TW201312962A - 用於衛星整合通信之方法及系統 - Google Patents

用於衛星整合通信之方法及系統 Download PDF

Info

Publication number
TW201312962A
TW201312962A TW101125470A TW101125470A TW201312962A TW 201312962 A TW201312962 A TW 201312962A TW 101125470 A TW101125470 A TW 101125470A TW 101125470 A TW101125470 A TW 101125470A TW 201312962 A TW201312962 A TW 201312962A
Authority
TW
Taiwan
Prior art keywords
satellite
data
antennas
geostationary
communication
Prior art date
Application number
TW101125470A
Other languages
English (en)
Inventor
John Ploschnitznig
Original Assignee
Riverside Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riverside Res Inst filed Critical Riverside Res Inst
Publication of TW201312962A publication Critical patent/TW201312962A/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18517Transmission equipment in earth stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18563Arrangements for interconnecting multiple systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Relay Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本發明揭示用於整合衛星通信之系統及方法。建立放置在蜂巢式電話發射塔之頂部上之對空天線之一網路。每一對空天線在一特定衛星軌道之高度處具有一覆蓋區。對空天線係放置在小區發射塔上以在一(若干)衛星之軌道上方建立一連續覆蓋,藉此容許使用蜂巢式技術與軌道上之衛星進行連續通信。

Description

用於衛星整合通信之方法及系統
本發明實質上係關於通信之衛星系統及方法。
此申請案主張2011年7月13日申請之名為「INTEGRATED COMMUNICATION ENVIRONMENT FOR SATELLITES」之美國臨時專利申請案第61/507,279號之權利,該案之全部內容係以引用方式併入本文。
傳統上係使用專用地面站之一相對較小群組進行衛星通信,該等專用地面站使用方位角及俯仰角隨衛星經過上空而實體移動以追蹤衛星之碟型天線。此基礎設施之建造、維護及操作係昂貴的且日存取總數先天受限,此係因為天線僅能夠一次與一衛星通信。因此,同時與多個衛星通信係不可能的。隨著未來十年內成百上千個SMALLSATS、NANOSATS及PICOSATS發射至太空,此將變得更加明顯。除同時實體處置許多衛星之外,亦必須升級電子基礎設施以處置同時通信以保證緊要任務指令之上行鏈路及有價值資料之下行鏈路。
一般而言,本文圖解說明之實施例係關於一種具有各自經組態以與沿一軌道路徑行進之一非地球靜止衛星通信之複數個對空天線之衛星通信系統。此等天線連同其等各自發射塔及其他通信能力在本文往往被稱為通信站。該等對空天線係各自經組態以向上發射一信號至一正在經過的衛 星,該信號場型之直徑隨著相距該天線之距離增加而擴大,因此沿該非地球靜止衛星之軌道路徑形成一軌道攔截區域。
非地球靜止衛星係經調適以在橫跨藉由通信站及天線產生之軌道攔截區域時接收信號。該複數個對空天線形成一系列部分重疊軌道攔截區域,該系列部分重疊軌道攔截區域覆蓋該軌道路徑之很大部分之一連續延伸區域。因此,如一使用者分配任務般,可經由一軌道路徑之一延伸部分上載信號及下載資料。
衛星通信站系統及其等對空天線固定至各自通信站及相關發射塔或其他結構,諸如(但無限制)建築物、小區發射塔、專用發射塔及結構,且係經操作地連接至一通信網路,諸如一蜂巢式電話網路、無線網路、有線網路或其他類型的通信網路。
各種實施例之衛星通信站具有其他天線,該等天線各自固定至各自個別通信站,複數個額外(或第二)天線各自對準一水平面或大部分水平對準,且係經組態以與該複數個通信站之至少另一者通信。此等第二天線可為一蜂巢式天線,但是此並未意謂一限制。
信號之波束寬度係藉由非地球靜止衛星經組態穿過之軌道攔截區域之一直徑定義。對空天線之波束寬度可比一衛星天線波束寬度狹窄(對於下行鏈結資料而言)。雖然在一實施例中對於該複數個對空天線而言波束寬度之直徑實質上相同;但是此並未意謂一限制。相鄰通信站之間之距離 將規定所關注衛星之軌道高度處之波束寬度。
衛星通信系統進一步具有若干使用者裝置,其等各自具有處理能力且經調適以儲存一衛星任務分配應用程式。使用者裝置係經調適以儲存軟體指令,該等軟體指令導致使用者裝置內之一處理器使用儲存在使用者裝置之記憶體中之衛星任務分配應用程式,用於經由通信網路進行傳送而與非地球靜止衛星通信。
一使用者裝置上之衛星任務分配應用程式係經調適以用經組態以輔助使用者裝置之一使用者開發傳送至非地球靜止衛星之一任務之一或多個選項單提示該使用者。依此方式,用於對衛星任務分配進行任務分配之使用者輸入被傳送至非地球靜止衛星。隨著一衛星經過其在一特定面積或區域中之軌道,經由一蜂巢式網路與該衛星通信之天線可發生此通信。
使用者裝置亦係經調適以接收衛星資料、將該衛星資料重新格式化為由使用者選取之一格式,並在該使用者裝置上顯示所重新格式化之衛星資料。再者,儲存在該使用者裝置上之應用程式容許該使用者裝置之機上處理器執行此等功能。該使用者裝置可為使用無線通信之一行動裝置,諸如一蜂巢式電話、一PDA、一膝上型電腦,或其亦可為一桌上型電腦。注意此等使用者裝置並未意謂一限制。
衛星通信系統亦可具有經操作地連接至通信網路之一衛星任務分配伺服器。該衛星任務分配伺服器儲存使用於對任何數目個非地球靜止衛星分配任務中之一第一組任務分 配命令。該衛星任務分配伺服器係經調適以藉由使用者憑藉使用該等任務分配命令而與非地球靜止衛星通信之通信網路存取。該衛星任務分配伺服器維護唯獨適用於對一使用者可能關注之非地球靜止衛星分配任務之任務分配命令之一程式庫。任務分配伺服器與該使用者裝置交互通信使得一使用者可輸入所要影像特性或源自被分配任務之衛星之其他資料(即,當日時間、資料類型、資料饋送之格式持續時間及衛星之能力之其他所要特性)。依此方式,使用者可查詢衛星資料,且任務分配伺服器可接著指派任務分配查詢給滿足使用者查詢之特性之第一可用衛星。或者,使用者可要求來自一特定衛星之資料,在該情況中任務分配伺服器格式化對由使用者要求之特定衛星之一任務請求中之資料請求。此緩解使用者精通衛星任務分配之全部態樣之需求。任務分配伺服器基於所要衛星、衛星之軌道特性、所請求之資料類型及與衛星資料收集相關聯之其他因數而施加適當的任務分配規則。
進一步言之,衛星任務分配伺服器維護可經任務分配之一系列衛星。由一處理器選擇之非地球靜止衛星接著至少部分基於該非地球靜止衛星之一能力以獲得如自一使用者裝置分配任務之請求資料。
在本文圖解說明之各種實施例中,衛星及使用者裝置及任務分配伺服器(若使用)利用現存或未來可能存在之各種蜂巢式及智慧型電話軟體,以在網路上通信並與軌道衛星通信。此智慧型電話技術(安卓(android)及其他技術)相當 先進,且可容易地適應任務分配之要求及由一衛星執行該任務分配。因此,各種實施例亦可包含衛星上之一智慧型電話通信能力(或卡)以最大化此技術之使用。該等衛星僅裝備有該衛星上之一功能更強大的發射天線,使得可基於智慧型電話命令而接收命令且將資料下行鏈結至小區發射塔(及對空天線)。此技術之使用亦容許由無需係衛星設計師之人對此等衛星寫入更多應用程式。
本文圖解說明之各種實施例提供衛星通信發射塔之一連續網路,該等衛星通信發射塔在無需額外地面站之情況下產生與近地軌道中之多種衛星通信之一地理廣泛且即時能力。本文圖解說明之系統及其實施例包括用一高增益對空天線改進位於有利地理間隔處之商用蜂巢式發射塔,使得該複數個此等天線在衛星繞軌道運行之高度處之投影衛星覆蓋區(footprint)在其中該等衛星在其等各自軌道中行進之一寬區域上方提供連續地理覆蓋區。
因為經有利地選擇之個別蜂巢式發射塔將提供連續衛星通信覆蓋區之一區域,所以個別地面站無需具有可移動天線,此係因為在任何給定時間多個天線將具有與近地軌道中之一衛星通信之一機會。本文圖解說明之實施例之一額外優點係:可自衛星獲得即時資訊且將該即時資訊傳送至使用者之各種計算裝置。繼而此增加衛星利用率,此係因為本文圖解說明之各種實施例降低自此等近地軌道中之衛星獲取資料之成本。此使得衛星資料之多種新的應用程式及用戶成為可能。
在各種實施例中,修改現有蜂巢式發射塔以提供一固定的狹窄波束對空天線。個別地,一小區發射塔將提供有限的通信存取;但是將此等天線分佈在適當隔開之小區發射塔上方跨任何大小之大面積提供重疊覆蓋區。依此方式,將衛星通信整合於現有蜂巢式網路中,藉此避免先前專用地面站概念,同時為全部未來衛星程式提供一新的整合通信環境(ICE)。
藉由調適現有蜂巢式通信發射塔以包含對空固定波束天線,可消除昂貴的專用地面站。已經定位以跨地球表面上之大面積提供重疊覆蓋區之現有發射塔將同樣地在天空提供大區域覆蓋區,但是必須在本文所述之各種實施例中使用一不同類型的天線。此一能力並不存在於此等發射塔上且並未完全表示此等小區發射塔之新功能性。每一小區發射塔提供一連接給一現有蜂巢式通信網路。本文圖解說明之新衛星通信環境擴充此等潛在網路作為一已建立的通信高速通道,從而將會載送上行鏈路資料至適當的蜂巢式發射塔天線且自該小區發射塔天線載送下行鏈路資料。在各種實施例中,衛星裝備有擴充現有智慧型電話技術之通信軟體以容許與現有小區網路整合。因為整個系統係基於蜂巢式技術且使用現有蜂巢式網路,所以使用經特定裝備之智慧型電話或經由為SMALLSATS、NANOSATS及PICOSATS(為此申請案之目的統稱為「衛星」)特定設計之「智慧型電話」通信板完成衛星之管理。
在各種實施例中,使用現有陸基蜂巢式通信系統及基礎 設施建立一衛星通信及控制網路。所選擇之現有小區發射塔上之專用對空天線提供上方衛星經過並同時在軌道上之天空區域之必要覆蓋區。蜂巢式網路同時發送命令及其他資料至發射塔範圍內之多個衛星並自發射塔範圍內之多個衛星接收命令及其他資料。由於衛星沿一軌道路徑在每一發射塔之覆蓋區區域之間移動,通信以與一蜂巢式電話信號在途中時自動地在發射塔之間傳遞之相同方式自動地自一發射塔傳遞至下一個發射塔。因此,本文圖解說明之各種實施例基於各種衛星之已知軌道建立一虛擬衛星監視系統以使一信號自動地在發射塔之間傳遞,藉此產生自該等衛星至地面網路之一無縫通信流。此通信連續性容許可靠實況串流視訊及音訊自衛星直接發射至使用者。
當今許多SMALLSAT及NANOSAT衛星系統基於大小、複雜性及能力正在使用智慧型電話技術。本文圖解說明之各種實施例使用現有寬頻網路(GSM、3G、4G等等)以發射並接收資料封包且潛在地發射並接收實況串流資料。可由群集近地軌道中衛星之一星座、監視風暴、自然災害等等實現串流視訊。智慧型電話技術可用於本文圖解說明之各種實施例之通信技術。當考慮由智慧型電話提供之固有通信能力時使用此技術之好處甚至進一步增強。在一實施例中,基於衛星之系統涉及合併有與安裝在包括該網路之各種蜂巢式電話發射塔上之對空高增益天線通信之一對地高增益天線之增加的發射功率。
併入本文且構成此說明書之部分之隨附圖式圖解說明本發明之例示性態樣,且連同上文給定之一般描述及下文給定之詳細描述用以解釋本發明之特徵。
將參考隨附圖式詳細地描述各種實施例。在可行之處,貫穿該等圖式將皆使用相同的元件符號來指代相同或類似部分。對特定實例及實施方案之參考係為闡釋性目的,且並不旨在限制本發明之範疇或申請專利範圍。
用詞「例示性」在本文係用以意謂「用作一實例、例項或圖解說明」。本文描述為「例示性」之一實施方案不一定被解釋為比其他實施方案更佳或有利。
如本文所使用者,術語「蜂巢式」及「小區」指代多種無線電話系統、網路及支援基礎設施,諸如可經組態以在多種技術(諸如GSM、CDMA及AMPS)下操作之發射塔。
目前蜂巢式發射塔係專用於透過對準水平面之天線給地面通信提供必要覆蓋區。本文圖解說明之實施例整合現有小區發射塔上指向上之一高增益天線。基於網路及所選取之發射/接收頻率,一天線組態可在近地軌道(大約400 km)處提供必要軌道衛星覆蓋區。例如,在4 GHz下操作之一4G網路將需要一最小25 cm的碟型天線以在太空中產生20度衛星覆蓋區。此衛星覆蓋區將在一小區發射塔上每隔100 km需要一高增益天線。該碟型天線大小將有可能增加以最小化外溢(為人身安全後瓣功率小)且避免大功率干擾其他地面天線。
使用此方法,為在近地軌道(LEO)衛星高度處提供重疊 軌道覆蓋區,經適當隔開之複數個小區發射塔之一網路提供必要覆蓋區。僅該許多可用小區發射塔之一部分需要在大量陸地區域上方提供連續通信。各種實施例能夠提供與近地軌道中之軌道運行衛星之通信、使用安裝在衛星上之當前智慧型電話中發現之組件且經由現有蜂巢式電話網路及裝備有垂直向上指向之特製高增益天線之現有小區發射塔通信。此頂部安裝位置最小化來自該發射塔上之其他天線之潛在干擾。隨著衛星經過由每一天線產生之波束,將使用蜂巢式網路協定在該衛星與天線之間發射通信信號。
裝備有特製天線之小區發射塔之數目及位置取決於每一天線之增益及波束。該增益愈低且該波束愈寬,則需要提供完整的天空覆蓋區之發射塔愈少。同樣地,每一衛星之衛星信號覆蓋區必須足夠寬以支援同時覆蓋相鄰小區發射塔以保證不中斷通信。因此,與使用跨天空追蹤單一個衛星之極多個天線之一較少個大地面站相比,提供與軌道運行衛星之連續通信所需之基礎設施分佈在許多較小天線場所上方。
在一實施例中,衛星裝備有允許衛星對衛星通信之長的天線。當原始衛星係在其中不可能與小區發射塔直接通信之大片水域上方時,此組態係用於允許衛星透過其他衛星中繼信號且接著中繼至地面上之小區發射塔。
在一實施例中,當前蜂巢式電話之現有光學能力可與衛星上望遠鏡耦合以提供實況成像,此可經由小區網路串流至駐留在一使用者裝置上之任何桌上型或手持式應用程 式。
經由現有蜂巢式網路發生與一衛星之全部通信。在一實施例中,一衛星監視系統及適當軟體以邏輯上小傳遞封包發送資料至該衛星並自該衛星以邏輯上小傳遞封包發送資料。傳遞封包係經設計以識別標準化資料類型,例如命令及控制(C2)上行鏈路、健康狀態(SoH)下行鏈路及用於傳遞之資料封包。
軟體監視SoH、管理需求、執行任務分配、產生衛星命令並管理衛星操作。軟體亦負責管理總體通信網路(例如隨著衛星經過上空使一信號自一發射塔至下一個發射塔之傳遞協調)並管理用於發射之資料封包。
軟體係經設計以監視SoH、管理需求、執行任務分配、產生衛星命令並管理衛星操作、操作網路(在諸如多小區發射塔操作之特定操作要求下)並管理資料封包以將其用彙總為在邏輯上彼此相關聯之較大資料封包。
使用現有蜂巢式電信基礎設施以整合本文圖解說明之各種實施例並潛在地最小化典型的蜂巢式通信操作負擔。例如,將知道一特定衛星射道之事實容許適當連續小區發射塔之組態作為一連續連接並自一適當裝備之衛星提供無縫視訊發射。
現在參考圖1,圖解說明使用者與一基於小區發射塔之衛星通信實施例之互動之一廣義概念及架構。在接下來圖解說明之各種實施例中,可為例如(但無限制)一行動電話、一PDA、一平板型電腦、一膝上型電腦、一桌上型電 腦或任何其他使用者裝置之一使用者裝置100儲存一衛星任務分配應用程式102。一衛星任務分配應用程式102透過輔助使用者開發待傳送至一衛星之一任務之一系列選項單使該使用者漫遊。例如,位置102處之任務分配可訊問該使用者一圖像是否用於天氣目的、農業目的、地球之一部分之一簡單快照目的。
使用者100由該衛星任務分配應用程式102作出一選擇,且經由一網路104傳送該選擇。在此圖解說明中,通信媒體係一蜂巢式網路,然而,此並未意謂一限制。其他裝置可直接經由網際網路或其他網路通信,且此等網路被視為在本文圖解說明之各種實施例之範疇內。使用者選擇被傳送至一模板伺服器106。該模板伺服器之目的係為取得使用者之任務分配請求並判定哪些衛星能力必須滿足該任務分配請求。該模板伺服器搜尋衛星之一清單以由資料庫108判定最好地例證滿足使用者請求所需之衛星類型之衛星能力。一旦選擇衛星,即自包括專用於所要衛星的指令之一模板程式庫110擷取一模板。因為不同的衛星將具有不同的特性及不同的任務分配命令,所以自該模板程式庫110擷取一適當模板以促進衛星任務分配。
一旦自該模板程式庫擷取該模板,該模板伺服器106即將命令經由一網路104傳送至一小區發射塔112。再者,在此高階圖解說明中,圖解說明一蜂巢式網路,但是此並非意謂一限制。該蜂巢式發射塔112上之天線接著將滿足使用者任務分配所需之命令傳送至適當的衛星116。衛星116 收集資料、在114處傳送至衛星116之適當路徑內之一小區發射塔112,並將該資訊經由該網路104傳送至使用者裝置100。因為衛星116之路徑中存在多個發射塔112,所以該任務分配及收集命令及資料可經由一發射塔上載並經由一不同的發射塔下載。
現在參考圖2,圖解說明使用通信系統之一架構之一替代實施例。在此實施例中,使用者裝置100進一步包括具有一任務分配及接收儲存於其中之應用程式120之一記憶體。該使用者裝置之記憶體進一步包括一處理應用程式122,該處理應用程式122自一衛星取得所接收資訊並以由使用者所要之形式例如(但無限制)一照片、一保存檔案、導航資訊呈現該資訊。
使用者裝置可為具有適當處理能力之一般蜂巢式電話或具有專用於衛星通信之增強能力之一特殊用途使用者裝置。在任一情況中,使用者裝置100與其最近之蜂巢式電話發射塔124互動/通信126以經由具有一對空天線113(其係在衛星116之軌道上)之一蜂巢式發射塔112透過網路104發送指令。一旦使用者自任務分配120發送任務,即上行鏈結114至衛星116以執行任務分配。
一旦衛星係在獲得所請求資料之一位置中,衛星116即獲得所請求資料並將資訊下行鏈結114至小區發射塔112上存在之對空天線113。視情況而定,接著經由網路104將該資料發送或串流至最接近該使用者124之小區發射塔,該小區發射塔接著經由一般蜂巢式通信將該資訊126發射至 使用者裝置100。接著經由處理應用程式122處理該資訊並按要求為使用者128在任何內部或外部顯示器上顯示該資訊。
圖3係展示適於一現有蜂巢式發射塔之一對空天線之一實施例之一圖解說明。
如此圖3中所示,在一習知蜂巢式發射塔112之頂部上安裝一小型高增益天線113。此天線指向上以在放置近地軌道衛星之高度處建立一適當衛星覆蓋區。
現在參考圖4,圖解說明小區發射塔天線場型之建立。在各種實施例中,蜂巢式發射塔天線場型建立所需覆蓋區。天線被剛性地安裝在該小區發射塔之頂部上,如上所述般指向上。此最小化圍繞該小區發射塔之許多其他天線之干擾。
天線波束寬度42基於高度40定義太空之軌道攔截區域及該攔截區域之直徑。其亦定義天線安裝之間之最大距離46。在此圖式中,將小區發射塔位置表示為50及52。此等實體設定建立影響通信操作之衛星操作環境(每一小區之存取時間)。基於小區發射塔之位置(例如50及52)及該衛星之預測高度40,可設計天線波束寬度使得在適當高度處總是存在所投影波束寬度之一重疊44。依此方式,該衛星總是與至少一小區發射塔通信且潛在地與兩個小區發射塔通信以促進通信連貫性。
社群需求將最小化執行任務所需之小區發射塔天線之數目。此係藉由使用現有小區發射塔及用所關注之衛星之軌 道高度之知識設計波束寬度予以完成。運用現有小區發射塔之特定位置之知識,可對每一小區發射塔設計可變波束寬度天線以完成本文圖解說明之各種實施例之連續覆蓋區。進一步言之,使用現有小區發射塔作為各種實施例之網路之一基線來最小化新硬體安裝成本。
在一實施例中,必須設計衛星通信天線以支援同時覆蓋相鄰小區發射塔以保證不中斷通信。使用一鏈路預算分析以定義最小裝備需求以保證一穩定的通信能力。
現在參考圖5,圖解說明小區發射塔安裝之一網路。圖5係提供與相鄰小區發射塔之同時通信之一衛星通信天線之一圖解說明。
如此圖5中之圖解說明,一衛星116係在地球134之表面上方之一地球軌道130中。在一實施例中,事實上,可一次藉由一個以上小區發射塔138、140接收衛星通信,因此增加一信號之接收之冗餘及可靠性。最小的衛星波束寬度136必須大於該小區發射塔天線波束寬度132以最大化通信鏈路持久性效能。
在替代性實施例中,衛星可裝備有多重感測器,諸如視覺相機、紅外線感測器及多光譜感測器。此系列僅僅係為圖解說明且並不旨在一限制。可實體附接至衛星之任何種類的感測器將可用,且來自此等感測器之資料將經由蜂巢式網路傳遞至終端使用者。
圖6a及圖6b圖解說明基於天線波束寬度及天線間隔而裝備之發射塔之相對密度。圖6A圖解說明衛星116在地球134 之表面上方之軌道130上行進。彼此靠近之個別對空天線具有波束寬度142,該等波束寬度142在軌道130之高度處彼此重疊。依此方式,衛星116總是在至少一對空天線之接收領域內,且每一天線波束寬度142相對較為狹窄。
現在參考圖6B,圖解說明一實施例之一不同天線波束寬度。在此例項中,衛星116在軌道130上行進。此軌道表示為與圖6A中之軌道相同之高度。
然而,在此例項中,因為該等小區發射塔隔開或存在於較大間隔處,所以設計之天線波束寬度150比天線波束寬度142(圖6A)寬。因此,在各種實施例中且取決於各種小區發射塔之位置及其等彼此之距離,可容易地改變天線波束寬度以覆蓋一衛星之整個軌道。
小區系統操作頻率及潛在輸出功率將規定天線波束寬度,該天線波束寬度將約束維護不中斷覆蓋區所需之最大天線地面間隔/位置。
參考圖7,圖解說明衛星之一小區發射塔組態。當要求來自一給定衛星之特定資料時,可預測該衛星之射道。為此圖式之目的,衛星116及216之軌道經圖解說明疊加在地球表面之一影像上方。各種圓形116A圖解說明衛星116在其軌道之路徑中之高度處之天線衛星覆蓋區。類似地,彩色圓形216A表示衛星216之高度處之天線衛星覆蓋區。
如每一軌道在表示衛星軌道高度處之天線衛星覆蓋區之圓形上方之交叉所示,可沿任何特定軌道路徑組態小區發射塔之一網路以自經過此等小區發射塔上方之一特定衛星 接收一恆定資料流。亦應注意在特定例項中,事實上相同的小區發射塔可經組態以在不同時間或相同時間自衛星接收資料。
取決於本文圖解說明之各種實施例,此技術存在若干應用。各種使用情況標註如下,但不應被判定為限制,相反地,其等僅僅係如何使用各種實施例之一通信網路之若干實例。
全球EO/IR星座支援:
天氣追蹤。本文圖解說明之各種實施例容許進行快速天氣追蹤。在一活躍天氣案例中,對應急回應器而言近似即時接收天氣資訊至關重要。可能即刻受發展中之天氣影響者自衛星接收資訊之能力係藉由使用蜂巢式通信技術以與蜂巢式發射塔通信以自軌道運行衛星近似即時發送指令並自軌道運行衛星近似即時接收資料之能力而增強。
火山活動灰雲追蹤。火山活動已被證實對飛行、環境及個人健康危害確實極大。活躍地追蹤一灰雲且藉此作出關於對飛行、環境及人類健康之影響之預測之能力藉由本文圖解說明之各種實施例而增強。再者,可經由小區發射塔通信完成與全部類型的成像衛星之通信,以對民政當局以及民航當局近似即時報告事件,藉此能夠以一更有效方式為民眾重新引導交通及潛在疏散路徑。
全球多光譜/超光譜(MSI/HSI)星座支援應急管理(預先基線量測與後期量測比較)。多光譜及超光譜衛星提供特定光譜頻帶中之有價值的資訊以分析多種現象。此外,不同 的化學品及物質在不同的光譜頻帶中以不同方式及不同數量自太陽吸收並反射能量。經由ICE網路對MSI及HSI衛星之即刻存取容許近似即時上載偵測所關注的(例如,漏油)之所要組份/材料所需的特定光譜模板。此係與其中必須在一特定要求之前充分請求此衛星任務分配之當前操作相比。進一步言之,任務分配必須經歷一地面站,該地面站必須測試衛星、獲取資料、格式化該資料並接著最終提供該資料給使用者。與本文圖解說明之實施例相關聯之系統及方法容許經由一蜂巢式電話上之一應用程式完成此任務分配,使得使用者可對衛星分配任務並直接接收資料至一使用者之蜂巢式電話或其他蜂巢式儀器。
預先計劃之光譜模板。本文圖解說明之各種實施例之通信能力亦容許預先計劃之光譜模板/輪廓以確認可疑材料/化學品之存在。此等模板可直接與所要現象之紀錄相關聯。例如,任務分配模板可發展為多種特定任務,諸如特定化學溢出物之分析、農作物健康之估測、核洩漏、可疑化學品造成之廢水污染之偵測、追蹤颶風損壞及多種其他任務。可基於自可位於中心之一模板程式庫之一選擇而由一使用者上載此等預先計劃之模板。在此一例項中,將為此一服務之一用戶之一使用者將存取一伺服器、選擇所關注模板並將該模板引導至待上載至具有在由使用者所要之位置處執行所要任務之能力之下一個衛星。此全部可由一蜂巢式電話應用程式而完成,藉此消除行進穿過多個管理階層至一地面站以對衛星分配任務之需求。例如,可使用 一紅外線衛星以追蹤一城市區域中之熱場型。可使用多光譜衛星以評估特定光譜頻帶中之特定農作物,藉此評估農作物健康。類似地,其他區域及應用程式可具有其等自身特定模板,按照需要該等模板可由使用者使用本文圖解說明之通信系統上載。隨著情節發展,將會針對新聞組織進行一同等重要的使用以自任務分配衛星接收近似即時資料。此將藉由對影像相關資訊之存取而導致大眾更加瞭解。
廣告機會。存在用本文圖解說明之實施例使衛星通信能力營利之機會。例如,正如遊戲世界中現在存在廣告及「擴增時境」,由使用者接收之衛星通信及資訊亦將存在此機會。例如,Google可發射一成像衛星星座(該等成像衛星將用近似即時低解析度圖像描繪其等自由球體(Google Earth)),且接著可在該影像上提供廣告空間(諸如一浮水印)或隨著使用者放大個別影像而在視窗上提供一商業彈出。此廣告空間將被鏈結至與用於通信之特定發射塔相關聯之訊息。依此方式,廣告可適用於其中使用者正自一特定衛星接收資訊之特定區域。
藉由本文圖解說明之各種實施例之蜂巢式發射塔產生上千英里之一未中斷通信鏈路之事實,隨著一成像衛星沿其軌道路徑發射,一使用者可將數位資料自該衛星串流至一蜂巢式電話。依此方式,隨著衛星經過具有蜂巢式發射塔覆蓋區之任何特定地理區域上方,使用者可有效地看見該衛星近似即時看見的事物。
先進技術及支援搜尋
美國政府(或可能私人企業)可將大約120個衛星發射至一漫遊(Walker)星座中。雖然一漫遊星座僅覆蓋某一高度以下之地理區域,但是一漫遊星座可提供所覆蓋之一較高密度的區域,接著可為一天極星座。因為覆蓋區之分集之一增加轉移至同時觀察地面上之一使用者之極多個衛星,所以一高分集漫遊星座將提供更大可用性且因此自繼而將容許科學搜尋增強之不同角度提供冗餘資料。使用本文圖解說明之類型之一通信網路將容許多個獨立實體(大學、高校、公司、團體、國家、個人)與衛星互動一預定義時間週期,且在一些例項中同時與衛星互動一預定義時間週期。此將培養創造性的技術應用。因為此等衛星將裝配有各種感測器(EO、IR、RF、多光譜、超光譜、......),所以全部不同種類的搜尋之機會顯著增強,此係因為資料可在一大幅減小的成本下近似即時存取。
太空態勢感知(SSA):此將由光學/IR感測器之一專用太空星座組成。此等感測器可經設計以指向4個(相對於天底點)側象限中。鑑於衛星之GPS位置之精確度及使用透過寬視場感測器觀察之極為熟悉的星圖,絕對指向並非至關重要。影像將用全部相關元資料標記以支援SSA資料處理,此將比較連續影像以首先識別正在移動的太空物體。接著將處理多個衛星同時影像以精確地對SSA資料進行三角測量。ICE變為重要的通信基礎設施以快速(近似即時)且例行性地自數百個衛星連續向下發送4個象限太空影像。
太空物體追蹤:CIE碟形天線將被用作一天頂指向發射源。發射器將使特殊波形交錯以容易地支援都普勒(Doppler)分析。可使用一特殊衛星星座以接收都普勒偏移預期/預先計劃之波形。接著可由來自一單個散射太空物體之同時多衛星觀察而後期處理此資料。該物體不僅位於太空中,而且在足夠多觀察下可產生一狀態向量(使用Dr Fred Earl三角測量演算法)。
全球影響力(太空中繼器):29%的地球覆蓋有陸地。可想到ICE碟形天線漂浮在浮標上,但是吾等損失至地面網際網路基礎設施之連接。為延伸超出陸地並經過水域,衛星可配備有極長天線(天頂或天底指向)。此等亦可用作重力梯度桿。該天線/桿將用作具有高正交增益之一側指向天線,支援衛星對衛星太空通信。此等衛星之一星座將會使典型的蜂巢式發射轉換並發送至該中繼器以進行太空訊息發射。此信號將自衛星發送至可用衛星。當在陸地上方時,接收該信號之第一衛星可接著透過一般的ICE架構將該訊息發送至所要接收者。
應用本文圖解說明之各種實施例,任何衛星供應商可購買可整合於衛星硬體中之一衛星啟用電話。為減小重量,此等電話將不會提供視訊介面或天線。此等電話電路卡可接著被容易地整合於NANOSAT或SMALLSAT底盤中。同樣地,將對服務費或資料封包按月收費。首先可應用一使用費。依此方式,手持式裝置請求收集任務分配及查看產品。
圖8中圖解說明適用於與各種實施例一起使用之一行動裝置。
一行動裝置300可包含一處理器301,該處理器301耦合至一內部記憶體302、一顯示器303及一SIMM 321或類似的可抽換式記憶體單元。此外,該行動裝置300可視需要具有用於發送並接收電磁輻射之一蜂巢式天線304,該蜂巢式天線304連接至耦合至該處理器301之一蜂巢式收發器305。在一些實施方案中,該收發器305及該處理器301及記憶體302之部分可用於多網路通信。該行動裝置300亦可包含一鍵盤306或迷你鍵盤及選項單選擇按鈕或搖桿開關307以接收使用者輸入。該行動裝置300亦可包含耦合至該處理器並用以判定該行動裝置300之位置座標之一GPS導航裝置320。此外,顯示器303可為可經組態以接收使用者輸入之一觸敏裝置。
該行動裝置300亦可包含一相機310、一紅外線發射器接收器314、一編碼音頻產生器/接收器/解碼器316、一生物測量讀取機318及一編碼圖形產生器/接收器/解碼器326。此等元件可用以執行分派給如上所述之購買者行動裝置202及商人行動裝置222之各種功能。
一無線收發器330可經由一無線天線332提供無線通信。藉由圖解說明且並無限制,該無線收發器330可符合802.11x標準。
該處理器301可為任何可程式化微處理器、微電腦或多處理器晶片或可藉由軟體指令(應用程式)組態以執行多種 功能(包含本文描述之各種實施例之功能)之晶片。在一實施例中,該行動裝置300可包含多個處理器301,諸如專用於蜂巢式及/或無線通信功能之一處理器及專用於運行其他應用程式之一處理器。
通常,軟體應用程式在其等被存取並載入該處理器301之前可儲存在內部記憶體302中。例如,該內部記憶體302可包含異動應用程式324及裝置特定應用程式328。應用程式324及328可用以執行指派給如上所述之購買者行動裝置202及商人行動裝置222之各種功能。在一實施例中,該處理器301可包含或存取至足以儲存應用程式軟體指令之一內部記憶體302。該記憶體亦可包含一作業系統322。
該處理器之內部記憶體可包含一保全記憶體(未圖解說明),該保全記憶體不可直接藉由使用者或應用程式存取且能夠記錄如各種實施例中描述之行動裝置識別號碼(MDIN)及單直列記憶體模組(SIMM)ID。作為該處理器之部分,此一保全記憶體在不損壞或替換該處理器之情況下無法被替換或存取。
此外,該內部記憶體302可為一揮發性或非揮發性記憶體,諸如快閃記憶體或該二者之一混合。為此描述之目的,對記憶體之一般參考指代可藉由該處理器301存取之全部記憶體,包含內部記憶體302、插入計算裝置中之可抽換式記憶體及該處理器301本身內之記憶體(包含該保全記憶體)。
在一實施例中,額外記憶體晶片(例如,一保全資料 (SD)卡)可插入該行動裝置300中並耦合至該處理器301。
圖9係適用於與該等實施例之任一者一起使用之一計算裝置之一方塊圖。如先前所述,用戶可使用多種計算裝置(包含一個人電腦)與各種伺服器及網路組件互動。藉由圖解說明,圖9中圖解說一計算裝置1000之功能組件。
此一計算裝置1000通常包含耦合至揮發性記憶體1002及一大容量非揮發性記憶體(諸如一磁碟機1003)之一處理器1001。通常,諸如一電子郵件客戶端之軟體應用程式在其等存取並載入該處理器1001中之前可儲存在該內部記憶體1002中。該處理器1001可包含足以儲存應用程式軟體指令之內部記憶體。
該計算裝置1000亦可包含耦合至該處理器1001之一軟磁碟機1004及一光碟(CD)機1005。通常該計算裝置1000將亦包含諸如一滑鼠1007之一指向裝置、諸如一鍵盤1008之一使用者輸入裝置及一顯示器1009。該計算裝置1000亦可包含耦合至該處理器1001以建立資料連接或網路連接或接收外部記憶體裝置之若干連接端口1006,諸如一USB或FireWire®連接器插座。在一筆記型電腦組態中,電腦外殼包含如電腦技術中已知之指向裝置1007、鍵盤1008及顯示器1009
雖然該計算裝置1000被圖解說明為使用一桌上型形式因子,但是所圖解說明之形式並不意謂限制。例如,計算裝置1000之一些或全部組件可實施為一桌上型電腦、一膝上型電腦、一迷你電腦或一個人資料助理。
各種實施例亦可在多種商用伺服器裝置(諸如圖10中圖解說明之伺服器1100)之任一裝置上實施。
此一伺服器1100通常包含用於執行可見性規則或一電子郵件伺服器之任務效能之一處理器1101,該處理器1101耦合至揮發性記憶體1102及一大容量非揮發性記憶體,諸如一硬碟機1103。該伺服器1100亦可包含耦合至該處理器1101之一軟磁碟機、光碟(CD)或DVD磁碟機1104。該伺服器1100亦可包含耦合至該處理器1101以建立與一網路1112之資料連接(諸如耦合至其他廣播系統電腦及伺服器之一區域網路)之網路存取端口1106。伺服器1100亦可包含操作者介面,諸如一鍵盤1108、指標裝置(例如,一電腦滑鼠1110)及一顯示器1109
該等處理器10011101可為任何可程式化微處理器、微電腦或多處理器晶片或可藉由軟體指令(應用程式)組態以執行多種功能(包含如上述各種實施例中圖解說明之可見性規則之功能)之晶片。
前述方法描述及程序流程圖僅僅係提供作為闡釋性實例且並不旨在要求或暗示必須以所提出之順序執行各種實施例之步驟。如熟習此項技術者明白,可以任何順序執行前述實施例中之步驟。諸如「接著」、「下一個」等等之用詞並不旨在顯示該等步驟之順序;此等用詞僅僅係用以透過該等方法之描述指導讀者。雖然流程圖可將操作描述為一循序處理,但是亦可並行或同時執行許多該等操作。此外,可重新配置該等操作之順序。一處理程序可對應於一 方法、一函數、一程序、一副常式、一子程式等等。當一處理程序對應於一函數時,其終止可對應於該功能至呼叫函數或主函數之一返回。
電腦軟體中實施之實施例可在軟體、韌體、中間軟體、微程式碼、硬體描述語言或其等任何組合中實施。一程式碼段或機器可執行指令可表示一程序、一函數、一子程式、一程式、一常式、一副常式、一模組、一軟體封包、一類別或指令之任何組合、資料結構或程式陳述式。一程式碼段可藉由傳遞及/或接收資訊、資料、引數、參數或記憶體內容而耦合至另一程式碼段或一硬體電路。資訊、引數、參數、資料等等可經由任何合適方式(包含分享、訊息傳遞、符記傳遞、網路發射等等)傳遞、轉發或發射。
當在硬體中實施時,該功能性可在一無線信號處理電路之電路內實施,該電路可適用於在一無線接收器或行動裝置中使用。此一無線信號處理電路可包含用於完成各種實施例中描述之信號量測及計算步驟之電路。
結合本文揭示之態樣描述之各種闡釋性邏輯塊、模組、電路及演算法步驟可實施為電子硬體、電腦軟體或該二者之組合。為清楚地圖解說明硬體與軟體之此可交互性,已在功能性方面大體上描述上述各種闡釋性組件、區塊、模組、電路及步驟。此功能性是否實施為硬體或軟體取決於特定應用及加諸於整個系統之設計限制。熟習此項技術者可以不同方式對每一特定應用實施所描述之功能性,但是 此等實施方案決定不應被解釋為引起與本發明之範疇之一脫離。
可使用以下各者實施或執行用以實施結合本文揭示之態樣進行描述之各種闡釋性邏輯、邏輯塊、模組及電路之硬體:一通用處理器、一數位信號處理器(DSP)、一特定應用積體電路(ASIC)、一場可程式化閘陣列(FPGA)或其他可程式化邏輯器件、離散閘或電晶體邏輯、離散硬體組件或其等經設計以執行本文描述之功能之任何組合。本文描述之態樣方法可藉由用處理器可執行指令組態一計算裝置之一處理器以執行該方法之操作而實施於該計算裝置中。一通用處理器可為一微處理器,但是在替代中該處理器可為任何習知處理器、控制器、微控制器或狀態機。一處理器亦可實施為計算裝置之一組合(例如,一DSP與一微處理器之一組合)、複數個微處理器、結合一DSP核心之一或多個微處理器或任何其他此組態。或者,可藉由專用於一給定功能之電路執行一些步驟或方法。
在一或多個例示性態樣中,可在硬體、軟體、韌體或其等任何組合中實施所描述之操作及功能。若實施於軟體中,則該等功能可作為一或多個處理器可執行或伺服器可執行指令或程式碼儲存在一非暫時性電腦可讀媒體上。本文揭示之一方法或演算法之操作可在可儲存於一非暫時性電腦可讀媒體或處理器可讀媒體上之一處理器可執行或伺服器可執行軟體模組中具體實施。非暫時性電腦可讀媒體或處理器可讀媒體可為可藉由一電腦或處理器存取之任何 可用儲存媒體。舉例而言(且不限於),此非暫時性電腦可讀媒體可包含RAM、ROM、EEPROM、CD-ROM或其他光碟儲存器、磁碟儲存器或其他磁性儲存裝置,或可用以承載或儲存呈指令或資料結構之形式之所要程式碼及可藉由一電腦存取之任何其他媒體。如本文所使用者,光碟及磁碟包含光碟(CD)、雷射碟、光(optical)碟、數位多功能光碟(DVD)、軟碟及其中碟片通常磁性地複製資料而磁碟用雷射光學地複製資料之藍光光碟。上述組合應亦包含於電腦可讀媒體之範疇內。此外,一方法或演算法之操作可作為程式碼及/或指令之一或任何組合或程式碼及/或指令集駐存在一非暫時性處理器可讀媒體及/或電腦可讀媒體上,該等可讀媒體可併入於一電腦程式產品中。
提供所揭示態樣之實施方式以使熟習此項技術者得出或使用本發明。熟習此項技術者將容易明白此等態樣之各種修改,且本文定義之一般原理可在不脫離本發明之範疇之情況下應用於其他態樣。因此,本發明不旨在限於本文所示之態樣,反而符合與本文揭示之原理及新穎特徵一致之最廣範疇。
40‧‧‧高度
42‧‧‧天線波束寬度
44‧‧‧所投影波束寬度之重疊
46‧‧‧天線安裝之間之最大距離
50‧‧‧小區發射塔位置
52‧‧‧小區發射塔位置
100‧‧‧使用者裝置
102‧‧‧衛星任務分配應用程式
104‧‧‧網路
106‧‧‧模板伺服器
108‧‧‧資料庫
110‧‧‧模板程式庫
112‧‧‧小區發射塔/蜂巢式發射塔
113‧‧‧對空天線
114‧‧‧資訊
116‧‧‧衛星
116A‧‧‧天線衛星覆蓋區
120‧‧‧應用程式/任務分配
122‧‧‧處理應用程式
124‧‧‧蜂巢式電話發射塔/使用者
126‧‧‧資訊
128‧‧‧顯示器
130‧‧‧地球軌道
132‧‧‧小區發射塔天線波束寬度
134‧‧‧地球
136‧‧‧最小衛星波束寬度
138‧‧‧小區發射塔
140‧‧‧小區發射塔
142‧‧‧波束寬度
150‧‧‧天線波束
216‧‧‧衛星
216A‧‧‧天線衛星覆蓋區
202‧‧‧購買者行動裝置
222‧‧‧商人行動裝置
300‧‧‧行動裝置
301‧‧‧處理器
302‧‧‧內部記憶體
303‧‧‧顯示器
304‧‧‧蜂巢式天線
305‧‧‧蜂巢式收發器
306‧‧‧鍵盤
307‧‧‧搖桿開關
309‧‧‧揚聲器
310‧‧‧相機
314‧‧‧紅外線發射器接收器
316‧‧‧編碼音頻產生器/接收器/解碼器
318‧‧‧生物測量讀取機
320‧‧‧全球定位系統(GPS)導航裝置
321‧‧‧單一聯機記憶體模組
322‧‧‧作業系統
324‧‧‧異動應用程式
326‧‧‧編碼圖形產生器/接收器/解碼器
328‧‧‧應用程式
330‧‧‧無線收發器
332‧‧‧無線天線
1000‧‧‧計算裝置
1001‧‧‧處理器
1002‧‧‧揮發性記憶體/內部記憶體
1003‧‧‧磁碟機
1004‧‧‧軟磁碟機
1005‧‧‧光碟(CD)機
1006‧‧‧連接端口
1007‧‧‧滑鼠/指向裝置
1008‧‧‧鍵盤
1009‧‧‧顯示器
1100‧‧‧伺服器
1101‧‧‧處理器
1102‧‧‧揮發性記憶體
1103‧‧‧硬碟機
1104‧‧‧光碟(CD)/DVD磁碟機
1106‧‧‧網路存取端口
1108‧‧‧鍵盤
1109‧‧‧顯示器
1110‧‧‧電腦滑鼠
1112‧‧‧網路
圖1係一實施例系統之一通信系統方塊圖。
圖2圖解說明使用所圖解說明之通信系統之一架構之一替代實施例。
圖3圖解說明與各種實施例相關聯之一天線放置。
圖4圖解說明小區發射塔天線場型之建立。
圖5圖解說明提供與相鄰小區發射塔同時通信之一衛星通信天線。
圖6A及圖6B圖解說明基於天線波束寬度及天線間隔裝備之發射塔之相對密度。
圖7圖解說明不同軌道中之衛星之小區發射塔組態。
圖8係適用於作用各種態樣中之一無線通信裝置之一計算裝置之一透視圖。
圖9係適用於與該等實施例之任一者一起使用之一計算裝置之一方塊圖。
圖10係適用於作為各種態樣中之一伺服器之一計算裝置之一透視圖。
100‧‧‧使用者裝置
102‧‧‧衛星任務分配應用程式
104‧‧‧網路
106‧‧‧模板伺服器
108‧‧‧資料庫
110‧‧‧模板程式庫
112‧‧‧小區發射塔/蜂巢式發射塔
114‧‧‧資訊
116‧‧‧衛星

Claims (73)

  1. 一種衛星通信系統,其包括:複數個第一天線,其等各自經組態以與沿一軌道路徑行進之一非地球靜止衛星通信,該複數個第一天線各自經組態以向上發射一信號,該信號沿該軌道路徑形成一軌道攔截區域,該非地球靜止衛星係經調適以在橫跨該軌道攔截區域時接收該信號,該複數個第一天線形成一系列部分重疊軌道攔截區域,該系列部分重疊軌道攔截區域覆蓋該軌道路徑之很大部分之一連續延伸區域。
  2. 如請求項1之衛星通信系統,其進一步包括:複數個通信站,該複數個第一天線之各者係固定至該複數個通信站之各自者,該複數個通信站經操作地連接至一通信網路。
  3. 如請求項2之衛星通信系統,其中該複數個通信站係經調適以接收自該非地球靜止衛星發射之衛星資料。
  4. 如請求項2之衛星通信系統,其中該複數個通信站之至少一者係建築物、發射塔及特殊用途結構之至少一者。
  5. 如請求項2之衛星通信系統,其進一步包括:該複數個第二天線,其等各自固定至該複數個通信站之各自者,該複數個第二天線各自對準一水平面且經組態以與該複數個通信站之至少另一者通信。
  6. 如請求項5之衛星通信系統,其中該第二天線係一蜂巢式天線。
  7. 如請求項1之衛星通信系統,其中該信號之一波束寬度 係由該非地球靜止衛星經組態穿過之該軌道攔截區域之一直徑定義,該波束寬度比經組態以包圍該等第一天線之一個別者之一衛星天線波束寬度狹窄。
  8. 如請求項7之衛星通信系統,其中該波束寬度之直徑實質上與該複數個第一天線相同。
  9. 如請求項1之衛星通信系統,其中該信號經引導朝向天空實質上在一可見水平面以上之一區域。
  10. 如請求項2之衛星通信系統,其進一步包括:一使用者裝置,其具有處理能力並經調適以儲存一衛星任務分配應用程式,該使用者裝置經調適以使用該衛星任務分配應用程式及該通信網路與該非地球靜止衛星通信。
  11. 如請求項10之衛星通信系統,其中該衛星任務分配應用程式係經調適以用經組態以輔助該使用者裝置之一使用者開發傳送至該非地球靜止衛星之一任務之一或多個選項單提示該使用者。
  12. 如請求項10之衛星通信系統,其中藉由運行該衛星任務分配應用程式之該使用者裝置之一使用者提供之輸入被傳送至該非地球靜止衛星。
  13. 如請求項10之衛星通信系統,其中該使用者裝置係經調適以接收衛星資料、將該衛星資料重新格式化為由該使用者選取之一格式並在該使用者裝置上顯示該重新格式化之衛星資料。
  14. 如請求項10之衛星通信系統,其中該使用者裝置係使用 無線通信之一行動裝置。
  15. 如請求項2之衛星通信系統,其進一步包括:一衛星任務分配伺服器,其係經操作地連接至該通信網路,該衛星任務伺服器儲存使用於給該非地球靜止衛星分配任務之一第一組任務分配命令,該衛星任務伺服器經調適以藉由該使用者裝置憑藉使用該第一組任務分配命令而與該非地球靜止衛星通信之該通信網路存取。
  16. 如請求項15之衛星通信系統,其中該衛星任務分配伺服器維護唯獨適用於給另一非地球靜止衛星分配任務之至少一第二組任務分配命令。
  17. 如請求項10之衛星通信系統,其中該衛星任務分配伺服器維護一系列衛星,該非地球靜止衛星係至少部分基於該非地球靜止衛星獲得所請求資料之一能力而藉由一處理器選擇。
  18. 一種衛星通信系統,其包括:複數個通信站,其等形成一通信網路之至少部分,該複數個通信站之各者包含一第一及第二天線,該複數個通信站之該等第一天線一起形成複數個第一天線,該等第一天線各自經組態以向上發射一信號,該信號沿該軌道路徑形成一軌道攔截區域,該非地球靜止衛星係經調適以在橫跨該軌道攔截區域時接收該信號,該複數個第一天線形成一系列部分重疊軌道攔截區域,該系列部分重疊軌道攔截區域覆蓋該軌道路徑之很大部分之一連續延伸區域,該等第二天線之各者對準一水平面且經組態 以與該複數個通信站之至少另一者通信;及一使用者裝置,其具有經操作地連接至該使用者裝置之一處理器及一資料儲存器,該資料儲存器儲存一衛星任務分配應用程式,該衛星任務分配應用程式在藉由該處理器執行時使用該通信網路將指令自該使用者裝置傳送至該非地球靜止衛星。
  19. 如請求項18之衛星通信系統,其進一步包括:一衛星任務分配伺服器,其經操作地連接至該通信網路,該衛星任務分配伺服器儲存用於對該非地球靜止衛星分配任務之任務分配命令,該衛星任務分配伺服器經調適以藉由該使用者裝置憑藉使用該等任務分配命令而與該非地球同步衛星通信之該通信網路存取。
  20. 如請求項18之衛星通信系統,其中該使用者裝置係經調適以將自該非地球靜止衛星接收之資料重新格式化為由該使用者選擇之一格式。
  21. 如請求項18之衛星通信系統,其中該複數個通信站係經調適以接收自該非地球靜止衛星發射之衛星資料。
  22. 如請求項18之衛星通信系統,其中該複數個通信站之至少一者係一建築物、發射塔及特殊目的結構之至少一者。
  23. 如請求項18之衛星通信系統,其中該等第二天線之至少一者係一蜂巢式天線。
  24. 如請求項18之衛星通信系統,其中該等第一天線之各者向上發射一信號,該信號之一波束寬度係藉由該非地球 靜止衛星經組態穿過之該軌道攔截區域之一直徑定義,該波束寬度比經組態以包圍該等第一天線之一各自者之一衛星天線波束狹窄。
  25. 如請求項24之衛星通信系統,其中該波束寬度之直徑實質上與該複數個第一天線相同。
  26. 如請求項24之衛星通信系統,其中該信號經引導朝向天空實質上在一可見水平面以上之一區域。
  27. 如請求項18之衛星通信系統,其中該衛星任務分配應用程式係經調適以用經組態以輔助該使用者裝置之一使用者開發傳送至該非地球靜止衛星之一任務之一或多個選項單提示該使用者。
  28. 如請求項18之衛星通信系統,其中藉由運行該衛星任務分配應用程式之該使用者裝置之一使用者提供之輸入被傳送至該非地球靜止衛星。
  29. 如請求項18之衛星通信系統,其中該使用者裝置包含經操作地連接至該使用者裝置之一處理器及資料儲存器,該資料儲存器儲存指令,該等指令在藉由該處理器執行時導致該使用者裝置接收衛星資料,將該衛星資料重新格式化為該使用者選取之一格式,且在該使用者裝置上顯示該重新格式化之衛星資料。
  30. 如請求項18之衛星通信系統,其中該使用者裝置係使用無線通信之一行動裝置。
  31. 如請求項19之衛星通信系統,其進一步包括:一衛星任務分配伺服器,其係經操作地連接至該通信 網路,該衛星任務伺服器儲存使用於給該非地球靜止衛星分配任務之一第一組任務分配命令,該衛星任務伺服器經調適以藉由該使用者裝置憑藉使用該第一組任務分配命令而與該非地球靜止衛星通信之該通信網路存取。
  32. 如請求項31之衛星通信系統,其中該衛星任務分配伺服器維護唯獨適用於給另一非地球靜止衛星分配任務之至少一第二組任務分配命令。
  33. 如請求項31之衛星通信系統,其中該衛星任務分配伺服器維護一系列衛星,該非地球靜止衛星係至少部分基於該非地球靜止衛星獲得所請求資料之一能力而藉由一處理器選擇。
  34. 一種傳送衛星資料之方法,其包括:自一使用者裝置接收自一非地球靜止衛星獲得資料之一請求,該請求係藉由經操作地連接至一通信網路之一處理裝置接收;透過複數個第一天線之至少一者初始化來自該非地球靜止衛星之該資料之一下行鏈路,該處理裝置回應於接收該請求而執行指令,該等指令在藉由該處理裝置執行時初始化該下行鏈路,該複數個第一天線各自經組態以向上發射一信號,該信號沿該軌道路徑形成一軌道攔截區域,該非地球靜止衛星係經調適以在橫跨該軌道攔截區域時接收該信號,該複數個第一天線形成一系列部分重疊軌道攔截區域,該系列部分重疊軌道攔截區域覆蓋該軌道路徑之很大部分之一連續延伸區域;及 藉由該複數個通信站之至少一者上之該第一天線將該資料發射至該使用者裝置。
  35. 如請求項34之傳送衛星資料之方法,其中將該資料自該非地球靜止衛星發射至該複數個第一天線之至少一者。
  36. 如請求項34之傳送衛星資料之方法,其中藉由一中間通信網路將該資料發射至該使用者裝置。
  37. 如請求項34之傳送衛星資料之方法,其進一步包括:自一系列衛星選擇該非地球靜止衛星,該非地球靜止衛星係至少部分基於該非地球靜止衛星獲得所請求資料之一能力而藉由一處理器選擇。
  38. 如請求項34之傳送衛星資料之方法,其進一步包括:自一模板程式庫擷取指令,該等指令包含用於初始化該下行鏈路之任務分配命令。
  39. 如請求項34之傳送衛星資料之方法,其中使用一連續系列的該複數個通信站完成該資料之該下行鏈路。
  40. 如請求項34之傳送衛星資料之方法,其中使用直接發射一信號至該非地球靜止衛星之該等第一天線之一者初始化該資料之該下行鏈路。
  41. 如請求項40之傳送衛星資料之方法,其中藉由該非地球靜止衛星經組態穿過之該軌道攔截區域之一直徑定義該信號之一波束寬度,該波束寬度比經組態以包圍該第一天線之一個別者之一衛星天線波束寬度狹窄。
  42. 如請求項40之傳送衛星資料之方法,其中將該信號引導朝向天空實質上在一可見水平面以上之一區域。
  43. 如請求項34之傳送衛星資料之方法,其進一步包括:在該使用者裝置上呈現經組態以輔助該使用者開發傳送至該非地球靜止衛星之一任務之一或多個選項單。
  44. 如請求項34之傳送衛星資料之方法,其進一步包括:將一詢問發射至一衛星任務分配伺服器,該衛星任務分配伺服器儲存使用於給該非地球靜止衛星分配任務之一第一組任務分配命令。
  45. 一種獲得衛星資料之方法,其包括:發射自一非地球靜止衛星獲得資料之一請求,該請求透過複數個通信站之至少一者初始化來自該非地球靜止衛星之該資料之一下行鏈路,該處理裝置回應於接收該請求而執行指令,該等指令在藉由該處理裝置執行時初始化該下行鏈路,該複數個通信站之各者包含一第一及第二天線,該複數個通信站之該等第一天線一起形成複數個第一天線,該等第一天線各自經組態以向上發射一信號,該信號沿該軌道路徑形成一軌道攔截區域,該非地球靜止衛星係經調適以在橫跨該軌道攔截區域時接收該信號,該複數個第一天線形成一系列部分重疊軌道攔截區域,該系列部分重疊軌道攔截區域覆蓋該軌道路徑之很大部分之一連續延伸區域,該第二天線對準一水平面且經組態以與該複數個通信站之另一者及該使用者裝置之至少一者通信;及藉由該複數個通信站之至少一者上之該第一天線接收該資料。
  46. 如請求項45之獲得衛星資料之方法,其中使用經組態以由一使用者裝置運行之一衛星任務分配應用程式發射該請求。
  47. 如請求項45之獲得衛星資料之方法,其中將該請求發射至經調適以自一系列衛星選擇該非地球靜止衛星之一衛星任務分配伺服器。
  48. 如請求項47之獲得衛星資料之方法,其進一步包括:自該衛星任務分配伺服器接收與用於存取來自該非地球靜止衛星之該資料之額外資訊之一詢問,該詢問回應於自該系列衛星選擇非地球靜止衛星而接收;及回應於該詢問而發射該額外資訊。
  49. 如請求項45之獲得衛星資料之方法,其中藉由該使用者裝置憑藉一中間通信網路而接收該資料。
  50. 如請求項45之獲得衛星資料之方法,其進一步包括:將自該非地球靜止衛星接收之該資料重新格式化為由發射該請求之一使用者裝置之一使用者選擇之一格式;及在該使用者裝置上顯示該資料。
  51. 如請求項45之獲得衛星資料之方法,其進一步包括:自一模板程式庫擷取指令,該等指令包含用於初始化該下行鏈路之任務分配命令。
  52. 如請求項45之獲得衛星資料之方法,其中使用該複數個通信站之一個以上通信站完成該資料之該下行鏈路。
  53. 如請求項45之獲得衛星資料之方法,其中藉由一中間通信網路接收該資料。
  54. 一種用於獲得衛星資料之計算裝置,其包括:用於自一使用者裝置接收透過一通信網路自一非地球靜止衛星獲得資料之一請求之構件;用於初始化來自該非地球靜止衛星之該資料之一下行鏈路之構件;用於向上發射一信號之構件,該信號沿該軌道路徑形成一軌道攔截區域,該非地球靜止衛星係經調適以在橫跨該軌道攔截區域時接收該信號,用於向上發射一信號之該構件形成一系列部分重疊軌道攔截區域,該系列部分重疊軌道攔截區域覆蓋該軌道路徑之很大部分之一連續延伸區域;及用於將該資料發射至該使用者裝置之構件。
  55. 如請求項54之計算裝置,其中該資料係自該非地球靜止衛星發射至複數個第一天線之至少一者。
  56. 如請求項54之計算裝置,其中該資料係藉由一中間通信網路發射至該使用者裝置。
  57. 如請求項54之計算裝置,其進一步包括:用於至少部分基於該非地球靜止衛星獲得所請求資料之一能力而自一系列衛星選擇該非地球靜止衛星之構件。
  58. 如請求項54之計算裝置,其進一步包括:用於自一模板程式庫接收指令之構件,該等指令包含用於初始化該下行鏈路之任務分配命令。
  59. 如請求項54之計算裝置,其中使用一連續系列之該等用 於向上發射一信號之構件完成該資料之該下行鏈路。
  60. 如請求項54之計算裝置,其中使用該等用於向上發射一信號之構件之一者直接初始化該資料之該下行鏈路。
  61. 如請求項60之計算裝置,其中藉由該非地球靜止衛星經組態穿過之該軌道攔截區域之一直徑定義該信號之一波束寬度,該波束寬度比經組態以包圍該等用於向上發射一信號之構件之一個別者之一衛星天線波束寬度狹窄。
  62. 如請求項60之計算裝置,其中將該信號引導朝向天空實質上在一可見水平面以上之一區域。
  63. 如請求項54之計算裝置,其進一步包括:用於在該使用者裝置上呈現經組態以輔助該使用者開發傳送至該非地球靜止衛星之一任務之一或多個選項單之構件。
  64. 如請求項54之計算裝置,其進一步包括:用於將一詢問發射至一衛星任務分配伺服器之構件,該衛星任務分配伺服器儲存使用於給該非地球靜止衛星分配任務之一第一組任務分配命令。
  65. 一種用於獲得衛星資料之計算裝置,其包括:一記憶體;一資料儲存器;及耦合至該記憶體之一處理裝置,該處理裝置係用處理器可執行指令組態以執行以下操作,該等操作包含:發射自一非地球靜止衛星獲得資料之一請求,該請求透過複數個通信站之至少一者初始化來自該非地球 靜止衛星之該資料之一下行鏈路,該處理裝置回應於接收該請求而執行指令,該等指令在藉由該處理裝置執行時初始化該下行鏈路,該複數個通信站之各者包含一第一及第二天線,該複數個通信站之該等第一天線一起形成複數個第一天線,該等第一天線各自經組態以向上發射一信號,該信號沿該軌道路徑形成一軌道攔截區域,該非地球靜止衛星係經調適以在橫跨該軌道攔截區域時接收該信號,該複數個第一天線形成一系列部分重疊軌道攔截區域,該系列部分重疊軌道攔截區域覆蓋該軌道路徑之很大部分之一連續延伸區域,該第二天線對準一水平面且經組態以與該複數個通信站之另一者及該使用者裝置之至少一者通信;及藉由該複數個通信站之至少一者上之該第一天線接收該資料。
  66. 如請求項65之計算裝置,其中使用經組態以由一使用者裝置運行之一衛星任務分配應用程式發射該請求。
  67. 如請求項65之計算裝置,其中將該請求發射至經調適以自一系列衛星選擇該非地球靜止衛星之一衛星任務分配伺服器。
  68. 如請求項67之計算裝置,其中該處理裝置係用處理器可執行指令組態以進一步執行以下操作,該等操作包含:自該衛星任務分配伺服器接收與用於存取來自該非地球靜止衛星之該資料之額外資訊相關聯之一詢問,該詢問回應於自該系列衛星選擇非地球靜止衛星而接收;及 回應於該詢問而發射該額外資訊。
  69. 如請求項65之計算裝置,其中藉由該使用者裝置憑藉一中間通信網路而接收該資料。
  70. 如請求項65之計算裝置,其中該處理裝置係用處理器可執行指令組態以進一步執行以下操作,該等操作包含:將自該非地球靜止衛星接收之該資料重新格式化為由發射該請求之一使用者裝置之一使用者選擇之一格式;及在該使用者裝置上顯示該資料。
  71. 如請求項65之計算裝置,其中該處理裝置係用處理器可執行指令組態以進一步執行以下操作,該等操作包含:自一模板程式庫擷取指令,該等指令包含用於初始化該下行鏈路之任務分配命令。
  72. 如請求項65之計算裝置,其中使用該複數個通信站之一個以上通信站完成該資料之該下行鏈路。
  73. 如請求項65之計算裝置,其中藉由一中間通信網路接收該資料。
TW101125470A 2011-07-13 2012-07-13 用於衛星整合通信之方法及系統 TW201312962A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161507279P 2011-07-13 2011-07-13
US13/547,425 US8751064B2 (en) 2011-07-13 2012-07-12 Methods and systems for satellite integrated communications

Publications (1)

Publication Number Publication Date
TW201312962A true TW201312962A (zh) 2013-03-16

Family

ID=47506927

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101125470A TW201312962A (zh) 2011-07-13 2012-07-13 用於衛星整合通信之方法及系統

Country Status (3)

Country Link
US (2) US8751064B2 (zh)
TW (1) TW201312962A (zh)
WO (1) WO2013010007A2 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2983981B1 (fr) * 2011-12-09 2014-08-22 Thales Sa Procede et systeme de commande d'un ensemble d'au moins deux satellites, concus pour fournir un service sur une orbite geostationnaire, rendant ledit service sur une orbite non-geostationnaire
US8577519B1 (en) * 2012-03-20 2013-11-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Rapidly deployed modular telemetry system
US10110463B2 (en) * 2012-09-11 2018-10-23 Higher Ground Llc Personal communications device for multiple communications systems
SG11201505473PA (en) 2013-02-01 2015-08-28 Spire Global Inc System and method for widespread low cost orbital satellite access
US9971062B2 (en) 2013-02-01 2018-05-15 Spire Global, Inc. System and method for high-resolution radio occultation measurement through the atmosphere
US9519873B2 (en) 2013-02-01 2016-12-13 Spire Global, Inc. System and method for widespread low cost orbital satellite access
US9397761B2 (en) * 2013-05-17 2016-07-19 Crfs Limited RF signal generating device
US9673889B2 (en) 2014-10-15 2017-06-06 Spire Global, Inc. Satellite operating system, architecture, testing and radio communication system
US9678136B2 (en) 2014-10-15 2017-06-13 Spire Global, Inc. Back-plane connector for cubesat
US9919814B2 (en) 2015-02-26 2018-03-20 Spire Global, Inc. System and method for power distribution in a autonomous modular system
US20170085677A1 (en) * 2015-09-18 2017-03-23 Quixey, Inc. Recommending Applications
US10054686B2 (en) 2015-12-31 2018-08-21 Spire Global, Inc. System and method for remote satellite and ground station constellation management
US10330794B2 (en) 2016-04-04 2019-06-25 Spire Global, Inc. AIS spoofing and dark-target detection methodology
US9979462B2 (en) 2016-06-03 2018-05-22 Lockheed Martin Corporation Resilient virtual ground receivers
US9755732B1 (en) 2016-06-21 2017-09-05 Spire Global Inc. Systems and methods for satellite communications using a space tolerant protocol
US10020876B2 (en) 2016-07-28 2018-07-10 Spire Global Inc. Systems and methods for command and control of satellite constellations
WO2019035113A1 (en) * 2017-08-16 2019-02-21 Satixfy Israel Ltd. SYSTEM INTEGRATING COMMUNICATION SATELLITE NETWORK WITH CELLULAR NETWORK
CN109547093A (zh) * 2018-12-05 2019-03-29 安徽站乾科技有限公司 一种基于智能终端app的移动站点卫星通信控制方法
US11265519B2 (en) * 2019-11-19 2022-03-01 Non Typical, Inc. Trail camera
CN111177948A (zh) * 2020-01-15 2020-05-19 东方红卫星移动通信有限公司 一种利用轨道要素进行描述的典型Walker星座数学模型
CN111309769B (zh) * 2020-02-23 2023-05-05 哈尔滨工业大学 一种处理基于多星搜索的目标信息以进行成像任务规划的方法、装置及计算机存储介质
CN112124640B (zh) * 2020-09-29 2022-03-15 中国科学院微小卫星创新研究院 基于多元态势感知的高价值空间设施自主生存方法及系统
US20240059430A1 (en) 2020-11-05 2024-02-22 Katalyst Space Technologies, Llc Attachment systems for augmenting satellites
CN114608587B (zh) * 2022-03-16 2023-02-03 中国人民解放军国防科技大学 不依赖模板的单脉冲星航天器定轨方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2327536A (en) 1997-07-23 1999-01-27 Northern Telecom Ltd Antenna system
AU2001234463A1 (en) * 2000-01-14 2001-07-24 Andrew Corporation Repeaters for wireless communication systems
EP1168666A3 (en) * 2000-06-19 2003-12-03 Northrop Grumman Corporation Method and system for controlling uplink power in a satellite communication system using power leveling
US9819403B2 (en) * 2004-04-02 2017-11-14 Rearden, Llc System and method for managing handoff of a client between different distributed-input-distributed-output (DIDO) networks based on detected velocity of the client
US7633442B2 (en) 2004-06-03 2009-12-15 Interdigital Technology Corporation Satellite communication subscriber device with a smart antenna and associated method
US20120040650A1 (en) * 2006-08-11 2012-02-16 Michael Rosen System for automated detection of mobile phone usage
US8504019B2 (en) 2007-03-30 2013-08-06 Livetv, Llc Aircraft communications system with data memory cache and associated methods
US8416802B2 (en) * 2008-12-17 2013-04-09 Cisco Technology, Inc. Segmented transmission for broadcast messages using multiple antennas

Also Published As

Publication number Publication date
WO2013010007A3 (en) 2013-03-07
US8751064B2 (en) 2014-06-10
WO2013010007A2 (en) 2013-01-17
US20140375492A1 (en) 2014-12-25
WO2013010007A9 (en) 2013-04-25
US20130018529A1 (en) 2013-01-17
US9008864B2 (en) 2015-04-14

Similar Documents

Publication Publication Date Title
US9008864B2 (en) Methods and systems for satellite integrated communications
Ray A review on 6G for space-air-ground integrated network: Key enablers, open challenges, and future direction
JP2004501343A (ja) 直接放送イメージング衛星システム装置および方法
CA2897803A1 (en) System and method for widespread low cost orbital satellite access
US10178499B2 (en) Virtual stationary satellites over any area of the earth for a continuous or set amount of time
Giannetti et al. Opportunistic rain rate estimation from measurements of satellite downlink attenuation: A survey
Tropea et al. A comprehensive review of channel modeling for land mobile satellite communications
Hornillo-Mellado et al. Prediction of satellite shadowing in smart cities with application to IoT
Madry Space systems for disaster warning, response, and recovery
Völk et al. Satellite integration into 5G: Accent on first over-the-air tests of an edge node concept with integrated satellite backhaul
Chan et al. Performance modeling framework for IoT-over-satellite using shared radio spectrum
Bannister et al. Maritime domain awareness with commercially accessible electro-optical sensors in space
Höyhtyä et al. Multi-Layered Satellite Communications Systems for Ultra-High Availability and Resilience
Mehdi et al. LoRaWAN CubeSat with an Adaptive Data Rate: An Experimental Analysis of Path Loss Link Margin
Albagory Modelling, investigation, and feasibility of stratospheric broadband mm-wave 5G and beyond networks for aviation
Zhang et al. Capacity model and constraints analysis for integrated remote wireless sensor and satellite network in emergency scenarios
Zhang et al. A Global Seamless Hybrid Constellation Design Approach with Restricted Ground Supporting for Space Information Network
Cakaj Ground Station Design and Analysis for LEO Satellites: Analytical, Experimental and Simulation Approach
Supramongkonset et al. Empirical Path Loss Channel Characterization Based on Air‐to‐Air Ground Reflection Channel Modeling for UAV‐Enabled Wireless Communications
El Amrani et al. System architecture of the mediterranean dialogue earth observatory
Hernandez Possible scenario for future mission in Earth observation
Tobiska Space Weather Gets Real--on Smartphones
Terziev et al. The Impact of Innovation in the Satellite Industry on the Telecommunications Services Market
Ilčev et al. Meteorological ground stations
Gerber Jr et al. Medium Earth Orbit (MEO) as an operational observation venue for NOAA's post GOES-R environmental satellites