TW201314771A - Method for processing high-k dielectric layer - Google Patents

Method for processing high-k dielectric layer Download PDF

Info

Publication number
TW201314771A
TW201314771A TW100133425A TW100133425A TW201314771A TW 201314771 A TW201314771 A TW 201314771A TW 100133425 A TW100133425 A TW 100133425A TW 100133425 A TW100133425 A TW 100133425A TW 201314771 A TW201314771 A TW 201314771A
Authority
TW
Taiwan
Prior art keywords
dielectric layer
annealing process
fabricating
oxide
annealing
Prior art date
Application number
TW100133425A
Other languages
Chinese (zh)
Other versions
TWI564960B (en
Inventor
shao-wei Wang
Yu-Ren Wang
Chien-Liang Lin
Wen-Yi Teng
Tsuo-Wen Lu
Chih-Chung Chen
Ying-Wei Yen
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW100133425A priority Critical patent/TWI564960B/en
Publication of TW201314771A publication Critical patent/TW201314771A/en
Application granted granted Critical
Publication of TWI564960B publication Critical patent/TWI564960B/en

Links

Abstract

A method for processing a high-k dielectric layer includes the following steps. A semiconductor substrate is provided, and a high-k dielectric layer is formed thereon. The high-k dielectric layer has a crystalline temperature. Subsequently, a first annealing process is performed, and a process temperature of the first annealing process is substantially smaller than the crystalline temperature. A second annealing process is performed, and a process temperature of the second annealing process is substantially larger than the crystalline temperature.

Description

高介電常數介電層的製作方法High-k dielectric layer manufacturing method

本發明係關於一種製作高介電常數介電層的方法,尤指一種高介電常數閘極介電層的退火(annealing)製程。The present invention relates to a method of fabricating a high-k dielectric layer, and more particularly to an annealing process for a high-k gate dielectric layer.

隨著金氧半導體(metal-oxide-semiconductor,MOS)電晶體元件尺寸持續地縮小,閘極介電層之厚度亦隨線寬而微縮,然而厚度漸減之閘極介電層若不足以支撐閘極電壓,將造成嚴重漏電流現象,此外,多晶矽(polysilicon)閘極亦容易因硼穿透(boron penetration)效應而導致元件效能降低。因此,半導體業界嘗試使用金屬閘極與高介電常數(High-K)材料取代傳統多晶矽(polysilicon)閘極與氧化物閘極介電層做為新的閘極組合。As the size of metal-oxide-semiconductor (MOS) transistor components continues to shrink, the thickness of the gate dielectric layer also shrinks with line width. However, if the thickness of the gate dielectric layer is insufficient to support the gate Extreme voltages can cause severe leakage currents. In addition, polysilicon gates are also susceptible to reduced device performance due to boron penetration effects. Therefore, the semiconductor industry has attempted to use a metal gate and a high dielectric constant (High-K) material to replace the conventional polysilicon gate and oxide gate dielectric layer as a new gate combination.

另外,也可藉由退火製程進一步改善以原子層沉積(atomic layer deposition,ALD)製程或其他製程形成之閘極介電層的品質。由於氧化物閘極介電層與高介電常數閘極介電層材質不同,將適用於氧化物閘極介電層的退火製程實施於高介電常數閘極介電層時,各機台控溫器(temperature controller)之溫度曲線可能由原本收斂狀態呈發散(disperse)狀態,亦即失去控溫效果之一致性,將不利於製程穩定性,甚或引起破片的發生。因此,如何設計一退火製程適用於改善高介電常數閘極介電層之品質及可靠度實為相關技術者所欲就之課題。In addition, the quality of the gate dielectric layer formed by an atomic layer deposition (ALD) process or other processes can be further improved by an annealing process. Since the oxide gate dielectric layer and the high dielectric constant gate dielectric layer are different in material, the annealing process suitable for the oxide gate dielectric layer is implemented in the high dielectric constant gate dielectric layer, and each machine The temperature curve of the temperature controller may be in a disperse state due to the original convergence state, that is, the consistency of the temperature control effect is lost, which is not conducive to the stability of the process, or even the occurrence of fragmentation. Therefore, how to design an annealing process suitable for improving the quality and reliability of a high dielectric constant gate dielectric layer is a subject of the related art.

本發明之目的之一在於提供一種製作高介電常數介電層的方法,以得到較佳品質之高介電常數介電層。One of the objects of the present invention is to provide a method of fabricating a high-k dielectric layer to obtain a high-quality dielectric layer of better quality.

本發明之一較佳實施例係提供一種製作高介電常數介電層的方法,其步驟如下。提供一半導體基底,且形成一高介電常數介電層於半導體基底上,其中高介電常數介電層具有一結晶溫度。之後,進行一第一退火(annealing)製程,其中第一退火製程之一製程溫度實質上小於高介電常數介電層之結晶溫度。接著,進行一第二退火製程,其中第二退火製程之一製程溫度實質上大於高介電常數介電層之結晶溫度。A preferred embodiment of the present invention provides a method of fabricating a high-k dielectric layer, the steps of which are as follows. A semiconductor substrate is provided and a high-k dielectric layer is formed over the semiconductor substrate, wherein the high-k dielectric layer has a crystallization temperature. Thereafter, a first annealing process is performed in which one of the first annealing processes has a process temperature substantially less than the crystallization temperature of the high-k dielectric layer. Next, a second annealing process is performed, wherein one of the process temperatures of the second annealing process is substantially greater than the crystallization temperature of the high-k dielectric layer.

本發明提供兩段式退火製程實施於高介電常數介電層,包括第一退火製程及第二退火製程,其中第二退火製程以及第一退火製程較佳為在不同反應腔室中分別進行。第一退火製程可用於修復高介電常數介電層之缺陷,且第二退火製程可用於調整高介電常數介電層之結晶區域不相鄰高介電常數介電層與半導體基底之交界面。此兩段式退火製程可改善高介電常數介電層之結構完整性以及電性表現。The present invention provides a two-stage annealing process for a high-k dielectric layer, including a first annealing process and a second annealing process, wherein the second annealing process and the first annealing process are preferably performed separately in different reaction chambers. . The first annealing process can be used to repair the defects of the high-k dielectric layer, and the second annealing process can be used to adjust the crystallization region of the high-k dielectric layer and the non-adjacent high-k dielectric layer to the semiconductor substrate. interface. This two-stage annealing process improves the structural integrity and electrical performance of the high-k dielectric layer.

為使熟習本發明所屬技術領域之一般技藝者能更進一步了解本發明,下文特列舉本發明之較佳實施例,並配合所附圖式,詳細說明本發明的構成內容及所欲達成之功效。The present invention will be further understood by those of ordinary skill in the art to which the present invention pertains. .

請參考第1圖至第5圖。第1圖至第5圖繪示了本發明之一較佳實施例之高介電常數介電層製作方法的示意圖。如第1圖所示,首先提供一半導體基底10,半導體基底10例如一由砷化鎵、矽覆絕緣(SOI)層、磊晶層、矽鍺層或其他半導體基底材料所構成的基底。接著,形成一高介電常數介電層12於半導體基底10上。高介電常數介電層12之材質係選自氧化鉿(hafnium oxide,HfO2)、矽酸鉿氧化合物(hafnium silicon oxide,HfSiO4)、矽酸鉿氮氧化合物(hafnium silicon oxynitride,HfSiON)、氧化鋁(aluminum oxide,Al2O3)、氧化鑭(lanthanum oxide,La2O3)、氧化鉭(tantalum oxide,Ta2O5)、氧化釔(yttrium oxide,Y2O3)、氧化鋯(zirconium oxide,ZrO2)、鈦酸鍶(strontium titanate oxide,SrTiO3)、矽酸鋯氧化合物(zirconium silicon oxide,ZrSiO4)、鋯酸鉿(hafnium zirconium oxide,HfZrO4)、鍶鉍鉭氧化物(strontium bismuth tantalate,SrBi2Ta2O9,SBT)、鋯鈦酸鉛(lead zirconate titanate,PbZrxTi1-xO3,PZT)、鈦酸鋇鍶(barium strontium titanate,BaxSr1-xTiO3,BST)、或其組合所組成之群組。形成高介電常數介電層12的方法包括原子層沉積(atomic layer deposition,ALD)製程或有機金屬化學氣相沉積法(metal-organic chemical vapor deposition,MOCVD),但不以此為限。例如藉由原子層沉積製程形成由氧化鉿(HfO2)組成的高介電常數介電層12,前驅物(precursor)較佳為氯化鉿(HfCl4)以及氧化源(oxidant source)較佳為水蒸氣。若使用有機金屬化學氣相沉積法,則可使用例如有機金屬作為前驅物。此時,高介電常數介電層12係為一結構鬆散之非結晶狀(amorphous)薄膜,且具有氧缺陷(oxygen vacancy)14位於/鄰近其表面。Please refer to Figures 1 to 5. 1 to 5 are schematic views showing a method of fabricating a high-k dielectric layer according to a preferred embodiment of the present invention. As shown in FIG. 1, a semiconductor substrate 10 is first provided, such as a substrate composed of a gallium arsenide, a blanket insulating (SOI) layer, an epitaxial layer, a germanium layer, or other semiconductor substrate material. Next, a high-k dielectric layer 12 is formed on the semiconductor substrate 10. The material of the high-k dielectric layer 12 is selected from the group consisting of hafnium oxide (HfO 2 ), hafnium silicon oxide (HfSiO 4 ), and hafnium silicon oxynitride (HfSiON). , aluminum oxide (Al 2 O 3 ), lanthanum oxide (La 2 O 3 ), tantalum oxide (Ta 2 O 5 ), yttrium oxide (Y 2 O 3 ), oxidation Zirconium oxide (ZrO 2 ), strontium titanate oxide (SrTiO 3 ), zirconium silicon oxide (ZrSiO 4 ), hafnium zirconium oxide (HfZrO 4 ), yttrium Oxide (strontium bismuth tantalate, SrBi 2 Ta 2 O 9 , SBT), lead zirconate titanate (PbZr x Ti 1-x O 3 , PZT), barium strontium titanate, Ba x Sr a group consisting of 1-x TiO 3 , BST), or a combination thereof. The method of forming the high-k dielectric layer 12 includes an atomic layer deposition (ALD) process or a metal-organic chemical vapor deposition (MOCVD), but is not limited thereto. For example, a high-k dielectric layer 12 composed of hafnium oxide (HfO 2 ) is formed by an atomic layer deposition process, and a precursor is preferably hafnium chloride (HfCl 4 ) and an oxidant source. For water vapor. If an organometallic chemical vapor deposition method is used, for example, an organic metal can be used as a precursor. At this time, the high-k dielectric layer 12 is a loose amorphous film and has an oxygen vacancy 14 located at/near its surface.

為得到較佳品質之高介電常數介電層,本發明提供兩段式退火(annealing)製程實施於高介電常數介電層的做法。本發明可在任何適合的製程腔室進行相關之退火製程,適合的製程腔室包括任何能夠執行快速熱處理(rapid thermal process,RTP)製程例如尖峰式快速熱製程(spike rapid thermal process)或浸入式快速熱製程(soak rapid thermal process)、雷射尖峰退火(laser spike annealing)製程、閃光退火(flash annealing)、動態表面退火(dynamic surface annealing)製程或上述製程的組合。In order to obtain a higher quality dielectric constant dielectric layer, the present invention provides a two-stage annealing process for implementation in a high-k dielectric layer. The present invention can perform the associated annealing process in any suitable process chamber, including any process capable of performing a rapid thermal process (RTP) process such as a spike rapid thermal process or an immersion A combination of a soak rapid thermal process, a laser spike annealing process, a flash annealing, a dynamic surface annealing process, or a combination of the above processes.

接著,如第2圖所示,於一第一腔室進行一第一退火製程。第一退火製程可為一浸入式快速熱處理製程,但不以此為限。第一退火製程之一製程溫度實質上小於高介電常數介電層12之結晶溫度,例如實質上小於500℃。此外,進行第一退火製程時,亦包括同時通入一第一製程氣體。在本實施例中,第一退火製程之製程溫度較佳係為實質上介於300℃與400℃之間,而第一製程氣體包括複數個自由基離子(radical)用以修復高介電常數介電層12之氧缺陷14,如第3圖所示。第一製程氣體之自由基離子包括氧自由基離子或氮自由基離子。其中氧自由基離子(O radical)可藉由加熱、紫外線照射或施加電漿(plasma)等方法解離氧蒸氣(O2)或臭氧蒸氣(O3)而得,而氮自由基離子(N radical)可藉由氨氣(NH3)解離而得。例如在含有自由基離子的第一製程氣體中,以加熱器提供熱能對高介電常數介電層12進行第一退火製程,其中溫度-時間關係圖為一橫線,也就是說,第一腔室之初始溫度與預定製程溫度實質上約略相同,且預定製程溫度值需小於高介電常數介電層12之結晶溫度。在本實施例中,第一退火製程之預定製程溫度係為實質上介於300℃與400℃之間的任一定值。另外,製程時間可定義為高介電常數介電層12進入第一腔室後50秒至離開第一腔室前80秒。在本實施例中,第一退火製程之製程時間較佳係為實質上介於20秒與120秒之間。值得注意的是,具有自由基離子的第一退火製程之實施有利於減少高介電常數介電層12之氧缺陷14,避免高介電常數介電層12後續整合於半導體裝置造成漏電流的發生。Next, as shown in FIG. 2, a first annealing process is performed in a first chamber. The first annealing process can be an immersion rapid heat treatment process, but is not limited thereto. One of the first annealing processes has a process temperature that is substantially less than the crystallization temperature of the high-k dielectric layer 12, such as substantially less than 500 °C. In addition, when performing the first annealing process, it also includes simultaneously introducing a first process gas. In this embodiment, the process temperature of the first annealing process is preferably between 300 ° C and 400 ° C, and the first process gas includes a plurality of radical ions to repair the high dielectric constant. The oxygen defect 14 of the dielectric layer 12 is as shown in FIG. The radical ions of the first process gas include oxygen radical ions or nitrogen radical ions. The oxygen radical ion (O radical) can be obtained by dissolving oxygen vapor (O 2 ) or ozone vapor (O 3 ) by heating, ultraviolet irradiation or plasma application, and the nitrogen radical ion (N radical) ) can be obtained by dissociation of ammonia (NH 3 ). For example, in the first process gas containing radical ions, the first annealing process is performed on the high-k dielectric layer 12 by providing heat energy by the heater, wherein the temperature-time relationship diagram is a horizontal line, that is, the first The initial temperature of the chamber is substantially the same as the predetermined process temperature, and the predetermined process temperature value is required to be less than the crystallization temperature of the high-k dielectric layer 12. In this embodiment, the predetermined process temperature of the first annealing process is any value substantially between 300 ° C and 400 ° C. In addition, the process time can be defined as 50 seconds after the high-k dielectric layer 12 enters the first chamber and 80 seconds before leaving the first chamber. In this embodiment, the processing time of the first annealing process is preferably substantially between 20 seconds and 120 seconds. It should be noted that the implementation of the first annealing process with radical ions is advantageous for reducing the oxygen defect 14 of the high-k dielectric layer 12 and avoiding the leakage current of the high-k dielectric layer 12 subsequently integrated into the semiconductor device. occur.

接下來,如第4圖所示,於一第二腔室進行一第二退火製程。第二退火製程較佳係為一雷射尖峰退火製程,但不以此為限。第二退火製程之一製程溫度實質上大於高介電常數介電層12之結晶溫度,例如實質上大於500℃。此外,進行第二退火製程時,亦可包括同時通入一第二製程氣體,第二製程氣體包括氮氣(N2)或反應性低的惰氣氣體。例如在氮氣環境中,施加雷射光束至高介電常數介電層12之表面進行熱退火處理,其中溫度-時間關係圖為一突出峰狀,也就是說在第二退火製程中,係從初始溫度,實質上相等於室溫,升高溫度到預定製程溫度,亦即峰值溫度,也就是大於高介電常數介電層12之結晶溫度,再降溫回到室溫。在本實施例中,第二退火製程之預定製程溫度較佳係為實質上介於800℃與900℃之間。另外,製程時間可定義為溫度自低於預定製程溫度400℃升溫至預定製程溫度,再降溫至低於預定製程溫度400℃所需的時間。在本實施例中,第二退火製程之製程時間較佳係為實質上介於10秒與20秒之間。值得注意的是,製程溫度大於高介電常數介電層12之結晶溫度的第二退火製程之實施有利於轉換結構鬆散之非結晶狀高介電常數介電層12,成為結構較為緻密之具有一結晶區域16的高介電常數介電層12,如第5圖所示。另外,第二退火製程之短製程時間可避免高介電常數介電層12的全面性的結晶,達到調整結晶區域16不相鄰高介電常數介電層12與半導體基底10之交界面的區域性結晶效果,有助於改善高介電常數介電層12後續整合於半導體裝置的電性表現。Next, as shown in FIG. 4, a second annealing process is performed in a second chamber. The second annealing process is preferably a laser spike annealing process, but is not limited thereto. One of the second annealing processes has a process temperature that is substantially greater than the crystallization temperature of the high-k dielectric layer 12, such as substantially greater than 500 °C. In addition, when performing the second annealing process, it may also include simultaneously introducing a second process gas, and the second process gas includes nitrogen (N 2 ) or a reactive low inert gas. For example, in a nitrogen atmosphere, a laser beam is applied to the surface of the high-k dielectric layer 12 for thermal annealing, wherein the temperature-time relationship diagram is a prominent peak shape, that is, in the second annealing process, from the initial The temperature, substantially equal to room temperature, raises the temperature to a predetermined process temperature, that is, the peak temperature, that is, is greater than the crystallization temperature of the high-k dielectric layer 12, and then returns to room temperature. In this embodiment, the predetermined process temperature of the second annealing process is preferably substantially between 800 ° C and 900 ° C. In addition, the process time can be defined as the time required for the temperature to rise from a predetermined process temperature of 400 ° C to a predetermined process temperature and then to a temperature below the predetermined process temperature of 400 ° C. In this embodiment, the processing time of the second annealing process is preferably substantially between 10 seconds and 20 seconds. It should be noted that the implementation of the second annealing process having a process temperature greater than the crystallization temperature of the high-k dielectric layer 12 facilitates the conversion of the loose amorphous amorphous high-k dielectric layer 12, resulting in a denser structure. The high-k dielectric layer 12 of a crystalline region 16 is as shown in FIG. In addition, the short processing time of the second annealing process can avoid the comprehensive crystallization of the high-k dielectric layer 12, and the adjustment of the crystallization region 16 is not adjacent to the interface between the high-k dielectric layer 12 and the semiconductor substrate 10. The regional crystallization effect helps to improve the electrical performance of the high-k dielectric layer 12 subsequently integrated into the semiconductor device.

由於第一退火製程與第二退火製程具有各自不同的操作條件包括預定的製程溫度及製程氣體種類。為同時達到不同溫度區間的較佳控溫效果及避免製程氣體互相干擾,例如含有自由基離子的第一製程氣體在第二退火製程中可能形成非預期的氧化層於高介電常數介電層上,因此,第一退火製程與第二退火製程較佳為在第一腔室與第二腔室分別進行,但不以此為限。Since the first annealing process and the second annealing process have different operating conditions including a predetermined process temperature and a process gas type. In order to simultaneously achieve better temperature control effects in different temperature ranges and avoid mutual interference of process gases, for example, the first process gas containing radical ions may form an unintended oxide layer in the high dielectric constant dielectric layer in the second annealing process. Therefore, the first annealing process and the second annealing process are preferably performed separately in the first chamber and the second chamber, but not limited thereto.

為清楚表達本發明之特點,以下以流程圖方式再次說明本發明以退火製程改善高介電常數介電層性質的作法。請參考第6圖,並一併參考第1圖至第5圖,第6圖繪示了本發明之高介電常數介電層之製作方法的步驟流程圖。如第6圖所示,首先,如步驟601所示,形成一具有一結晶溫度的高介電常數介電層於一半導體基底上,且此時高介電常數介電層係為一結構鬆散之非結晶狀薄膜。然後,如步驟602所示,對高介電常數介電層進行一第一退火製程。第一退火製程可為一浸入式快速熱處理製程。第一退火製程之製程溫度係小於高介電常數介電層的結晶溫度,並通入具有自由基離子例如含氧元素之自由基離子的一第一製程氣體,此步驟的目的為在不改變高介電常數介電層之結晶狀態下填補高介電常數介電層之氧缺陷。接下來,如步驟603所示,對高介電常數介電層進行一第二退火製程。第二退火製程較佳係為一雷射尖峰退火製程。第二退火製程之製程溫度係大於高介電常數介電層的結晶溫度,並通入一第二製程氣體,第二製程氣體相對於第一製程氣體為反應性較低的氣體例如氮氣,此步驟的目的為利用雷射尖峰退火製程達到區域性結晶效果,以使非結晶狀之高介電常數介電層具有一結晶區域,令其結構較為緻密。In order to clearly illustrate the features of the present invention, the following is a flow chart illustrating the practice of the present invention to improve the properties of the high-k dielectric layer by an annealing process. Please refer to FIG. 6 and refer to FIG. 1 to FIG. 5 together. FIG. 6 is a flow chart showing the steps of the method for fabricating the high-k dielectric layer of the present invention. As shown in FIG. 6, first, as shown in step 601, a high-k dielectric layer having a crystallization temperature is formed on a semiconductor substrate, and at this time, the high-k dielectric layer is a loose structure. A non-crystalline film. Then, as shown in step 602, a first annealing process is performed on the high-k dielectric layer. The first annealing process can be an immersion rapid thermal processing process. The process temperature of the first annealing process is less than the crystallization temperature of the high-k dielectric layer, and a first process gas having radical ions such as radical ions of oxygen-containing elements is introduced, and the purpose of this step is to not change. Oxygen defects in the high-k dielectric layer are filled in the crystalline state of the high-k dielectric layer. Next, as shown in step 603, a second annealing process is performed on the high-k dielectric layer. The second annealing process is preferably a laser spike annealing process. The process temperature of the second annealing process is greater than the crystallization temperature of the high-k dielectric layer, and a second process gas is introduced, and the second process gas is a less reactive gas such as nitrogen relative to the first process gas. The purpose of the step is to achieve a regional crystallization effect by using a laser spike annealing process, so that the amorphous high-k dielectric layer has a crystalline region, which makes the structure denser.

此外,本發明也可進一步應用於各種具有高介電常數介電層的半導體製程,例如金屬閘極製程包括先閘極(gate first)製程、後閘極(gate last)製程之先閘極介電層(high-k first)製程以及後閘極製程之後閘極介電層(high-k last)製程等。In addition, the present invention can be further applied to various semiconductor processes having a high-k dielectric layer, for example, a gate-gate process including a gate first process and a gate last process. The high-k first process and the high-k last process after the gate process.

綜上所述,本發明提供兩段式退火製程實施於高介電常數介電層,兩段式退火製程包括第一退火製程及第二退火製程。其中第一退火製程的製程溫度係小於高介電常數介電層的結晶溫度,第二退火製程的製程溫度係大於高介電常數介電層的結晶溫度,且第一退火製程與第二退火製程較佳為在不同反應腔室中分別進行。第一退火製程可用於修復高介電常數介電層之缺陷例如氧缺陷,而第二退火製程可用於調整高介電常數介電層之結晶區域不相鄰高介電常數介電層與半導體基底之交界面。此兩段式退火製程可改善高介電常數介電層之結構完整性以及後續整合於半導體裝置的電性表現。In summary, the present invention provides a two-stage annealing process for a high-k dielectric layer, the two-stage annealing process including a first annealing process and a second annealing process. The process temperature of the first annealing process is less than the crystallization temperature of the high-k dielectric layer, the process temperature of the second annealing process is greater than the crystallization temperature of the high-k dielectric layer, and the first annealing process and the second annealing The process is preferably carried out separately in different reaction chambers. The first annealing process can be used to repair defects of the high-k dielectric layer such as oxygen defects, and the second annealing process can be used to adjust the crystalline region of the high-k dielectric layer without adjacent high-k dielectric layers and semiconductors The interface between the substrates. This two-stage annealing process improves the structural integrity of the high-k dielectric layer and subsequent electrical performance integrated into the semiconductor device.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

10...半導體基底10. . . Semiconductor substrate

12...高介電常數介電層12. . . High dielectric constant dielectric layer

14...氧缺陷14. . . Oxygen deficiency

16...結晶區域16. . . Crystallized area

601,602,603...步驟601,602,603. . . step

第1圖至第5圖繪示了本發明之一較佳實施例之高介電常數介電層製作方法的示意圖。1 to 5 are schematic views showing a method of fabricating a high-k dielectric layer according to a preferred embodiment of the present invention.

第6圖繪示了本發明之高介電常數介電層之製作方法的步驟流程圖。FIG. 6 is a flow chart showing the steps of the method for fabricating the high-k dielectric layer of the present invention.

601,602,603...步驟601,602,603. . . step

Claims (11)

一種製作高介電常數介電層的方法,包括:提供一半導體基底;形成一高介電常數介電層於該半導體基底上,且該高介電常數介電層具有一結晶溫度;進行一第一退火(annealing)製程,其中該第一退火製程之一製程溫度實質上小於該結晶溫度;以及進行一第二退火製程,其中該第二退火製程之一製程溫度實質上大於該結晶溫度。A method of fabricating a high-k dielectric layer, comprising: providing a semiconductor substrate; forming a high-k dielectric layer on the semiconductor substrate, wherein the high-k dielectric layer has a crystallization temperature; a first annealing process, wherein one of the first annealing processes is substantially less than the crystallization temperature; and a second annealing process is performed, wherein one of the second annealing processes is substantially greater than the crystallization temperature. 如請求項1所述之製作高介電常數介電層的方法,其中該高介電常數介電層之材質係選自由氧化鉿(hafnium oxide,HfO2)、矽酸鉿氧化合物(hafnium silicon oxide,HfSiO4)、矽酸鉿氮氧化合物(hafnium silicon oxynitride,HfSiON)、氧化鋁(aluminum oxide,Al2O3)、氧化鑭(lanthanum oxide,La2O3)、氧化鉭(tantalum oxide,Ta2O5)、氧化釔(yttrium oxide,Y2O3)、氧化鋯(zirconium oxide,ZrO2)、鈦酸鍶(strontium titanate oxide,SrTiO3)、矽酸鋯氧化合物(zirconium silicon oxide,ZrSiO4)、鋯酸鉿(hafnium zirconium oxide,HfZrO4)、鍶鉍鉭氧化物(strontium bismuth tantalate,SrBi2Ta2O9,SBT)、鋯鈦酸鉛(lead zirconate titanate,PbZrxTi1-xO3,PZT)、鈦酸鋇鍶(barium strontium titanate,BaxSr1-xTiO3,BST)、或其組合所組成之群組。The method for fabricating a high-k dielectric layer according to claim 1, wherein the material of the high-k dielectric layer is selected from hafnium oxide (HfO 2 ), hafnium silicon (hafnium silicon) Oxide, HfSiO 4 ), hafnium silicon oxynitride (HfSiON), aluminum oxide (Al 2 O 3 ), lanthanum oxide (La 2 O 3 ), tantalum oxide (tantalum oxide, Ta 2 O 5 ), yttrium oxide (Y 2 O 3 ), zirconium oxide (ZrO 2 ), strontium titanate oxide (SrTiO 3 ), zirconium silicon oxide (zirconium silicon oxide, ZrSiO 4 ), hafnium zirconium oxide (HfZrO 4 ), strontium bismuth tantalate (SrBi 2 Ta 2 O 9 , SBT), lead zirconate titanate (PbZr x Ti 1- a group consisting of x O 3 , PZT), barium strontium titanate (Ba x Sr 1-x TiO 3 , BST), or a combination thereof. 如請求項1所述之製作高介電常數介電層的方法,其中該第一退火製程之該製程溫度實質上小於500℃。The method of fabricating a high-k dielectric layer according to claim 1, wherein the process temperature of the first annealing process is substantially less than 500 °C. 如請求項3所述之製作高介電常數介電層的方法,其中該第一退火製程之該製程溫度實質上介於300℃與400℃之間。The method of fabricating a high-k dielectric layer according to claim 3, wherein the process temperature of the first annealing process is substantially between 300 ° C and 400 ° C. 如請求項1所述之製作高介電常數介電層的方法,其中進行該第一退火製程時,包括通入一第一製程氣體。The method of fabricating a high-k dielectric layer according to claim 1, wherein the first annealing process is performed, including introducing a first process gas. 如請求項5所述之製作高介電常數介電層的方法,其中該第一製程氣體包括複數個自由基離子(radical)。A method of fabricating a high-k dielectric layer as described in claim 5, wherein the first process gas comprises a plurality of radical ions. 如請求項6所述之製作高介電常數介電層的方法,其中該第一製程氣體之該等自由基離子包括氧自由基離子或氮自由基離子。The method of fabricating a high-k dielectric layer according to claim 6, wherein the radical ions of the first process gas comprise oxygen radical ions or nitrogen radical ions. 如請求項1所述之製作高介電常數介電層的方法,其中該第二退火製程包括一雷射退火製程。The method of fabricating a high-k dielectric layer according to claim 1, wherein the second annealing process comprises a laser annealing process. 如請求項1所述之製作高介電常數介電層的方法,其中該第二退火製程包括通入一第二製程氣體。The method of fabricating a high-k dielectric layer according to claim 1, wherein the second annealing process comprises introducing a second process gas. 如請求項9所述之製作高介電常數介電層的方法,其中該第二製程氣體包括氮氣(N2)。A method of fabricating a high-k dielectric layer as described in claim 9, wherein the second process gas comprises nitrogen (N 2 ). 如請求項1所述之製作高介電常數介電層的方法,其中於一第一腔室進行該第一退火製程,且於一第二腔室進行該第二退火製程。The method of fabricating a high-k dielectric layer according to claim 1, wherein the first annealing process is performed in a first chamber, and the second annealing process is performed in a second chamber.
TW100133425A 2011-09-16 2011-09-16 Method for processing high-k dielectric layer TWI564960B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100133425A TWI564960B (en) 2011-09-16 2011-09-16 Method for processing high-k dielectric layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100133425A TWI564960B (en) 2011-09-16 2011-09-16 Method for processing high-k dielectric layer

Publications (2)

Publication Number Publication Date
TW201314771A true TW201314771A (en) 2013-04-01
TWI564960B TWI564960B (en) 2017-01-01

Family

ID=48802605

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100133425A TWI564960B (en) 2011-09-16 2011-09-16 Method for processing high-k dielectric layer

Country Status (1)

Country Link
TW (1) TWI564960B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105762074A (en) * 2015-01-07 2016-07-13 株式会社思可林集团 Heat treatment method and heat treatment apparatus
US10121683B2 (en) 2015-08-26 2018-11-06 SCREEN Holdings Co., Ltd. Light-irradiation heat treatment method and heat treatment apparatus
TWI707402B (en) * 2015-08-26 2020-10-11 思可林集團股份有限公司 Heat treatment method and heat treatment apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100331569B1 (en) * 2000-05-30 2002-04-06 윤종용 Method of manufacturing capacitor of semiconductor device having tantalum oxide dielectric film
US6797560B2 (en) * 2000-05-22 2004-09-28 Tokyo Electron Limited Method of manufacturing a capacitor having tantalum oxide film as an insulating film
US20040121566A1 (en) * 2002-12-23 2004-06-24 Infineon Technologies North America Corp Method to produce low leakage high K materials in thin film form
US7071122B2 (en) * 2003-12-10 2006-07-04 International Business Machines Corporation Field effect transistor with etched-back gate dielectric
US7135361B2 (en) * 2003-12-11 2006-11-14 Texas Instruments Incorporated Method for fabricating transistor gate structures and gate dielectrics thereof
TWM359790U (en) * 2008-12-01 2009-06-21 Tung Fang Inst Of Technology Manufacturing of dielectric thin film by laser annealing

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105762074A (en) * 2015-01-07 2016-07-13 株式会社思可林集团 Heat treatment method and heat treatment apparatus
US9557110B2 (en) 2015-01-07 2017-01-31 SCREEN Holdings Co., Ltd. Method and apparatus for heat-treating high dielectric constant film
US9837266B2 (en) 2015-01-07 2017-12-05 SCREEN Holdings Co., Ltd. Method and apparatus for heat-treating high dielectric constant film
US9966254B2 (en) 2015-01-07 2018-05-08 SCREEN Holdings Co., Ltd. Method and apparatus for heat-treating high dielectric constant film
TWI624873B (en) * 2015-01-07 2018-05-21 思可林集團股份有限公司 Heat treatment method and heat treatment apparatus
US10121683B2 (en) 2015-08-26 2018-11-06 SCREEN Holdings Co., Ltd. Light-irradiation heat treatment method and heat treatment apparatus
US10790171B2 (en) 2015-08-26 2020-09-29 SCREEN Holdings Co., Ltd. Light-irradiation heat treatment method and heat treatment apparatus
TWI707402B (en) * 2015-08-26 2020-10-11 思可林集團股份有限公司 Heat treatment method and heat treatment apparatus
US10978319B2 (en) 2015-08-26 2021-04-13 SCREEN Holdings Co., Ltd. Light-irradiation heat treatment method and heat treatment apparatus
TWI755840B (en) * 2015-08-26 2022-02-21 日商思可林集團股份有限公司 Heat treatment method and heat treatment apparatus

Also Published As

Publication number Publication date
TWI564960B (en) 2017-01-01

Similar Documents

Publication Publication Date Title
JP4681886B2 (en) Semiconductor device
TWI576916B (en) Semiconductor device manufacturing method and substrate processing system
US8921238B2 (en) Method for processing high-k dielectric layer
US20150255267A1 (en) Atomic Layer Deposition of Aluminum-doped High-k Films
KR101078498B1 (en) Manufacturing method of insulator thin film
KR100729354B1 (en) Methods of manufacturing semiconductor device in order to improve the electrical characteristics of a dielectric
JP2001015739A (en) Gate insulated film and manufacture thereof
US20100210082A1 (en) Method for manufacturing semiconductor device
TWI564960B (en) Method for processing high-k dielectric layer
KR100763123B1 (en) Method of manufacturing a Interlayer in Flash Memory Device
US9159779B2 (en) Method of fabricating semiconductor device
KR100859256B1 (en) Semiconductor device and fabrication method thereof
TW201826397A (en) Method for fabricating metal gate structure
KR100621542B1 (en) Dielectric multilayer of microelectronic device and fabricating method the same
JP2006073758A (en) Manufacturing method for semiconductor device
KR100382742B1 (en) Method for forming capacitor of semiconductor device
TWI534894B (en) Semiconductor structure and fabrication method thereof
TWI529803B (en) Semiconductor process
JP4933256B2 (en) Method for forming a semiconductor microstructure
KR102314131B1 (en) Ferroelectric capacitor device and fabricating method thereof
KR100529472B1 (en) Method of forming a transistor using a dielectric
KR100755072B1 (en) Semiconductor device having ternary system oxide gate insulating layer and method of fabricating the same
TWI565062B (en) Semiconductor structure and fabrication method thereof
CN103117297B (en) Semiconductor structure and its manufacture craft
KR20120068567A (en) Method for preparing multi-component thin film