TW201307840A - Biosensor and manufacturing method thereof - Google Patents

Biosensor and manufacturing method thereof Download PDF

Info

Publication number
TW201307840A
TW201307840A TW100128198A TW100128198A TW201307840A TW 201307840 A TW201307840 A TW 201307840A TW 100128198 A TW100128198 A TW 100128198A TW 100128198 A TW100128198 A TW 100128198A TW 201307840 A TW201307840 A TW 201307840A
Authority
TW
Taiwan
Prior art keywords
layer
substrate
biosensor
piezoelectric
metal layer
Prior art date
Application number
TW100128198A
Other languages
Chinese (zh)
Inventor
Ying-Chung Chen
Chien-Chuan Cheng
Kuo-Sheng Kao
Wei-Tsai Chang
Chun-Hung Yang
Jia-Ming Jiang
Original Assignee
Univ Nat Sun Yat Sen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Sun Yat Sen filed Critical Univ Nat Sun Yat Sen
Priority to TW100128198A priority Critical patent/TW201307840A/en
Publication of TW201307840A publication Critical patent/TW201307840A/en

Links

Abstract

A biosensor and a manufacturing method thereof are disclosed. The manufacturing method comprises the following steps: forming a first electrode layer on one side of a substrate; etching the substrate to form a chamber; forming a piezoelectric layer on the side of the substrate; forming a second electrode layer on the piezoelectric layer; forming a bonding metal layer in the chamber and on the first electrode layer; forming a biocompatible metal layer on the bonding metal layer; and forming a bio-sensing layer on the biocompatible metal layer.

Description

生物感測器及其製造方法Biosensor and method of manufacturing same

本發明是有關於一種生物感測器及其製造方法,且特別是有關於一種利用雙模態薄膜體聲波共振器(Dual-mode film bulk acoustic resonator,FBAR)來製作高靈敏度生物感測器及其製造方法。The present invention relates to a biosensor and a method of fabricating the same, and more particularly to a dual-mode film bulk acoustic resonator (FBAR) for fabricating a highly sensitive biosensor and Its manufacturing method.

在環境、藥學或生物醫學領域上,發展一種同時具備操作簡單、分析快速且結果準確,且可自動連續進行多物種、多樣品的分析監測方法,一直是人們的發展目標。In the field of environment, pharmacy or biomedicine, it is always a development goal to develop an analytical monitoring method that is simple in operation, fast in analysis and accurate in results, and can automatically and continuously perform multi-species and multi-samples.

隨著半導體製程技術的進步,習知感測器元件已由表面聲波(Surface Wave Acoustic,SAW)共振器提昇至薄膜體聲波(Film Bulk Acoustic Resonator,FBAR)共振器。雙模態薄膜體聲波共振器(Dual-mode film bulk acoustic resonator,FBAR)主要是由上下電極與一壓電層所組成,其係利用體彈性波在固體內傳播,而可減少能量損失及提高品質因數。其中,體型加工是雙模態薄膜體聲波共振器之其中一種方式,而體型加工的方式為從背部蝕刻留下結構層,藉以利用空氣來作為反射層,而減少損耗。With the advancement of semiconductor process technology, conventional sensor components have been upgraded from Surface Wave Acoustic (SAW) resonators to Film Bulk Acoustic Resonator (FBAR) resonators. Dual-mode film bulk acoustic resonator (FBAR) is mainly composed of upper and lower electrodes and a piezoelectric layer, which uses body elastic waves to propagate in solids, which can reduce energy loss and improve Quality factor. Among them, the body shape processing is one of the two-mode film bulk acoustic resonators, and the body shape processing method is to leave a structural layer from the back etching, thereby using air as a reflective layer to reduce loss.

然而,傳統之薄膜體聲波共振器結構並無法直接用以檢測生物標的,因而無法利用薄膜體聲波共振器的高靈敏特性來製造高靈敏度的生物感測器。However, the conventional film bulk acoustic resonator structure cannot be directly used for detecting biological targets, and thus it is impossible to manufacture a highly sensitive biosensor using the highly sensitive characteristics of the film bulk acoustic resonator.

因此本發明之一方面係在於提供一種生物感測器及其製造方法,藉以利用雙模態薄膜體聲波共振器(FBAR)結構來檢測生物標的,以提高感測靈敏度。SUMMARY OF THE INVENTION It is therefore an aspect of the present invention to provide a biosensor and a method of fabricating the same that utilizes a bimodal film bulk acoustic resonator (FBAR) structure to detect biomarkers to improve sensing sensitivity.

根據本發明之實施例,本發明之生物感測器包含:基板、第一電極層、壓電層、第二電極層、接合金屬層、親生物性金屬層及生物檢測層。基板具有一空腔,用以容納一待測生物標的,第一電極層是形成於該基板的一側,壓電層是形成於該基板的該側,其中該壓電層是至少部分覆蓋於該第一電極層上,且該壓電層的C軸與該基板之間具有一傾斜角度,其小於90度。第二電極層是形成於該壓電層上,接合金屬層是形成於該空腔內,並位於該第一電極層上,親生物性金屬層是形成於該接合金屬層上,生物檢測層形成於該親生物性金屬層上。According to an embodiment of the present invention, the biosensor of the present invention comprises: a substrate, a first electrode layer, a piezoelectric layer, a second electrode layer, a bonding metal layer, a bio-organic metal layer, and a bio-detection layer. The substrate has a cavity for accommodating a biological target to be tested, a first electrode layer is formed on one side of the substrate, and a piezoelectric layer is formed on the side of the substrate, wherein the piezoelectric layer is at least partially covered by the substrate The first electrode layer has an inclined angle between the C axis of the piezoelectric layer and the substrate, which is less than 90 degrees. The second electrode layer is formed on the piezoelectric layer, the bonding metal layer is formed in the cavity, and is located on the first electrode layer, and the biological metal layer is formed on the bonding metal layer, and the biodetection layer Formed on the biophilic metal layer.

又,根據本發明之實施例,本發明之生物感測器的製造方法包含如下步驟:提供一基板;形成一第一電極層於該基板的一側;蝕刻該基板,以形成一空腔;形成一壓電層於該基板的該側,其中該壓電層是至少部分覆蓋於該第一電極層上,並暴露出該第一電極層,且該壓電層的C軸與該基板之間具有一傾斜角度,其小於90度;形成一第二電極層於該壓電層上;形成一接合金屬層於該空腔內,並位於該第一電極層上;形成一親生物性金屬層於該接合金屬層上;以及形成一生物檢測層於該親生物性金屬層上。Moreover, in accordance with an embodiment of the present invention, a method of fabricating a biosensor of the present invention includes the steps of: providing a substrate; forming a first electrode layer on one side of the substrate; etching the substrate to form a cavity; forming a piezoelectric layer on the side of the substrate, wherein the piezoelectric layer at least partially covers the first electrode layer and exposes the first electrode layer, and between the C axis of the piezoelectric layer and the substrate Having an oblique angle, which is less than 90 degrees; forming a second electrode layer on the piezoelectric layer; forming a bonding metal layer in the cavity and located on the first electrode layer; forming a biological metal layer On the bonding metal layer; and forming a bio-detection layer on the bio-organic metal layer.

在本發明之一實施例中,該傾斜角度是小於70度。In an embodiment of the invention, the angle of inclination is less than 70 degrees.

在本發明之一實施例中,該生物感測器,更包含二保護層,形成於該基板的相對兩側,並暴露出該空腔及該親生物性金屬層。In an embodiment of the invention, the biosensor further includes a second protective layer formed on opposite sides of the substrate and exposing the cavity and the biological metal layer.

在本發明之一實施例中,該接合金屬層的材料為鉻。In an embodiment of the invention, the material of the bonding metal layer is chromium.

在本發明之一實施例中,該親生物性金屬層的材料為金。In an embodiment of the invention, the material of the biophilic metal layer is gold.

在本發明之一實施例中,該壓電層的材料為氮化鋁、氧化鋅或硫化哂。In an embodiment of the invention, the piezoelectric layer is made of aluminum nitride, zinc oxide or barium sulfide.

在本發明之一實施例中,該生物檢測層為一胱胺酸層。In an embodiment of the invention, the biodetection layer is a cysteine layer.

在本發明之一實施例中,該製造方法更包含如下步驟:蝕刻部分該壓電層,以形成該傾斜側壁於該壓電層上。In an embodiment of the invention, the manufacturing method further includes the step of etching a portion of the piezoelectric layer to form the sloped sidewall on the piezoelectric layer.

在本發明之一實施例中,該生物檢測層為一胱胺酸層,該親生物性金屬層的表面是浸於一胱胺酸溶液中一預設時間,以形成該胱胺酸層。In one embodiment of the invention, the biodetection layer is a cysteine layer, and the surface of the biophilic metal layer is immersed in the cysteine solution for a predetermined period of time to form the cystine layer.

因此,本發明的生物感測器及其製造方法可使用FBAR結構來檢測生物標的,因而大幅地提升感測靈敏度。且生物感測器的空腔可直接用以作為檢測槽皿,而提高檢測便利性與準確性。再者,生物感測器的壓電層的C軸與該基板之間可具有一傾斜角度,用以感測振盪能量的水平分量變化。Therefore, the biosensor of the present invention and the method of manufacturing the same can use the FBAR structure to detect a biological target, thereby greatly improving the sensing sensitivity. Moreover, the cavity of the biosensor can be directly used as a detecting tank to improve the convenience and accuracy of detection. Furthermore, the C-axis of the piezoelectric layer of the biosensor and the substrate may have an oblique angle for sensing a change in the horizontal component of the oscillation energy.

為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,本說明書將特舉出一系列實施例來加以說明。但值得注意的是,此些實施例只係用以說明本發明之實施方式,而非用以限定本發明。The above and other objects, features, advantages and embodiments of the present invention will become more apparent and understood. It is to be understood that the embodiments are not intended to limit the invention.

請參照圖1,其繪示依照本發明之一實施例之生物感測器的剖面示意圖。本實施例的生物感測器可用以檢測一待測生物標的(未繪示),例如檢測免疫球蛋白E(IgE)、免疫球蛋白G(IgE)濃度或胎兒球蛋白(AFP)指標。此生物感測器可包含基板110、第一電極層120、壓電層130、第二電極層140、接合金屬層150、親生物性金屬層160、二保護層170及生物檢測層180。基板110具有一空腔111,用以容納此待測生物標的。第一電極層120是形成於基板110的一側,壓電層130亦形成於基板110的該側,其中壓電層130是至少部分覆蓋於第一電極層120上,並暴露出第一電極層120,第二電極層140亦形成於基板110的該側,且形成於壓電層130上。接合金屬層150是形成於基板110的空腔111內,並位於第一電極層120上,親生物性金屬層160亦形成於基板110的空腔111內,並形成於接合金屬層150上,生物檢測層180亦形成於基板110的空腔111內,並形成於親生物性金屬層160上。保護層170是形成於基板110的相對兩側,並暴露出空腔111及生物檢測層180。Please refer to FIG. 1 , which is a cross-sectional view of a biosensor according to an embodiment of the invention. The biosensor of the present embodiment can be used to detect a biological target to be tested (not shown), for example, to detect immunoglobulin E (IgE), immunoglobulin G (IgE) concentration or fetal globulin (AFP) index. The biosensor may include a substrate 110, a first electrode layer 120, a piezoelectric layer 130, a second electrode layer 140, a bonding metal layer 150, a bio-organic metal layer 160, a second protective layer 170, and a bio-detection layer 180. The substrate 110 has a cavity 111 for receiving the biological target to be tested. The first electrode layer 120 is formed on one side of the substrate 110, and the piezoelectric layer 130 is also formed on the side of the substrate 110. The piezoelectric layer 130 is at least partially covered on the first electrode layer 120 and exposes the first electrode. The layer 120 and the second electrode layer 140 are also formed on the side of the substrate 110 and formed on the piezoelectric layer 130. The bonding metal layer 150 is formed in the cavity 111 of the substrate 110 and located on the first electrode layer 120. The bio-active metal layer 160 is also formed in the cavity 111 of the substrate 110 and formed on the bonding metal layer 150. The bio-detection layer 180 is also formed in the cavity 111 of the substrate 110 and formed on the bio-organic metal layer 160. The protective layer 170 is formed on opposite sides of the substrate 110 and exposes the cavity 111 and the bio-detection layer 180.

如圖1所示,本實施例的基板110例如為一矽基板,基板110的空腔111是凹設於基板110內,並暴露出生物檢測層180,用以容納此待測生物標的,以方便進行待測生物標的的檢測,而提高生物標的檢測的準確性。第一電極層120的材料可例如為鋁、金、鉬或鉑等金屬材料,在本實施例中,此第一電極層120之材料可為鉑。壓電層130是由壓電材料所製成,例如氮化鋁、氧化鋅或硫化哂等,在本實施例中,壓電層130之材料可為氧化鋅。壓電層130的C軸與基板110之間具有一傾斜角度θ,此傾斜角度θ是至少小於90度,較佳是小於70度,以增加感測靈敏度As shown in FIG. 1 , the substrate 110 of the present embodiment is, for example, a substrate. The cavity 111 of the substrate 110 is recessed in the substrate 110 and exposes the biological detection layer 180 for receiving the biological target to be tested. It is convenient to carry out the detection of the biological target to be tested, and improve the accuracy of the detection of the biological standard. The material of the first electrode layer 120 may be a metal material such as aluminum, gold, molybdenum or platinum. In this embodiment, the material of the first electrode layer 120 may be platinum. The piezoelectric layer 130 is made of a piezoelectric material, such as aluminum nitride, zinc oxide or barium sulfide. In the present embodiment, the material of the piezoelectric layer 130 may be zinc oxide. The C-axis of the piezoelectric layer 130 and the substrate 110 have an inclination angle θ, and the inclination angle θ is at least less than 90 degrees, preferably less than 70 degrees, to increase the sensing sensitivity.

如圖1所示,本實施例的第二電極層140的材料可例如為鋁、金、鉬或鉑等金屬材料,在本實施例中,此第二電極層140之材料可為鉬。接合金屬層150是形成於空腔111所暴露出的第一電極層120表面上,用以提高親生物性金屬層160與第一電極層120之間的接合強度,使得親生物性金屬層160可穩固地接合於第一電極層120上。在本實施例中,接合金屬層150的材料例如為鉻。親生物性金屬層160是由一高親生物性金屬材料所製成,例如金,用以形成及連接生物檢測層180於空腔111內。在本實施例中,親生物性金屬層160的材料例如為金。保護層170的材料例如為氮化矽(SiNx),用以保護以及在製程中支撐基板110。生物檢測層180是用以捉取待測生物標的,在本實施例中,此生物檢測層180可例如為胱胺酸層。As shown in FIG. 1 , the material of the second electrode layer 140 of the present embodiment may be a metal material such as aluminum, gold, molybdenum or platinum. In this embodiment, the material of the second electrode layer 140 may be molybdenum. The bonding metal layer 150 is formed on the surface of the first electrode layer 120 exposed by the cavity 111 to improve the bonding strength between the bio-organic metal layer 160 and the first electrode layer 120, so that the bio-organic metal layer 160 It can be firmly bonded to the first electrode layer 120. In the present embodiment, the material of the bonding metal layer 150 is, for example, chromium. The bio-organic metal layer 160 is made of a highly bio-metallic material, such as gold, for forming and joining the bio-detection layer 180 within the cavity 111. In the present embodiment, the material of the bio-organic metal layer 160 is, for example, gold. The material of the protective layer 170 is, for example, tantalum nitride (SiNx) for protecting and supporting the substrate 110 in the process. The bio-detection layer 180 is used to capture the biomarker to be tested. In the present embodiment, the bio-detection layer 180 can be, for example, a cystine layer.

請參照圖2A至圖2I,其繪示依照本發明之一實施例之生物感測器的製程示意圖。在本實施例之生物感測器的製造方法中,如圖2A所示,首先,提供基板110。較佳地,此基板110係預先經過一清洗處理步驟,以清洗基板110的表面。接著,如圖2B所示,分別形成保護層170於基板110的相對兩側表面上。在本實施例中,保護層170之形成方法可為低壓化學氣相沉積(Low Pressure Chemical Vapor Deposition,LPCVD)法,以形成例如氮化矽層。接著,如圖2C所示,圖案化基板110之另一側表面上的保護層170,以形成一蝕刻窗口。在本實施例中,此圖案化方法例如為乾式蝕刻法中之反應性離子蝕刻製程。接著,如圖2D所示,形成第一電極層120(例如鉑)於基板110之該側表面上的保護層170上,並暴露出部分保護層170,其中第一電極層120之形成方法係為直流濺鍍法(DC sputter)。接著,如圖2E所示,蝕刻基板110,以形成空腔111。在本實施例中,可利用具有蝕刻窗口的保護層170來作為遮罩,以蝕刻此蝕刻窗口所暴露出的基板110表面,而形成空腔111,並同時暴露出該側表面上的保護層170。其中,基板110的蝕刻方法可為濕式或乾式蝕刻法。此時,可利用微影製程來形成一厚光阻層102於第一電極層120上。Referring to FIG. 2A to FIG. 2I, a schematic diagram of a process of a biosensor according to an embodiment of the present invention is shown. In the method of manufacturing the biosensor of the present embodiment, as shown in FIG. 2A, first, the substrate 110 is provided. Preferably, the substrate 110 is subjected to a cleaning process step in advance to clean the surface of the substrate 110. Next, as shown in FIG. 2B, protective layers 170 are formed on opposite side surfaces of the substrate 110, respectively. In the present embodiment, the protective layer 170 may be formed by a Low Pressure Chemical Vapor Deposition (LPCVD) method to form, for example, a tantalum nitride layer. Next, as shown in FIG. 2C, the protective layer 170 on the other side surface of the substrate 110 is patterned to form an etched window. In the present embodiment, the patterning method is, for example, a reactive ion etching process in a dry etching method. Next, as shown in FIG. 2D, a first electrode layer 120 (eg, platinum) is formed on the protective layer 170 on the side surface of the substrate 110, and a portion of the protective layer 170 is exposed, wherein the method of forming the first electrode layer 120 is It is DC sputter. Next, as shown in FIG. 2E, the substrate 110 is etched to form a cavity 111. In this embodiment, the protective layer 170 having an etched window may be used as a mask to etch the surface of the substrate 110 exposed by the etched window to form the cavity 111 and simultaneously expose the protective layer on the side surface. 170. The etching method of the substrate 110 may be a wet or dry etching method. At this time, a lithography process can be used to form a thick photoresist layer 102 on the first electrode layer 120.

接著,如圖2F所示,形成壓電層(例如氧化鋅)130於第一電極層120上,此壓電層130之形成方法係為射頻濺鍍法(RF sputter)。接著,如圖2G所示,移除厚光阻層102,以暴露出部分第一電極層120表面。此時,例如,可蝕刻部分壓電層130,以形成傾斜側壁131於壓電層130上。接著,如圖2H所示,形成第二電極層140(例如鉬)於壓電層130上,其中第二電極層140之形成方法為直流濺鍍法(DC sputter)。接著,如圖2I所示,蝕刻空腔111內所暴露出的保護層170,以暴露出第一電極層120。接著,依序形成接合金屬層150、親生物性金屬層160及生物檢測層180於空腔111內所暴露出之第一電極層120上,以完成如圖1之具有雙模態薄膜體聲波共振器(FBAR)結構的生物感測器。Next, as shown in FIG. 2F, a piezoelectric layer (for example, zinc oxide) 130 is formed on the first electrode layer 120. The piezoelectric layer 130 is formed by RF sputter. Next, as shown in FIG. 2G, the thick photoresist layer 102 is removed to expose a portion of the surface of the first electrode layer 120. At this time, for example, a portion of the piezoelectric layer 130 may be etched to form the inclined sidewalls 131 on the piezoelectric layer 130. Next, as shown in FIG. 2H, a second electrode layer 140 (eg, molybdenum) is formed on the piezoelectric layer 130, wherein the second electrode layer 140 is formed by a DC sputter method. Next, as shown in FIG. 2I, the protective layer 170 exposed in the cavity 111 is etched to expose the first electrode layer 120. Next, the bonding metal layer 150, the biologically active metal layer 160, and the bio-detection layer 180 are sequentially formed on the first electrode layer 120 exposed in the cavity 111 to complete the bimodal film bulk acoustic wave as shown in FIG. Biosensor with resonator (FBAR) structure.

在本實施例中,當例如形成胱胺酸層來作為生物檢測層180時,可將生物感測器之親生物性金屬層160的表面浸於一胱胺酸溶液中一預設時間(例如1小時),以形成此胱胺酸層,接著再以去離子水(DI water)來清洗此胱胺酸層。In the present embodiment, when, for example, a cystine layer is formed as the biodetection layer 180, the surface of the biosensor metal layer 160 of the biosensor may be immersed in the cysteine solution for a predetermined time (for example, 1 hour) to form the cystine layer, followed by DI water to clean the cystine layer.

當使用本實施例之生物感測器來檢測此待測生物標的時,此生物感測器的空腔111開口可朝上,以作為一檢測槽皿,用以供待測生物標的滴入以及容置,即可直接檢測此待測生物標的,因而大幅提升生物標的的檢測便利性。且由於生物感測器是利用操作頻率較高之雙模態薄膜體聲波共振器(FBAR)結構來檢測,因而亦可大幅地改善感測靈敏度。當待測生物標的在生物感測器的空腔111內進行檢測時,由於待測生物標的參數的變化會造成壓電層130之導電率的改變,進一步會改變壓電層130表面聲波波速,而造成一連接於生物感測器之振盪器電路(未繪示)所輸出的相對振盪頻率隨之改變。其中,聲波波速的改變會受到待測生物標的之種類影響,例如微生物、酵素、抗體等。When the biosensor of the embodiment is used to detect the biomarker to be tested, the cavity 111 of the biosensor may be open upward to serve as a detection trough for the instillation of the biomarker to be tested and By arranging, the biological target to be tested can be directly detected, thereby greatly improving the convenience of detection of the biological target. Moreover, since the biosensor is detected by a bimodal film bulk acoustic resonator (FBAR) structure with a high operating frequency, the sensing sensitivity can be greatly improved. When the biological target to be tested is detected in the cavity 111 of the biosensor, the change of the parameter of the biological target to be tested may cause the conductivity of the piezoelectric layer 130 to change, and further change the surface acoustic wave velocity of the piezoelectric layer 130. The relative oscillation frequency of the oscillator circuit (not shown) connected to the biosensor changes accordingly. Among them, the change of the acoustic wave velocity will be affected by the type of the biological target to be tested, such as microorganisms, enzymes, antibodies, and the like.

在本實施例中,波速改變量與薄膜導電率之關係式可表示為:In this embodiment, the relationship between the amount of change in the wave velocity and the conductivity of the film can be expressed as:

其中,△v為前後波速差、v0為原始波速、k2為機電耦合係數、σ為感測前薄膜導電度、σm為感測後薄膜導電度。Where Δv is the front-to-back wave velocity difference, v 0 is the original wave velocity, k 2 is the electromechanical coupling coefficient, σ is the pre-sensing film conductivity, and σ m is the sensed film conductivity.

再者,本實施例之生物感測器的壓電層130的C軸與基板110之間可具有一傾斜角度,因此,當壓電層130振盪時,除了在壓電層130之垂直方向上的振盪能量之外,在壓電層130的水平方向亦會發生振盪能量的水平分量變化,藉此可增加待測生物標的的檢測分析依據,而可提升生物感測器對於待測生物標的的感測靈敏度。Furthermore, the C-axis of the piezoelectric layer 130 of the biosensor of the present embodiment may have an oblique angle with the substrate 110. Therefore, when the piezoelectric layer 130 oscillates, except in the vertical direction of the piezoelectric layer 130. In addition to the oscillating energy, a horizontal component change of the oscillating energy occurs in the horizontal direction of the piezoelectric layer 130, thereby increasing the detection and analysis basis of the biological target to be tested, and improving the biological sensor for the biological target to be tested. Sensing sensitivity.

由上述本發明的實施例可知,本發明之生物感測器可具有操作頻率較高的雙模態薄膜體聲波共振器(FBAR)結構,並可用以檢測生物標的,因而可大幅地提升感測靈敏度。且由於生物感測器的結構設計,生物感測器的空腔可直接用以作為檢測槽皿,以感測待測生物標的,而提高生物標的檢測的便利性與準確性。再者,相較於一般FBAR結構,本發明之生物感測器的壓電層更具有傾斜側壁設計,用以感測振盪能量的水平分量變化,因而可進一步提升生物感測器的感測靈敏度。It can be seen from the above embodiments of the present invention that the biosensor of the present invention can have a bimodal film bulk acoustic resonator (FBAR) structure with a high operating frequency, and can be used for detecting biological targets, thereby greatly improving the sensing. Sensitivity. And due to the structural design of the biosensor, the cavity of the biosensor can be directly used as a detecting tank to sense the biological target to be tested, thereby improving the convenience and accuracy of the detection of the biological label. Furthermore, compared with the general FBAR structure, the piezoelectric layer of the biosensor of the present invention has a slanted sidewall design for sensing the horizontal component variation of the oscillating energy, thereby further improving the sensing sensitivity of the biosensor. .

綜上所述,雖然本發明已用較佳實施例揭露如上,然其並非用以限定本發明,本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。In view of the above, the present invention has been disclosed in the above preferred embodiments, and is not intended to limit the invention, and the present invention may be made without departing from the spirit and scope of the invention. Various modifications and refinements are made, and the scope of the present invention is defined by the scope of the appended claims.

102...厚光阻層102. . . Thick photoresist layer

110...基板110. . . Substrate

111...空腔111. . . Cavity

120...第一電極層120. . . First electrode layer

130...壓電層130. . . Piezoelectric layer

140...第二電極層140. . . Second electrode layer

150...接合金屬層150. . . Bonding metal layer

160...親生物性金屬層160. . . Bio-organic metal layer

170...保護層170. . . The protective layer

180...生物檢測層180. . . Bioassay layer

為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之詳細說明如下:The above and other objects, features, advantages and embodiments of the present invention will become more apparent and understood.

圖1繪示依照本發明之一實施例之生物感測器的剖面示意圖。1 is a cross-sectional view of a biosensor in accordance with an embodiment of the present invention.

圖2A至圖2I繪示依照本發明之一實施例之生物感測器的製程示意圖。2A to 2I are schematic diagrams showing the process of a biosensor according to an embodiment of the present invention.

110...基板110. . . Substrate

111...空腔111. . . Cavity

120...第一電極層120. . . First electrode layer

130...壓電層130. . . Piezoelectric layer

140...第二電極層140. . . Second electrode layer

150...接合金屬層150. . . Bonding metal layer

160...親生物性金屬層160. . . Bio-organic metal layer

170...保護層170. . . The protective layer

180...生物檢測層180. . . Bioassay layer

Claims (10)

一種生物感測器,包含:一基板,具有一空腔,用以容納一待測生物標的;一第一電極層,形成於該基板的一側;一壓電層,形成於該基板的該側,其中該壓電層是至少部分覆蓋於該第一電極層上,且該壓電層的C軸與該基板之間具有一傾斜角度,其小於90度;一第二電極層,形成於該壓電層上;一接合金屬層,形成於該空腔內,並位於該第一電極層上;一親生物性金屬層,形成於該接合金屬層上;以及一生物檢測層,形成於該親生物性金屬層上。A biosensor includes: a substrate having a cavity for accommodating a biological target to be tested; a first electrode layer formed on one side of the substrate; and a piezoelectric layer formed on the side of the substrate The piezoelectric layer is at least partially covered on the first electrode layer, and the C-axis of the piezoelectric layer has an oblique angle with the substrate, which is less than 90 degrees; a second electrode layer is formed on the a piezoelectric layer formed in the cavity and located on the first electrode layer; a bio-organic metal layer formed on the bonding metal layer; and a bio-detection layer formed on the piezoelectric layer On the biological layer of the metal. 如申請專利範圍第1項所述之生物感測器,其中該傾斜角度是小於70度。The biosensor of claim 1, wherein the tilt angle is less than 70 degrees. 如申請專利範圍第1項所述之生物感測器,更包含:二保護層,形成於該基板的相對兩側,並暴露出該空腔及該親生物性金屬層。The biosensor of claim 1, further comprising: a second protective layer formed on opposite sides of the substrate and exposing the cavity and the biological metal layer. 如申請專利範圍第1項所述之生物感測器,其中該接合金屬層的材料為鉻。The biosensor of claim 1, wherein the material of the bonding metal layer is chromium. 如申請專利範圍第1項所述之生物感測器,其中該親生物性金屬層的材料為金。The biosensor of claim 1, wherein the material of the biophilic metal layer is gold. 如申請專利範圍第1項所述之生物感測器,其中該壓電層的材料為氮化鋁、氧化鋅或硫化哂。The biosensor of claim 1, wherein the piezoelectric layer is made of aluminum nitride, zinc oxide or barium sulfide. 如申請專利範圍第1項所述之生物感測器,其中該生物檢測層為一胱胺酸層。The biosensor of claim 1, wherein the biodetection layer is a cysteine layer. 一種生物感測器的製造方法,包含如下步驟:提供一基板;形成一第一電極層於該基板的一側;蝕刻該基板,以形成一空腔;形成一壓電層於該基板的該側,其中該壓電層是至少部分覆蓋於該第一電極層上,並暴露出該第一電極層,且該壓電層的C軸與該基板之間具有一傾斜角度,其小於90度;形成一第二電極層於該壓電層上;形成一接合金屬層於該空腔內,並位於該第一電極層上;形成一親生物性金屬層於該接合金屬層上;以及形成一生物檢測層於該親生物性金屬層上。A method of manufacturing a biosensor, comprising: providing a substrate; forming a first electrode layer on one side of the substrate; etching the substrate to form a cavity; forming a piezoelectric layer on the side of the substrate The piezoelectric layer is at least partially covered on the first electrode layer, and exposes the first electrode layer, and the C-axis of the piezoelectric layer and the substrate have an oblique angle, which is less than 90 degrees; Forming a second electrode layer on the piezoelectric layer; forming a bonding metal layer in the cavity and located on the first electrode layer; forming a bio-organic metal layer on the bonding metal layer; and forming a A biodetection layer is on the biophilic metal layer. 如申請專利範圍第8項所述之方法,其中該傾斜角度是小於70度。The method of claim 8, wherein the angle of inclination is less than 70 degrees. 如申請專利範圍第8項所述之方法,其中該生物檢測層為一胱胺酸層,該親生物性金屬層的表面是浸於一胱胺酸溶液中一預設時間,以形成該胱胺酸層。The method of claim 8, wherein the biodetection layer is a cysteine layer, and the surface of the biophilic metal layer is immersed in a cysteine solution for a predetermined period of time to form the cyst Amine acid layer.
TW100128198A 2011-08-08 2011-08-08 Biosensor and manufacturing method thereof TW201307840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100128198A TW201307840A (en) 2011-08-08 2011-08-08 Biosensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100128198A TW201307840A (en) 2011-08-08 2011-08-08 Biosensor and manufacturing method thereof

Publications (1)

Publication Number Publication Date
TW201307840A true TW201307840A (en) 2013-02-16

Family

ID=48169769

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100128198A TW201307840A (en) 2011-08-08 2011-08-08 Biosensor and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TW201307840A (en)

Similar Documents

Publication Publication Date Title
US20060230833A1 (en) Wireless oil filter sensor
TWI427290B (en) A gas sensor and method thereof
CN101846653B (en) Piezoelectric film bulk acoustic wave sensor with polygonal electrodes
US20070000327A1 (en) Acoustic wave sensing device integrated with micro-channels and method for the same
US10942191B2 (en) Sensor, detection method, detection system, and detection apparatus
CN103472129A (en) Resonance sensor for fluid environment detection
JP6633034B2 (en) Sensor device
CN113162568A (en) Film bulk acoustic resonator with passivation layer and preparation method
García-Gancedo et al. Direct comparison of the gravimetric responsivities of ZnO-based FBARs and SMRs
JP2020180981A (en) Sensor device
US7936106B2 (en) Surface acoustic wave sensor device
JP2020060588A (en) Sensor element and sensor device
US11346814B2 (en) Resonator for the detection of a mass analyte and method for operation of the resonator
CN102937607A (en) Series-connection flexible vibration piezoelectric diaphragm type biosensor and preparation method thereof
JP2007201772A (en) Manufacturing method of acoustic wave element, manufacturing method of electronic device, mask and manufacturing method of mask
US20220364885A1 (en) Piezoelectric Sensor and Manufacturing Method Therefor, and Detection Apparatus
WO2015046577A1 (en) Sensor, detection method, detection system, and detection device
Fernández et al. High Fundamental Frequency (HFF) Monolithic Resonator Arrays for Biosensing Applications: Design, Simulations, and Experimental Characterization
TW201307840A (en) Biosensor and manufacturing method thereof
US9140671B2 (en) Quantitative sensor and manufacturing method thereof
TWI507683B (en) Fluid sensor and manufacturing method thereof
JP4039284B2 (en) Method for manufacturing mass measuring piezoelectric vibrator, mass measuring piezoelectric vibrator and mass measuring apparatus
JPH1019769A (en) Surface plasmon sensor
JP2006314007A (en) Method of manufacturing piezoelectric vibration piece, and the piezoelectric vibrator
US11009487B2 (en) Multi-modal biosensor having an acoustic detector with integrated optical interferometry