TW201306289A - Solar cell structure having a nano anti-reflection layer - Google Patents

Solar cell structure having a nano anti-reflection layer Download PDF

Info

Publication number
TW201306289A
TW201306289A TW100126490A TW100126490A TW201306289A TW 201306289 A TW201306289 A TW 201306289A TW 100126490 A TW100126490 A TW 100126490A TW 100126490 A TW100126490 A TW 100126490A TW 201306289 A TW201306289 A TW 201306289A
Authority
TW
Taiwan
Prior art keywords
layer
solar cell
nano
substrate
nano anti
Prior art date
Application number
TW100126490A
Other languages
Chinese (zh)
Other versions
TWI482296B (en
Inventor
Tsung-Ming Tsai
Ting-Chang Chang
Kuan-Chang Chang
Yong-En Syu
cheng-hua Li
Original Assignee
Univ Nat Sun Yat Sen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Sun Yat Sen filed Critical Univ Nat Sun Yat Sen
Priority to TW100126490A priority Critical patent/TWI482296B/en
Publication of TW201306289A publication Critical patent/TW201306289A/en
Application granted granted Critical
Publication of TWI482296B publication Critical patent/TWI482296B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A solar cell structure includes a substrate, a nano anti-reflection layer, a p-i-n structure and a transparent conductive layer. The substrate has a first electrode formed thereon. The nano anti-reflection layer and the p-i-n structure are provided on the substrate and the transparent conductive layer is provided on the p-i-n structure so as to form a second electrode. The nano anti-reflection layer is used to reduce a reflection degree of solar radiation incident so as to enhance an efficiency of solar energy conversion.

Description

具奈米抗反射層之太陽能電池構造Solar cell structure with nano anti-reflection layer

本發明係關於一種具奈米抗反射層之太陽能電池構造;特別是關於一種採用低溫技術形成具奈米抗反射層之太陽能電池構造。The present invention relates to a solar cell construction having a nano anti-reflection layer; and more particularly to a solar cell construction using a low temperature technique to form a nano antireflection layer.

舉例而言,在太陽能轉換效率上,矽晶製成的太陽能電池除了受僅能吸收特定電子伏特以上的太陽光能所限制外,尚受限於太陽反射光造成的損失、材料對太陽光的吸收能力不足、載子在尚未被導出之前就被材料中的缺陷捕捉而失效,或是載子受到材料表面的懸浮鍵結捕捉產生復合等諸多因素,因而導致其轉換效率下降。因此,為了提升矽晶太陽能電池的高效率化,其設有一抗反射層,以減低發生太陽光反射。For example, in terms of solar energy conversion efficiency, a solar cell made of twins is limited by the solar light energy that can absorb only a certain electron volt or more, and is still limited by the loss of the sun reflected light and the material to the sunlight. Insufficient absorptive capacity, failure of the carrier to be captured by defects in the material before it has been exported, or the carrier being captured by the suspension bond on the surface of the material to produce a composite, etc., resulting in a decrease in conversion efficiency. Therefore, in order to improve the efficiency of the twin solar cell, an anti-reflection layer is provided to reduce the occurrence of solar reflection.

習用太陽能電池構造,如中華民國專利申請公開第200933911號之〝具抗反射層之太陽能電池〞專利申請案,其揭示一種具抗反射層之太陽能電池。該具抗反射層之太陽能電池包含一基板、至少一抗反射疊層、至少一正面電極及至少一背面電極。基板具有一正面及一背面,並具有接近背面之一第一型半導體層及接近正面之一第二型半導體層。抗反射疊層形成於基板之正面上,且包含複數個高折射率材料層及複數個低折射率材料層。此等高折射率材料層及此等低折射率材料層互相交錯疊置,且此等低折射率材料層之其一位於基板之正面上,各高折射率材料層之折射率大於各低折射率材料層之折射率。正面電極係形成於抗反射疊層上,並電性連接於該第二型半導體層。背面電極係形成於基板之背面,並電性連接於該第一型半導體層。A solar cell structure of a solar cell having an antireflection layer, such as the solar cell of the anti-reflection layer of the Republic of China Patent Application Publication No. 200933911, discloses a solar cell having an anti-reflection layer. The anti-reflection layer solar cell comprises a substrate, at least one anti-reflection laminate, at least one front electrode and at least one back electrode. The substrate has a front side and a back side, and has a first type semiconductor layer close to the back side and a second type semiconductor layer close to the front side. The anti-reflective laminate is formed on the front surface of the substrate and includes a plurality of layers of high refractive index material and a plurality of layers of low refractive index material. The layers of the high refractive index material and the layers of the low refractive index material are interlaced with each other, and one of the layers of the low refractive index material is located on the front surface of the substrate, and the refractive index of each of the high refractive index material layers is greater than each of the low refractive indices. Rate the refractive index of the material layer. The front electrode is formed on the anti-reflective layer and electrically connected to the second type semiconductor layer. The back electrode is formed on the back surface of the substrate and electrically connected to the first type semiconductor layer.

另一習用太陽能電池構造,如中華民國專利申請公開第200933905號之〝應用於太陽能電池之多層膜抗反射層〞專利申請案,其揭示一種具多層膜抗反射層之太陽能電池。該具多層膜抗反射層之太陽能電池主要是使用多層膜來當作矽基或薄膜太陽能電池的抗反射層,以提升透光率達到吸收更多光源,提高矽基或薄膜太陽能電池的效率,可減少對光伏打作用層蝕刻等相關之半導體製程,而減少製造更複雜的矽基或薄膜太陽能電池效率結構,即能提高生產矽基或薄膜太陽能電池之效能。Another conventional solar cell construction, such as the multi-layer anti-reflective coating for solar cells, is disclosed in the Patent Application Publication No. 200933905, which discloses a solar cell having a multilayer film anti-reflection layer. The solar cell with the multilayer film anti-reflection layer mainly uses a multilayer film as an anti-reflection layer of a bismuth-based or thin film solar cell to increase the transmittance to absorb more light sources and improve the efficiency of the bismuth-based or thin-film solar cell. It can reduce the related semiconductor processes such as photovoltaic layer etching, and reduce the efficiency of manufacturing more complex germanium-based or thin-film solar cells, which can improve the performance of germanium-based or thin-film solar cells.

另一習用太陽能電池構造,如中華民國專利申請公開第200840070號之〝製造太陽能電池之抗反射層或鈍化層的方法及裝置〞專利申請案,其揭示一種具多層膜抗反射層之太陽能電池。該太陽能電池之抗反射及/或鈍化塗層的製造方法藉由濺鍍方式沉積一含氫抗反射及/或鈍化塗層於矽晶圓上。Another conventional solar cell construction, such as the method and apparatus for fabricating an anti-reflective or passivation layer for a solar cell, is disclosed in the Patent Application Publication No. 200840070, which discloses a solar cell having a multilayer film antireflection layer. The method of fabricating an anti-reflective and/or passivating coating for a solar cell deposits a hydrogen-containing anti-reflective and/or passivating coating on a germanium wafer by sputtering.

另一習用太陽能電池構造,如美國專利申請公開第20110027935號之〝Method for making a full-spectrum solar cell with an anti-reflection layer doped with silicon quantum dots〞專利申請案,其揭示一種具抗反射層之太陽能電池。該太陽能電池之抗反射層[anti-reflection layer]由氮化矽[silicon nitride]或氮化矽[silicon oxide]薄膜形成。Another conventional solar cell construction, such as the method for making a full-spectrum solar cell with an anti-reflection layer doped with silicon quantum dots, which discloses an anti-reflective layer. Solar battery. The anti-reflection layer of the solar cell is formed of a silicon nitride or a silicon oxide film.

然而,前述中華民國專利申請公開第200933911號、第200933905號、第200840070號及美國專利申請公開第20110027935號僅設置一般的抗反射層,其在提升太陽能轉換效率上尚有相當大的空間。因此,習用太陽能電池存在有必要進一步提供更高太陽能轉換效率的需求。前述諸中華民國及美國專利申請公開案僅為本發明技術背景之參考及說明目前技術發展狀態而已,其並非用以限制本發明。However, the above-mentioned Republic of China Patent Application Publication No. 200933911, No. 200933905, No. 200840070, and U.S. Patent Application Publication No. 20110027935 only provide a general anti-reflection layer, which has a considerable space for improving solar energy conversion efficiency. Therefore, there is a need in the conventional solar cell to further provide a higher solar energy conversion efficiency. The foregoing descriptions of the present invention are not intended to limit the present invention.

有鑑於此,本發明為了滿足上述需求,其提供一種具奈米抗反射層之太陽能電池構造,其利用一奈米抗反射層提供一奈米化構造,且該奈米化構造用以降低太陽光反射率,以解決習用太陽能電池的太陽能轉換效率不高的問題。In view of the above, the present invention provides a solar cell structure having a nano anti-reflection layer, which provides a nanostructure using a nano anti-reflection layer, and the nanostructure is used to reduce the sun. Light reflectivity to solve the problem of low solar energy conversion efficiency of conventional solar cells.

本發明之主要目的係提供一種具奈米抗反射層之太陽能電池構造,其利用一奈米抗反射層提供一奈米化構造,且該奈米化構造用以降低太陽光反射率,以達成提升太陽能轉換效率之目的。The main object of the present invention is to provide a solar cell structure having a nano anti-reflection layer, which provides a nanostructure using a nanometer anti-reflection layer, and the nanostructure is used to reduce the solar reflectance to achieve Improve the efficiency of solar energy conversion.

為了達成上述目的,本發明之太陽能電池構造包含:一基板,其由一透明材質製成,該基板具有一第一電極層;至少一奈米抗反射層,其設置於該基板上,該奈米抗反射層提供一奈米化構造;一p型半導體層,其設置於該奈米抗反射層上;一i發電層,其設置於該p型半導體層上;一n型半導體層,其設置於該i發電層上;及一透明導電膜層,其設置於該n型半導體層上,以形成一第二電極層;其中該奈米抗反射層之奈米化構造用以阻止太陽光發生反射,以降低太陽光反射率,以便提升太陽能轉換效率。In order to achieve the above object, a solar cell structure of the present invention comprises: a substrate made of a transparent material, the substrate having a first electrode layer; at least one nanometer anti-reflection layer disposed on the substrate, the nano-layer The anti-reflective layer provides a nanostructure; a p-type semiconductor layer disposed on the nano anti-reflection layer; an i-generation layer disposed on the p-type semiconductor layer; and an n-type semiconductor layer Provided on the i-generation layer; and a transparent conductive film layer disposed on the n-type semiconductor layer to form a second electrode layer; wherein the nano anti-reflection layer is configured to block sunlight Reflection occurs to reduce the solar reflectance in order to improve solar energy conversion efficiency.

本發明另一較佳實施例之太陽能電池構造包含:一基板,其由一透明材質製成,該基板具有一第一電極層;至少一奈米抗反射層,其設置於該基板上,該奈米抗反射層提供一奈米化構造;一p-i-n結構層,其設置於該基板上,該p-i-n結構層形成一p-n接面層;及一透明導電膜層,其設置於該p-i-n結構層上,以形成一第二電極層;其中該奈米抗反射層及p-i-n結構層設置於該基板及透明導電膜層之間。A solar cell structure according to another preferred embodiment of the present invention comprises: a substrate made of a transparent material, the substrate having a first electrode layer; and at least one nanometer anti-reflection layer disposed on the substrate, The nano anti-reflective layer provides a nanostructure; a pin structure layer is disposed on the substrate, the pin structure layer forms a pn junction layer; and a transparent conductive film layer is disposed on the pin structure layer Forming a second electrode layer; wherein the nano anti-reflective layer and the pin structure layer are disposed between the substrate and the transparent conductive film layer.

本發明較佳實施例之該p-i-n結構層具有一第一側及一第二側,該奈米抗反射層設置於該p-i-n結構層之第一側或第二側。In the preferred embodiment of the present invention, the p-i-n structural layer has a first side and a second side, and the nano anti-reflective layer is disposed on the first side or the second side of the p-i-n structural layer.

本發明較佳實施例之該奈米化構造包含數個奈米柱或數個奈米管。The nanostructure of the preferred embodiment of the invention comprises a plurality of nano-pillars or a plurality of nanotubes.

本發明較佳實施例之該奈米抗反射層成長於一金屬層上。In the preferred embodiment of the invention, the nano anti-reflective layer is grown on a metal layer.

本發明較佳實施例之該奈米抗反射層係屬一氧化鋅層[ZnO]。The nano antireflection layer of the preferred embodiment of the invention is a zinc oxide layer [ZnO].

本發明較佳實施例之該透明導電膜層具有數個電極。The transparent conductive film layer of the preferred embodiment of the invention has a plurality of electrodes.

本發明較佳實施例之該電極為一銀電極層。In the preferred embodiment of the invention, the electrode is a silver electrode layer.

本發明較佳實施例之該太陽能電池可選自單晶矽太陽能電池、多晶矽太陽能電池或非晶矽太陽能電池。The solar cell of the preferred embodiment of the invention may be selected from a single crystal germanium solar cell, a polycrystalline germanium solar cell or an amorphous germanium solar cell.

為了充分瞭解本發明,於下文將例舉較佳實施例並配合所附圖式作詳細說明,且其並非用以限定本發明。In order to fully understand the present invention, the preferred embodiments of the present invention are described in detail below and are not intended to limit the invention.

本發明較佳實施例之太陽能電池構造之奈米抗反射層可形成於各種太陽能電池,例如:單晶矽、多晶矽、非晶矽、砷化鎵[GaAs]、銻化鎘[CdTe]或銅銦硒[CIGS]之薄膜式太陽能電池,但其並非用以限定本發明之範圍。舉例而言,本發明較佳實施例之單一個或數個該奈米抗反射層可成長於太陽能電池內部,但其並非用以限定本發明之範圍。The nano antireflection layer of the solar cell structure of the preferred embodiment of the present invention can be formed on various solar cells, such as: single crystal germanium, polycrystalline germanium, amorphous germanium, gallium arsenide [GaAs], cadmium telluride [CdTe] or copper. Thin film solar cells of indium selenide [CIGS], but are not intended to limit the scope of the invention. For example, one or more of the nano anti-reflective layers of the preferred embodiment of the present invention can be grown inside a solar cell, but it is not intended to limit the scope of the invention.

第1圖揭示本發明較佳實施例之具奈米抗反射層之太陽能電池構造之側剖視示意圖。第2圖揭示本發明較佳實施例製造具奈米抗反射層之太陽能電池構造之流程方塊圖。請參照第1及2圖所示,本發明較佳實施例之太陽能電池構造包含一基板11、至少一奈米抗反射層12、一p型半導體層13、一i發電層14、一n型半導體層15及一透明導電膜層16,其中該p型半導體層13、i發電層14及n型半導體層15組成一p-i-n結構層。BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a side cross-sectional view showing the construction of a solar cell having a nano antireflection layer in accordance with a preferred embodiment of the present invention. Figure 2 is a block diagram showing the construction of a solar cell structure having a nano anti-reflective layer in accordance with a preferred embodiment of the present invention. Referring to FIGS. 1 and 2, the solar cell structure of the preferred embodiment of the present invention comprises a substrate 11, at least one nano anti-reflection layer 12, a p-type semiconductor layer 13, an i-generation layer 14, and an n-type. The semiconductor layer 15 and a transparent conductive film layer 16, wherein the p-type semiconductor layer 13, the i-power generating layer 14, and the n-type semiconductor layer 15 constitute a pin structure layer.

請再參照第1及2圖所示,該基板11由一透明材質製成,例如:各種玻璃[ITO glass]或其它透明材質,以便可供太陽光[含可見光、紅外光及紫外光]入射至該太陽能電池構造之內部。另外,本發明較佳實施例之該基板11具有一第一電極層110,且該第一電極層110可選自一鋅金屬電極層。Referring to FIGS. 1 and 2 again, the substrate 11 is made of a transparent material such as various ITO glass or other transparent materials for incident sunlight (including visible light, infrared light, and ultraviolet light). To the inside of the solar cell construction. In addition, in the preferred embodiment of the present invention, the substrate 11 has a first electrode layer 110, and the first electrode layer 110 can be selected from a zinc metal electrode layer.

請再參照第1及2圖所示,該奈米抗反射層12可選擇設置單一抗反射層或多層抗反射層。在抗反射構造上,該奈米抗反射層12提供一奈米化構造,且該奈米化構造包含數個奈米柱[nano pillar]或數個奈米管[nano tube]。在太陽能電池內,該奈米抗反射層12之奈米化構造用以阻止自該基板11一側入射之太陽光發生反射,以降低太陽光反射率,以便提升太陽能轉換效率。Referring to FIGS. 1 and 2 again, the nano anti-reflection layer 12 may be provided with a single anti-reflection layer or a plurality of anti-reflection layers. The anti-reflective layer 12 provides a nanostructure in an anti-reflective configuration, and the nanostructure comprises a plurality of nanopiles or a plurality of nanotubes. In the solar cell, the nanostructure of the nano anti-reflection layer 12 serves to prevent reflection of sunlight incident from the side of the substrate 11 to reduce the reflectance of the solar light in order to improve the solar energy conversion efficiency.

請再參照第1及2圖所示,該奈米抗反射層12設置於該基板11之第一電極層110上。舉例而言,該奈米抗反射層12成長於一金屬層[例如:鋅]上,即該奈米抗反射層12以適當方式直接成長[growth]於該基板11上。或,本發明另一較佳實施例將預先成長的奈米構造另以適當製程[例如:印刷製程]移轉至該基板11上,但其並非用以限定本發明之範圍。另外,本發明較佳實施例之該奈米抗反射層係屬一氧化鋅層[ZnO]或其它材料層。Referring to FIGS. 1 and 2 again, the nano anti-reflective layer 12 is disposed on the first electrode layer 110 of the substrate 11. For example, the nano anti-reflective layer 12 is grown on a metal layer [eg, zinc], that is, the nano anti-reflective layer 12 is directly grown on the substrate 11 in an appropriate manner. Alternatively, another preferred embodiment of the present invention transfers the pre-grown nanostructure to the substrate 11 by a suitable process [e.g., a printing process], but it is not intended to limit the scope of the invention. Further, the nano antireflection layer of the preferred embodiment of the invention is a zinc oxide layer [ZnO] or other material layer.

請再參照第1及2圖所示,將該p型半導體層13設置於該奈米抗反射層12上。相對的,再將該i發電層14設置於該p型半導體層上,而該i發電層14由無掺質材料製成,且將該i發電層14之厚度適當降低。相對的,再將該n型半導體層15設置於該i發電層14上,以形成該p-i-n結構層。當太陽光入射至該p型半導體層13及n型半導體層15時,在該i發電層14內產生一內建電場。Referring to FIGS. 1 and 2 again, the p-type semiconductor layer 13 is provided on the nano anti-reflection layer 12. In contrast, the i power generation layer 14 is disposed on the p-type semiconductor layer, and the i power generation layer 14 is made of a non-doped material, and the thickness of the i power generation layer 14 is appropriately lowered. In contrast, the n-type semiconductor layer 15 is further disposed on the i-power generating layer 14 to form the p-i-n structural layer. When sunlight is incident on the p-type semiconductor layer 13 and the n-type semiconductor layer 15, a built-in electric field is generated in the i-power generation layer 14.

請再參照第1圖所示,在該p-i-n結構層中,將該i發電層14以三明治[sandwiched]方式夾設於該p型半導體層13及n型半導體層15之間,以便利用該p-i-n結構層形成一p-n接面層。此時,該奈米抗反射層12鄰接於該p-i-n結構層[第一側]之p型半導體層13。或,本發明另一較佳實施例將該奈米抗反射層12鄰接於該p-i-n結構層[第二側]之n型半導體層15。Referring to FIG. 1 again, in the pin structure layer, the i power generation layer 14 is sandwiched between the p-type semiconductor layer 13 and the n-type semiconductor layer 15 so as to utilize the pin. The structural layer forms a pn junction layer. At this time, the nano anti-reflection layer 12 is adjacent to the p-type semiconductor layer 13 of the [first side] of the p-i-n structure layer. Alternatively, in another preferred embodiment of the present invention, the nano anti-reflective layer 12 is adjacent to the n-type semiconductor layer 15 of the p-i-n structural layer [second side].

請再參照第1及2圖所示,該透明導電膜層16設置於由該p型半導體層13、i發電層14及n型半導體層15組成之p-i-n結構層上,以形成一第二電極層,其對應於該基板11之第一電極層110,以便輸出光電轉換電流。本發明較佳實施例之該透明導電膜層16具有數個電極160,且該電極160為一銀電極層。Referring to FIGS. 1 and 2 again, the transparent conductive film layer 16 is disposed on the pin structure layer composed of the p-type semiconductor layer 13, the i-power generation layer 14, and the n-type semiconductor layer 15 to form a second electrode. A layer corresponding to the first electrode layer 110 of the substrate 11 to output a photoelectric conversion current. In the preferred embodiment of the present invention, the transparent conductive film layer 16 has a plurality of electrodes 160, and the electrode 160 is a silver electrode layer.

第3圖揭示本發明較佳實施例之太陽能電池構造形成奈米抗反射層之掃瞄式電子顯微鏡[SEM]照片,其對照於第2圖之奈米抗反射層。請參照第1及3圖所示,該奈米抗反射層12之奈米柱或奈米管以隨機方式[randomly]往上成長,其用以降低入射太陽光之反射率,因而可有效提升光電轉換效率之功效。Fig. 3 is a scanning electron microscope [SEM] photograph showing the formation of a nano antireflection layer in a solar cell structure according to a preferred embodiment of the present invention, which is compared with the nano antireflection layer of Fig. 2. Referring to Figures 1 and 3, the nano-column or nanotube of the nano anti-reflection layer 12 grows in a random manner [randomly], which is used to reduce the reflectance of incident sunlight, thereby effectively improving The efficacy of photoelectric conversion efficiency.

前述較佳實施例僅舉例說明本發明及其技術特徵,該實施例之技術仍可適當進行各種實質等效修飾及/或替換方式予以實施;因此,本發明之權利範圍須視後附申請專利範圍所界定之範圍為準。The foregoing preferred embodiments are merely illustrative of the invention and the technical features thereof, and the techniques of the embodiments can be carried out with various substantial equivalent modifications and/or alternatives; therefore, the scope of the invention is subject to the appended claims. The scope defined by the scope shall prevail.

11...基板11. . . Substrate

110...第一電極層110. . . First electrode layer

12...奈米抗反射層12. . . Nano anti-reflection layer

13...p型半導體層13. . . P-type semiconductor layer

14...i發電層14. . . i power generation layer

15...n型半導體層15. . . N-type semiconductor layer

16...透明導電膜層16. . . Transparent conductive film layer

160...電極160. . . electrode

第1圖:本發明較佳實施例之具奈米抗反射層之太陽能電池構造之側剖視示意圖。BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a side cross-sectional view showing the structure of a solar cell having a nano antireflection layer in accordance with a preferred embodiment of the present invention.

第2圖:本發明較佳實施例製造具奈米抗反射層之太陽能電池構造之流程方塊圖。Figure 2 is a block diagram showing the construction of a solar cell structure having a nano anti-reflective layer in accordance with a preferred embodiment of the present invention.

第3圖:本發明較佳實施例之太陽能電池構造形成奈米抗反射層之掃瞄式電子顯微鏡[SEM]照片。Fig. 3 is a scanning electron microscope [SEM] photograph of a solar cell structure of a preferred embodiment of the present invention to form a nano antireflection layer.

11...基板11. . . Substrate

110...第一電極層110. . . First electrode layer

12...奈米抗反射層12. . . Nano anti-reflection layer

13...p型半導體層13. . . P-type semiconductor layer

14...i發電層14. . . i power generation layer

15...n型半導體層15. . . N-type semiconductor layer

16...透明導電膜層16. . . Transparent conductive film layer

160...電極160. . . electrode

Claims (9)

一種太陽能電池構造,其包含:一基板,其由一透明材質製成,該基板具有一第一電極層;至少一奈米抗反射層,其設置於該基板上,該奈米抗反射層提供一奈米化構造;一p型半導體層,其設置於該奈米抗反射層上;一i發電層,其設置於該p型半導體層上;一n型半導體層,其設置於該i發電層上;及一透明導電膜層,其設置於該n型半導體層上,以形成一第二電極層;其中該奈米抗反射層之奈米化構造用以阻止太陽光發生反射,以降低太陽光反射率,以便提升太陽能轉換效率。A solar cell structure comprising: a substrate made of a transparent material, the substrate having a first electrode layer; at least one nano anti-reflective layer disposed on the substrate, the nano anti-reflective layer provided a nano-structure; a p-type semiconductor layer disposed on the nano anti-reflection layer; an i-power generation layer disposed on the p-type semiconductor layer; and an n-type semiconductor layer disposed on the i-generation And a transparent conductive film layer disposed on the n-type semiconductor layer to form a second electrode layer; wherein the nano-anti-reflective layer has a nano-structure to prevent sunlight from being reflected to reduce Solar reflectance to improve solar energy conversion efficiency. 一種太陽能電池構造,其包含:一基板,其由一透明材質製成,該基板具有一第一電極層;至少一奈米抗反射層,其設置於該基板上,該奈米抗反射層提供一奈米化構造;一p-i-n結構層,其設置於該基板上,該p-i-n結構層形成一p-n接面層;及一透明導電膜層,其設置於該p-i-n結構層上,以形成一第二電極層;其中該奈米抗反射層及p-i-n結構層設置於該基板及透明導電膜層之間。A solar cell structure comprising: a substrate made of a transparent material, the substrate having a first electrode layer; at least one nano anti-reflective layer disposed on the substrate, the nano anti-reflective layer provided a nanostructure; a pin structure layer disposed on the substrate, the pin structure layer forming a pn junction layer; and a transparent conductive film layer disposed on the pin structure layer to form a second The electrode layer; wherein the nano anti-reflection layer and the pin structure layer are disposed between the substrate and the transparent conductive film layer. 依申請專利範圍第2項所述之太陽能電池構造,其中該p-i-n結構層具有一第一側及一第二側,該奈米抗反射層設置於該p-i-n結構層之第一側或第二側。The solar cell structure of claim 2, wherein the pin structure layer has a first side and a second side, and the nano anti-reflection layer is disposed on the first side or the second side of the pin structure layer. . 依申請專利範圍第1或2項所述之太陽能電池構造,其中該奈米化構造包含數個奈米柱或數個奈米管。The solar cell construction of claim 1 or 2, wherein the nanostructure comprises a plurality of nano-pillars or a plurality of nanotubes. 依申請專利範圍第1或2項所述之太陽能電池構造,其中該奈米抗反射層成長於一金屬層上。The solar cell structure of claim 1 or 2, wherein the nano anti-reflective layer is grown on a metal layer. 依申請專利範圍第1或2項所述之太陽能電池構造,其中該奈米抗反射層係屬一氧化鋅層。The solar cell structure of claim 1 or 2, wherein the nano anti-reflective layer is a zinc oxide layer. 依申請專利範圍第1或2項所述之太陽能電池構造,其中該透明導電膜層具有數個電極。The solar cell structure according to claim 1 or 2, wherein the transparent conductive film layer has a plurality of electrodes. 依申請專利範圍第7項所述之太陽能電池構造,其中該電極為一銀電極層。The solar cell structure of claim 7, wherein the electrode is a silver electrode layer. 依申請專利範圍第1或2項所述之太陽能電池構造,其中該太陽能電池可選自單晶矽太陽能電池、多晶矽太陽能電池或非晶矽太陽能電池。The solar cell structure of claim 1 or 2, wherein the solar cell is selected from the group consisting of a single crystal germanium solar cell, a polycrystalline germanium solar cell, or an amorphous germanium solar cell.
TW100126490A 2011-07-27 2011-07-27 Solar cell structure having a nano anti-reflection layer TWI482296B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100126490A TWI482296B (en) 2011-07-27 2011-07-27 Solar cell structure having a nano anti-reflection layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100126490A TWI482296B (en) 2011-07-27 2011-07-27 Solar cell structure having a nano anti-reflection layer

Publications (2)

Publication Number Publication Date
TW201306289A true TW201306289A (en) 2013-02-01
TWI482296B TWI482296B (en) 2015-04-21

Family

ID=48169300

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100126490A TWI482296B (en) 2011-07-27 2011-07-27 Solar cell structure having a nano anti-reflection layer

Country Status (1)

Country Link
TW (1) TWI482296B (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201121065A (en) * 2009-12-11 2011-06-16 Metal Ind Res Anddevelopment Ct Thin-film solar cells containing nanocrystalline silicon and microcrystalline silicon.

Also Published As

Publication number Publication date
TWI482296B (en) 2015-04-21

Similar Documents

Publication Publication Date Title
TWI438904B (en) Method for obtaining high performance thin film devices deposited on highly textured substrates
CN109004053B (en) Crystalline silicon/thin film silicon heterojunction solar cell with double-sided light receiving function and manufacturing method thereof
US7893348B2 (en) Nanowires in thin-film silicon solar cells
Tan et al. Highly transparent modulated surface textured front electrodes for high‐efficiency multijunction thin‐film silicon solar cells
US20090165845A1 (en) Back contact module for solar cell
JPWO2005011002A1 (en) Silicon-based thin film solar cell
ITMI20070480A1 (en) SOLAR CELLAR CELL WITH SOLAR CELL BASED ON SILICON AMORFO
KR20110039697A (en) Compound semiconductor solar cells and methods of fabricating the same
US20120073641A1 (en) Solar cell apparatus having the transparent conducting layer with the structure as a plurality of nano-level well-arranged arrays
KR20110070541A (en) Thin film solar cell and method for fabricaitng the same
TW201128789A (en) New structure solar cell with superlattices
US20130104971A1 (en) Transparent conductive structure
US8822259B2 (en) Methods for enhancing light absorption during PV applications
TWI483406B (en) Photovoltaic cell
KR101190197B1 (en) Solar cells using substrate integrated with antireflection nano structure and method for fabricating the same
KR20120060185A (en) Solar cells using substrate integrated with antireflection nano structure and method for fabricating the same
TW201001731A (en) Photovoltaic device and method of manufacturing a photovoltaic device
TW201244144A (en) Improved a-Si:H absorber layer for a-Si single-and multijunction thin film silicon solar cell
Nowak et al. Optimizing folded silicon thin-film solar cells on ZnO honeycomb electrodes
Oyama et al. Requirements for TCO substrate in Si-based thin film solar cells-toward tandem
TWI482296B (en) Solar cell structure having a nano anti-reflection layer
US20110067756A1 (en) Thin film solar cell
US20120055535A1 (en) Photovoltaic Devices With Textured Glass Superstrate
US20110155215A1 (en) Solar cell having a two dimensional photonic crystal
KR102093567B1 (en) Photovoltaic cell and method of fabricating the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees