TW201308806A - Electron beam excited light source device - Google Patents

Electron beam excited light source device Download PDF

Info

Publication number
TW201308806A
TW201308806A TW101121320A TW101121320A TW201308806A TW 201308806 A TW201308806 A TW 201308806A TW 101121320 A TW101121320 A TW 101121320A TW 101121320 A TW101121320 A TW 101121320A TW 201308806 A TW201308806 A TW 201308806A
Authority
TW
Taiwan
Prior art keywords
electron beam
source device
semiconductor light
emitting element
light emitting
Prior art date
Application number
TW101121320A
Other languages
Chinese (zh)
Inventor
Tsuyoshi Maesoba
Masanori Yamaguchi
Ken Kataoka
Original Assignee
Ushio Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Electric Inc filed Critical Ushio Electric Inc
Publication of TW201308806A publication Critical patent/TW201308806A/en

Links

Abstract

[Problem to be solved] To provide an electron beam excited light source device which is capable of efficiently irradiating one surface of a semiconductor light emitting element with electron beams from an electron beam source device, and achieving higher light output. [Solution] An electron beam source device and a semiconductor light emitting element radiating ultraviolet light when excited by electron beams radiated from the electron beam source device are disposed inside an electron beam excited light source device formed in a vacuum container. The semiconductor light emitting element is provided with a structure of an electricity removal component for removing electric charge conductivity on one surface where the electron beams are emitted from the electron beam source device.

Description

電子束激發型光源裝置 Electron beam excitation type light source device

本發明係關於藉由將來自電子束源裝置之電子束照射至半導體發光元件,使該半導體發光元件發光的電子束激發型光源裝置。 The present invention relates to an electron beam excitation type light source device that emits an electron beam from an electron beam source device to a semiconductor light emitting element to emit light.

藉由照射電子束而使半導體發光元件發光的電子束激發型光源裝置,係被期待作為小型且放射高輸出之紫外線的光源,例如於專利文獻1記載有如圖6所示,將來自設置於內部被保持成高真空的玻璃閥71之內部的電子槍75之電子束,照射至設置於面板72內面,且於兩面配置由Al、Ag等所成之反射層73a、73b的半導體發光元件74,而激發該半導體發光元件74,藉此,射出紫外雷射光的電子束激發型光源裝置。又,於專利文獻2係記載有如圖7所示,內部在負壓狀態下密閉,且具有透光窗81的真空容器80中,於半導體發光元件82的兩面配置光反射構件83、84所成之雷射構造體85被配置在透光窗81的內面,並且於該真空容器80之底壁的內面,對半導體發光元件82照射電子束的電子束源86以對向於雷射構造體85之方式配置所成之放射紫外雷射光的電子束激發型光源裝置。 An electron beam excitation type light source device that emits a semiconductor light-emitting device by illuminating an electron beam is expected to be a small-sized light source that emits high-intensity ultraviolet light. For example, as disclosed in Patent Document 1, as shown in FIG. The electron beam of the electron gun 75 inside the glass valve 71 held in a high vacuum is irradiated onto the semiconductor light-emitting element 74 which is provided on the inner surface of the panel 72 and is provided with reflective layers 73a and 73b made of Al, Ag or the like on both surfaces. The semiconductor light-emitting element 74 is excited, whereby the electron beam excitation type light source device that emits ultraviolet laser light is emitted. Further, in Patent Document 2, as shown in FIG. 7, a vacuum container 80 having a light-transmissive window 81 sealed therein in a negative pressure state is disposed, and light reflection members 83 and 84 are disposed on both surfaces of the semiconductor light-emitting device 82. The laser structure 85 is disposed on the inner surface of the light transmission window 81, and on the inner surface of the bottom wall of the vacuum vessel 80, the semiconductor light emitting element 82 is irradiated with an electron beam source 86 of the electron beam to oppose the laser structure. The electron beam excitation type light source device of the radiation ultraviolet laser light is disposed in the form of the body 85.

[先前技術文獻] [Previous Technical Literature] [專利文獻] [Patent Literature]

[專利文獻1]日本特開平06-303625號公報 [Patent Document 1] Japanese Laid-Open Patent Publication No. 06-303625

[專利文獻2]日本專利第3667188號公報 [Patent Document 2] Japanese Patent No. 3667188

然後,於電子束激發型光源裝置中,作為半導體發光元件,例如使用藉由於絕緣基板上結晶沉積複數半導體層來層積所形成者,但是,已判明伴隨電子束激發型光源裝置的高輸出化、小型化,從電子束源放射之電子照射半導體發光元件之一面時,因為電子的衝突,於半導體發光元件之一面及該一面側的周側面會蓄積電荷而發生電荷殘留(charge up)。結果,根據從電子束源放射之電子束的軌道變化,或來自電子束員的電子因半導體發光元件之一面反彈等的理由,無法使來自電子束源的電子束有效率地射入至半導體發光元件之一面,產生發光效率降低之問題。 In the electron beam excitation type light source device, for example, a semiconductor light-emitting device is formed by laminating a plurality of semiconductor layers by crystal deposition on an insulating substrate, but it has been found that high-output with the electron beam excitation type light source device is known. In the case where the electrons emitted from the electron beam source are irradiated on one surface of the semiconductor light-emitting device, charges are accumulated on one surface of the semiconductor light-emitting device and the circumferential side surface on the one surface side due to collision of electrons, and charge up occurs. As a result, the electron beam from the electron beam source cannot be efficiently injected into the semiconductor light based on the change in the orbit of the electron beam emitted from the electron beam source or the electron from the electron beam member rebounding due to the surface of the semiconductor light-emitting element. One side of the component causes a problem of reduced luminous efficiency.

本發明係有鑑於以上情況所發明者,目的為提供可將來自電子束源裝置之電子束,高效率地照射至半導體發光元件之一面,且可獲得較高之光輸出的電子束激發型光源裝置。 The present invention has been made in view of the above circumstances, and it is an object of the invention to provide an electron beam excitation type light source device which can efficiently irradiate an electron beam from an electron beam source device to one surface of a semiconductor light emitting element and obtain a high light output.

本發明的電子束激發型光源裝置,係電子束源裝置,與藉由利用從此電子束源裝置放射之電子束激發而放射紫 外光之半導體發光元件被配置於真空容器之內部所成的電子束激發型光源裝置,其特徵為:於前述半導體發光元件,設置有用以去除被來自前述電子束源裝置之電子束射入之一面的電荷之導電性的除電構件。 The electron beam excitation type light source device of the present invention is an electron beam source device and emits violet light by excitation by an electron beam emitted from the electron beam source device An electron beam excitation type light source device in which an external light semiconductor light emitting element is disposed inside a vacuum container, wherein the semiconductor light emitting element is provided to remove an electron beam incident from the electron beam source device A charge-removing member that is electrically conductive on one side.

於本發明的電子束激發型光源裝置中,設為前述半導體發光元件,係透過導電性支持體而被固定於前述真空容器; 前述除電構件,係電性連接於前述導電性支持體的構造為佳。 In the electron beam excitation type light source device of the present invention, the semiconductor light emitting element is fixed to the vacuum container through a conductive support; The static eliminating member is preferably electrically connected to the conductive support.

依據本發明的電子束激發型光源裝置,藉由設為設置用以去除半導體發光元件之被來自電子束源裝置的電子束照射之一面的電荷之除電構件的構造,可防止或抑制半導體發光元件之被來自電子束源裝置的電子束照射之一面,因來自電子束源裝置的電子束之照射而蓄積電荷之狀況,故可有效率地將來自電子束源裝置的電子束照射至半導體發光元件之一面,且可獲得較高之光輸出。 According to the electron beam excitation type light source device of the present invention, the semiconductor light emitting element can be prevented or suppressed by being configured to remove the charge removing member for removing the charge of one side of the semiconductor light emitting element by the electron beam from the electron beam source device. The electron beam is irradiated from one side of the electron beam source device, and the charge is accumulated by the electron beam from the electron beam source device, so that the electron beam from the electron beam source device can be efficiently irradiated to the semiconductor light-emitting element. One side, and a higher light output can be obtained.

以下,針對本發明的實施形態,進行詳細說明。 Hereinafter, embodiments of the present invention will be described in detail.

圖1係揭示本發明之電子束激發型光源裝置的一例之構造概略的說明圖,(A)係側面剖面圖,(B)係揭示 卸下透光窗之狀態的俯視圖,圖2係概略揭示圖1所示的電子束激發型光源裝置之電子束源裝置的構造,圖1(B)之A-A線放大剖面圖。再者,於圖1(B)中,為了便利說明,於電子束源裝置附加影線。 Fig. 1 is an explanatory view showing an outline of an example of an electron beam excitation type light source device according to the present invention, wherein (A) is a side sectional view, and (B) is revealed. FIG. 2 is a plan view schematically showing a structure of an electron beam source device of the electron beam excitation type light source device shown in FIG. 1, and an enlarged cross-sectional view taken along line A-A of FIG. 1(B). Further, in Fig. 1(B), for convenience of explanation, hatching is added to the electron beam source device.

此電子束激發型光源裝置係具備在內部為負壓之狀態下密閉之外形為直方體狀的真空容器10,此真空容器10係藉由一方(圖1(A)中為上方)開口,並且於底壁中央位置具有貫通孔的容器基體11、以封塞此容器基體11的上方開口之方式配置,氣密封接於該容器基體11的透光窗15、及插入至容器基體11的底壁之貫通孔,氣密封接於該容器基體11的半導體發光元件保持構件18所構成。 In the electron beam excitation type light source device, the vacuum container 10 having a rectangular shape in a state of being sealed inside the negative pressure is provided, and the vacuum container 10 is opened by one side (upward in FIG. 1(A)), and A container base 11 having a through hole at a central position of the bottom wall is disposed to close the upper opening of the container base 11, and is hermetically sealed to the light transmission window 15 of the container base 11 and inserted into the bottom wall of the container base 11. The through hole is configured to be hermetically sealed to the semiconductor light emitting element holding member 18 of the container base 11.

於真空容器10內,半導體發光元件20以其一面(圖1(A)中為上面)20a離開並對向於透光窗15之方式配置,於此半導體發光元件20的周邊區域,具體來說,於接近半導體發光元件20的一面上的區域及對向之另一面上的區域以外之該半導體發光元件20的區域,具有面狀之電子束放出部32的電子束源裝置30,以包圍該半導體發光元件20之方式配置。在圖示的範例中,電子束源裝置30構成為圓環狀的帶狀體,以該電子束放出部32之放射電子束之表面朝向與半導體發光元件20的被電子束射入之一面20a相同方向的姿勢,亦即,朝向真空容器10的透光窗15之姿勢,以包圍半導體發光元件20之方式配置,在此狀態下,透過支持構件37而固定於真空容器10 之容器基體11的底壁。半導體發光元件20及電子束源裝置30係透過從真空容器10的內部拉出之導電線(於圖1(A)中以點虛線表示),以半導體發光元件20為正極,電子束源裝置30為負極之方式,電性連接於設置在真空容器10的外部,用以施加加速電壓的電子加速手段55。 In the vacuum vessel 10, the semiconductor light emitting element 20 is disposed on one surface (upper surface in FIG. 1(A)) 20a and disposed toward the light transmission window 15, in the peripheral region of the semiconductor light emitting element 20, specifically The electron beam source device 30 having the planar electron beam emitting portion 32 is surrounded by the region on the one surface of the semiconductor light emitting element 20 and the region on the other side of the semiconductor light emitting element 20 The semiconductor light emitting element 20 is arranged in a manner. In the illustrated example, the electron beam source device 30 is configured as an annular strip-shaped body, and the surface of the emitted electron beam of the electron beam emitting portion 32 faces the electron beam incident surface 20a of the semiconductor light emitting element 20. The posture in the same direction, that is, the posture toward the light transmission window 15 of the vacuum container 10 is disposed so as to surround the semiconductor light emitting element 20, and is fixed to the vacuum container 10 through the support member 37 in this state. The bottom wall of the container base 11. The semiconductor light emitting element 20 and the electron beam source device 30 are transmitted through a conductive line (indicated by a dotted line in FIG. 1(A)) drawn from the inside of the vacuum container 10, and the semiconductor light emitting element 20 is a positive electrode, and the electron beam source device 30 is used. In the form of a negative electrode, it is electrically connected to an electron acceleration means 55 provided outside the vacuum vessel 10 for applying an accelerating voltage.

又,半導體發光元件20係與被電子束射入之一面20a對向之另一面20b透過設置於半導體發光元件保持構件18之一面(於圖1(A)中為上面)的導電性支持體16,被固定配置於半導體發光元件保持構件18。 Further, the semiconductor light-emitting device 20 is transmitted through the conductive support 16 provided on one surface (the upper surface in FIG. 1(A)) of the semiconductor light-emitting element holding member 18, and the other surface 20b opposed to the one surface 20a of the electron beam. The semiconductor light emitting element holding member 18 is fixedly disposed.

然後,於對於半導體發光元件20比電子束源裝置30更外方的位置,配置有使從電子束源裝置30放射之電子束的軌道之指向,朝向半導體發光元件20之放射光線之一面20a的電場控制用電極50。具體來說,電場控制用電極50係藉由具有比電子束源裝置30的外徑大之內徑的體部51,與連續於此體部51所形成,且由隨朝向前端(於圖1(A)中為上端)而成小徑的錐部52所成之圓筒體所構成。此電場控制用電極50係以包圍電子束源裝置30之外周之方式配置,該電場控制用電極50的基端被固定於真空容器10之容器基體11的底壁。電子束源裝置30及電場控制用電極50係透過從真空容器10的內部拉出至外部之導電線(於圖1(A)中以點虛線表示),以電子束源裝置30為正極,電場控制用電極50為負極之方式,電性連接於設置在真空容器10之外部的電場控制用電源 57。 Then, the semiconductor light-emitting element 20 is disposed further outward than the electron beam source device 30, and the direction of the orbit of the electron beam emitted from the electron beam source device 30 is directed toward the face 20a of the radiation light of the semiconductor light-emitting device 20. The electric field control electrode 50. Specifically, the electric field control electrode 50 is formed by the body portion 51 having an inner diameter larger than the outer diameter of the electron beam source device 30, and is formed continuously with the body portion 51, and is oriented toward the front end (in FIG. 1). The upper end of (A) is a cylindrical body formed by a tapered portion 52 having a small diameter. The electric field control electrode 50 is disposed so as to surround the outer periphery of the electron beam source device 30, and the base end of the electric field control electrode 50 is fixed to the bottom wall of the container base 11 of the vacuum container 10. The electron beam source device 30 and the electric field control electrode 50 are transmitted through the conductive wire drawn from the inside of the vacuum vessel 10 to the outside (indicated by a dotted line in FIG. 1(A)), and the electron beam source device 30 is used as a positive electrode, and the electric field is used. The control electrode 50 is a negative electrode, and is electrically connected to an electric field control power supply provided outside the vacuum container 10. 57.

作為構成真空容器10之容器基體11的材料,可使用科伐玻璃(Kovar glass)、石英玻璃等的玻璃材料。 As a material of the container base 11 constituting the vacuum container 10, a glass material such as Kovar glass or quartz glass can be used.

又,作為構成真空容器10之透光窗15的材料,使用可透射來自半導體發光元件20之光線者,例如,可使用藍寶石、石英玻璃等。 Further, as a material constituting the light transmission window 15 of the vacuum container 10, a light that can transmit light from the semiconductor light emitting element 20 is used, and for example, sapphire, quartz glass or the like can be used.

又,真空容器10之內部的壓力係例如為10-4~10-6Pa。 Further, the pressure inside the vacuum vessel 10 is, for example, 10 -4 to 10 -6 Pa.

作為構成半導體發光元件保持構件18的材料,熱膨脹係數表示接近構成容器基體11之材料的熱膨脹係數之值的材料為佳,例如在容器基體11的材料使用科伐玻璃時,例如可使用科伐金屬等。 As the material constituting the semiconductor light-emitting element holding member 18, the coefficient of thermal expansion is preferably a material close to the value of the coefficient of thermal expansion of the material constituting the container base 11, and for example, when the material of the container base 11 is Kovar, for example, Kovar metal can be used. Wait.

作為構成導電性支持體16的材料,可使用銅等之熱傳導性高的金屬。 As the material constituting the conductive support 16, a metal having high thermal conductivity such as copper can be used.

此範例之電子束源裝置30係如圖2所示,具備具有面狀之電子束放出部32的陰極電極31。陰極電極31係於陰極基板31b的全周面形成電子束放出層31a所構成。電子束放出層31a係藉由多數碳奈米管被支持於陰極基板31b的表面所形成。 As shown in FIG. 2, the electron beam source device 30 of this example includes a cathode electrode 31 having a planar electron beam emitting portion 32. The cathode electrode 31 is formed by forming an electron beam emitting layer 31a on the entire circumferential surface of the cathode substrate 31b. The electron beam emitting layer 31a is formed by supporting a surface of the cathode substrate 31b by a plurality of carbon nanotube tubes.

作為於陰極基板31b上形成由碳奈米管所成的電子束放出層31a之方法,沒有特別被限定,可使用公知的方法,例如,可適切使用藉由加熱在表面形成金屬觸媒層的陰極基板31b,並供給CO及乙炔等之碳源氣,於形成在陰極基板31b的表面之金屬觸媒層上,堆積碳來形成碳奈米 管的熱CVD法、調製藉由電弧放電法等所形成之碳奈米管的粉體及有機黏結劑包含於液體媒體中所成的膏劑,將此膏劑藉由網板印刷,塗佈於陰極基板31b的表面並加以乾燥的網版印刷法等。 The method of forming the electron beam emitting layer 31a made of a carbon nanotube on the cathode substrate 31b is not particularly limited, and a known method can be used. For example, a metal catalyst layer formed on the surface by heating can be suitably used. The cathode substrate 31b is supplied with carbon source gas such as CO and acetylene, and carbon is deposited on the metal catalyst layer formed on the surface of the cathode substrate 31b to form carbon nanotubes. The thermal CVD method of the tube, the preparation of the powder of the carbon nanotube formed by the arc discharge method, and the organic binder are contained in a liquid medium, and the paste is applied to the cathode by screen printing. A screen printing method or the like for drying the surface of the substrate 31b.

此陰極電極31係例如配置於設置在由氧化鋁等的陶瓷所成之板狀的基座35之一面上的基座框架36之一面上。 The cathode electrode 31 is disposed, for example, on one surface of the susceptor frame 36 provided on one surface of a plate-shaped susceptor 35 made of ceramic such as alumina.

於此電子束源裝置30中,遮蔽電子束放出部32之朝向電子束放出面32a的面方向外方之電子束的遮蔽構件40於陰極電極31的側方位置中被固定設置於基座框架36之一面上。此遮蔽構件40係藉由包圍陰極電極31之兩側的體部41,與沿著連續於此體部41之前端的陰極電極31之電子束放出面32a的周緣,往該電子束放出面32a的面方向內方延伸之方式形成的凸緣部42所構成,藉由此凸緣部42的內面與基座框架36的一面,保持固定陰極電極31。 In the electron beam source device 30, the shielding member 40 that shields the electron beam from the electron beam emitting portion 32 toward the surface of the electron beam emitting surface 32a in the surface direction is fixed to the susceptor frame in the lateral position of the cathode electrode 31. One side of 36. The shielding member 40 is disposed on the periphery of the electron beam emitting surface 32a of the cathode electrode 31 along the front end of the body portion 41 by the body portion 41 surrounding the cathode electrode 31, and toward the electron beam emitting surface 32a. The flange portion 42 formed to extend inward in the plane direction is formed, whereby the cathode electrode 31 is held and fixed by the inner surface of the flange portion 42 and one surface of the base frame 36.

於陰極電極31的上方,用以從電子束放出部32放出電子束的網狀之電子萃取電極(柵電極)46以離開並對向於電子束放出部32之方式配置。 Above the cathode electrode 31, a mesh-shaped electron extraction electrode (gate electrode) 46 for discharging an electron beam from the electron beam emitting portion 32 is disposed to be disposed away from the electron beam emitting portion 32.

此電子萃取電極46係固定於具有彎曲成弧狀之前端部的護蓋構件48之該前端部48a的一面上。護蓋構件48係以其前端部48a的內面於板狀的基座框架39之一面上的一部分中接觸之方式(成為相同電位之方式)設置,該基座框架39被固定於基座35的一面上之基座框架36的 外方位置。在此,電子萃取電極46與陰極電極31之各電子束放出部32之電子束放出面32a之間的離開距離(間隔)係例如為100~1000μm。 The electron extraction electrode 46 is fixed to one side of the front end portion 48a of the cover member 48 having the end portion bent in an arc shape. The cover member 48 is provided such that the inner surface of the front end portion 48a is in contact with a portion of one surface of the plate-like base frame 39 (having the same potential), and the base frame 39 is fixed to the base 35. One side of the base frame 36 Foreign location. Here, the distance (interval) between the electron extraction electrode 46 and the electron beam emitting surface 32a of each of the electron beam emitting portions 32 of the cathode electrode 31 is, for example, 100 to 1000 μm.

以上所述中,作為構成陰極電極31之陰極基板31b、遮蔽構件40、基座框架36、39、電子萃取電極46及護蓋構件48的材料,例如可使用包含鐵或鎳至少之一的合金等。 In the above, as the material of the cathode substrate 31b, the shielding member 40, the susceptor frame 36, 39, the electron extraction electrode 46, and the cover member 48 constituting the cathode electrode 31, for example, an alloy containing at least one of iron or nickel may be used. Wait.

陰極電極31及電子萃取電極46係透過從真空容器10的內部拉出至外部的導電線(於圖1(A)中以點虛線表示),電性連接於設置在真空容器10的外部之電子束放出用電源56。 The cathode electrode 31 and the electron extraction electrode 46 are electrically connected to the outside through the inside of the vacuum vessel 10 (indicated by a dotted line in FIG. 1(A)), and are electrically connected to the electrons disposed outside the vacuum vessel 10. The beam discharge power source 56.

半導體發光元件20係如圖3所示,例如藉由由藍寶石所成的基板21、形成於此基板21之一面上的例如由AlN所成的緩衝層22、及形成於此緩衝層22的一面上,且具有單量子井結構或多量子井結構的活性層25所構成,活性層25在對向於真空容器10之透光窗15的狀態下,基板21利用例如導電性接著劑S接合於導電性支持體16。 As shown in FIG. 3, the semiconductor light emitting element 20 is formed, for example, by a substrate 21 made of sapphire, a buffer layer 22 made of, for example, AlN formed on one surface of the substrate 21, and a side formed on the buffer layer 22. The active layer 25 having a single quantum well structure or a multiple quantum well structure, and the active layer 25 is bonded to the light transmission window 15 of the vacuum vessel 10, and the substrate 21 is bonded to the substrate 21 by, for example, a conductive adhesive S. Conductive support 16.

基板21的厚度係例如10~1000μm,緩衝層22的厚度係例如100~1000nm。 The thickness of the substrate 21 is, for example, 10 to 1000 μm, and the thickness of the buffer layer 22 is, for example, 100 to 1000 nm.

又,半導體發光元件20之活性層25與電子束源裝置30的離開距離係例如5~15mm。 Further, the distance between the active layer 25 of the semiconductor light emitting element 20 and the electron beam source device 30 is, for example, 5 to 15 mm.

又,半導體發光元件20之放射光線的一面20a與透光窗15的內面之距離係例如3~25mm。 Further, the distance between the one surface 20a of the radiation light of the semiconductor light emitting element 20 and the inner surface of the light transmission window 15 is, for example, 3 to 25 mm.

活性層25係分別由InxAlyGa1-x-yN(0≦x<1,0<y≦1,x+y≦1)所成的單量子井結構或多量子井結構,單一或複數量子井層26與單一或複數障壁層27於緩衝層22上,以此順序交互層積所構成。 The active layer 25 is a single quantum well structure or a multiple quantum well structure formed by In x Al y Ga 1-xy N (0≦x<1, 0<y≦1, x+y≦1), single or plural The quantum well layer 26 and the single or complex barrier layer 27 are formed on the buffer layer 22 in this order.

量子井層26各別的厚度係例如0.5~50nm。又,障壁層27係選擇以其能帶間隙大於量子井層26之方式組成,作為一例,使用AlN即可,各厚度係設定為大於量子井層26的井寬度,具體來說,例如1~100nm。 The respective thicknesses of the quantum well layers 26 are, for example, 0.5 to 50 nm. Further, the barrier layer 27 is selected to have a band gap larger than that of the quantum well layer 26. For example, AlN may be used, and each thickness is set to be larger than the well width of the quantum well layer 26, specifically, for example, 1~ 100nm.

構成活性層25之量子井層26的週期,係考慮量子井層26、障壁層27及活性層25整體的厚度,及所使用之電子束的加速電壓等來適切設定,但是,通常為1~100。 The period of the quantum well layer 26 constituting the active layer 25 is appropriately set in consideration of the thickness of the entire quantum well layer 26, the barrier layer 27, and the active layer 25, and the acceleration voltage of the electron beam to be used, but is usually 1~. 100.

前述之半導體發光元件20係例如可藉由MOCVD法(有機金屬化學氣相沉積法)來形成。具體來說,使用由氫及氮所成的載體氣體,與由三甲基鋁(trimethylaluminium)及氨所成的原料氣體,於由藍寶石所成的基板21之(0001)面上氣相沉積,藉此,形成具有需要厚度之由AlN所成的緩衝層22之後,藉由使用由氫氣體及氮氣體所成的載體氣體,與由三甲基鋁、三甲基鎵(trimethylgallium)、三甲基銦(trimethylindium)及氨所成的原料氣體,於緩衝層22上氣相沉積,形成具有需要厚度之具有由InxAlyGa1-x-yN(0≦x<1,0<y≦1,x+y≦1)所成的單量子井結構或多量子井結構的活性層25,藉此,可形成半導體發光元件20。 The semiconductor light emitting element 20 described above can be formed, for example, by an MOCVD method (organic metal chemical vapor deposition method). Specifically, a carrier gas made of hydrogen and nitrogen is used, and a raw material gas made of trimethylaluminium and ammonia is vapor-deposited on the (0001) surface of the substrate 21 made of sapphire. Thereby, after forming the buffer layer 22 made of AlN having a required thickness, by using a carrier gas formed of hydrogen gas and nitrogen gas, and by trimethyl aluminum, trimethylgallium, and trimethyl A raw material gas of trimethylindium and ammonia is vapor-deposited on the buffer layer 22 to form a desired thickness having an In x Al y Ga 1-xy N (0 ≦ x < 1, 0 < y ≦ 1 , x + y ≦ 1) a single quantum well structure or an active layer 25 of a multi-quantum well structure, whereby the semiconductor light-emitting element 20 can be formed.

於前述之緩衝層22、量子井層26及障壁層27的各形成工程中,處理溫度、處理壓力及各層的沉積速度等的條件,係可因應應形成之緩衝層22、量子井層26及障壁層27的組成及厚度等來適切設定。 In the respective formation processes of the buffer layer 22, the quantum well layer 26, and the barrier layer 27, conditions such as processing temperature, processing pressure, and deposition rate of each layer are required to form the buffer layer 22, the quantum well layer 26, and The composition, thickness, and the like of the barrier layer 27 are appropriately set.

又,形成由InAlGaN所成的量子井層26時,作為原料氣體,除了前述者之外,使用三甲基銦,將處理溫度設定為低於形成由AlGaN所成的量子井層26時即可。 Further, when the quantum well layer 26 made of InAlGaN is formed, as the source gas, in addition to the above, trimethylindium is used, and the treatment temperature is set lower than the formation of the quantum well layer 26 formed of AlGaN. .

又,半導體多層膜的形成方法係不限定於MOCVD法,例如也可使用MBE法(分子束磊晶法)等。 Further, the method of forming the semiconductor multilayer film is not limited to the MOCVD method, and for example, an MBE method (molecular beam epitaxy method) or the like may be used.

然後,於本發明的電子束激發型光源裝置中,於半導體發光元件20,設置有用以至少去除被來自電子束源裝置30的電子束射入之一面20a上的電荷之導電性的除電構件。 Then, in the electron beam excitation type light source device of the present invention, the semiconductor light emitting element 20 is provided with a static eliminating member for removing the conductivity of the electric charge incident on the one surface 20a of the electron beam from the electron beam source device 30.

於關於此實施形態之電子束激發型光源裝置中,除電構件係例如藉由以覆蓋半導體發光元件20之外周側面及一面20a之外周緣部之方式設置的導電性膜28所構成,此導電性膜28係電性連接或透過導線28a電性連接於導電性支持體16。 In the electron beam excitation type light source device of the embodiment, the static electricity removing member is formed by, for example, a conductive film 28 provided to cover the outer peripheral side surface of the semiconductor light emitting element 20 and the outer peripheral portion of the one surface 20a. The film 28 is electrically connected or electrically connected to the conductive support 16 via a wire 28a.

作為用以形成導電性膜28的材料,例如可使用Ag膏、Al膏、銀焊料等。 As a material for forming the conductive film 28, for example, an Ag paste, an Al paste, a silver solder, or the like can be used.

導電性膜28的厚度係例如1~100μm。 The thickness of the conductive film 28 is, for example, 1 to 100 μm.

於前述之電子束激發型光源裝置中,電壓施加於電子束源裝置30與電子萃取電極46之間的話,會從該電子束源裝置30之電子束放出部32朝向電子萃取電極46放出 電子,此電子係藉由施加於半導體發光元件20與電子束源裝置30之間的加速電壓,朝向半導體發光元件20加速而形成電子束,並且此電子束的軌道之指向,會利用藉由加速電壓及電場控制用電源57施加於電子束源裝置30與電場控制用電極50之間的電壓,朝向半導體發光元件20之放射光線的一面20a,結果,該電子束係被射入半導體發光元件20的一面20a,亦即活性層25的表面。然後,於半導體發光元件20中,藉由射入電子束而激發活性層25的電子,藉此,從該半導體發光元件20之被電子束射入之一面20a放射紫外線等的光線,透過真空容器10之透光窗15,射出至該真空容器10的外部。 In the electron beam excitation type light source device described above, a voltage is applied between the electron beam source device 30 and the electron extraction electrode 46, and is emitted from the electron beam emitting portion 32 of the electron beam source device 30 toward the electron extraction electrode 46. The electrons are accelerated toward the semiconductor light-emitting element 20 by an acceleration voltage applied between the semiconductor light-emitting element 20 and the electron beam source device 30 to form an electron beam, and the orbital direction of the electron beam is accelerated by The voltage and electric field control power source 57 is applied to the voltage 20 between the electron beam source device 30 and the electric field control electrode 50 toward the surface 20a of the radiation of the semiconductor light emitting element 20. As a result, the electron beam is incident on the semiconductor light emitting element 20. One side 20a, that is, the surface of the active layer 25. Then, in the semiconductor light-emitting device 20, electrons of the active layer 25 are excited by the incident electron beam, whereby light emitted from the surface of the semiconductor light-emitting element 20 by the electron beam entering the surface 20a is transmitted through the vacuum container. A light transmission window 15 of 10 is emitted to the outside of the vacuum vessel 10.

以上,藉由電子束放出用電源56,施加於電子束源裝置30與電子萃取電極46之間的電壓係例如為1~5kV。 As described above, the voltage applied between the electron beam source device 30 and the electron extraction electrode 46 by the electron beam emitting power source 56 is, for example, 1 to 5 kV.

又,藉由電子加速手段55施加之電子束的加速電壓係為6~12kV為佳。在加速電壓過小時,會難以獲得較高之光線的輸出。另一方面,在加速電壓過大時,容易從半導體發光元件20產生X射線,又,因為電子束的能量,半導體發光元件20易受到損傷,故並不理想。 Further, the acceleration voltage of the electron beam applied by the electron acceleration means 55 is preferably 6 to 12 kV. When the accelerating voltage is too small, it is difficult to obtain a higher light output. On the other hand, when the accelerating voltage is excessively large, X-rays are easily generated from the semiconductor light-emitting element 20, and the semiconductor light-emitting device 20 is easily damaged by the energy of the electron beam, which is not preferable.

又,藉由電場控制用電源57施加於電子束源裝置30與電場控制用電極50之間的電壓係例如為-2~2kV。 Further, the voltage applied between the electron beam source device 30 and the electric field control electrode 50 by the electric field control power source 57 is, for example, -2 to 2 kV.

然後,依據前述的電子束激發型光源裝置,藉由具備由以覆蓋半導體發光元件20之外周側面及被來自電子束源裝置30的電子束射入的一面之外周緣部之方式設置的 導電性膜28所成的除電構件,可防止或抑制因來自電子束源裝置30的電子束之照射而電荷蓄積於半導體發光元件20之一面20a之狀況,故可迴避從電子束源裝置30放射之電子束的軌道變化,或來自電子束源裝置30的電子因半導體發光元件20之一面20a反彈之狀況,且可將來自電子束源裝置30的電子束有效率地照射至半導體發光元件20之一面20a,所以,可獲得較高之光輸出(發光效率)。 Then, the electron beam excitation type light source device is provided with a peripheral portion that covers the outer peripheral side surface of the semiconductor light emitting element 20 and the electron beam incident from the electron beam source device 30. The static eliminating member formed of the conductive film 28 can prevent or suppress the charge accumulation on one surface 20a of the semiconductor light emitting element 20 due to the irradiation of the electron beam from the electron beam source device 30, so that the radiation from the electron beam source device 30 can be avoided. The orbital change of the electron beam, or the electrons from the electron beam source device 30 rebound due to the face 20a of the semiconductor light emitting element 20, and the electron beam from the electron beam source device 30 can be efficiently irradiated to the semiconductor light emitting element 20. One side 20a, so a higher light output (luminous efficiency) can be obtained.

又進而,因為設為從半導體發光元件20之被來自電子束源裝置30的電子束射入之一面20a放射光線的構造,故從與半導體發光元件20之被電子束射入之一面20a對向之另一面20b可透過導電性支持體16來冷卻該半導體發光元件20。所以,可有效率地冷卻半導體發光元件20,故於此點中,可不降低半導體發光元件20的發光效率而維持較高之輸出的光線。 Further, since the electron beam from the electron beam source device 30 is incident on the one surface 20a of the semiconductor light emitting device 20, the light is incident on the one surface 20a of the semiconductor light emitting element 20 by the electron beam incident. The other surface 20b can cool the semiconductor light emitting element 20 through the conductive support 16. Therefore, the semiconductor light emitting element 20 can be efficiently cooled, and therefore, it is possible to maintain a high output light without lowering the light emitting efficiency of the semiconductor light emitting element 20.

[實施例1] [Example 1]

遵從圖1乃至圖3所示之構造,製作關於本發明的電子束激發型光源裝置。此電子束激發型光源裝置的規格如下所示。 The electron beam excitation type light source device according to the present invention was produced in accordance with the configuration shown in Fig. 1 to Fig. 3. The specifications of this electron beam excitation type light source device are as follows.

[真空容器(10)] [Vacuum container (10)]

容器基體(11):材質:科伐玻璃,外形的尺寸:40mm×40mm×20mm,厚度:2mm,開口:36mm×36mm Container base (11): Material: Kovar glass, outer dimensions: 40mm × 40mm × 20mm, thickness: 2mm, opening: 36mm × 36mm

透光窗(15):材質:藍寶石,尺寸:40mm×40mm×2mm Light transmission window (15): Material: sapphire, size: 40mm × 40mm × 2mm

[電子束源裝置(30)] [Electron beam source device (30)]

電子束放出部(32):外徑:24mm,內徑:20mm,厚度:0.02mm,被電子束放射之面的面積:138mm2 Electron beam discharge portion (32): outer diameter: 24 mm, inner diameter: 20 mm, thickness: 0.02 mm, area of the surface irradiated by the electron beam: 138 mm 2

[半導體發光元件(20)] [Semiconductor light-emitting element (20)]

基板(21):材質:藍寶石,厚度:400μm Substrate (21): Material: sapphire, thickness: 400μm

緩衝層(22):材質:GaN,厚度:2μm Buffer layer (22): Material: GaN, thickness: 2μm

活性層(25):量子井層(26)的材質:InGaN,量子井層(26)的厚度:3mm,障壁層(27)的材質:GaN,障壁層(27)的厚度:18mm,量子井層(26)的週期:6 Active layer (25): Material of quantum well layer (26): InGaN, thickness of quantum well layer (26): 3 mm, material of barrier layer (27): GaN, thickness of barrier layer (27): 18 mm, quantum well Period of layer (26): 6

導電性膜(28):材質:Ag,厚度:500μm Conductive film (28): Material: Ag, thickness: 500μm

又,於前述所製作的電子束激發型光源裝置中,如圖4所示,製作除了並不具有電荷殘留抑制構件之外,具有與關於本發明的電子束激發型光源裝置者相同構造的半導體發光元件201之比較用的電子束激發型光源裝置。 Further, in the electron beam excitation type light source device manufactured as described above, as shown in FIG. 4, a semiconductor having the same structure as that of the electron beam excitation type light source device of the present invention is produced, except that the charge remaining suppression member is not provided. An electron beam excitation type light source device for comparison of the light-emitting elements 201.

並測定使關於本發明的電子束激發型光源裝置及比較用的電子束激發型光源裝置,以以下所示之動作條件動作時的光輸出及發光效率。並於後述表1揭示結果。表1中,關於本發明的電子束激發型光源裝置之光輸出之值及發光效率之值,任一皆表示比較用的電子束激發型光源裝置 之光輸出之值及發光效率之值的相對值。 The light output and the luminous efficiency when the electron beam excitation type light source device and the comparative electron beam excitation type light source device according to the present invention are operated under the operating conditions shown below are measured. The results are disclosed in Table 1 below. In Table 1, the value of the light output value and the luminous efficiency of the electron beam excitation type light source device of the present invention are all used to indicate an electron beam excitation type light source device for comparison. The relative value of the value of the light output and the value of the luminous efficiency.

<動作條件> <Action conditions>

施加於電子束源裝置與萃取電極之間的電壓:2kV Voltage applied between the electron beam source device and the extraction electrode: 2kV

電子束的加速電壓:8kV Acceleration voltage of electron beam: 8kV

施加於電子束源裝置與電場控制用電極之間的電壓:1kV Voltage applied between the electron beam source device and the electric field control electrode: 1 kV

對半導體發光元件的輸入電力:32mW Input power to semiconductor light-emitting elements: 32mW

根據以上結果,可確認依據於半導體發光元件設置除電構件的電子束激發型光源裝置,可獲得比較用的電子束激發型光源裝置之20倍大的光輸出。 According to the above results, it was confirmed that the electron beam excitation type light source device in which the charge removing member is provided in the semiconductor light emitting element can obtain a light output of 20 times larger than that of the electron beam excitation type light source device for comparison.

以上,已針對本發明的實施形態進行說明,但是,本發明不限定於前述之實施形態者,可施加各種變更。 Although the embodiments of the present invention have been described above, the present invention is not limited to the embodiments described above, and various modifications can be added.

例如,構成除電構件的導電性膜,係不一定需要以覆蓋半導體發光元件之被來自電子束源裝置的電子束照射之表面的外周緣部及半導體發光元件的外周側面之全部之方式形成,即使設為形成於半導體發光元件之被來自電子束源裝置的電子束照射之表面的外周緣部及半導體發光元件的外周側面之至少一部分的構造,也可期待其效果。 For example, the conductive film constituting the charge removing member is not necessarily required to cover all of the outer peripheral edge portion of the surface of the semiconductor light emitting element that is irradiated with the electron beam from the electron beam source device and the outer peripheral side surface of the semiconductor light emitting element, even if The structure of the semiconductor light-emitting element formed on at least a part of the outer peripheral edge portion of the surface irradiated with the electron beam from the electron beam source device and the outer peripheral side surface of the semiconductor light-emitting device can also be expected.

又,除電構件係藉由形成且圖案化於半導體發光元件之被來自電子束源裝置的電子束照射之表面的導電性膜,例如具有開口的導電性膜所構成亦可。 Further, the static eliminating member may be formed of a conductive film formed on the surface of the semiconductor light emitting element that is irradiated with the electron beam from the electron beam source device, for example, a conductive film having an opening.

於前述實施形態中,已針對從半導體發光元件之被電子束射入之一面放射光線的構造者進行說明,但是,如圖5所示,設為電子束源裝置30在電子束放出部32的表面與半導體發光元件20之一面對向之狀態下配置,來自電子束源裝置30的電子束射入半導體發光元件20之一面,藉此,從半導體發光元件20的另一面放射之光線透過透光窗15來射出的構造亦可。 In the above-described embodiment, the structure of the semiconductor light-emitting device that emits light from one side of the electron beam is described. However, as shown in FIG. 5, the electron beam source device 30 is disposed in the electron beam emitting unit 32. The surface is disposed in a state in which one of the semiconductor light emitting elements 20 faces, and an electron beam from the electron beam source device 30 is incident on one surface of the semiconductor light emitting element 20, whereby light emitted from the other surface of the semiconductor light emitting element 20 is transmitted through The structure in which the light window 15 is emitted may also be used.

又進而,電子束源裝置係只要是具有面狀之電子束放射部者,並不特別限定其具體形狀,又,並不限定於由碳奈米管所成者。又,電子束源的配置位置係只要是半導體發光元件的周邊,且可對該半導體發光元件的光射出面射入電子束的位置即可,並不特別限定。 Further, the electron beam source device is not limited to a specific shape as long as it has a planar electron beam radiation portion, and is not limited to those formed of carbon nanotubes. In addition, the arrangement position of the electron beam source is not particularly limited as long as it is around the semiconductor light-emitting element and can enter the position of the electron beam on the light-emitting surface of the semiconductor light-emitting element.

10‧‧‧真空容器 10‧‧‧Vacuum container

11‧‧‧容器基體 11‧‧‧ Container base

15‧‧‧透光窗 15‧‧‧Light window

16‧‧‧導電性支持體 16‧‧‧Electrically conductive support

18‧‧‧半導體發光元件保持構件 18‧‧‧Semiconductor light-emitting element holding member

20,201‧‧‧半導體發光元件 20,201‧‧‧ Semiconductor light-emitting components

20a‧‧‧一面 20a‧‧‧ side

20b‧‧‧另一面 20b‧‧‧The other side

21‧‧‧基板 21‧‧‧Substrate

22‧‧‧緩衝層 22‧‧‧ Buffer layer

25‧‧‧活性層 25‧‧‧Active layer

26‧‧‧量子井層 26‧‧‧Quantum wells

27‧‧‧障壁層 27‧‧‧Baffle layer

28‧‧‧導電性膜 28‧‧‧ Conductive film

28a‧‧‧導線部 28a‧‧‧Wire section

S‧‧‧導電性接著劑 S‧‧‧ Conductive adhesive

30‧‧‧電子束源裝置 30‧‧‧Electron beam source device

31‧‧‧陰極電極 31‧‧‧Cathode electrode

31a‧‧‧電子束放出層 31a‧‧‧Electron beam release layer

31b‧‧‧陰極基板 31b‧‧‧Cathode substrate

32‧‧‧電子束放出部 32‧‧‧Electron beam release department

31a‧‧‧電子束放出面 31a‧‧‧Electronic beam release surface

35‧‧‧基座 35‧‧‧Base

36‧‧‧基座框架 36‧‧‧Base frame

37‧‧‧支持構件 37‧‧‧Support components

39‧‧‧基座框架 39‧‧‧Base frame

40‧‧‧遮蔽構件 40‧‧‧Shielding members

41‧‧‧體部 41‧‧‧ Body

42‧‧‧凸緣部 42‧‧‧Flange

46‧‧‧電子萃取電極 46‧‧‧Electronic extraction electrode

48‧‧‧護蓋構件 48‧‧‧ Cover members

48a‧‧‧前端部 48a‧‧‧ front end

50‧‧‧電場控制用電極 50‧‧‧Electrical control electrode

51‧‧‧體部 51‧‧‧ Body

52‧‧‧錐部 52‧‧‧ Cone

55‧‧‧電子加速手段 55‧‧‧Electronic acceleration means

56‧‧‧電子放出用電源 56‧‧‧Electronic discharge power supply

57‧‧‧電場控制用電源 57‧‧‧Power supply for electric field control

71‧‧‧玻璃閥 71‧‧‧ glass valve

72‧‧‧面板 72‧‧‧ panel

73a,73b‧‧‧反射層 73a, 73b‧‧‧reflective layer

74‧‧‧半導體發光元件 74‧‧‧Semiconductor light-emitting components

75‧‧‧電子槍 75‧‧‧Electronic gun

80‧‧‧真空容器 80‧‧‧vacuum container

81‧‧‧透光窗 81‧‧‧Light window

82‧‧‧半導體發光元件 82‧‧‧Semiconductor light-emitting components

83,84‧‧‧光反射構件 83,84‧‧‧Light reflecting members

85‧‧‧雷射構造體 85‧‧‧Laser structure

86‧‧‧電子束源 86‧‧‧Electronic beam source

87‧‧‧電子加速手段 87‧‧‧Electronic acceleration means

[圖1]揭示本發明之電子束激發型光源裝置的一例之構造概略的說明圖,(A)係側面剖面圖,(B)係揭示卸下透光窗之狀態的俯視圖。 1 is an explanatory view showing an outline of an example of an electron beam excitation type light source device according to the present invention, wherein (A) is a side cross-sectional view, and (B) is a plan view showing a state in which a light transmission window is removed.

[圖2]概略揭示圖1所示的電子束激發型光源裝置之電子束源裝置的構造,圖1(B)之A-A線放大剖面圖。 Fig. 2 is a schematic cross-sectional view showing the structure of an electron beam source device of the electron beam excitation type light source device shown in Fig. 1 taken along line A-A of Fig. 1(B).

[圖3]揭示圖1所示的電子束激發型光源裝置之半導體發光元件的構造概略的說明用剖面圖。 FIG. 3 is a cross-sectional view for explaining a schematic configuration of a semiconductor light emitting element of the electron beam excitation type light source device shown in FIG. 1.

[圖4]揭示實施例1中製作之比較用的電子束激發型光源裝置之半導體發光元件的構造的說明用剖面圖。 4 is a cross-sectional view for explaining the structure of a semiconductor light emitting element of the electron beam excitation type light source device for comparison prepared in the first embodiment.

[圖5]揭示本發明之電子束激發型光源裝置的其他範例之構造概略的概念圖。 Fig. 5 is a conceptual diagram showing a schematic configuration of another example of the electron beam excitation type light source device of the present invention.

[圖6]揭示先前之電子束激發型光源裝置的一例之構造概略的說明用剖面圖。 Fig. 6 is a cross-sectional view for explaining an outline of an example of a conventional electron beam excitation type light source device.

[圖7]揭示先前之電子束激發型光源裝置的其他範例之構造概略的說明用剖面圖。 Fig. 7 is a cross-sectional view for explaining a schematic configuration of another example of the prior art electron beam excitation type light source device.

16‧‧‧導電性支持體 16‧‧‧Electrically conductive support

20‧‧‧半導體發光元件 20‧‧‧Semiconductor light-emitting elements

20a‧‧‧一面 20a‧‧‧ side

20b‧‧‧另一面 20b‧‧‧The other side

21‧‧‧基板 21‧‧‧Substrate

22‧‧‧緩衝層 22‧‧‧ Buffer layer

25‧‧‧活性層 25‧‧‧Active layer

26‧‧‧量子井層 26‧‧‧Quantum wells

27‧‧‧障壁層 27‧‧‧Baffle layer

28‧‧‧導電性膜 28‧‧‧ Conductive film

28a‧‧‧導線部 28a‧‧‧Wire section

Claims (2)

一種電子束激發型光源裝置,係電子束源裝置,與藉由利用從此電子束源裝置放射之電子束激發而放射紫外光之半導體發光元件被配置於真空容器之內部所成的電子束激發型光源裝置,其特徵為:於前述半導體發光元件,設置有用以去除被來自前述電子束源裝置之電子束射入之一面的電荷之導電性的除電構件。 An electron beam excitation type light source device, which is an electron beam source device, and an electron beam excitation type in which a semiconductor light emitting element that emits ultraviolet light by excitation with an electron beam emitted from the electron beam source device is disposed inside a vacuum container In the light source device, the semiconductor light emitting element is provided with a static eliminating member for removing conductivity of electric charges incident on one surface of the electron beam from the electron beam source device. 如申請專利範圍第1項所記載之電子束激發型光源裝置,其中,前述半導體發光元件,係透過導電性支持體而被固定於前述真空容器;前述除電構件,係電性連接於前述導電性支持體。 The electron beam excitation type light source device according to claim 1, wherein the semiconductor light emitting element is fixed to the vacuum container through a conductive support, and the static eliminating member is electrically connected to the conductive material. Support body.
TW101121320A 2011-08-02 2012-06-14 Electron beam excited light source device TW201308806A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011169205A JP2013033640A (en) 2011-08-02 2011-08-02 Electron beam excited light source device

Publications (1)

Publication Number Publication Date
TW201308806A true TW201308806A (en) 2013-02-16

Family

ID=47614622

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101121320A TW201308806A (en) 2011-08-02 2012-06-14 Electron beam excited light source device

Country Status (3)

Country Link
JP (1) JP2013033640A (en)
CN (1) CN102916337A (en)
TW (1) TW201308806A (en)

Also Published As

Publication number Publication date
CN102916337A (en) 2013-02-06
JP2013033640A (en) 2013-02-14

Similar Documents

Publication Publication Date Title
JP5548204B2 (en) UV irradiation equipment
TWI520455B (en) Electron beam excited light source
EP2579295B1 (en) Ultraviolet irradiation device
JP2013135035A (en) Electron beam pumped light source device
TW201308806A (en) Electron beam excited light source device
TW201340511A (en) Electron-beam-excited uv emission device
JP2015046415A (en) Nitride semiconductor light-emitting element, and electron beam excitation type light source device
TW201239946A (en) Electron-beam-pumped light source device
JP5565793B2 (en) Deep ultraviolet light emitting device and manufacturing method thereof
JP5736736B2 (en) Electron beam excitation type light source
JP5370408B2 (en) Electron beam excitation type light source device
JP5299405B2 (en) Electron beam excitation type light source
JP2012195144A (en) Electron beam source device and electron beam excitation type light source device
CN112687520B (en) Space electron excited reflective deep ultraviolet light source
JP5659712B2 (en) Electron beam excitation type light source
JP2017084505A (en) Vacuum switch
JP2012212637A (en) Electron beam source device and electron beam excitation type light source device
JP2013222648A (en) Electron beam radiation device
JP2013149716A (en) Vacuum vessel device
KR102393727B1 (en) UV Lighting Device of having Sealing Structure
KR102264568B1 (en) Field Emission X-Ray Source Device
JP2014049591A (en) Electron beam pumped light source
JP2015170457A (en) Deep ultraviolet light emitting device and manufacturing method for the same
JP2013026055A (en) Electron beam pumped light source device
JP2011258753A (en) Light-emitting device using ballistic electron