penetrate the edge dielectric layer, the top electrode doped region, and extend into the body region. And forming a second type of via hole forming at least one through-edge dielectric layer and contacting the polysilicon filled in the second type of trench; implanting a heavily doped first conductivity type in the body region around the bottom of the first type of via a foreign matter forming a contact region surrounding a bottom portion of the first type of via hole; depositing a layer of barrier material overlying the insulating dielectric layer, the barrier material layer simultaneously covering the bottom of the first and second types of via holes and On the sidewall; filling the conductive material in the first and second types of via holes, and depositing a metal layer over the barrier material layer above the insulating dielectric layer, the metal layer also covering the first and second types of vias And electrically contacting the conductive material filled in the hole; etching the metal layer and the barrier material layer above the insulating dielectric layer to divide the metal layer into a conductive material filled in the first type of via hole Electrically connected second gold The electrode, the metal layer is further divided into a third metal electrode electrically connected to the conductive material filled in the second type of via hole, and the remaining portion of the barrier material layer overlying the insulating dielectric layer is left in the 2. Below the third metal electrode.
The above method, forming a vertical MOS transistor unit in the epitaxial layer supported by the substrate, comprising the steps of: etching in the epitaxial layer to form a plurality of first type trenches and at least one second type trench; 1. The sidewalls and the bottom of the second type of trench are covered with an oxide layer and filled with polysilicon in the first and second types of trenches; the first conductivity type is implanted in the region of the epitaxial layer around the sidewall of the first type of trench a dopant extending from a top surface of the epitaxial layer to a body region in the epitaxial layer; and implanting a second conductive region in a region of the body region around a sidewall of the upper portion of each of the first type of trenches a type of dopant forming a plurality of top electrode doped regions in the body region, and any one of the top electrode doped regions surrounding the sidewall of the upper portion of a first type of trench, such that any one The first type of trenches sequentially penetrate through a top electrode doped region and the body region and extend into an epitaxial layer located below the body region; an insulating dielectric layer is deposited over the epitaxial layer, and the insulating dielectric layer is also covered at the same time. Place a body region, a plurality of top electrode doped regions, and a polysilicon layer filled in the first type of trenches and the second type of trenches; etching in the insulating dielectric layer to form a plurality of first through dielectric layers a via-like hole, and a second type of via hole forming at least one through-edge dielectric layer and contacting the polysilicon filled in the second type of trench; implanting a heavily doped region in a region of the body region exposed to the bottom of the first type of via hole a dopant of a first conductivity type forming a contact region at a bottom of the first type of via hole; depositing a layer of barrier material overlying the dielectric dielectric layer, the barrier material layer simultaneously covering the first and the a second type of via hole is filled with a conductive material, and a second type of via hole is filled with a conductive material, and a metal layer is deposited over the barrier material layer above the insulating dielectric layer and a portion of the metal layer is further filled in the first In the via-like hole, the metal layer also covers and is in electrical contact with the conductive material filled in the second type of via hole; etching the metal layer and the barrier material layer above the insulating dielectric layer, Metal layer is divided into a second metal electrode electrically connected to a portion of the metal layer filled in the via hole, the metal layer is further divided into a third metal electrode electrically connected to the conductive material filled in the second type of via hole, covering The remaining portion of the barrier material layer over the insulating dielectric layer remains under the second and third metal electrodes.
In the above method, while depositing a bottom passivation layer overlying the bottom surface of the substrate, a top passivation layer is deposited over the insulating dielectric layer, and the top passivation layer simultaneously covers the second and third metal electrodes; A portion of the top passivation layer covering the second and third metal electrodes is removed to expose the second and third metal electrodes in the top passivation layer. In the above method, the implanted first conductivity type dopant is used to form the body region, and a guard ring doping region surrounding the body region is formed in the epitaxial layer, and the guard ring doped region and the body region are formed. The doping types are the same and are spaced apart from the body regions. In the above method, the implanted second conductivity type dopant is used to form the top electrode doped region, and a channel blocking doping region around the doped region of the guard ring is formed in the epitaxial layer. The doped region and the top electrode doped region have the same doping type and are spaced apart from the guard ring doped region.
The invention provides a method for preparing a low-on-resistance power MOS transistor device, wherein a vertical MOS transistor unit is formed in an epitaxial layer supported by a substrate, and a bottom surface of the substrate constitutes a bottom electrode of a vertical MOS transistor unit, The method mainly comprises the steps of: depositing a bottom passivation layer overlying the bottom surface of the substrate; forming one or more openings in the bottom passivation layer, etching the substrate by using an opening on the bottom passivation layer, and etching stops Forming, in the substrate, one or more bottom grooves in the substrate by the etching process; depositing a metal layer overlying the bottom surface of the substrate, the metal layer also covering the bottom groove simultaneously And a top layer; wherein the metal layer is used to form a first metal electrode of the power MOS transistor device.
In the above method, etching the substrate is performed by wet etching or deep reactive dopant etching. In the above method, the etching solution used for wet etching the substrate is tetramethylammonium hydroxide solution (TMAH) or potassium hydroxide solution (KOH) or ethylenediamine catechol solution (EDP). In the above method, the substrate is a heavily doped P-type substrate, the epitaxial layer is a lightly doped P-type epitaxial layer, and the vertical MOS transistor unit is a P-type trenched MOS transistor. In the above method, the substrate is a heavily doped N-type substrate, the epitaxial layer is a lightly doped N-type epitaxial layer, and the vertical MOS transistor unit is an N-type channel trench MOS transistor. In the above method, the distance between the top of the formed bottom groove and the top surface of the epitaxial layer is maintained between 10 um and 20 um during the etching of the substrate.
The above method further includes the steps of: preparing a plurality of metal bumps protruding from a top surface of the pedestal on a top surface of the susceptor, the number of the metal bumps being consistent with the number of the bottom recesses, and The topography of the metal bump is adapted to the groove structure of the bottom groove; and the power MOS transistor device is pasted on the top surface of the base by a conductive adhesive material, wherein any one of the metal bumps corresponds to Embedded in a bottom groove, and the conductive adhesive material is located between the metal layer and the base, and the conductive adhesive material is also filled between the top of the bottom groove and the metal bump and the sidewall of the bottom groove and the metal bump between.
The above method, forming a vertical MOS transistor unit in the epitaxial layer supported by the substrate, comprising the steps of: etching in the epitaxial layer to form a plurality of first type trenches and at least one second type trench; 1. The sidewalls and the bottom of the second type of trench are covered with an oxide layer and filled with polysilicon in the first and second types of trenches; the first conductivity type is implanted in the region of the epitaxial layer around the sidewall of the first type of trench a dopant extending from a top surface of the epitaxial layer to a body region in the epitaxial layer; and implanting a second conductivity type in a region of the body region around the sidewall of the upper portion of the first type of trench The dopant is formed to extend from a top surface of the body region to a top electrode doped region in the body region such that any one of the first type of trenches sequentially penetrates the top electrode doped region and the body region and extends Up to an epitaxial layer below the body region; depositing an insulating dielectric layer overlying the epitaxial layer, and simultaneously covering the body region, the top electrode doped region, and the first type of trench and the second type of trench Filled in the slot Was etched in the insulating dielectric layer, the top electrode doped region, and the body region to form a plurality of first type of via holes that sequentially penetrate the edge dielectric layer, the top electrode doped region, and extend into the body region. And forming a second type of via hole forming at least one through-edge dielectric layer and contacting the polysilicon filled in the second type of trench; implanting a heavily doped first conductivity type in the body region around the bottom of the first type of via a foreign matter forming a contact region surrounding a bottom portion of the first type of via hole; depositing a layer of barrier material overlying the insulating dielectric layer, the barrier material layer simultaneously covering the bottom of the first and second types of via holes and On the sidewall; filling the conductive material in the first and second types of via holes, and depositing a metal layer over the barrier material layer above the insulating dielectric layer, the metal layer also covering the first and second types of vias And electrically contacting the conductive material filled in the hole; etching the metal layer and the barrier material layer above the insulating dielectric layer to divide the metal layer into a conductive material filled in the first type of via hole Electrically connected second gold The electrode, the metal layer is further divided into a third metal electrode electrically connected to the conductive material filled in the second type of via hole, and the remaining portion of the barrier material layer overlying the insulating dielectric layer is left in the 2. Below the third metal electrode.
The above method, forming a vertical MOS transistor unit in the epitaxial layer supported by the substrate, comprising the steps of: etching in the epitaxial layer to form a plurality of first type trenches and at least one second type trench; 1. The sidewalls and the bottom of the second type of trench are covered with an oxide layer and filled with polysilicon in the first and second types of trenches; the first conductivity type is implanted in the region of the epitaxial layer around the sidewall of the first type of trench a dopant extending from a top surface of the epitaxial layer to a body region in the epitaxial layer; and implanting a second conductive region in a region of the body region around a sidewall of the upper portion of each of the first type of trenches a type of dopant forming a plurality of top electrode doped regions in the body region, and any one of the top electrode doped regions surrounding the sidewall of the upper portion of a first type of trench, such that any one The first type of trenches sequentially penetrate through a top electrode doped region and the body region and extend into an epitaxial layer located below the body region; an insulating dielectric layer is deposited over the epitaxial layer, and the insulating dielectric layer is also covered at the same time. Place a body region, a plurality of top electrode doped regions, and a polysilicon layer filled in the first type of trenches and the second type of trenches; etching in the insulating dielectric layer to form a plurality of first through dielectric layers a via-like hole, and a second type of via hole forming at least one through-edge dielectric layer and contacting the polysilicon filled in the second type of trench; implanting a heavily doped region in a region of the body region exposed to the bottom of the first type of via hole a dopant of a first conductivity type forming a contact region at a bottom of the first type of via hole; depositing a layer of barrier material overlying the dielectric dielectric layer, the barrier material layer simultaneously covering the first and the a second type of via hole is filled with a conductive material, and a second type of via hole is filled with a conductive material, and a metal layer is deposited over the barrier material layer above the insulating dielectric layer and a portion of the metal layer is further filled in the first In the via-like hole, the metal layer also covers and is in electrical contact with the conductive material filled in the second type of via hole; etching the metal layer and the barrier material layer above the insulating dielectric layer, Metal layer is divided into a second metal electrode electrically connected to a portion of the metal layer filled in the via hole, the metal layer is further divided into a third metal electrode electrically connected to the conductive material filled in the second type of via hole, covering The remaining portion of the barrier material layer over the insulating dielectric layer remains under the second and third metal electrodes.
The above method is characterized in that, while depositing a bottom passivation layer overlying the bottom surface of the substrate, a top passivation layer is deposited over the insulating dielectric layer, and the top passivation layer simultaneously applies the second and third metal electrodes Covering; then removing a portion of the top passivation layer overlying the second and third metal electrodes to expose the second and third metal electrodes in the top passivation layer. In the above method, the implanted first conductivity type dopant is used to form the body region, and a guard ring doping region surrounding the body region is formed in the epitaxial layer, and the guard ring doped region and the body region are formed. The doping types are the same and are spaced apart from the body regions. In the above method, the implanted second conductivity type dopant is used to form the top electrode doped region, and a channel blocking doping region around the doped region of the guard ring is formed in the epitaxial layer. The doped region and the top electrode doped region have the same doping type and are spaced apart from the guard ring doped region.
The invention provides a method for preparing a low-on-resistance power MOS transistor device, wherein a vertical MOS transistor unit is formed in an epitaxial layer supported by a substrate, and a bottom surface of the substrate constitutes a bottom electrode of a vertical MOS transistor unit, The method mainly comprises the steps of: depositing a bottom passivation layer overlying the bottom surface of the substrate; forming one or more openings in the bottom passivation layer, etching the substrate by using an opening on the bottom passivation layer, and etching stops Forming one or more bottom vias in the substrate by the etching process in the substrate; depositing a layer of barrier material on the sidewalls and top of the bottom via and filling the via vias a conductive material; a second metal layer overlying the bottom surface of the substrate, the metal layer also simultaneously in electrical contact with the conductive material filled in the bottom via; wherein the metal layer is used to form power A first metal electrode of a MOS transistor device.
In the above method, etching the substrate is performed by dry etching or laser etching. In the above method, the substrate is a heavily doped P-type substrate, the epitaxial layer is a lightly doped P-type epitaxial layer, and the vertical MOS transistor unit is a P-type trenched MOS transistor. In the above method, the substrate is a heavily doped N-type substrate, the epitaxial layer is a lightly doped N-type epitaxial layer, and the vertical MOS transistor unit is an N-type channel trench MOS transistor. In the above method, the distance between the top of the formed bottom via and the top surface of the epitaxial layer is maintained between 5 um and 20 um during the etching of the substrate.
The above method, forming a vertical MOS transistor unit in the epitaxial layer supported by the substrate, comprising the steps of: etching in the epitaxial layer to form a plurality of first type trenches and at least one second type trench; 1. The sidewalls and the bottom of the second type of trench are covered with an oxide layer and filled with polysilicon in the first and second types of trenches; the first conductivity type is implanted in the region of the epitaxial layer around the sidewall of the first type of trench a dopant extending from a top surface of the epitaxial layer to a body region in the epitaxial layer; and implanting a second conductivity type in a region of the body region around the sidewall of the upper portion of the first type of trench The dopant is formed to extend from a top surface of the body region to a top electrode doped region in the body region such that any one of the first type of trenches sequentially penetrates the top electrode doped region and the body region and extends Up to an epitaxial layer below the body region; depositing an insulating dielectric layer overlying the epitaxial layer, and simultaneously covering the body region, the top electrode doped region, and the first type of trench and the second type of trench Filled in the slot Was etched in the insulating dielectric layer, the top electrode doped region, and the body region to form a plurality of first type of via holes that sequentially penetrate the edge dielectric layer, the top electrode doped region, and extend into the body region. And forming a second type of via hole forming at least one through-edge dielectric layer and contacting the polysilicon filled in the second type of trench; implanting a heavily doped first conductivity type in the body region around the bottom of the first type of via a foreign matter forming a contact region surrounding a bottom portion of the first type of via hole; depositing a layer of barrier material overlying the insulating dielectric layer, the barrier material layer simultaneously covering the bottom of the first and second types of via holes and On the sidewall; filling the conductive material in the first and second types of via holes, and depositing a metal layer over the barrier material layer above the insulating dielectric layer, the metal layer also covering the first and second types of vias And electrically contacting the conductive material filled in the hole; etching the metal layer and the barrier material layer above the insulating dielectric layer to divide the metal layer into a conductive material filled in the first type of via hole Electrically connected second gold The electrode, the metal layer is further divided into a third metal electrode electrically connected to the conductive material filled in the second type of via hole, and the remaining portion of the barrier material layer overlying the insulating dielectric layer is left in the 2. Below the third metal electrode.
The above method, forming a vertical MOS transistor unit in the epitaxial layer supported by the substrate, comprising the steps of: etching in the epitaxial layer to form a plurality of first type trenches and at least one second type trench; 1. The sidewalls and the bottom of the second type of trench are covered with an oxide layer and filled with polysilicon in the first and second types of trenches; the first conductivity type is implanted in the region of the epitaxial layer around the sidewall of the first type of trench a dopant extending from a top surface of the epitaxial layer to a body region in the epitaxial layer; and implanting a second conductive region in a region of the body region around a sidewall of the upper portion of each of the first type of trenches a type of dopant forming a plurality of top electrode doped regions in the body region, and any one of the top electrode doped regions surrounding the sidewall of the upper portion of a first type of trench, such that any one The first type of trenches sequentially penetrate through a top electrode doped region and the body region and extend into an epitaxial layer located below the body region; an insulating dielectric layer is deposited over the epitaxial layer, and the insulating dielectric layer is also covered at the same time. Place a body region, a plurality of top electrode doped regions, and a polysilicon layer filled in the first type of trenches and the second type of trenches; etching in the insulating dielectric layer to form a plurality of first through dielectric layers a via-like hole, and a second type of via hole forming at least one through-edge dielectric layer and contacting the polysilicon filled in the second type of trench; implanting a heavily doped region in a region of the body region exposed to the bottom of the first type of via hole a dopant of a first conductivity type forming a contact region at a bottom of the first type of via hole; depositing a layer of barrier material overlying the dielectric dielectric layer, the barrier material layer simultaneously covering the first and the a second type of via hole is filled with a conductive material, and a second type of via hole is filled with a conductive material, and a metal layer is deposited over the barrier material layer above the insulating dielectric layer and a portion of the metal layer is further filled in the first In the via-like hole, the metal layer also covers and is in electrical contact with the conductive material filled in the second type of via hole; etching the metal layer and the barrier material layer above the insulating dielectric layer, Metal layer is divided into a second metal electrode electrically connected to a portion of the metal layer filled in the via hole, the metal layer is further divided into a third metal electrode electrically connected to the conductive material filled in the second type of via hole, covering The remaining portion of the barrier material layer over the insulating dielectric layer remains under the second and third metal electrodes.
In the above method, while depositing a bottom passivation layer overlying the bottom surface of the substrate, a top passivation layer is deposited over the insulating dielectric layer, and the top passivation layer simultaneously covers the second and third metal electrodes; A portion of the top passivation layer covering the second and third metal electrodes is removed to expose the second and third metal electrodes in the top passivation layer. In the above method, the implanted first conductivity type dopant is used to form the body region, and a guard ring doping region surrounding the body region is formed in the epitaxial layer, and the guard ring doped region and the body region are formed. The doping types are the same and are spaced apart from the body regions. In the above method, the implanted second conductivity type dopant is used to form the top electrode doped region, and a channel blocking doping region around the doped region of the guard ring is formed in the epitaxial layer. The doped region and the top electrode doped region have the same doping type and are spaced apart from the guard ring doped region. A low on-resistance power MOS transistor device provided by the present invention is prepared by the above method.
These and other advantages of the present invention will no doubt become apparent to those skilled in the <RTIgt;

實施方式一:
參見第2A圖所示,在晶圓100中,襯底125與外延層101之間設置有一層刻蝕阻擋層120,這類晶圓通常稱之為絕緣矽SOI(silicon on insulator)晶圓。而在第2B圖中所示的晶圓100'中,外延層101是直接生長在襯底125上。另外,在第2C-1至2C-2圖中所示出晶圓100"中,先在襯底125的頂面植入一層重摻雜物以形成的一層掩埋重摻雜層120",之後再在襯底125上生長外延層101,例如從輕摻雜的P-型襯底125的頂面注入一層重摻雜的P+型掩埋重摻雜層120",再在襯底125上生長輕摻雜的P-型外延層101,這樣襯底125與外延層101之間就存在一層重摻雜物的掩埋重摻雜層120"。
現以SOI晶圓為例對本案進行說明。第3A圖中,先生成一層氧化物層102(如LTO低溫氧化物)覆蓋在外延層101上,並在氧化物層102上塗覆一層光阻115,利用光刻工藝形成在光阻115中的多個開口115'對氧化物層102進行刻蝕,從而形成氧化物層102中的多個開口102',並利用氧化物層102作為硬掩模對外延層101進行刻蝕,形成外延層101中的多個第一類槽溝101'和至少一個第二類溝槽101",為了獲得較為圓滑的溝槽底部以提高電學特性,通常是先進行各項異性刻蝕再實施小部分的濕法刻蝕,之後移除該氧化物層102,如第3B-2圖C所示。在第3C圖中,由於形成溝槽過程的幹法刻蝕過程中造成對溝槽壁的物理損傷以及一些其他形式的表面缺陷,需要移除溝槽壁表面的一層有缺陷的矽,通常是採用比較迅速且熱預算小的濕氧進行犧牲氧化工藝,從而生成一層犧牲氧化層103覆蓋在外延層101的頂面,同時犧牲氧化層103還覆蓋在第一類槽溝101'和第二類溝槽101"的側壁及底部,之後實施犧牲氧化層103蝕刻。如第3D圖所示,然後進行通常為高溫幹氧條件下的柵氧工藝生長一層柵氧化物層104,柵氧化物層104覆蓋在第一類槽溝101'和第二類溝槽101"的側壁及底部並還覆蓋在外延層101的頂面。如第3E-3F圖所示,先進行LPCVD澱積多晶矽層105覆蓋在柵氧化物層104上,此過程中底部及側壁附有柵氧化物層104的第一類槽溝101'和第二類溝槽101"中均填充有多晶矽層105,多晶矽層105可以選擇原位摻雜或澱積之後再適度摻雜,然後對多晶矽層105進行回蝕,僅保留分別位於第一類槽溝101'中的柵多晶矽105'和第二類溝槽101"中的柵極流道多晶矽105"(或稱之為柵極通道多晶矽),其實第一類槽溝101'和第二類溝槽101"是連通的,故柵多晶矽105'和柵極流道多晶矽105"也是電性導通的。如第3G圖所示,覆蓋在外延層101的頂面的柵氧化物層104蝕刻之後進行遮罩氧化,形成的遮罩氧化層106覆蓋在在外延層101的頂面和覆蓋在柵多晶矽105'和柵極流道多晶矽105"上。如第3H圖所示,在外延層101的位於第一類槽101'溝側壁周圍的區域中注入第一導電類型的摻雜物並伴隨著退火擴散,從而形成從外延層101的頂面向下延伸至外延層101中的一個體區107(結深通常在0.6至0.7微米之間),並使用同一離子注入掩模,同時還利用第一導電類型的摻雜物在外延層101中形成圍繞在體區107周圍的保護環摻雜區(Guard ring)107a,保護環摻雜區107a與體區107的摻雜類型相同並與體區107相互間隔開。如第3I圖所示,在體區107的位於第一類槽溝101'的較上部分的側壁周圍的區域中注入第二導電類型(與第一導電類型的摻雜類型相反)的摻雜物並伴隨著退火擴散,從而形成從體區107的頂面向下延伸至體區107中的一個頂部電極摻雜區108(結深通常在0.25微米左右),使得任意一個第一類槽溝101'均依次貫穿頂部電極摻雜區108和體區107並延伸至外延層101位於體區107下方的區域中,其中,形成頂部電極摻雜區108的同時,使用同一離子注入掩模,還利用第二導電類型的摻雜物在外延層107中形成圍繞在保護環摻雜區107a周圍的通道阻斷摻雜區(Channel stop)108a,通道阻斷摻雜區108a與頂部電極摻雜區108的摻雜類型相同並與保護環摻雜區107a相互間隔開。
如第3J圖所示,剝離遮罩氧化層106之後,沉積一絕緣介質層109覆蓋在外延層上,絕緣介質層通常是低溫氧化物/含硼酸的矽玻璃(LTO/BPSG)的雙鈍化層,且絕緣介質層109同時還覆蓋在體區107、保護環摻雜區107a、頂部電極摻雜區108、通道阻斷摻雜區108a以及第一類槽溝101'中填充的柵多晶矽105'和第二類溝槽101"中填充的柵極流道多晶矽105"上。然後如第3K圖所示,利用掩模116中的多個開口116',在絕緣介質層109、頂部電極摻雜區108、體區107中進行刻蝕,形成依次貫穿絕緣介質層109、頂部電極摻雜區108並延伸至體區107中的多個第一類通孔110,以及形成至少一個貫穿緣介質層109並接觸第二類溝槽101"中填充的柵極流道多晶矽105"的第二類通孔110',而從頂部電極摻雜區108的頂面算起,第一類通孔110的深度通常在0.25至0.4微米之間。如第3L圖所示,在體區107的位於第一類通孔110的底部的周圍的區域中注入重摻雜的第一導電類型的摻雜物,形成包圍第一類通孔110的底部的接觸區110a。如第3M圖所示,沉積一層具良好導電性能的勢壘材料層112(例如Ti/TiN)覆蓋在所述絕緣介質層109上,勢壘材料層112同時還覆蓋在第一類通孔110、第二類通孔110'各自的底部及側壁上;然後在底部及側壁附有勢壘材料層112的第一類通孔110、第二類通孔110'中填充導電材料(例如鎢W)111,並沉積一層金屬層113覆蓋在勢壘材料層112的位於絕緣介質層109上方的區域上,該金屬層113同時還覆蓋在分別填充在第一類通孔110和第二類通孔110'中的導電材料111上並與導電材料111形成電接觸。如第3N圖所示,同時對金屬層113和勢壘材料層112的位於絕緣介質層109上方的區域進行刻蝕,將金屬層113分割成與第一類通孔110中所填充的導電材料111電性連接的第二金屬電極113A,此過程中金屬層113還被分割成與第二類通孔110'中所填充的導電材料111電性連接的第三金屬電極113B,勢壘材料層112覆蓋在絕緣介質層109上方的區域經刻蝕後的剩餘部分112'a和112'b分別保留在第二金屬電極113A和第三金屬電極113B的下方。如第3O圖所示,PECVD沉積一層底部鈍化層114b覆蓋在襯底125的底面上,及沉積一層頂部鈍化層114a覆蓋在絕緣介質層109上,頂部鈍化層114a同時將第二金屬電極113A和第三金屬電極113B予以覆蓋,鈍化層通常為二氧化矽或氮化矽。如第3P圖所示,在底部鈍化層114b中形成一個開口114'b或多個未示出的開口,從而將底部鈍化層114b作為掩模並利用底部鈍化層114b上的開口114'b對襯底125進行刻蝕,並通過該刻蝕過程相對應的形成襯底125中的一個凹槽115或多個未示出的凹槽,刻蝕停止在刻蝕阻擋層120上。其中,襯底125的刻蝕可為濕法刻蝕或深反應摻雜物刻蝕,而濕法刻蝕用到的刻蝕液通常為四甲基氫氧化銨溶液(TMAH)或氫氧化鉀溶液(KOH)或乙二胺鄰苯二酚溶液(EDP),由於TMAH相容CMOS的濕法刻蝕並且不含鹼金屬離子,而EDP具有腐蝕性和潛在的致癌性的不利因素,另外,KOH刻蝕液中K+是一種可移動的離子電荷源,會對器件的電性特徵(例如開啟電壓)有負面影響,所以本發明優選TMAH作為刻蝕劑。
如第3Q圖所示,進一步對通常為二氧化矽的刻蝕阻擋層120的暴露在凹槽115中的區域(例如虛線所框定的區域120')進行刻蝕,其刻蝕可用緩衝氫氟酸溶液,並且刻蝕停止在外延層101上,由此形成依次貫穿襯底125和刻蝕阻擋層120的一個或多個底部凹槽115'。如第3R圖所示,於外延層101的暴露在底部凹槽115'的頂部的區域內注入與外延層101摻雜類型相同的摻雜物,形成外延層101中位於底部凹槽115'的頂部的上方的重摻雜的底部電極接觸區116,然後移去底部鈍化層114b,之後將覆蓋第二金屬電極113A、第三金屬電極113B的部分頂部鈍化層114a移除,可以在合適的時機選擇將頂部鈍化層114a覆蓋在第二金屬電極113A上的區域(例如114a-1)移除,將頂部鈍化層114a覆蓋在和第三金屬電極113B上的區域(例如114a-2)移除,以在頂部鈍化層中114a將第二金屬電極113A、第三金屬電極113B予以暴露。如第3S圖所示,沉積一層金屬層(底部金屬層)117覆蓋在襯125底的底面上,該金屬層117還同時覆蓋在底部凹槽115'的側壁和頂部上,其中,金屬層117位於底部凹槽115'的頂部的區域與重摻雜的底部電極接觸區116保持良好的歐姆接觸,並且金屬層117用於構成功率MOS電晶體器件100A的第一金屬電極。如第3S圖所示,在MOS電晶體器件100A中,垂直MOS電晶體單元為溝槽式MOS電晶體,第一類槽溝101'中所填充的柵多晶矽105'構成垂直MOS電晶體單元的柵極,溝道形成在體區107中,受柵多晶矽105'控制的電流從頂部電極摻雜區108經體區107流向外延層101的底面(或相反),所以稱外延層101的底面構成垂直MOS電晶體單元的底部電極(如漏極),而相應的頂部電極摻雜區108一般構成垂直MOS電晶體單元的頂部電極(如源極)。其中,第一類通孔110中填充的導電材料111提供頂部電極摻雜區108與第二金屬電極113A之間的電接觸,同時還提供源區-體區之間的電接觸,所以第二金屬電極113A構成MOS電晶體器件100A的源極電極;第二類通孔110'中填充的導電材料111提供柵極流道多晶矽105"與第三金屬電極113B之間的電接觸,由於第三金屬電極113B與任意一個柵多晶矽105'都是電性導通的,所以第三金屬電極113B構成功率MOS電晶體器件100A的柵極電極,而由金屬層117所構成的第一金屬電極則為功率MOS電晶體器件100A的漏極電極。例如,如果襯底125為輕摻雜N型襯底,外延層101為輕摻雜N型外延層,前述第一導電類型的摻雜物可為P型的離子,第二導電類型的摻雜物可為N型的離子,則垂直MOS電晶體單元為N型溝道的溝槽式MOS電晶體;如果襯底125為輕摻雜P型襯底,外延層為輕摻雜P型外延層,前述第一導電類型的摻雜物可為N型的離子,第二導電類型的摻雜物可為P型的離子,則垂直MOS電晶體單元為P型溝道的溝槽式MOS電晶體。
實施方式二:
參見第2B圖及第4A-4D圖所示,在晶圓100'中,外延層101是直接生長在襯底125上,若是前述製備垂直MOS電晶體單元是在晶圓100'中實施的,那麼在外延層101中製備垂直MOS電晶體單元與實施方式一中的流程並無差異,所以襯底125所支撐的外延層101中形成有相同的垂直MOS電晶體單元。只不過此時要求襯底125與外延層101的摻雜類型相反,主要原因是利用襯底125與外延層101兩者的交界面所產生的PN結作為刻蝕襯底125時的刻蝕阻擋層。如第4A圖所示,在沉積一層底部鈍化層114b覆蓋在襯底125的底面上,在底部鈍化層114b中形成一個開口114'b或多個未示出的開口(為了簡潔起見,只示意出了一個開口)。如第4B圖所示,襯底125與外延層101兩者的交界面所產生的PN結在反偏的條件下,利用底部鈍化層114b上的開口114'b對襯底125進行刻蝕,主要是電化學腐蝕,電化學刻蝕法所用到的濕法刻蝕液主要為四甲基氫氧化銨溶液(TMAH)或氫氧化鉀溶液(KOH),刻蝕到達PN結時刻蝕反應停止,此時刻蝕精度經過調整可認為刻蝕大致停止在外延層101上,從而通過該刻蝕過程形成襯底125中的一個底部凹槽115'或多個未示意出的底部凹槽。如第4C圖所示,然後於外延層101的暴露在底部凹槽115'的頂部的區域內注入與外延層101摻雜類型相同的摻雜物,此摻雜過程為重摻雜過程,以形成外延層101中位於底部凹槽115'的頂部的上方的底部電極接觸區116。如第4D圖所示,沉積一層金屬層(底部金屬層)117覆蓋在襯底125的底面上,該金屬層117還同時覆蓋在底部凹槽115'的側壁和頂部上。其中,金屬層117位於底部凹槽115'的頂部的區域與底部電極接觸區116保持良好的歐姆接觸,並且由金屬層117所構成的第一金屬電極為功率MOS電晶體器件100'A的漏極電極,第二金屬電極113A構成功率MOS電晶體器件100'A的源極電極,第三金屬電極113B構成功率MOS電晶體器件100'A的柵極電極。其中,如果襯底125為輕摻雜P型襯底,外延層101為輕摻雜N型外延層,前述第一導電類型的摻雜物可為P型的離子,第二導電類型的摻雜物可為N型的離子,則垂直MOS電晶體單元為N型溝道的溝槽式MOS電晶體。如果襯底125為輕摻雜N型襯底,外延層101為輕摻雜P型外延層,前述第一導電類型的摻雜物可為N型的離子,第二導電類型的摻雜物可為P型的離子,則垂直MOS電晶體單元為P型溝道的溝槽式MOS電晶體。
實施方式三:
參見第2C-1至2C-2圖及第5A-5D圖所示,在晶圓100"中,外延層101雖然是生長在襯底125上,但是之前先在襯底125的頂面植入一層重摻雜物以形成的一層掩埋重摻雜層120",所以認為外延層101和襯底125之間間隔了一層掩埋重摻雜層120"。若是前述製備垂直MOS電晶體單元是在晶圓100"中實施的,那麼在圖A5所示的外延層101中製備垂直MOS電晶體單元與實施方式一中的流程並無差異。此時主要是利用掩埋重摻雜層120"作為刻蝕襯底125時的刻蝕阻擋層。一種可選方式是,從輕摻雜的P-型襯底125的頂面注入一層重摻雜的P+型掩埋重摻雜層120",例如重摻雜的硼摻雜層,其摻雜濃度超過1e19/cm3。再在襯底125上生長輕摻雜的P-型外延層101。須注意的是,由於外延層101、掩埋重摻雜層120"和襯底125的摻雜類型相同,則受柵多晶矽105'控制的電流可以從頂部電極摻雜區108經體區107流向外延層101的底面並繼續流向襯底的底面(或相反),所以稱襯底125的底面構成垂直MOS電晶體單元的底部電極(如漏極)。如第5B圖所示,沉積一層底部鈍化層114b覆蓋在襯底125的底面上,在底部鈍化層114b中形成一個開口114'b或多個未示出的開口,利用底部鈍化層114b上的開口114'b對襯底125進行刻蝕,刻蝕停止在由掩埋重摻雜層120"所構成的刻蝕阻擋層上,並通過該刻蝕過程形成襯底125中的一個底部凹槽115'或多個未示出的底部凹槽,如第5C圖所示。再如第5D圖所示,沉積一層金屬層(底部金屬層)117覆蓋在襯底125的底面上,該金屬層117還同時覆蓋在底部凹槽115'的側壁和頂部上,其中,金屬層117位於底部凹槽115'的頂部的區域與掩埋重摻雜層120"保持良好的歐姆接觸,並且由金屬層117所構成的第一金屬電極為功率MOS電晶體器件100"A的漏極電極,第二金屬電極113A構成功率MOS電晶體器件100"A的源極電極,第三金屬電極113B構成功率MOS電晶體器件100"A的柵極電極。前述第一導電類型的摻雜物可為N型的離子,第二導電類型的摻雜物可為P型的離子,則此時垂直MOS電晶體單元為P型溝道的溝槽式MOS電晶體。
實施方式四:
參見第2B圖及第6圖所示,在晶圓100'中,外延層101是直接生長在襯底125上,若是前述製備垂直MOS電晶體單元是在晶圓100'中實施的,那麼在外延層101中製備垂直MOS電晶體單元與實施方式一中的流程並無差異,所以襯底125所支撐的外延層101中形成有相同的垂直MOS電晶體單元。此時襯底125與外延層101的摻雜類型相同,但襯底125為重摻雜而外延層101為輕摻雜。由於外延層101和襯底125的摻雜類型相同,則受柵多晶矽105'控制的電流可以從頂部電極摻雜區108經體區107流向外延層101的底面並繼續流向襯底的底面(或相反),所以認為襯底125的底面構成垂直MOS電晶體單元的底部電極(如漏極)。可以沉積一層底部鈍化層(未示出)覆蓋在襯底125的底面上,並在底部鈍化層中形成一個或多個開口,利用底部鈍化層上的開口對襯底125進行刻蝕,刻蝕停止在襯底125中,並通過該刻蝕過程形成襯底125中的一個或多個底部通孔118,此時底部通孔118的形成可利用幹法刻蝕或鐳射刻蝕等刻蝕手段,而且必須保障底部通孔118的頂部距離外延層101還有一段距離,通常在對襯底進行刻蝕的過程中進行時間或他刻蝕因素控制,以使得所形成的底部通孔118的頂部與外延層101的頂面之間的距離X1保持在5um至20um之間。在底部通孔118的側壁和頂部沉積一層勢壘材料層(如Ti/TiN,未示出)之後,再在側壁和頂部襯墊有勢壘材料層的底部通孔118中進行化學氣相沉積而填充導電材料(如鎢)119,再沉積一層金屬層(底部金屬層)117覆蓋在襯底125的底面上,該金屬層117還同時與底部通孔118中所填充的導電材料119保持電性接觸,其中,由金屬層117所構成的第一金屬電極為功率MOS電晶體器件100'B的漏極電極,第二金屬電極113A構成功率MOS電晶體器件100'B的源極電極,第三金屬電極113B構成功率MOS電晶體器件100'B的柵極電極。此時如果襯底125為重摻雜N型襯底,外延層101為輕摻雜N型外延層,前述第一導電類型的摻雜物可為P型的離子,第二導電類型的摻雜物可為N型的離子,則垂直MOS電晶體單元為N型溝道的溝槽式MOS電晶體。如果襯底125為重摻雜P型襯底,外延層101為輕摻雜P型外延層,前述第一導電類型的摻雜物可為N型的離子,第二導電類型的摻雜物可為P型的離子,則垂直MOS電晶體單元為P型溝道的溝槽式MOS電晶體。
實施方式五:
此實施方式與實施方式四的相同點在於,均是針對第2B圖所示的晶圓100'而採取的製備方法,均是在襯底125所支撐的外延層101中形成有垂直MOS電晶體單元,且襯底125與外延層101的摻雜類型相同,但襯底125為重摻雜而外延層101為輕摻雜。此實施例中,先沉積一層底部鈍化層(未示出)覆蓋在襯底125的底面上,再在底部鈍化層中形成一個或多個開口(未示出),並利用底部鈍化層上的開口對襯底125進行濕法刻蝕,刻蝕停止在襯底125中,並通過該刻蝕過程形成襯底125中的一個底部凹槽115'或多個底部凹槽115',一般情況下可調整刻蝕時間或其他刻蝕因素,而使得底部凹槽115'的頂部與外延層101的頂面之間的距離X2保持在10um至20um之間。之後沉積一層金屬層(底部金屬層)117覆蓋在襯底125的底面上,該金屬層117還同時覆蓋在底部凹槽115'的側壁和頂部上,其中,由金屬層117所構成的第一金屬電極為功率MOS電晶體器件100"B的漏極電極,第二金屬電極113A構成功率MOS電晶體器件100"B的源極電極,第三金屬電極113B構成功率MOS電晶體器件100"B的柵極電極。此時如果襯底125為重摻雜N型襯底,外延層101為輕摻雜N型外延層,前述第一導電類型的摻雜物可為P型的離子,第二導電類型的摻雜物可為N型的離子,則垂直MOS電晶體單元為N型溝道的溝槽式MOS電晶體。如果襯底125為重摻雜P型襯底,外延層101為輕摻雜P型外延層,前述第一導電類型的摻雜物可為N型的離子,第二導電類型的摻雜物可為P型的離子,則垂直MOS電晶體單元為P型溝道的溝槽式MOS電晶體。
以上各實施例均是在體區107的位於第一類槽溝101'的較上部分的側壁周圍的區域中注入摻雜物,形成從體區107的頂面向下延伸至體區107中的一個頂部電極摻雜區108,通常這種垂直MOS電晶體單元的結構模式可以稱之為TC-MOS(Trench touch MOSFET)器件。為了進一步闡明本發明的更為廣泛的適應範圍,依然用SOI晶圓100為例進行說明。第8A-8E圖展示了垂直MOS電晶體作為傳統Trench DMOS器件的降低通態電阻的方法,其與第3A-3S圖的製備方式大致上一致,二者差異在於,只是在體區107的位於每個第一類槽溝101'的較上部分的側壁周圍的區域中注入第二導電類型的摻雜物,形成體區107中的多個頂部電極摻雜區108',並且任意一個頂部電極摻雜區108'相對應的圍繞在一個第一類槽溝101'的較上部分的側壁的周圍,使得任意一個第一類槽溝101'均依次貫穿一個頂部電極摻雜區108'和體區107並延伸至外延層101位於體區107下方的區域中,如第8A圖所示。然後如第8B圖所示,沉積一絕緣介質層109覆蓋在外延層101上,絕緣介質層109同時還覆蓋在體區107、多個頂部電極摻雜區108',以及覆蓋在第一類槽溝101'中所填充的柵多晶矽105'和第二類溝槽101"中所填充的柵極流道多晶矽105"上。然後如第8C圖所示,在絕緣介質層109中進行刻蝕,形成貫穿緣介質層109的多個第一類通孔110-1,以及形成至少一個貫穿緣介質層109並接觸第二類溝槽101"中填充的多晶矽(即柵極流道多晶矽105")的第二類通孔110'-1,並在體區107的暴露在第一類通孔110-1的底部的區域中注入重摻雜的第一導電類型的摻雜物,形成位於第一類通孔110-1的底部的接觸區110a-1,如第8D圖所示。再沉積一層勢壘材料層(未示出)112覆蓋在絕緣介質層109上,勢壘材料層112同時還覆蓋在第一類通孔110-1、第二類通孔110'-1各自的底部及側壁上。再在第二類通孔110'-1中填充導電材料(如鎢)111,並沉積一層金屬層(未示出)113覆蓋在勢壘材料層112位於絕緣介質層109上方的區域上,且該金屬層113的一部分113A-2還填充在第一類通孔110-1中,該金屬層113同時還覆蓋在第二類通孔110'-1中所填充的導電材料111上並與之形成電接觸。對金屬層113和勢壘材料層112位於絕緣介質層109上方的區域進行刻蝕,將金屬層113進行分割以形成第二金屬電極113A-1和第三金屬電極113B-1,第二金屬電極113A-1與金屬層113填充在第一類通孔110-1中的那一部分113A-2電性連接,第三金屬電極113B-1與第二類通孔110'-1中所填充的導電材料111電性連接,勢壘材料層112覆蓋在絕緣介質層109上方的區域經刻蝕後的剩餘部分112'a、112'b分別保留在第二金屬電極113A-1、第三金屬電極113B-1的下方。金屬層113填充在第一類通孔110-1中的那一部分113A-2構成互連接頭,將頂部電極摻雜區108'與體區107短接,重摻雜的接觸區110a-1與體區107的摻雜類型相同,並促進金屬層113填充在第一類通孔110-1中的部分113A-2與體區107的歐姆接觸。第8E圖中的底部凹槽115'的製備流程與第3O圖至第3S圖的方法或與其他前文所提供的方法並無差別。該製備垂直MOS電晶體單元和底部凹槽的方法,除了可以應用第2A圖所示的晶圓100以外,第2B、2C-2圖中所示的晶圓100'、100"也均適用,並且製備底部凹槽的方式也可以隨之進行適應性修正。由於前述內容已經充分揭露應對不同的晶圓(也即應對不同的刻蝕阻擋層)而可以對製備底部凹槽的方法進行調整,所以本案不再針對Trench DMOS而重複贅述底部凹槽的製備方法。
如第9A圖所示的功率MOS電晶體器件200,此時原本鑄造連接在一起並共同位於一個晶圓上的大量功率MOS電晶體器件200被從晶圓上切割分離下來而形成單獨的晶片,在其襯底125(未示意出)中形成有一個或多個底部凹槽115'後,作為一種選擇方式,該多個底部凹槽115'中的所有底部凹槽115'共同組合在一起構成一個矩陣。底部凹槽115'位於功率MOS電晶體器件200的底面202的一側,值得注意的是,金屬層117並未在第9A圖中示意出來。而其由金屬層117所構成的第一金屬電極為功率MOS電晶體器件200的漏極電極,第二金屬電極構成MOS電晶體器件200的源極電極,第三金屬電極構成功率MOS電晶體器件200的柵極電極,第二金屬電極、第三金屬電極均位於功率MOS電晶體器件200的頂面201的一側。為了降低MOS的通態電阻,還可以在如第9B圖所示的基座300的頂面301上製備凸出於基座300的頂面301的數個金屬凸塊315,金屬凸塊315的數量與底部凹槽115'的數量保持一致,並且金屬凸塊315的形貌與底部凹槽115'的槽體結構相適配。例如假定金屬凸塊315為四棱臺,則底部凹槽115'的槽體結構為四棱臺式的空腔並且其空腔體積以適合金屬凸塊315剛好嵌入為佳;金屬凸塊315的形貌還可以為其他類型如正方體、長方體、圓柱、圓臺等,此時要求底部凹槽115'的槽體結構(腔體形貌)隨之變化。其次,利用導電粘合材料320(如導電銀漿或焊錫膏等)將功率MOS電晶體器件200粘貼在基座300的頂面301,其中,任意一個金屬凸塊315相對應的嵌入在一個底部凹槽115'中,並且導電粘合材料320位於金屬層117與基座301之間,導電粘合材料320還填充在底部凹槽115'的頂部與金屬凸塊315之間,及導電粘合材料320填充在底部凹槽115'的側壁與金屬凸塊315之間,如第10圖所示的功率MOS電晶體器件200與基座300完成粘帖後二者的橫截面示意圖。第9B圖中基座300附近所設置的源極引線基座302可以通過額外的金屬導線或金屬片/帶等用於與第二金屬電極進行電性連接,從而作為功率MOS電晶體器件200的源極引腳;基座300附近所設置的柵極引線基座303可以通過額外的金屬導線或金屬片/帶等用於與第三金屬電極進行電性連接,從而作為功率MOS電晶體器件200的柵極引腳;較寬的基座300則可直接作為功率MOS電晶體器件200的漏極引腳和散熱盤。必須提出的是,為了增強功率MOS電晶體器件200和基座300之間的粘附能力,減少二者之間的導電粘合材料320中的氣泡等空洞,以避免功率MOS電晶體器件200從基座300上脫離,可以在抽取真空的環境下將功率MOS電晶體器件200粘貼在基座300的頂面301上。在另一種實施方案中,如第11圖所示,甚至於可以直接將功率MOS電晶體器件200粘貼在基座400的頂面401上,注意此時在基座400的頂面401上並未設置任何類似金屬凸塊之類的突起物,而是將導電粘合材料320塗覆在基座400的頂面401上,並直接將功率MOS電晶體器件200粘貼在基座400上後,導電粘合材料320不僅位於金屬層117(未示出)與基座301之間,並且部分導電粘合材料320還填充在底部凹槽115'中,同樣,為了減少底部凹槽115'中的氣泡(Void)量,此粘貼過程同樣也可以在真空的環境下進行。可見,與底部凹槽115'相適配的該基座300、400或類似的引線框架均能提供較好的低電阻封裝模型。
以上內容,均是以溝槽式柵極的垂直MOS電晶體器件為例進行敍述說明,其實,平面柵極的垂直MOS電晶體器件同樣適用,例如垂直雙擴散MOSFET(VDMOS)器件。參見第12圖,在襯底125所支撐的外延層101中形成有垂直MOS電晶體單元,只不過垂直MOS電晶體單元的柵極是平面的而非溝槽式的,具體而言,位於外延層101中且在外延層101的頂面附近形成有VDMOS的體區607,以及外延層101中還形成有從體區607的頂面延伸至體區607中的頂部電極摻雜區(即源極區)608,並且體區607包圍在頂部電極摻雜區608的周圍。柵氧化層604設置在多晶矽柵極605下方,體區607的位於柵氧化層604和多晶矽柵極605下方的區域607a,並且該區域607a位於頂部電極摻雜區608與外延層101之間,從而區域607a構成VDMOS器件的電流通道,電流從頂部電極摻雜區608經體區607橫向流動後垂直流向外延層101的底面,所以仍然可以認為外延層101的底面構成垂直MOS電晶體單元的底部電極(漏極)。勢壘材料層612和金屬層613A提供頂部電極摻雜區608和體區607之間的短路。刻蝕阻擋層120設置在外延層101與襯底125之間,形成了依次貫穿襯底125和刻蝕阻擋層120的一個底部凹槽115'或多個未示意出的底部凹槽。於外延層101的暴露在底部凹槽115'的頂部的區域內注入與外延層101摻雜類型相同的摻雜物,形成外延層101中位於底部凹槽115'的頂部的上方的重摻雜的底部電極接觸區116,金屬層(底部金屬層)117覆蓋在襯底125的底面上,金屬層117還同時覆蓋在底部凹槽115'的側壁和頂部上,金屬層117位於底部凹槽115'頂部的區域與底部電極接觸區116保持接觸,並且金屬層117用於構成VDMOS器件的第一金屬電極(漏極),此時金屬層613A為第二金屬電極(源極電極),而未示意出的並與多晶矽柵極605連接的金屬層構成第三金屬電極(柵極電極)。由於前述內容已經充分揭露應對不同的晶圓(也即應對不同的刻蝕阻擋層)而可以對製備底部凹槽的方法進行調整,所以本案不再針對VDMOS而重複贅述底部凹槽的製備方法。
儘管本申請並未單獨額外的對以上各種器件結構進行詳細描述,但是由以上所羅列的方法所製備的半導體器件的結構模式已經較為明瞭,而且通讀本申請內容,其器件結構也全然體現在方法當中,所以本申請不再對器件結構進行贅述。然而必須明確的是,本發明所要保護的低導通電阻的功率MOS電晶體器件,是利用以上各方法所製備的。
通過說明和附圖,給出了具體實施方式的特定結構的典型實施例,例如,本案是以頂源底漏的垂直MOS電晶體進行闡述,基於本發明精神,晶片還可作其他類型的轉換,譬如將垂直MOS電晶體替換成頂漏底源的垂直MOS電晶體同樣是可行的。所以,儘管上述發明提出了現有的較佳實施例,然而,這些內容並不作為局限。
對於本領域的技術人員而言,閱讀上述說明後,各種變化和修正無疑將顯而易見。因此,所附的權利要求書應看作是涵蓋本發明的真實意圖和範圍的全部變化和修正。在權利要求書範圍內任何和所有等價的範圍與內容,都應認為仍屬本發明的意圖和範圍內。

Embodiment 1:
Referring to FIG. 2A, in the wafer 100, an etch stop layer 120 is disposed between the substrate 125 and the epitaxial layer 101. Such a wafer is commonly referred to as a silicon on insulator (SOI) wafer. In the wafer 100' shown in FIG. 2B, the epitaxial layer 101 is grown directly on the substrate 125. In addition, in the wafer 100" shown in the second C-1 to 2C-2, a layer of heavily doped layer 120" is implanted on the top surface of the substrate 125 to form a buried heavily doped layer 120". An epitaxial layer 101 is grown on the substrate 125, for example, by implanting a heavily doped P+ type buried heavily doped layer 120" from the top surface of the lightly doped P-type substrate 125, and then growing lightly on the substrate 125. The doped P-type epitaxial layer 101 is such that there is a heavily doped buried heavily doped layer 120" between the substrate 125 and the epitaxial layer 101.
The case is described by taking SOI wafer as an example. In FIG. 3A, an oxide layer 102 (such as LTO low temperature oxide) is overlaid on the epitaxial layer 101, and a photoresist 115 is coated on the oxide layer 102, which is formed in the photoresist 115 by a photolithography process. The plurality of openings 115' etch the oxide layer 102 to form a plurality of openings 102' in the oxide layer 102, and etch the epitaxial layer 101 using the oxide layer 102 as a hard mask to form the epitaxial layer 101. The plurality of first type trenches 101' and the at least one second type of trenches 101" are generally wetted by anisotropic etching to obtain a small portion of the trenches in order to obtain a relatively smooth trench bottom. Etching, then removing the oxide layer 102, as shown in Figure 3B-2, Figure C. In Figure 3C, the physical damage to the trench walls is caused by the dry etching process that forms the trench process and Some other forms of surface defects require a layer of defective germanium to be removed from the surface of the trench wall. Typically, a sacrificial oxidation process is performed using a relatively fast and low thermal budget wet oxygen to form a sacrificial oxide layer 103 overlying the epitaxial layer 101. Top surface while sacrificing oxide layer 103 The sidewalls and the bottom of the first type of trench 101' and the second type of trench 101" are also covered, and then the sacrificial oxide layer 103 is etched. As shown in FIG. 3D, a gate oxide layer 104 is then grown by a gate oxide process, typically under high temperature dry oxygen conditions, with the gate oxide layer 104 overlying the first type of trench 101' and the second type of trench 101". The sidewalls and the bottom portion also cover the top surface of the epitaxial layer 101. As shown in Figures 3E-3F, the LPCVD deposition polysilicon layer 105 is first overlaid on the gate oxide layer 104, in which the bottom and sidewalls are gated. The first type of trench 101' and the second type of trench 101" of the oxide layer 104 are filled with a polysilicon layer 105, and the polysilicon layer 105 can be selectively doped or deposited after being doped, and then polycrystalline germanium layer. 105 is etched back, leaving only the gate polysilicon 105' in the first type of trench 101' and the gate runner polysilicon 105" (or gate channel polysilicon) in the second type of trench 101", In fact, the first type of trench 101' and the second type of trench 101" are in communication, so the gate polysilicon 105' and the gate runner polysilicon 105" are also electrically conductive. As shown in FIG. 3G, the gate oxide layer 104 overlying the top surface of the epitaxial layer 101 is etched after masking, and a mask oxide layer 106 is formed overlying the top surface of the epitaxial layer 101 and overlying the gate polysilicon 105. 'and the gate runner polysilicon 105". As shown in FIG. 3H, a dopant of the first conductivity type is implanted in the region of the epitaxial layer 101 around the sidewall of the trench of the first type of trench 101' with annealing diffusion Forming a body region 107 extending from the top surface of the epitaxial layer 101 down to the epitaxial layer 101 (the junction depth is typically between 0.6 and 0.7 microns) and using the same ion implantation mask while also utilizing the first conductivity type The dopant forms a guard ring doping region 107a around the body region 107 in the epitaxial layer 101. The guard ring doping region 107a has the same doping type as the body region 107 and is spaced apart from the body region 107. As shown in FIG. 3I, a second conductivity type (opposite to the doping type of the first conductivity type) is implanted in a region of the body region 107 around the sidewall of the upper portion of the first type of trench 101'. The dopant is diffused with annealing to form a slave region The top surface of the 107 extends downward to a top electrode doped region 108 in the body region 107 (the junction depth is typically about 0.25 microns) such that any one of the first type of trenches 101' sequentially penetrates the top electrode doped region 108 and the body. The region 107 extends to a region below the body region 107 where the epitaxial layer 101 is formed, wherein the same ion implantation mask is used, and a dopant of the second conductivity type is also utilized in the epitaxial layer 107. Forming a channel blocking doping region 108a around the guard ring doping region 107a, the doping type of the channel blocking doping region 108a and the top electrode doping region 108 are the same and the guard ring doping region 107a are spaced apart from each other.
As shown in FIG. 3J, after the mask oxide layer 106 is stripped, an insulating dielectric layer 109 is deposited over the epitaxial layer, which is typically a double passivation layer of a low temperature oxide/boric acid-containing bismuth glass (LTO/BPSG). And the insulating dielectric layer 109 also covers the gate polysilicon 105' filled in the body region 107, the guard ring doping region 107a, the top electrode doping region 108, the channel blocking doping region 108a, and the first type of trench 101'. And the second type of trench 101" is filled in the gate runner polysilicon 105". Then, as shown in FIG. 3K, etching is performed in the insulating dielectric layer 109, the top electrode doping region 108, and the body region 107 by using a plurality of openings 116' in the mask 116 to form a through-insertion dielectric layer 109 and a top portion in sequence. The electrode doped region 108 extends to the plurality of first type vias 110 in the body region 107, and forms at least one through-edge dielectric layer 109 and contacts the gate runner polysilicon 105 filled in the second type of trench 101" The second type of vias 110', and the first type of vias 110 are typically between 0.25 and 0.4 microns deep from the top surface of the top electrode doped region 108. As shown in FIG. 3L, a heavily doped first conductivity type dopant is implanted in a region of the body region 107 around the bottom of the first type of via 110 to form a bottom surrounding the first type of via 110. Contact area 110a. As shown in FIG. 3M, a barrier material layer 112 (eg, Ti/TiN) having a good electrical conductivity is deposited over the insulating dielectric layer 109, and the barrier material layer 112 also covers the first via 110. The second type of through holes 110' are respectively on the bottom and the side walls; then the first type of through holes 110 and the second type of through holes 110' with the barrier material layer 112 attached to the bottom and the side walls are filled with a conductive material (for example, tungsten W And a metal layer 113 is deposited over the region of the barrier material layer 112 above the insulating dielectric layer 109, and the metal layer 113 is also covered in the first type of via hole 110 and the second type of via hole, respectively. The conductive material 111 in 110' is in electrical contact with the conductive material 111. As shown in FIG. 3N, the regions of the metal layer 113 and the barrier material layer 112 above the insulating dielectric layer 109 are simultaneously etched to divide the metal layer 113 into conductive materials filled in the first type of vias 110. 111 electrically connected second metal electrode 113A, in this process, the metal layer 113 is further divided into a third metal electrode 113B electrically connected to the conductive material 111 filled in the second type of via hole 110', the barrier material layer The remaining portions 112'a and 112'b which are etched in the region overlying the insulating dielectric layer 109 are left under the second metal electrode 113A and the third metal electrode 113B, respectively. As shown in FIG. 3O, PECVD deposits a bottom passivation layer 114b overlying the bottom surface of the substrate 125, and deposits a top passivation layer 114a overlying the dielectric dielectric layer 109. The top passivation layer 114a simultaneously exposes the second metal electrode 113A and The third metal electrode 113B is covered, and the passivation layer is usually hafnium oxide or tantalum nitride. As shown in FIG. 3P, an opening 114'b or a plurality of openings, not shown, are formed in the bottom passivation layer 114b, thereby using the bottom passivation layer 114b as a mask and utilizing the opening 114'b on the bottom passivation layer 114b. The substrate 125 is etched, and a recess 115 or a plurality of recesses not shown in the substrate 125 are formed by the etching process, and etching is stopped on the etch barrier layer 120. The etching of the substrate 125 may be wet etching or deep reactive dopant etching, and the etching solution used for wet etching is usually tetramethylammonium hydroxide solution (TMAH) or potassium hydroxide. Solution (KOH) or ethylenediamine catechol solution (EDP), due to TMAH compatible CMOS wet etching and no alkali metal ions, and EDP has corrosive and potential carcinogenic disadvantages, in addition, K in KOH etching solution + It is a mobile ionic charge source that has a negative impact on the electrical characteristics of the device (e.g., turn-on voltage), so TMAH is preferred as an etchant in the present invention.
As shown in FIG. 3Q, the region of the etch barrier layer 120, which is typically cerium oxide, exposed in the recess 115 (eg, the region 120' enclosed by the dashed line) is further etched, and the etch can be buffered with hydrogen fluoride. The acid solution is etched and the etch stops on the epitaxial layer 101, thereby forming one or more bottom recesses 115' that extend through the substrate 125 and the etch stop layer 120 in sequence. As shown in FIG. 3R, a dopant of the same type as that of the epitaxial layer 101 is implanted in a region of the epitaxial layer 101 exposed at the top of the bottom recess 115' to form the bottom recess 115' of the epitaxial layer 101. The heavily doped bottom electrode contact region 116 at the top of the top, and then the bottom passivation layer 114b is removed, after which the partial top passivation layer 114a covering the second metal electrode 113A and the third metal electrode 113B is removed, at a suitable timing The region (eg, 114a-1) that covers the top passivation layer 114a over the second metal electrode 113A is removed, and the top passivation layer 114a is removed over the region (eg, 114a-2) on the third metal electrode 113B. The second metal electrode 113A and the third metal electrode 113B are exposed in the top passivation layer 114a. As shown in FIG. 3S, a metal layer (bottom metal layer) 117 is deposited over the bottom surface of the bottom of the liner 125. The metal layer 117 also covers the sidewalls and top of the bottom recess 115', wherein the metal layer 117 The region at the top of the bottom recess 115' maintains good ohmic contact with the heavily doped bottom electrode contact region 116, and the metal layer 117 is used to form the first metal electrode of the power MOS transistor device 100A. As shown in FIG. 3S, in the MOS transistor device 100A, the vertical MOS transistor unit is a trench MOS transistor, and the gate polysilicon 105' filled in the first type of trench 101' constitutes a vertical MOS transistor unit. The gate, the channel is formed in the body region 107, and the current controlled by the gate polysilicon 105' flows from the top electrode doping region 108 to the bottom surface (or vice versa) of the epitaxial layer 101 via the body region 107, so that the bottom surface of the epitaxial layer 101 is formed. The bottom electrode (e.g., the drain) of the vertical MOS transistor unit, and the corresponding top electrode doped region 108 generally constitutes the top electrode (e.g., source) of the vertical MOS transistor unit. Wherein, the conductive material 111 filled in the first type of via hole 110 provides electrical contact between the top electrode doped region 108 and the second metal electrode 113A, and also provides electrical contact between the source region and the body region, so the second The metal electrode 113A constitutes the source electrode of the MOS transistor device 100A; the conductive material 111 filled in the second type of via hole 110' provides electrical contact between the gate runner polysilicon 105" and the third metal electrode 113B, due to the third The metal electrode 113B and any one of the gate polysilicon 105' are electrically conductive, so that the third metal electrode 113B constitutes the gate electrode of the power MOS transistor device 100A, and the first metal electrode composed of the metal layer 117 is power. The drain electrode of the MOS transistor device 100A. For example, if the substrate 125 is a lightly doped N-type substrate, the epitaxial layer 101 is a lightly doped N-type epitaxial layer, and the aforementioned first conductivity type dopant may be a P-type The ion, the dopant of the second conductivity type may be an N-type ion, and the vertical MOS transistor unit is an N-channel trench MOS transistor; if the substrate 125 is a lightly doped P-type substrate, The epitaxial layer is a lightly doped P-type epitaxial layer, and the first conductive layer The type of dopant may be an N-type ion, the second conductivity type dopant may be a P-type ion, and the vertical MOS transistor unit is a P-channel trench MOS transistor.
Embodiment 2:
Referring to FIGS. 2B and 4A-4D, in the wafer 100', the epitaxial layer 101 is directly grown on the substrate 125. If the foregoing fabrication of the vertical MOS transistor unit is performed in the wafer 100', Then, the preparation of the vertical MOS transistor unit in the epitaxial layer 101 is not different from the flow in the first embodiment, so that the same vertical MOS transistor unit is formed in the epitaxial layer 101 supported by the substrate 125. However, the doping type of the substrate 125 and the epitaxial layer 101 are required to be opposite at this time. The main reason is that the PN junction generated by the interface between the substrate 125 and the epitaxial layer 101 is used as an etch barrier when the substrate 125 is etched. Floor. As shown in FIG. 4A, a bottom passivation layer 114b is deposited over the bottom surface of the substrate 125, and an opening 114'b or a plurality of openings (not shown) are formed in the bottom passivation layer 114b (for the sake of brevity, only An opening is indicated). As shown in FIG. 4B, the PN junction generated by the interface between the substrate 125 and the epitaxial layer 101 is etched by the opening 114'b on the bottom passivation layer 114b under reverse bias conditions. Mainly electrochemical corrosion, the wet etching solution used in the electrochemical etching method is mainly tetramethylammonium hydroxide solution (TMAH) or potassium hydroxide solution (KOH), and the etching reaction stops when the etching reaches the PN junction. At this time, the etching precision is adjusted to be considered to substantially stop on the epitaxial layer 101, thereby forming a bottom recess 115' or a plurality of unillustrated bottom recesses in the substrate 125 by the etching process. As shown in FIG. 4C, a dopant of the same type as that of the epitaxial layer 101 is implanted in a region of the epitaxial layer 101 exposed at the top of the bottom recess 115'. This doping process is a heavily doped process to form A bottom electrode contact region 116 in the epitaxial layer 101 above the top of the bottom recess 115'. As shown in Fig. 4D, a metal layer (bottom metal layer) 117 is deposited overlying the bottom surface of the substrate 125, which also covers the sidewalls and top of the bottom recess 115'. Wherein, the region of the metal layer 117 located at the top of the bottom recess 115' maintains good ohmic contact with the bottom electrode contact region 116, and the first metal electrode composed of the metal layer 117 is the drain of the power MOS transistor device 100'A. The electrode electrode, the second metal electrode 113A constitutes the source electrode of the power MOS transistor device 100'A, and the third metal electrode 113B constitutes the gate electrode of the power MOS transistor device 100'A. Wherein, if the substrate 125 is a lightly doped P-type substrate, the epitaxial layer 101 is a lightly doped N-type epitaxial layer, the dopant of the first conductivity type may be a P-type ion, and the second conductivity type is doped. The object may be an N-type ion, and the vertical MOS transistor unit is an N-channel trench MOS transistor. If the substrate 125 is a lightly doped N-type substrate, the epitaxial layer 101 is a lightly doped P-type epitaxial layer, the aforementioned first conductivity type dopant may be an N-type ion, and the second conductivity type dopant may be In the case of a P-type ion, the vertical MOS transistor unit is a P-channel trench MOS transistor.
Embodiment 3:
Referring to FIGS. 2C-1 to 2C-2 and 5A-5D, in the wafer 100", the epitaxial layer 101 is grown on the substrate 125, but previously implanted on the top surface of the substrate 125. A layer of heavily doped material is formed to bury the heavily doped layer 120", so that a layer of buried heavily doped layer 120" is considered to be interposed between the epitaxial layer 101 and the substrate 125. If the foregoing preparation of the vertical MOS transistor unit is in the crystal In the case of the circle 100", the preparation of the vertical MOS transistor unit in the epitaxial layer 101 shown in FIG. A5 is not different from the flow in the first embodiment. At this time, the heavily doped layer 120" is mainly used as an etch barrier when etching the substrate 125. Alternatively, a heavily doped layer is implanted from the top surface of the lightly doped P-type substrate 125. The P+ type buried heavily doped layer 120", such as a heavily doped boron doped layer, has a doping concentration in excess of 1e19/cm3. A lightly doped P-type epitaxial layer 101 is then grown on the substrate 125. It should be noted that since the doping type of the epitaxial layer 101, the buried heavily doped layer 120" and the substrate 125 are the same, the current controlled by the gate polysilicon 105' can flow from the top electrode doping region 108 to the epitaxial region 107. The bottom surface of layer 101 continues to flow to the bottom surface of the substrate (or vice versa), so that the bottom surface of substrate 125 is said to form the bottom electrode (e.g., the drain) of the vertical MOS transistor unit. As shown in Figure 5B, a bottom passivation layer is deposited. 114b overlies the bottom surface of the substrate 125, forming an opening 114'b or a plurality of openings, not shown, in the bottom passivation layer 114b, etching the substrate 125 using the opening 114'b on the bottom passivation layer 114b, Etching is stopped on the etch stop layer formed by the buried heavily doped layer 120", and a bottom recess 115' or a plurality of bottom recesses not shown in the substrate 125 are formed by the etching process. As shown in Figure 5C. Further, as shown in FIG. 5D, a metal layer (bottom metal layer) 117 is deposited over the bottom surface of the substrate 125, and the metal layer 117 also covers the sidewalls and the top of the bottom recess 115', wherein the metal layer 117 is located at the top of the bottom recess 115' and maintains good ohmic contact with the buried heavily doped layer 120", and the first metal electrode composed of the metal layer 117 is the drain electrode of the power MOS transistor device 100"A The second metal electrode 113A constitutes the source electrode of the power MOS transistor device 100"A, and the third metal electrode 113B constitutes the gate electrode of the power MOS transistor device 100"A. The dopant of the first conductivity type may be an N-type ion, and the dopant of the second conductivity type may be a P-type ion, and then the vertical MOS transistor unit is a P-type channel trench MOS Crystal.
Embodiment 4:
Referring to FIGS. 2B and 6 , in the wafer 100 ′, the epitaxial layer 101 is directly grown on the substrate 125 . If the foregoing prepared vertical MOS transistor unit is implemented in the wafer 100 ′, then The vertical MOS transistor unit prepared in the epitaxial layer 101 is not different from the flow in the first embodiment, so that the same vertical MOS transistor unit is formed in the epitaxial layer 101 supported by the substrate 125. At this time, the doping type of the substrate 125 and the epitaxial layer 101 are the same, but the substrate 125 is heavily doped and the epitaxial layer 101 is lightly doped. Since the doping type of the epitaxial layer 101 and the substrate 125 are the same, the current controlled by the gate polysilicon 105' can flow from the top electrode doping region 108 through the body region 107 to the bottom surface of the epitaxial layer 101 and continue to flow to the bottom surface of the substrate (or Conversely, it is considered that the bottom surface of the substrate 125 constitutes the bottom electrode (e.g., the drain) of the vertical MOS transistor unit. A bottom passivation layer (not shown) may be deposited over the bottom surface of the substrate 125, and one or more openings may be formed in the bottom passivation layer, and the substrate 125 may be etched and etched using an opening in the bottom passivation layer. Stopping in the substrate 125 and forming one or more bottom vias 118 in the substrate 125 by the etching process. At this time, the bottom vias 118 can be formed by etching such as dry etching or laser etching. And it must be ensured that the top of the bottom via 118 is still some distance away from the epitaxial layer 101, usually during the etching of the substrate, or by the etching factor, so that the top of the bottom via 118 is formed. Distance X from the top surface of the epitaxial layer 101 1 Keep between 5um and 20um. After depositing a layer of barrier material (such as Ti/TiN, not shown) on the sidewalls and top of the bottom via 118, chemical vapor deposition is performed in the sidewall vias 118 of the sidewall and top pad with barrier material layers. A conductive material (such as tungsten) 119 is filled, and a metal layer (bottom metal layer) 117 is deposited on the bottom surface of the substrate 125. The metal layer 117 is also electrically insulated from the conductive material 119 filled in the bottom via 118. Sexual contact, wherein the first metal electrode composed of the metal layer 117 is the drain electrode of the power MOS transistor device 100'B, and the second metal electrode 113A constitutes the source electrode of the power MOS transistor device 100'B, The trimetal electrode 113B constitutes the gate electrode of the power MOS transistor device 100'B. At this time, if the substrate 125 is a heavily doped N-type substrate, the epitaxial layer 101 is a lightly doped N-type epitaxial layer, and the dopant of the first conductivity type may be a P-type ion, and the second conductivity type dopant The N-type ion may be an N-channel trench MOS transistor. If the substrate 125 is a heavily doped P-type substrate, the epitaxial layer 101 is a lightly doped P-type epitaxial layer, the aforementioned first conductivity type dopant may be an N-type ion, and the second conductivity type dopant may be For the P-type ions, the vertical MOS transistor unit is a P-channel trench MOS transistor.
Embodiment 5:
This embodiment is the same as the fourth embodiment in that it is a preparation method for the wafer 100' shown in FIG. 2B, in which a vertical MOS transistor is formed in the epitaxial layer 101 supported by the substrate 125. The cell, and the doping type of the substrate 125 and the epitaxial layer 101 are the same, but the substrate 125 is heavily doped and the epitaxial layer 101 is lightly doped. In this embodiment, a bottom passivation layer (not shown) is first deposited over the bottom surface of the substrate 125, and one or more openings (not shown) are formed in the bottom passivation layer, and the bottom passivation layer is utilized. The opening is wet etched on the substrate 125, the etching is stopped in the substrate 125, and a bottom recess 115' or a plurality of bottom recesses 115' in the substrate 125 are formed by the etching process. The etching time or other etching factor can be adjusted such that the distance between the top of the bottom recess 115' and the top surface of the epitaxial layer 101 2 Keep between 10um and 20um. A metal layer (bottom metal layer) 117 is then deposited over the bottom surface of the substrate 125, which also covers the sidewalls and top of the bottom recess 115', wherein the first layer of metal layer 117 is formed. The metal electrode is the drain electrode of the power MOS transistor device 100"B, the second metal electrode 113A constitutes the source electrode of the power MOS transistor device 100"B, and the third metal electrode 113B constitutes the power MOS transistor device 100"B a gate electrode. If the substrate 125 is a heavily doped N-type substrate, the epitaxial layer 101 is a lightly doped N-type epitaxial layer, and the dopant of the first conductivity type may be a P-type ion, and the second conductivity type The dopant may be an N-type ion, and the vertical MOS transistor unit is an N-channel trench MOS transistor. If the substrate 125 is a heavily doped P-type substrate, the epitaxial layer 101 is lightly doped P The epitaxial layer, the dopant of the first conductivity type may be an N-type ion, the dopant of the second conductivity type may be a P-type ion, and the vertical MOS transistor unit is a P-type trench MOS transistor.
Each of the above embodiments injects dopants into the region of the body region 107 around the sidewall of the upper portion of the first type of trench 101', forming a region extending downward from the top surface of the body region 107 into the body region 107. A top electrode doped region 108, generally the structural mode of such a vertical MOS transistor unit can be referred to as a TC-MOS (Trench touch MOSFET) device. In order to further clarify the broader scope of the present invention, the SOI wafer 100 is still described as an example. 8A-8E shows a vertical MOS transistor as a method for reducing the on-resistance of a conventional Trench DMOS device, which is substantially identical to the preparation method of the 3A-3S diagram, and the difference is that it is located only in the body region 107. A dopant of a second conductivity type is implanted into a region around a sidewall of the upper portion of each of the first type of trenches 101' to form a plurality of top electrode doped regions 108' in the body region 107, and any one of the top electrodes The doped region 108' surrounds the sidewall of the upper portion of the first type of trench 101' so that any one of the first trenches 101' sequentially penetrates through the top electrode doped region 108' and the body. The region 107 extends to an area in which the epitaxial layer 101 is located below the body region 107, as shown in Fig. 8A. Then, as shown in FIG. 8B, an insulating dielectric layer 109 is deposited over the epitaxial layer 101. The insulating dielectric layer 109 also covers the body region 107, the plurality of top electrode doped regions 108', and the first type of trenches. The gate polysilicon 105' filled in the trench 101' and the gate runner polysilicon 105" filled in the trench 101" of the second type. Then, as shown in FIG. 8C, etching is performed in the insulating dielectric layer 109 to form a plurality of first-type via holes 110-1 penetrating the edge dielectric layer 109, and at least one through-edge dielectric layer 109 is formed and in contact with the second type. The second type of via hole 110'-1 of the polysilicon (ie, the gate runner polysilicon 105" filled in the trench 101" is in the region of the body region 107 exposed at the bottom of the first type via 110-1 A heavily doped dopant of the first conductivity type is implanted to form a contact region 110a-1 at the bottom of the first type of via 110-1, as shown in FIG. 8D. A layer of barrier material (not shown) 112 is deposited over the insulating dielectric layer 109. The barrier material layer 112 also covers the first via 110-1 and the second via 110'-1. On the bottom and on the side walls. Further, a conductive material (such as tungsten) 111 is filled in the second type of via hole 110'-1, and a metal layer (not shown) 113 is deposited over the region of the barrier material layer 112 above the insulating dielectric layer 109, and A portion 113A-2 of the metal layer 113 is also filled in the first type of via hole 110-1, and the metal layer 113 also covers the conductive material 111 filled in the second type of via hole 110'-1 and is Electrical contact is formed. The metal layer 113 and the region of the barrier material layer 112 above the insulating dielectric layer 109 are etched, and the metal layer 113 is divided to form the second metal electrode 113A-1 and the third metal electrode 113B-1, and the second metal electrode 113A-1 is electrically connected to the portion 113A-2 of the metal layer 113 filled in the first type of via hole 110-1, and the conductive portion filled in the third metal electrode 113B-1 and the second type via hole 110'-1 The material 111 is electrically connected, and the remaining portions 112'a, 112'b of the region of the barrier material layer 112 overlying the insulating dielectric layer 109 are respectively left at the second metal electrode 113A-1 and the third metal electrode 113B. Below the -1. The portion 113A-2 of the metal layer 113 filled in the first type of via hole 110-1 constitutes an interconnection joint, and the top electrode doping region 108' is shorted to the body region 107, and the heavily doped contact region 110a-1 is The doping type of the body region 107 is the same, and promotes the ohmic contact of the portion 113A-2 of the metal layer 113 filled in the first type of via hole 110-1 with the body region 107. The preparation process of the bottom groove 115' in Fig. 8E is not different from the method of Figs. 3O to 3S or other methods previously provided. The method of preparing the vertical MOS transistor unit and the bottom recess, in addition to the wafer 100 shown in FIG. 2A, the wafers 100', 100" shown in FIGS. 2B and 2C-2 are also applicable. Moreover, the manner of preparing the bottom groove can also be adaptively corrected. Since the foregoing has fully revealed that the method of preparing the bottom groove can be adjusted to cope with different wafers (that is, to deal with different etch barrier layers), Therefore, in this case, the preparation method of the bottom groove is not repeated for the Trench DMOS.
The power MOS transistor device 200, as shown in FIG. 9A, at this time, a plurality of power MOS transistor devices 200 originally cast together and co-located on one wafer are cut and separated from the wafer to form a separate wafer. After one or more bottom recesses 115' are formed in its substrate 125 (not shown), as an alternative, all of the bottom recesses 115' of the plurality of bottom recesses 115' are combined to form a common a matrix. The bottom recess 115' is located on one side of the bottom surface 202 of the power MOS transistor device 200. It is noted that the metal layer 117 is not illustrated in FIG. 9A. The first metal electrode composed of the metal layer 117 is the drain electrode of the power MOS transistor device 200, the second metal electrode constitutes the source electrode of the MOS transistor device 200, and the third metal electrode constitutes the power MOS transistor device. The gate electrode of 200, the second metal electrode, and the third metal electrode are all located on one side of the top surface 201 of the power MOS transistor device 200. In order to reduce the on-resistance of the MOS, a plurality of metal bumps 315 protruding from the top surface 301 of the susceptor 300 may be prepared on the top surface 301 of the susceptor 300 as shown in FIG. 9B, the metal bumps 315 The number is consistent with the number of bottom recesses 115' and the topography of the metal bumps 315 is adapted to the slot structure of the bottom recess 115'. For example, assuming that the metal bump 315 is a quadrangular prism, the groove structure of the bottom groove 115' is a quadrangular cavity and the cavity volume thereof is preferably embedded in the metal bump 315; the metal bump 315 is preferably The topography may also be other types such as a cube, a cuboid, a cylinder, a truncated cone, etc., in which case the groove structure (cavity topography) of the bottom groove 115' is required to vary. Next, the power MOS transistor device 200 is pasted on the top surface 301 of the susceptor 300 by using a conductive bonding material 320 (such as a conductive silver paste or solder paste, etc.), wherein any one of the metal bumps 315 is correspondingly embedded in a bottom portion. In the recess 115', and the conductive adhesive material 320 is located between the metal layer 117 and the susceptor 301, the conductive adhesive material 320 is also filled between the top of the bottom recess 115' and the metal bump 315, and conductive bonding The material 320 is filled between the sidewall of the bottom recess 115' and the metal bump 315, as shown in the cross-sectional view of the power MOS transistor device 200 and the susceptor 300 as shown in FIG. The source lead pedestal 302 disposed near the susceptor 300 in FIG. 9B may be electrically connected to the second metal electrode through an additional metal wire or a metal piece/band or the like, thereby serving as the power MOS transistor device 200. The source lead; the gate lead pedestal 303 disposed near the susceptor 300 can be electrically connected to the third metal electrode through an additional metal wire or a metal piece/band or the like, thereby serving as the power MOS transistor device 200. The gate pin; the wider pedestal 300 can be directly used as the drain pin and the heat sink of the power MOS transistor device 200. It has to be mentioned that in order to enhance the adhesion between the power MOS transistor device 200 and the susceptor 300, voids and the like in the conductive bonding material 320 between the two are reduced to avoid the power MOS transistor device 200 from The susceptor 300 is detached, and the power MOS transistor device 200 can be attached to the top surface 301 of the susceptor 300 in a vacuum-extracting environment. In another embodiment, as shown in FIG. 11, even the power MOS transistor device 200 can be directly pasted on the top surface 401 of the susceptor 400, noting that it is not present on the top surface 401 of the susceptor 400. Any protrusions such as metal bumps are disposed, but the conductive bonding material 320 is coated on the top surface 401 of the susceptor 400, and the power MOS transistor device 200 is directly pasted on the susceptor 400, and is electrically conductive. The adhesive material 320 is not only located between the metal layer 117 (not shown) and the susceptor 301, and a portion of the conductive adhesive material 320 is also filled in the bottom recess 115', as well as to reduce air bubbles in the bottom recess 115'. (Void) amount, this pasting process can also be carried out under vacuum. It can be seen that the pedestal 300, 400 or similar lead frame that fits the bottom recess 115' provides a better low resistance package model.
The above content is described by taking a vertical gate MOS transistor device as an example. In fact, a vertical gate MOS transistor device is also applicable, such as a vertical double diffused MOSFET (VDMOS) device. Referring to FIG. 12, a vertical MOS transistor unit is formed in the epitaxial layer 101 supported by the substrate 125, except that the gate of the vertical MOS transistor unit is planar rather than trench type, specifically, epitaxial A body region 607 of the VDMOS is formed in the layer 101 and near the top surface of the epitaxial layer 101, and a top electrode doped region (ie, a source) extending from the top surface of the body region 607 to the body region 607 is also formed in the epitaxial layer 101. The polar region 608, and the body region 607 is surrounded by the top electrode doping region 608. A gate oxide layer 604 is disposed under the polysilicon gate 605, a region 607a of the body region 607 under the gate oxide layer 604 and the polysilicon gate 605, and the region 607a is located between the top electrode doping region 608 and the epitaxial layer 101, thereby The region 607a constitutes a current path of the VDMOS device, and the current flows laterally from the top electrode doping region 608 through the body region 607 and then vertically to the bottom surface of the epitaxial layer 101. Therefore, it can be considered that the bottom surface of the epitaxial layer 101 constitutes the bottom electrode of the vertical MOS transistor unit. (drain). Barrier material layer 612 and metal layer 613A provide a short between top electrode doped region 608 and body region 607. The etch stop layer 120 is disposed between the epitaxial layer 101 and the substrate 125 to form a bottom recess 115' or a plurality of unillustrated bottom recesses that sequentially penetrate the substrate 125 and the etch stop layer 120. A dopant of the same type as that of the epitaxial layer 101 is implanted in a region of the epitaxial layer 101 exposed at the top of the bottom recess 115' to form a heavily doped layer in the epitaxial layer 101 above the top of the bottom recess 115'. The bottom electrode contact region 116, the metal layer (bottom metal layer) 117 covers the bottom surface of the substrate 125, the metal layer 117 also covers the sidewall and the top of the bottom recess 115', and the metal layer 117 is located at the bottom recess 115. The top region remains in contact with the bottom electrode contact region 116, and the metal layer 117 is used to form the first metal electrode (drain) of the VDMOS device, at which time the metal layer 613A is the second metal electrode (source electrode), and The metal layer illustrated and connected to the polysilicon gate 605 constitutes a third metal electrode (gate electrode). Since the foregoing has sufficiently revealed that the method of preparing the bottom groove can be adjusted to cope with different wafers (that is, to deal with different etch barrier layers), the method of preparing the bottom groove is not repeated for the VDMOS in this case.
Although the present application does not separately describe the above various device structures in detail, the structural mode of the semiconductor device prepared by the above listed method is already clear, and the device structure is fully embodied in the method. In this regard, the device structure will not be described again in this application. However, it must be clarified that the low on-resistance power MOS transistor device to be protected by the present invention is prepared by the above methods.
Exemplary embodiments of a specific structure of a specific embodiment are given by way of illustration and the accompanying drawings. For example, the present invention is illustrated by a vertical MOS transistor with a top-source drain, and the wafer can be used for other types of conversions based on the spirit of the present invention. For example, a vertical MOS transistor in which a vertical MOS transistor is replaced with a top-drain bottom source is also feasible. Therefore, although the above invention proposes a prior preferred embodiment, these are not intended to be limiting.
Various changes and modifications will no doubt become apparent to those skilled in the <RTIgt; Accordingly, the appended claims are to cover all such modifications and modifications The scope and content of any and all equivalents are intended to be within the scope and spirit of the invention.

100、100’...晶圓100, 100’. . . Wafer

100A、100"A...MOS電晶體器件100A, 100"A...MOS transistor device

101...外延層101. . . Epitaxial layer

101’、101"...槽溝101', 101"...groove

102、102’...氧化物層102, 102’. . . Oxide layer

103...犧牲氧化層103. . . Sacrificial oxide layer

104、604...柵氧化物層104, 604. . . Gate oxide layer

105’、105"...柵多晶矽105', 105"...gate polysilicon

106...遮罩氧化層106. . . Mask oxide

107、107a、607、607a...體區107, 107a, 607, 607a. . . Body area

108、108a、108’a、608...頂部電極摻雜區108, 108a, 108'a, 608. . . Top electrode doped region

109...絕緣介質層109. . . Insulating dielectric layer

110、110’、110a、110-1、110a-1...通孔110, 110', 110a, 110-1, 110a-1. . . Through hole

111...導電材料111. . . Conductive material

112、612...勢壘材料層112, 612. . . Barrier material layer

112’a、112’b...剩餘部分112’a, 112’b. . . The remaining part

113A、113A-1...第二金屬電極113A, 113A-1. . . Second metal electrode

113B、113B-1...第三金屬電極113B, 113B-1. . . Third metal electrode

114a、114’a...頂部鈍化層114a, 114’a. . . Top passivation layer

114b、114’b...底部鈍化層114b, 114’b. . . Bottom passivation layer

115、115’...底部凹槽115, 115’. . . Bottom groove

116...電極接觸區116. . . Electrode contact zone

117...金屬層(底部金屬層)117. . . Metal layer (bottom metal layer)

120、120’...刻蝕阻擋層120, 120’. . . Etch barrier

125...襯底125. . . Substrate

200...功率MOS電晶體器件200. . . Power MOS transistor device

300、400...基座300, 400. . . Pedestal

201、301、401...頂面201, 301, 401. . . Top surface

202...底面202. . . Bottom

302...源極引線基座302. . . Source lead pedestal

303...柵極引線基座303. . . Gate lead pedestal

315...金屬凸塊315. . . Metal bump

320...導電粘合材料320. . . Conductive bonding material

605...多晶矽柵極605. . . Polycrystalline germanium gate

613A...金屬層613A. . . Metal layer

參考所附附圖,以更加充分的描述本發明的實施例。然而,所附附圖僅用於說明和闡述,並不構成對本發明範圍的限制。
第1圖是背景技術中利用電動化學刻蝕法刻蝕矽基板的示意圖。
第2A圖是在襯底和外延層之間設置一層刻蝕阻擋層的示意圖。
第2B圖是直接在襯底上生成外延層的示意圖。
第2C圖是在襯底和外延層之間利用摻雜物進行重摻雜形成一層掩埋層,並利用該掩埋層作為刻蝕阻擋層的示意圖。
第3A-3S圖是在外延層中形成功率器件以及在襯底中形成底部凹槽的方法流程圖。
第4A-4D圖是利用襯底和外延層之間形成的PN結作為刻蝕阻擋層的示意圖。
第5A-5D圖是利用襯底和外延層之間的重摻雜的掩埋層作為刻蝕阻擋層的示意圖。
第6圖是直接在襯底中形成底部通孔並在底部通孔中填充金屬材料的示意圖。
第7圖是不利用任何刻蝕阻擋層而直接在襯底中形成底部凹槽的結構示意圖。
第8A-8E圖是在外延層中形成另一種溝槽式垂直功率器件的方法流程圖。
第9A圖是在襯底中形成多個底部凹槽的結構示意圖。
第9B圖是與襯底中的底部凹槽相適配的引線框架/基座的結構示意圖。
第10圖是功率MOS電晶體粘貼在有金屬凸塊的基座上的截面示意圖。
第11圖是功率MOS電晶體粘貼在沒有金屬凸塊的基座上的截面示意圖。
第12圖是在VDMOS的襯底中形成底部凹槽的結構示意圖。

Embodiments of the present invention are described more fully with reference to the accompanying drawings. However, the attached drawings are for illustration and illustration only and are not intended to limit the scope of the invention.
Fig. 1 is a schematic view of a ruthenium substrate etched by electro-chemical etching in the background art.
Figure 2A is a schematic illustration of an etch stop layer disposed between the substrate and the epitaxial layer.
Figure 2B is a schematic illustration of the formation of an epitaxial layer directly on a substrate.
2C is a schematic diagram of forming a buried layer by heavily doping with a dopant between the substrate and the epitaxial layer, and using the buried layer as an etch barrier.
3A-3S is a flow chart of a method of forming a power device in an epitaxial layer and forming a bottom recess in the substrate.
4A-4D is a schematic diagram of utilizing a PN junction formed between a substrate and an epitaxial layer as an etch barrier.
5A-5D is a schematic illustration of the use of a heavily doped buried layer between the substrate and the epitaxial layer as an etch stop.
Figure 6 is a schematic illustration of forming a bottom via directly in the substrate and filling the bottom via with a metal material.
Figure 7 is a schematic illustration of the formation of a bottom recess directly in the substrate without the use of any etch stop.
8A-8E is a flow chart of a method of forming another trench vertical power device in an epitaxial layer.
Figure 9A is a schematic view showing the structure of forming a plurality of bottom grooves in the substrate.
Figure 9B is a schematic view of the structure of the lead frame/base adapted to the bottom recess in the substrate.
Figure 10 is a schematic cross-sectional view of a power MOS transistor attached to a pedestal with metal bumps.
Figure 11 is a schematic cross-sectional view of a power MOS transistor adhered to a pedestal without metal bumps.
Figure 12 is a schematic view showing the structure of forming a bottom groove in a substrate of a VDMOS.

100A...MOS電晶體器件100A. . . MOS transistor device

101...外延層101. . . Epitaxial layer

101’...槽溝101’. . . Groove

105’...柵多晶矽105’. . . Gate polysilicon

107...體區107. . . Body area

108...頂部電極摻雜區108. . . Top electrode doped region

110、110’...通孔110, 110’. . . Through hole

111...導電材料111. . . Conductive material

112...勢壘材料層112. . . Barrier material layer

113A...第二金屬電極113A. . . Second metal electrode

113B...第三金屬電極113B. . . Third metal electrode

115’...底部凹槽115’. . . Bottom groove

116...電極接觸區116. . . Electrode contact zone

117...金屬層(底部金屬層)117. . . Metal layer (bottom metal layer)

125...襯底125. . . Substrate

Claims (24)

一種製備低導通電阻的垂直功率MOS電晶體器件的方法,在一襯底所支撐的外延層中形成有垂直MOS電晶體單元,外延層的底面構成垂直MOS電晶體單元的底部電極,其中,該方法主要包括以下步驟:
沉積一層底部鈍化層覆蓋在所述襯底的底面上;
在底部鈍化層中形成一個或多個開口,利用底部鈍化層上的開口對襯底進行刻蝕,並通過該刻蝕過程形成貫穿襯底的一個或多個底部凹槽,暴露出所述外延層的一個底面;
從所述襯底的底面注入與外延層摻雜類型相同的摻雜物,形成外延層底部對應於凹槽的重摻雜區;
沉積一層金屬層覆蓋在所述襯底的底面上,該金屬層還同時覆蓋在所述底部凹槽的側壁和頂部上;
其中,所述金屬層用於構成所述垂直功率MOS電晶體器件的底部金屬電極。
A method for preparing a low-on-resistance vertical power MOS transistor device, wherein a vertical MOS transistor unit is formed in an epitaxial layer supported by a substrate, and a bottom surface of the epitaxial layer constitutes a bottom electrode of the vertical MOS transistor unit, wherein The method mainly includes the following steps:
Depositing a bottom passivation layer overlying the bottom surface of the substrate;
Forming one or more openings in the bottom passivation layer, etching the substrate with an opening on the bottom passivation layer, and forming one or more bottom recesses through the substrate by the etching process to expose the epitaxy a bottom surface of the layer;
Doping a dopant of the same type as that of the epitaxial layer from a bottom surface of the substrate to form a heavily doped region corresponding to the recess at the bottom of the epitaxial layer;
Depositing a metal layer overlying the bottom surface of the substrate, the metal layer also covering the sidewalls and top of the bottom recess simultaneously;
Wherein the metal layer is used to form a bottom metal electrode of the vertical power MOS transistor device.
如申請專利範圍第1項所述的方法,其中,襯底與外延層都是輕摻雜。The method of claim 1, wherein the substrate and the epitaxial layer are both lightly doped. 如申請專利範圍第2項所述的方法,其中,對襯底進行刻蝕是利用濕法刻蝕或深反應摻雜物刻蝕實現的。The method of claim 2, wherein etching the substrate is performed by wet etching or deep reactive dopant etching. 如申請專利範圍第3項所述的方法,其中,對襯底進行濕法刻蝕所用到的刻蝕液為四甲基氫氧化銨溶液(TMAH)或氫氧化鉀溶液(KOH)或乙二胺鄰苯二酚溶液(EDP)。The method of claim 3, wherein the etching solution used for wet etching the substrate is tetramethylammonium hydroxide solution (TMAH) or potassium hydroxide solution (KOH) or ethylene. Amine catechol solution (EDP). 如申請專利範圍第1項所述的方法,其中,在對襯底進行刻蝕的過程中,所形成的底部凹槽的頂部與外延層的頂面之間的距離保持在10um至20um之間。The method of claim 1, wherein the distance between the top of the formed bottom groove and the top surface of the epitaxial layer is maintained between 10 um and 20 um during etching of the substrate. . 如申請專利範圍第1項所述的方法,其中,還包括以下步驟:
在一基座的頂面上製備凸出於基座的頂面的數個金屬凸塊,金屬凸塊的數量與所述底部凹槽的數量保持一致,並且金屬凸塊的形貌與所述底部凹槽的槽體結構相適配;以及
利用導電粘合材料將功率電晶體器件粘貼在基座的頂面,其中,任意一個金屬凸塊相對應的嵌入在一個底部凹槽中,並且導電粘合材料位於金屬層與基座之間,導電粘合材料還填充在底部凹槽的頂部與金屬凸塊之間及底部凹槽的側壁與金屬凸塊之間。
The method of claim 1, wherein the method further comprises the following steps:
Preparing a plurality of metal bumps protruding from a top surface of the pedestal on a top surface of a pedestal, the number of metal bumps is consistent with the number of the bottom recesses, and the topography of the metal bumps is The groove structure of the bottom groove is adapted; and the power transistor device is pasted on the top surface of the base by using a conductive adhesive material, wherein any one of the metal bumps is correspondingly embedded in a bottom groove, and is electrically conductive The bonding material is between the metal layer and the pedestal, and the conductive bonding material is also filled between the top of the bottom groove and the metal bump and between the sidewall of the bottom groove and the metal bump.
如申請專利範圍第1項所述的方法,其中,在沉積一層底部鈍化層覆蓋在襯底的底面上的同時,還沉積一層頂部鈍化層覆蓋將頂部金屬電極予以覆蓋;
之後將覆蓋頂部金屬電極的部分頂部鈍化層移除,以在頂部鈍化層中將頂部金屬電極予以暴露。
The method of claim 1, wherein a top passivation layer is deposited over the bottom surface of the substrate while a top passivation layer is deposited to cover the top metal electrode;
A portion of the top passivation layer overlying the top metal electrode is then removed to expose the top metal electrode in the top passivation layer.
如申請專利範圍第2項所述的方法,其中,襯底與外延層的摻雜類型相反,在底部鈍化層中形成一個或多個開口,並且襯底與外延層兩者的交界面所產生的PN結在反偏的條件下,利用底部鈍化層上的開口對襯底利用電化學刻蝕法進行刻蝕,刻蝕停止在外延層上,並通過該刻蝕過程形成襯底中的一個或多個底部凹槽。The method of claim 2, wherein the substrate is opposite to the doping type of the epitaxial layer, one or more openings are formed in the bottom passivation layer, and an interface between the substrate and the epitaxial layer is generated. The PN junction is etched by electrochemical etching using an opening on the bottom passivation layer under reverse bias conditions, etching is stopped on the epitaxial layer, and one of the substrates is formed by the etching process. Or multiple bottom grooves. 如申請專利範圍第1項所述的方法,其中,該襯底與外延層之間還設置有一層刻蝕阻擋層,利用底部鈍化層上的開口對襯底進行刻蝕,刻蝕停止在刻蝕阻擋層上,並通過該刻蝕過程形成襯底中的一個或多個凹槽;
進一步對刻蝕阻擋層的暴露在凹槽中的區域進行刻蝕,刻蝕停止在外延層上,形成依次貫穿襯底和刻蝕阻擋層的一個或多個底部凹槽。
The method of claim 1, wherein an etching barrier layer is further disposed between the substrate and the epitaxial layer, and the substrate is etched by using an opening on the bottom passivation layer, and the etching is stopped. Etching the barrier layer and forming one or more recesses in the substrate by the etching process;
Further etching the region of the etch barrier that is exposed in the recess, the etch stops on the epitaxial layer, forming one or more bottom recesses that sequentially penetrate the substrate and the etch stop.
如申請專利範圍第9項所述的方法,其中,所述刻蝕阻擋層為一層掩埋二氧化矽層。The method of claim 9, wherein the etch barrier layer is a layer of buried ruthenium dioxide. 如申請專利範圍第10項所述的方法,其特徵在於,對刻蝕阻擋層進行濕法刻蝕所用到的刻蝕液為緩衝氫氟酸溶液。The method of claim 10, wherein the etching solution used for wet etching the etch barrier layer is a buffered hydrofluoric acid solution. 如申請專利範圍第10項所述的方法,其中,所述襯底與外延層的摻雜類型相同。The method of claim 10, wherein the substrate and the epitaxial layer are of the same doping type. 一種製備低導通電阻的垂直功率電晶體器件的方法,在一襯底所支撐的外延層中形成有垂直電晶體單元,其中,該方法主要包括以下步驟:
在一個輕摻雜的襯底上形成一個輕摻雜的外延層;
在所述的外延層中形成垂直電晶體單元;
沉積一層底部鈍化層覆蓋在所述襯底的底面上;
在底部鈍化層中形成一個或多個開口,利用底部鈍化層上的開口對襯底進行刻蝕,並通過該刻蝕過程形成貫穿襯底的一個或多個底部凹槽,暴露出所述外延層的一個底面;
沉積一層金屬層覆蓋在所述襯底的底面上,該金屬層還同時覆蓋在所述底部凹槽的側壁和頂部上;
其中,所述金屬層用於構成所述垂直功率電晶體器件的底部金屬電極。
A method of fabricating a low-on-resistance vertical power transistor device, wherein a vertical transistor unit is formed in an epitaxial layer supported by a substrate, wherein the method mainly comprises the following steps:
Forming a lightly doped epitaxial layer on a lightly doped substrate;
Forming a vertical transistor unit in the epitaxial layer;
Depositing a bottom passivation layer overlying the bottom surface of the substrate;
Forming one or more openings in the bottom passivation layer, etching the substrate with an opening on the bottom passivation layer, and forming one or more bottom recesses through the substrate by the etching process to expose the epitaxy a bottom surface of the layer;
Depositing a metal layer overlying the bottom surface of the substrate, the metal layer also covering the sidewalls and top of the bottom recess simultaneously;
Wherein the metal layer is used to form a bottom metal electrode of the vertical power transistor device.
如申請專利範圍第13項所述的方法,其中,襯底與外延層的摻雜類型相反,在底部鈍化層中形成一個或多個開口,並且襯底與外延層兩者的交界面所產生的PN結在反偏的條件下,利用底部鈍化層上的開口對襯底利用電化學刻蝕法進行刻蝕,刻蝕停止在外延層上,並通過該刻蝕過程形成襯底中的一個或多個底部凹槽;從所述襯底的底面注入與外延層摻雜類型相同的摻雜物,形成外延層底部對應於凹槽的重摻雜區。The method of claim 13, wherein the substrate is opposite to the doping type of the epitaxial layer, one or more openings are formed in the bottom passivation layer, and an interface between the substrate and the epitaxial layer is generated. The PN junction is etched by electrochemical etching using an opening on the bottom passivation layer under reverse bias conditions, etching is stopped on the epitaxial layer, and one of the substrates is formed by the etching process. Or a plurality of bottom recesses; implanting dopants of the same type as the epitaxial layer doping from the bottom surface of the substrate to form heavily doped regions corresponding to the recesses at the bottom of the epitaxial layer. 如申請專利範圍第13項所述的方法,其中,所述襯底與外延層的摻雜類型相同,該襯底與外延層之間還設置有一層刻蝕阻擋層,利用底部鈍化層上的開口對襯底進行刻蝕,刻蝕停止在刻蝕阻擋層上,並通過該刻蝕過程形成襯底中的一個或多個凹槽;
進一步對刻蝕阻擋層的暴露在凹槽中的區域進行刻蝕,刻蝕停止在外延層上,形成依次貫穿襯底和刻蝕阻擋層的一個或多個底部凹槽;從所述襯底的底面注入與外延層摻雜類型相同的摻雜物,形成外延層底部對應於凹槽的重摻雜區。
The method of claim 13, wherein the substrate and the epitaxial layer have the same doping type, and an etch barrier layer is disposed between the substrate and the epitaxial layer, and the bottom passivation layer is used. The opening etches the substrate, the etching stops on the etch barrier layer, and one or more recesses in the substrate are formed by the etching process;
Further etching an area of the etch stop layer exposed in the recess, the etch stops on the epitaxial layer, forming one or more bottom recesses sequentially passing through the substrate and the etch stop layer; from the substrate The bottom surface is implanted with a dopant of the same type as the epitaxial layer doping to form a heavily doped region at the bottom of the epitaxial layer corresponding to the recess.
如申請專利範圍第13項所述的方法,其中,該襯底與外延層之間還設置有一層由掩埋重摻雜層所構成的刻蝕阻擋層。The method of claim 13, wherein an etching barrier layer composed of a buried heavily doped layer is further disposed between the substrate and the epitaxial layer. 如申請專利範圍第16項所述的方法,其中,所述外延層為輕摻雜P型外延層,所述垂直MOS電晶體單元為P型溝道的溝槽式MOS電晶體。The method of claim 16, wherein the epitaxial layer is a lightly doped P-type epitaxial layer, and the vertical MOS transistor unit is a P-type trenched MOS transistor. 如申請專利範圍第16項所述的方法,其中,所述掩埋重摻雜層為P型的重摻雜層,且該P型重摻雜層的摻雜濃度超過1e19/cm3。The method of claim 16, wherein the buried heavily doped layer is a P-type heavily doped layer, and the P-type heavily doped layer has a doping concentration of more than 1e19/cm3. 一種低導通電阻的垂直功率電晶體器件的封裝,包括安裝在一基座上的一個半導體晶片,其中,所述的半導體晶片包括:
形成在一襯底所支撐的第一導電類型的外延層中的垂直電晶體單元,所述的襯底包括從底面貫穿襯底的一個或多個底部凹槽,暴露出所述外延層的一個底面;
覆蓋在所述襯底的底面上的一層金屬層,該金屬層還同時覆蓋在所述底部凹槽的側壁和所述暴露出的外延層的底面上;
其中,所述金屬層用於構成所述垂直功率電晶體器件的底部金屬電極。
A package of a low on-resistance vertical power transistor device comprising a semiconductor wafer mounted on a susceptor, wherein the semiconductor wafer comprises:
Forming a vertical transistor unit in a first conductivity type epitaxial layer supported by a substrate, the substrate including one or more bottom recesses penetrating the substrate from the bottom surface, exposing one of the epitaxial layers Bottom surface
a metal layer covering the bottom surface of the substrate, the metal layer also covering the sidewall of the bottom recess and the bottom surface of the exposed epitaxial layer;
Wherein the metal layer is used to form a bottom metal electrode of the vertical power transistor device.
如申請專利範圍第19項所述的低導通電阻的垂直功率電晶體器件的封裝,其中,所述襯底與外延層的摻雜類型相反,在所述襯底與外延層兩者的交界面形成PN結。The package of a low-on-resistance vertical power transistor device according to claim 19, wherein the substrate is opposite to the doping type of the epitaxial layer at an interface between the substrate and the epitaxial layer A PN junction is formed. 如申請專利範圍第20項所述的低導通電阻的垂直功率電晶體器件的封裝,其中,所述襯底為輕摻雜。A package of a low on-resistance vertical power transistor device according to claim 20, wherein the substrate is lightly doped. 如申請專利範圍第19項所述的低導通電阻的垂直功率電晶體器件的封裝,其中,該襯底與外延層之間還設置有一層掩埋二氧化矽刻蝕阻擋層,所述的底部凹槽貫穿掩埋二氧化矽刻蝕阻擋層。The package of a low-on-resistance vertical power transistor device according to claim 19, wherein a buried ruthenium dioxide etch barrier layer is disposed between the substrate and the epitaxial layer, and the bottom concave portion is further disposed between the substrate and the epitaxial layer. The trench penetrates the buried cerium oxide etch barrier layer. 如申請專利範圍第19項所述的低導通電阻的垂直功率電晶體器件的封裝,其中,所述的基座的頂面上包含凸出於基座的頂面的數個金屬凸塊,金屬凸塊的數量與所述底部凹槽的數量保持一致,並且金屬凸塊的形貌與所述底部凹槽的槽體結構相適配;以及
利用導電粘合材料將功率電晶體器件粘貼在基座的頂面,其中,任意一個金屬凸塊相對應的嵌入在一個底部凹槽中,並且導電粘合材料位於金屬層與基座之間,導電粘合材料還填充在底部凹槽的頂部與金屬凸塊之間及底部凹槽的側壁與金屬凸塊之間。
The package of a low-on-resistance vertical power transistor device according to claim 19, wherein the top surface of the pedestal comprises a plurality of metal bumps protruding from a top surface of the pedestal, metal The number of bumps is consistent with the number of the bottom recesses, and the topography of the metal bumps is adapted to the slot structure of the bottom recess; and the power transistor device is bonded to the base using a conductive bonding material a top surface of the seat, wherein any one of the metal bumps is correspondingly embedded in a bottom recess, and the conductive adhesive material is located between the metal layer and the base, and the conductive adhesive material is also filled on the top of the bottom recess and Between the metal bumps and between the sidewalls of the bottom recess and the metal bumps.
如申請專利範圍第19項所述的低導通電阻的垂直功率電晶體器件的封裝,其中,所述的基座包含一個平整的頂面,利用導電粘合材料將功率電晶體器件粘貼在基座的頂面,其中,所述的底部凹槽還填充與所述的基座不同材料的導電材料。The package of a low on-resistance vertical power transistor device according to claim 19, wherein the pedestal comprises a flat top surface, and the power transistor device is pasted on the pedestal by using a conductive adhesive material. The top surface, wherein the bottom groove further fills a conductive material of a different material than the base.
TW100134815A 2011-09-27 2011-09-27 Power mosfet with low rdson and fabrication method thereof TWI478245B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100134815A TWI478245B (en) 2011-09-27 2011-09-27 Power mosfet with low rdson and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100134815A TWI478245B (en) 2011-09-27 2011-09-27 Power mosfet with low rdson and fabrication method thereof

Publications (2)

Publication Number Publication Date
TW201314787A true TW201314787A (en) 2013-04-01
TWI478245B TWI478245B (en) 2015-03-21

Family

ID=48802612

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100134815A TWI478245B (en) 2011-09-27 2011-09-27 Power mosfet with low rdson and fabrication method thereof

Country Status (1)

Country Link
TW (1) TWI478245B (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5354695A (en) * 1992-04-08 1994-10-11 Leedy Glenn J Membrane dielectric isolation IC fabrication
US6008126A (en) * 1992-04-08 1999-12-28 Elm Technology Corporation Membrane dielectric isolation IC fabrication
GB2321336B (en) * 1997-01-15 2001-07-25 Univ Warwick Gas-sensing semiconductor devices
GB2371922B (en) * 2000-09-21 2004-12-15 Cambridge Semiconductor Ltd Semiconductor device and method of forming a semiconductor device
CN1233041C (en) * 2000-09-21 2005-12-21 剑桥半导体有限公司 Semiconductor device and method of forming a semiconductor device
TW511297B (en) * 2001-11-21 2002-11-21 Mosel Vitelic Inc Manufacture method of DMOS transistor

Also Published As

Publication number Publication date
TWI478245B (en) 2015-03-21

Similar Documents

Publication Publication Date Title
US9318603B2 (en) Method of making a low-Rdson vertical power MOSFET device
CN103021858B (en) Power MOS (Metal Oxide Semiconductor) transistor device with low on resistance and preparation method thereof
US20220285550A1 (en) Semiconductor Device Having Contact Trenches Extending from Opposite Sides of a Semiconductor Body
US7745877B2 (en) Semiconductor device and manufacturing method thereof
US8338886B2 (en) Semiconductor device with (110)-oriented silicon
US10580877B2 (en) Semiconductor device and method for manufacturing the same
TWI459506B (en) Structure and method of forming a topside contact to a backside terminal of a semiconductor device
US11393736B2 (en) Method of manufacturing a semiconductor device having an integrated pn diode temperature sensor
US8013340B2 (en) Semiconductor device with semiconductor body and method for the production of a semiconductor device
US9000495B2 (en) Semiconductor apparatus having penetration electrode and method for manufacturing the same
WO2008121479A2 (en) Method and structure for making a top-side contact to a substrate
US7772677B2 (en) Semiconductor device and method of forming the same having a junction termination structure with a beveled sidewall
US20240047573A1 (en) Transistor device having a field plate
JP5555430B2 (en) Manufacturing method of semiconductor device
US8039401B2 (en) Structure and method for forming hybrid substrate
TWI478245B (en) Power mosfet with low rdson and fabrication method thereof
US9231101B2 (en) Semiconductor device and method of manufacturing the same
JP2013507769A (en) Improved trench termination structure
US11335803B2 (en) Source-down transistor with vertical field plate
US9337311B2 (en) Electronic component, a semiconductor wafer and a method for producing an electronic component
JP2023089361A (en) Semiconductor device and manufacturing method thereof
JP2006073971A (en) Semiconductor element and semiconductor element manufacturing method