TW201305339A - Gene, protein and method for controlling gynostemium perianth development - Google Patents

Gene, protein and method for controlling gynostemium perianth development Download PDF

Info

Publication number
TW201305339A
TW201305339A TW100126703A TW100126703A TW201305339A TW 201305339 A TW201305339 A TW 201305339A TW 100126703 A TW100126703 A TW 100126703A TW 100126703 A TW100126703 A TW 100126703A TW 201305339 A TW201305339 A TW 201305339A
Authority
TW
Taiwan
Prior art keywords
plant
cell
nucleic acid
cemads1
cemads2
Prior art date
Application number
TW100126703A
Other languages
Chinese (zh)
Other versions
TWI545197B (en
Inventor
Wen-Chieh Tsai
Shih-Yu Wang
Yu-Yun Hsiao
Pei-Fang Lee
Hong-Hwa Chen
Wen-Huei Chen
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW100126703A priority Critical patent/TWI545197B/en
Publication of TW201305339A publication Critical patent/TW201305339A/en
Application granted granted Critical
Publication of TWI545197B publication Critical patent/TWI545197B/en

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The invention relates to a nucleic acid molecule for controlling gynostemium development, and a vector and cell comprising the nucleic acid molecule. A protein and method for controlling gynostemium development and a method for producing transgenic plants are also provided.

Description

控制合蕊柱發育之基因、蛋白質及方法Genes, proteins and methods for controlling the development of the core

本發明係有關一種植物基因之技術。詳言之,本發明係關於控制合蕊柱發育之基因、蛋白質及方法。The present invention relates to a technique for a plant gene. In particular, the present invention relates to genes, proteins and methods for controlling the development of a plexus column.

對於植物而言,含有MADS-box之轉錄調節因子已成為花部器特異、發育及演化研究之焦點(Mnster et al,1997,Proc. Natl. Acad. Sci. U. S. A. 94: 2415-2420;Purugganan et al,1995,Genetics 140: 345-356;Weigel and Meyerowitz,1994,Cell 78: 203-209)。根據「ABCDE模型」,各花序之部器特異係由部器特性基因A、B、C、D及E之獨特組合活性而決定(Weigel及Meyerowitz,1994;Theissen及Saedler,2001;Zahn等人,2005),其中萼片由A及E之活性決定;花瓣由A、B及E之活性決定;雄蕊由B、C及E之活性決定;心皮由C及E之活性決定;且胚珠由C、D及E之活性決定。另一方面,蛋白質-蛋白質交互作用之研究亦已證實,MADS-box轉錄因子在分子層次上係以組合方式作用(Egea-Cortines et al,1999,EMBO J. 18: 5370-5379;Honma and Goto,2001,Nature 409: 525-529;Ferrario et al,2003,Plant Cell 15: 914-925)。演化過程中MADS-box基因之多樣化被認為是陸生植物中花部器多樣性之主要驅動力(Theissen et al,2000,Plant Mol. Biol. 42: 115-49;Zahn et al,2005,J. Hered. 96: 225-240)。For plants, transcriptional regulators containing MADS-box have become the focus of flower-specific, developmental and evolutionary studies (M Nster et al, 1997, Proc. Natl. Acad. Sci. USA 94: 2415-2420; Purugganan et al, 1995, Genetics 140: 345-356; Weigel and Meyerowitz, 1994, Cell 78: 203-209). According to the "ABCDE model", the specificity of each inflorescence is determined by the unique combination activity of the organ characteristic genes A, B, C, D and E (Weigel and Meyerowitz, 1994; Theissen and Saedler, 2001; Zahn et al. 2005), in which the sepals are determined by the activity of A and E; the petals are determined by the activities of A, B and E; the stamens are determined by the activities of B, C and E; the carpels are determined by the activity of C and E; and the ovules are composed of C, The activity of D and E is determined. On the other hand, studies of protein-protein interactions have also demonstrated that MADS-box transcription factors act in combination at the molecular level (Egea-Cortines et al, 1999, EMBO J. 18: 5370-5379; Honma and Goto , 2001, Nature 409: 525-529; Ferrario et al, 2003, Plant Cell 15: 914-925). The diversity of the MADS-box gene during evolution is considered to be the main driver of floral diversity in terrestrial plants (Theissen et al, 2000, Plant Mol. Biol. 42: 115-49; Zahn et al, 2005, J Hered. 96: 225-240).

蘭科(Orchidaceae)屬於百合綱(Liliopsida)天門冬目(Asparagales),目前已知包含超過20,000個物種,為植物界最大科之一。該科以豐富的種類聞名,其似乎具有永無止境之奇異變化形式,代表單子葉植物中花演化之高級及最終品系,且據推測,其物種形成速率特別高(Gill,1989 "Fruiting failure,pollinator inefficiency,and speciation in orchids,"Sinauer Associates,Sunderland,MA),此顯示蘭花仍在活躍演化中,並與花之多樣性有關。Orchidaceae belongs to the Lipopsida Asparagales and is currently known to contain more than 20,000 species and is one of the largest families in the plant kingdom. Known for its rich variety, the family seems to have a never-ending singular variation that represents the advanced and final line of flower evolution in monocots, and is presumably at a particularly high rate of species formation (Gill, 1989 "Fruiting failure," Pollinator inefficiency, and speciation in orchids, "Sinauer Associates, Sunderland, MA", shows that orchids are still actively evolving and are associated with flower diversity.

儘管蘭花之花形交錯變化已長時間吸引演化生物學家之注意,蘭科與其它單子葉植物之花形不同,但具有若干共源性狀,包括由心皮(或稱花柱)與至少一部分雄蕊合生之合蕊柱(gynostemium)或蕊柱(column)、唇瓣或唇部及高度演化之花瓣充當傳粉者之降落平台(Rudall and Bateman,2002,Biol. Rev. Camb. Philos. Soc. 77: 403-41)。合蕊柱及唇瓣為蘭花兩個最明顯之花部器,使得蘭花的花形左右對稱,且其精細及微妙之發育使蘭花之花特化為動物傳粉之精密儀器。同時,此兩個花部器之安排使得物種內交叉傳粉極其有效,從而促進蘭花之物種形成及多樣化。Although the flower-shaped staggered changes of orchids have long attracted the attention of evolutionary biologists, orchids have different flower shapes from other monocots, but have several common-source traits, including the combination of carpels (or styles) with at least some of the stamens. Gynostemium or column, lip or lip and highly evolved petals serve as landing platforms for pollinators (Rudall and Bateman, 2002, Biol. Rev. Camb. Philos. Soc. 77: 403- 41). The two pillars and the lips are the two most obvious flower organs of the orchid, which make the flower shape of the orchid symmetrical, and its fine and subtle development makes the orchid flower specialized into a precision instrument for animal pollination. At the same time, the arrangement of the two flower organs makes the cross-pollination within the species extremely effective, thereby promoting the formation and diversification of orchid species.

儘管蘭花具有獨特的發育生殖生物學以及特殊傳粉及生態學策略,與其他物種相比,其仍待分子層次之研究(Peakall,2007,Mol. Ecol. 16: 2834-2837)。近來,已開始對若干蘭花物種進行B群基因之選殖、表現及功能分析(Tsai et al,2004,Plant Cell Physiol. 45: 831-844;Tsai et al,2005,Plant Cell Physiol. 46: 1125-1139;Tsai et al,2008,Plant Cell Physiol. 49: 814-824;Tsai and Chen,2006,TheScientificWorldJournal 6: 1933-1944;Kim et al,2007,Plant Sci. 172: 319-326)。在蘭花之B群基因在花部器中具有差異表現模式,且具重複四分枝系(duplicated four-clades),此等B群基因所編碼之趨異蛋白質亦顯示在蘭花中,B群基因之演化與獨特花部器發育有關。Despite its unique developmental reproductive biology and special pollination and ecological strategies, orchids are still at the molecular level compared to other species (Peakall, 2007, Mol. Ecol. 16: 2834-2837). Recently, the selection, performance and functional analysis of B-group genes have been carried out on several orchid species (Tsai et al, 2004, Plant Cell Physiol. 45: 831-844; Tsai et al, 2005, Plant Cell Physiol. 46: 1125 -1139; Tsai et al, 2008, Plant Cell Physiol. 49: 814-824; Tsai and Chen, 2006, The Scientific World Journal 6: 1933-1944; Kim et al, 2007, Plant Sci. 172: 319-326). The B group gene of orchid has a differential expression pattern in the flower part, and has duplicated four-clades. The divergent proteins encoded by these group B genes are also shown in orchids, group B genes. The evolution is related to the development of unique floral organs.

根據ABCDE模型,C群基因不僅決定雄蕊及心皮之發育,更決定分生組織之發育,因C群突變體無法正常發育第4花序,並取代心皮形成C群突變花。在單子葉植物中,C群基因重複且功能多樣化,並顯得部分冗餘(Mena et al,1996,Science 274: 1537-1540;Yamaguchi et al,2006,Plant Cell 18: 15-28)。在玉米中,C群ZMM2之功能主要在於決定部器發育,ZAG1之功能主要在於決定花分生組織發育(Mena et al,1996,Science 274: 1537-1540);在水稻中,OsMADS3在抑制第2花序中之漿片發育及限定雄蕊特性方面具有較強作用,而OsMADS58決定花分生組織發育並調節心皮發育(Yamaguchi et al,2006,Plant Cell 18: 15-28;Kater et al,2006,J. Exp. Bot. 57: 3433-3444);亦在金魚草屬(Antirrhinum)(Davies et al,1999,EMBO J. 18: 4023-4034)及牽牛花(Ipomoea nil)(Nitasaka,2003,Plant J. 36: 522-531)中可觀察到C功能突變體之擬表型;矮牽牛及非洲菊中之沉默C功能基因的表型與C功能突變體類似(Kapoor et al,2002,Plant J. 32: 115-127;Yu et al,1999),Plant J. 17: 51-62)。現今亦自蝴蝶蘭屬(Phalaenopsis)及石斛屬(Dendrobium)鑑別出蘭花C群基因(Skipper et al,2006,Gene 366: 266-274;Song et al,2006,Dev. Genes Evol. 216: 301-313;Xu et al,2006,Plant J. 46: 54-68),然而並未針對所鑑別出之C群基因實際進行功能性分析,亦未取得相關突變株而實際例示其於控制花部器發育之角色,因此蘭花C群基因於控制花部器發育之功能仍未明。According to the ABCDE model, the C gene not only determines the development of stamens and carpels, but also determines the development of meristems. Because the C group mutants cannot develop the fourth inflorescence normally, and replace the carpels to form the C group mutations. In monocots, group C genes are repetitive and functionally diverse and appear partially redundant (Mena et al, 1996, Science 274: 1537-1540; Yamaguchi et al, 2006, Plant Cell 18: 15-28). In maize, the function of group C ZMM2 is mainly to determine the development of the organs . The function of ZAG1 is mainly to determine the development of flower meristems (Mena et al, 1996, Science 274: 1537-1540); in rice, OsMADS3 is in the inhibition 2 The inflorescence has a strong role in the development of the pulp and the stamen characteristics, while OsMADS58 determines the development of the meristem and regulates carpel development (Yamaguchi et al, 2006, Plant Cell 18: 15-28; Kater et al, 2006) , J. Exp. Bot. 57: 3433-3444); also in Antirrhinum (Davies et al, 1999, EMBO J. 18: 4023-4034) and Morning Glory ( Ipomoea nil ) (Nitasaka, 2003, The phenotype of C-functional mutants can be observed in Plant J. 36: 522-531); the phenotype of silencing C-function genes in petunia and gerbera is similar to that of C-function mutants (Kapoor et al, 2002, Plant J. 32: 115-127; Yu et al, 1999), Plant J. 17: 51-62). Nowadays grouped Phalaenopsis (Phalaenopsis), and Dendrobium (of Dendrobium) orchids identified gene cluster C (Skipper et al, 2006, Gene 366: 266-274; Song et al, 2006, Dev Genes Evol 216: 301-.. 313; Xu et al, 2006, Plant J. 46: 54-68), however, no functional analysis was performed on the identified Group C genes, nor was the relevant mutant strain obtained, and the actual flowering device was actually exemplified. The role of development, so the function of orchid C gene in controlling flower development is still unknown.

因此,為增加蘭花品質,於分子層次控制花部器發育,以進行花形改良之分子育種技術為業界所需。Therefore, in order to increase the quality of orchids, it is necessary for the industry to control the development of floral organs at the molecular level to carry out flower shape improvement.

發明概述Summary of invention

本發明中,自四季蘭(Cymbidium ensifolium)分離出兩種C群基因,即CeMADS1CeMADS2,可控制合蕊柱發育。In the present invention, two C-group genes, namely CeMADS1 and CeMADS2 , are isolated from Cymbidium ensifolium to control the development of the plexus column.

本發明提供一種經單離之核酸分子,其包括選自下列聚核苷酸所組成之群:The present invention provides an isolated nucleic acid molecule comprising a population consisting of the following polynucleotides:

(a) SEQ ID NO: 1或3之核苷酸序列;(a) the nucleotide sequence of SEQ ID NO: 1 or 3;

(b)編碼SEQ ID NO: 2或4胺基酸序列所示聚肽之聚核苷酸;(b) a polynucleotide encoding a polypeptide represented by the amino acid sequence of SEQ ID NO: 2 or 4;

(c)與(a)或(b)互補之聚核苷酸;及(c) a polynucleotide complementary to (a) or (b);

(d)高度嚴苛條件下,與(a)、(b)、(c)、(d)或(e)雜合的聚核苷酸。(d) Polynucleotides heterozygous with (a), (b), (c), (d) or (e) under highly stringent conditions.

本發明又提供一種載體,其包含根據前述之核酸分子。The invention further provides a vector comprising a nucleic acid molecule according to the foregoing.

本發明再提供一種細胞,其包含前述之載體。The invention further provides a cell comprising the aforementioned vector.

本發明亦提供一種擬原球體(protocorn-like body),其包含前述之核酸分子。The invention also provides a protocorn-like body comprising the nucleic acid molecule described above.

本發明另提供一種製造轉殖植物之方法,其步驟包含:The invention further provides a method for producing a transgenic plant, the steps comprising:

(a) 將前述之核酸分子導引至植物細胞以獲得植物轉殖細胞;及(a) directing the aforementioned nucleic acid molecule to a plant cell to obtain a plant transgenic cell;

(b) 將該植物轉殖細胞再生製造該轉殖植物。(b) regenerating the plant transgenic cells to produce the transgenic plant.

本發明另提供一種蛋白質,其係由前述之核酸分子所編碼。The invention further provides a protein encoded by the nucleic acid molecule described above.

本發明再提供一種於蘭科植物中控制合蕊柱發育之方法,其包含改變前述之蛋白質於該植物體的表現量。本發明亦提供一種於蘭科植物中控制花形發育之方法,其包含前述之控制合蕊柱發育之方法。The present invention further provides a method of controlling the development of a spheroid in a orchid plant comprising altering the amount of expression of the aforementioned protein in the plant. The present invention also provides a method for controlling flower shape development in orchid plants, which comprises the aforementioned method for controlling the development of a spheroid.

發明詳細說明Detailed description of the invention

本發明乃致力於研究植物中控制花形發育之關鍵基因,以俾利用分子育種方法控制花形發育。The invention aims to study the key genes controlling flower shape development in plants, and to control flower shape development by molecular breeding methods.

本發明提供一種經單離之核酸分子,其包括選自下列聚核苷酸所組成之群:The present invention provides an isolated nucleic acid molecule comprising a population consisting of the following polynucleotides:

(a) SEQ ID NO: 1或3之核苷酸序列;(a) the nucleotide sequence of SEQ ID NO: 1 or 3;

(b)編碼SEQ ID NO: 2或4胺基酸序列所示聚肽之聚核苷酸;(b) a polynucleotide encoding a polypeptide represented by the amino acid sequence of SEQ ID NO: 2 or 4;

(c)與(a)或(b)互補之聚核苷酸;及(c) a polynucleotide complementary to (a) or (b);

(d)高度嚴苛條件下,與(a)、(b)、(c)、(d)或(e)雜合的聚核苷酸。(d) Polynucleotides heterozygous with (a), (b), (c), (d) or (e) under highly stringent conditions.

本發明利用野生型四季蘭及叢瓣化四季蘭突變植株為材料,探討C群基因在蘭花花形發育中扮演之角色。根據本發明提供四季蘭之兩個C群基因之全長cDNA序列,並命名為CeMADS1(SEQ ID NO. 1)其可轉譯出233個胺基酸(SEQ ID NO. 2)及CeMADS2(SEQ ID NO. 3)其可轉譯出234個胺基酸(SEQ ID NO. 4)。CeMADS1CeMADS2之核苷酸序列一致性為83%;CeMADS1蛋白及CeMADS2蛋白一致性及相似性分別為85%及96%。與植物之其他C群蛋白的多重序列比對顯示,兩種蛋白皆具有典型MIKC型域結構,且CeMADS1及CeMADS2在其C端含有AG基元I及II。另一方面,CeMADS1CeMADS2在蘭屬基因體中皆以單複本基因呈現。The invention utilizes wild type four season orchids and clumps of four-season mutant plants as materials to explore the role of group C genes in orchid flower shape development. According to the present invention, a full-length cDNA sequence of two C-group genes of Four Seasons is provided and designated as CeMADS1 (SEQ ID NO. 1) which can translate 233 amino acids (SEQ ID NO. 2) and CeMADS2 (SEQ ID NO) 3) It can translate 234 amino acids (SEQ ID NO. 4). The nucleotide sequence identity of CeMADS1 and CeMADS2 was 83%; the consistency and similarity of CeMADS1 protein and CeMADS2 protein were 85% and 96%, respectively. Multiple sequence alignments with other Group C proteins of plants showed that both proteins have a typical MIKC type domain structure, and CeMADS1 and CeMADS2 contain AG motifs I and II at their C-terminus. On the other hand, both CeMADS1 and CeMADS2 are presented as single-replica genes in the genus of the genus Cymbidium.

空間表現模式分析結果顯示,CeMADS1只在蕊柱中表現,在其他花部器及營養組織中皆不表現;而CeMADS2則主要表現於蕊柱中,亦微量表現於其他花部器,然而卻不會表現於營養組織。在花苞發育過程中,CeMADS1在第1階段有較大量的表現,而CeMADS2則在第2階段以及之後階段中有較明顯的表現。比較CeMADS1CeMADS2在野生型及叢瓣型突變株花苞中表現結果顯示,CeMADS1表現於野生型四季蘭花苞中,但不表現於叢瓣型突變株中,而CeMADS2則一致的表現於野生型及叢瓣型突變株花苞。雖不願受理論限制,但咸信CeMADS1可啟動合蕊柱發育,接著CeMADS2發揮維持作用以完成合蕊柱形態發生;此外,CeMADS2 RNA轉錄物在花梗中之表現比CeMADS1高得多,此表明CeMADS2亦可參與花梗/胚珠發育。The results of spatial performance pattern analysis showed that CeMADS1 was only expressed in the column and not in other flower organs and vegetative tissues. CeMADS2 was mainly expressed in the column and also in other flower organs, but not Will be expressed in nutrition organizations. During the development of flower buds, CeMADS1 showed a greater amount of performance in the first stage, while CeMADS2 showed more obvious performance in the second stage and later stages. Comparing the results of CeMADS1 and CeMADS2 in the wild-type and plexus-type mutants, the CeMADS1 was expressed in the wild-type four-season orchid, but not in the plexus-type mutant, while the CeMADS2 was consistently expressed in the wild-type and The plexus-type mutant strain is calyx. Although not wishing to be bound by theory, Xianxin CeMADS1 can initiate the development of the core column, and then CeMADS2 plays a maintenance role to complete the morphogenesis of the core column; in addition, the performance of the CeMADS2 RNA transcript in the peduncle is much higher than that of CeMADS1 , indicating CeMADS2 can also participate in pedicel/ovule development.

於蛋白質-蛋白質交互作用方面,CeMADS1均二聚體之相互作用強度類似於CeMADS1-CeMADS2雜二聚體,但比CeMADS2均二聚體強;在與E群基因(例如PeMADS8)之相互作用上CeMADS1-PeMADS8雜二聚體之相互作用強度亦比CeMADS2-PeMADS8雜二聚體強。此等結果表明,CeMADS1均二聚體、CeMADS1-CeMADS2雜二聚體及/或C-E複合物對四季蘭之合蕊柱發育具關鍵作用。In terms of protein-protein interaction, the interaction strength of CeMADS1 homodimer is similar to that of CeMADS1-CeMADS2 heterodimer, but stronger than CeMADS2 homodimer; CeMADS1 interacts with E group gene (eg PeMADS8) The interaction strength of the -PeMADS8 heterodimer is also stronger than that of the CeMADS2-PeMADS8 heterodimer. These results indicate that the CeMADS1 homodimer, CeMADS1-CeMADS2 heterodimer and/or C-E complex play a key role in the development of the four-phase blue column.

此外,透過農桿菌轉殖法在阿拉伯芥中大量表現CeMADS1CeMADS2會導致初級花序停止生長,其初生花序頂尖異常地以一叢花蕾終止。然而,在CeMADS1CeMADS2轉殖基因阿拉伯芥中,初生花序之分枝不以頂尖花結束。此等結果表明,CeMADS1CeMADS2功能可能有助於生殖初生花序中之花分生組織特性。In addition, the large expression of CeMADS1 or CeMADS2 in Arabidopsis by Agrobacterium tumefaciation results in the growth of primary inflorescences, and the primary inflorescences are abnormally terminated by a cluster of flower buds. However, in the CeMADS1 and CeMADS2 transgenic Arabidopsis, the branches of the primary inflorescence did not end with the top flower. These results suggest that the function of CeMADS1 or CeMADS2 may contribute to the meristematic characteristics of the flower in the primary flowering inflorescence.

本文中所使用之「經單離之核酸分子」係指一核酸分子(1)其不與其他核酸分子之全部或部分相關(共價或非共價),但該核酸分子於自然中與其他核酸分子相關;(2)不與一分子相關,該核酸分子於自然中與該分子不相關;或(3)於自然中不存在與其他核酸分子相關。該核酸分子可為基因體DNA、cDNA、mRNA、或其他人造RNA、或其組合。根據本發明之經單離之核酸分子可含有引導序列、編碼區域或非基因序列(exon)及基因序列(intron),且其可包含不影響該核酸分子功能之外加核苷酸。例如,其5'及3'未轉譯區域可包含不同數目之核苷酸。As used herein, "isolated nucleic acid molecule" refers to a nucleic acid molecule (1) that is not associated with all or part of another nucleic acid molecule (covalent or non-covalent), but the nucleic acid molecule is naturally and otherwise The nucleic acid molecule is related; (2) is not associated with a molecule that is not related to the molecule in nature; or (3) is not associated with other nucleic acid molecules in nature. The nucleic acid molecule can be a genomic DNA, cDNA, mRNA, or other artificial RNA, or a combination thereof. An isolated nucleic acid molecule according to the invention may contain a leader sequence, a coding region or a non-exon and an intron, and it may comprise additional nucleotides that do not affect the function of the nucleic acid molecule. For example, its 5' and 3' untranslated regions can contain different numbers of nucleotides.

本文中所使用之「聚核苷酸」係指長度至少10鹼基之單股或雙股之核酸聚合物。於某些態樣中,該聚核苷酸可為核糖核酸或去氧核糖核酸或其經修飾之形式。該等修飾包含:溴尿苷(bromouridine)及肌苷(inosine)衍生物、如2',3'-雙去氧核糖(2',3'-dideoxyribose)之核糖(ribose)修飾物、如磷化雙硒代酯(phosphorodiselenoate)、磷化苯胺硫醇酯(phosphoroanilothioate)、磷化苯胺酯(phosphoraniladate)或磷化酰胺(phosphoroamidate)之核苷酸間鍵結修飾物及其類似物。As used herein, "polynucleotide" refers to a single or double stranded nucleic acid polymer of at least 10 bases in length. In some aspects, the polynucleotide can be in the form of ribonucleic acid or deoxyribonucleic acid or a modified form thereof. Such modifications include: bromouridine and inosine derivatives, ribose modifications such as 2', 3'-dideoxyribose, such as phosphorus An internucleotide linkage modification of phosphorodiselenoate, phosphoroanilothioate, phosphoranladate or phosphoroamidate, and analogs thereof.

本發明核酸分子之特定實例包括含有SEQ ID NO: 1或3核苷酸序列之聚核苷酸,但本發明非限於具有此種特定核苷酸序列的聚核苷酸;本發明核酸分子可具有選自相對個別胺基酸殘基之任意密碼組合的核苷酸序列,密碼的選擇係利用慣用的方法完成,例如,選擇密碼可考慮宿主使用密碼出現的頻率[Nucleic Acids Res.,9,43(1981)]。Specific examples of the nucleic acid molecule of the present invention include a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1 or 3, but the present invention is not limited to a polynucleotide having such a specific nucleotide sequence; the nucleic acid molecule of the present invention may Having a nucleotide sequence selected from any combination of crypto residues relative to individual amino acid residues, the selection of the cipher is accomplished using conventional methods, for example, selecting a password can take into account the frequency with which the host uses the cryptographic code [Nucleic Acids Res., 9, 43 (1981)].

根據本文所揭示的基因特定實例中的序列資訊,可利用慣用基因工程方法輕易的製備或獲得本發明之核酸分子[參考分子選殖第二版,冷泉灣實驗室1989年印行;Zoku Seikagaku Jikken Koza "Idenshi Kenkyu-ho I,II,III",Nippon Seikagakkai出版(1986)]。According to the sequence information in the specific examples of the genes disclosed herein, the nucleic acid molecules of the present invention can be easily prepared or obtained by conventional genetic engineering methods [Reference Molecular Selection Second Edition, Cold Spring Bay Laboratory, 1989; Zoku Seikagaku Jikken Koza "Idenshi Kenkyu-ho I, II, III", published by Nippon Seikagakkai (1986)].

本發明之核酸分子尚包括在高度嚴苛條件下(例如,60℃下,含有0.1% SDS之0.2×SSC,或60℃下,含有0.1% SDS之0.1×SSC),可與SEQ ID NO: 1或3或任何可編碼SEQ ID NO: 2或4胺基酸序列所示聚肽之聚核苷酸、或與該等聚核苷酸互補之聚核酸雜合之聚核苷酸。The nucleic acid molecules of the present invention are also included under highly stringent conditions (e.g., 0.2 x SSC containing 0.1% SDS at 60 ° C, or 0.1 x SSC containing 0.1% SDS at 60 ° C), and can be SEQ ID NO: 1 or 3 or any polynucleotide which encodes a polynucleotide of the polypeptide represented by the amino acid sequence of SEQ ID NO: 2 or 4, or a polynucleotide which is heterozygous for the polynucleic acid complementary to the polynucleotide.

本發明另提供包含前述核酸分子之載體。該載體可用於保存、生產該核酸分子,或用於將該核酸分子導入原核微生物、真核微生物、植物體或植物細胞中;較佳地,該載體係為一穿梭載體(shuttle vector)。本文所使用之「穿梭載體」一詞係指可同時於植物中及便於複製之細胞(通常為原核生物)中操作及選擇之載體。通常該穿梭載體包含可選擇之標記,如可於植物細胞中選擇之抗康納黴素(kanamycin)標記或可於原核生物中選擇之抗放線菌素(actinomycin)標記。此外,該載體亦包含可於原核生物中複製之起始點(origin)及可用於基因操作之限制酵素位置。較佳地,根據本發明之核酸分子係受一啟動子控制,更佳地,該啟動子係可於植物之生殖組織或部器中驅動基因的表現,如花椰菜鑲嵌病毒35S蛋白質啟動子(cauliflower mosaic virus 35S protein promoter)、α-1及β-1微管蛋白(tubulin)啟動子及組織蛋白(histone)啟動子。在本發明之一些具體實施例中,該啟動子為可誘導之啟動子,其包含但不限於熱休克蛋白啟動子、包含葉綠素a/b光之光驅動啟動子。本發明所屬技術領域中具通常知識者根據本發明的教示,即可完成該等載體的構築。The invention further provides a vector comprising the aforementioned nucleic acid molecule. The vector can be used to store, produce, or otherwise introduce the nucleic acid molecule into a prokaryotic, eukaryotic, plant or plant cell; preferably, the vector is a shuttle vector. As used herein, the term "shuttle vector" refers to a vector that can be manipulated and selected in both plants and in cells that are susceptible to replication, typically prokaryotes. Typically, the shuttle vector comprises a selectable marker, such as an anti-kanamycin marker that can be selected from plant cells or an actinomycin marker that can be selected from prokaryotes. In addition, the vector also contains an origin that can be replicated in prokaryotes and a restriction enzyme position that can be used for genetic manipulation. Preferably, the nucleic acid molecule according to the present invention is under the control of a promoter, and more preferably, the promoter can drive the expression of a gene in a reproductive tissue or a part of a plant, such as a cauliflower mosaic virus 35S protein promoter (cauliflower). Mosaic virus 35S protein promoter), α-1 and β-1 tubulin promoter and histone promoter. In some embodiments of the invention, the promoter is an inducible promoter comprising, but not limited to, a heat shock protein promoter, a light-driven promoter comprising chlorophyll a/b light. Those of ordinary skill in the art to which the present invention pertains can accomplish the construction of such carriers in accordance with the teachings of the present invention.

另一方面,本發明提供一種包含前述載體之細胞,其係將該載體經轉殖作用(transformation)導入一細胞中而得。本文中所使用之「轉殖作用」一詞係指經由一核酸分子之導入細胞,而改變該細胞中之遺傳物質。本發明所屬技術領域中具通常知識者經由本發明之揭示及一般分子生物學之知識可完成此轉殖作用,如將載體導入一細菌時可採用熱休克方式,將載體導入植物細胞時可採用基因槍(gene gun)或真空侵入(vacuum infiltration)方式進行。如植株係由一轉殖細胞再生而成,則該植株所有細胞具有相同的遺傳物質,通常稱此種植株為轉殖植物;若一植株只有部分細胞(如僅有生殖細胞或組織)被轉殖,僅有該被轉殖之細胞表現出與其親代不同的表型,此通常稱為鑲嵌植物(mosaic plant),其可自親代取出欲轉殖之細胞進行轉殖作用。本發明亦提供一種擬原球體(protocorn-like body),其包含前述之核酸分子。In another aspect, the present invention provides a cell comprising the aforementioned vector, which is obtained by introducing the vector into a cell by transformation. As used herein, the term "transfer" refers to the alteration of genetic material in a cell by introduction into a cell by a nucleic acid molecule. Those skilled in the art can accomplish this transfection through the disclosure of the present invention and the general knowledge of molecular biology. For example, when introducing a vector into a bacterium, a heat shock method can be used, and when the vector is introduced into a plant cell, the carrier can be used. Gene gun or vacuum infiltration. If the plant is regenerated from a transgenic cell, all cells of the plant have the same genetic material, which is usually referred to as a transgenic plant; if only one part of the plant (such as only germ cells or tissues) is transferred In colonization, only the transformed cell exhibits a different phenotype than its parent, which is commonly referred to as a mosaic plant, which can be used to remove the cells to be transformed from the parent for transcription. The invention also provides a protocorn-like body comprising the nucleic acid molecule described above.

本發明另提供一種製造轉殖植物之方法,其步驟包含:The invention further provides a method for producing a transgenic plant, the steps comprising:

(a) 將具前述之核酸分子導引至植物細胞以獲得將該植物轉殖細胞;及(a) directing a nucleic acid molecule having the foregoing to a plant cell to obtain the plant transgenic cell;

(b) 將該植物轉殖細胞再生製造該轉殖植物。(b) regenerating the plant transgenic cells to produce the transgenic plant.

轉殖植物通常係透過擬原球體獲得,其係為具強分化能力、增生能力且增殖速率快之組織,在植物營養體誘導或無菌播種時會經過擬原球體階段,由擬原球體中分離個別細胞後,可再生發育成一新擬原球體進而發育成一植株(Arditti,J.,1992,Fundamentals of Orchid Biology,John Wiley and Sons,New York)。本文中所使用之「再生」一詞係指自一植物細胞、一群植物細胞或植物的一部份成長為一植物之方法,此再生之方法為本發明所屬技術領域中具通常知識者所熟知。Transgenic plants are usually obtained through pseudo-spheres, which are tissues with strong differentiation ability, proliferation ability and rapid proliferation rate. They are separated from the pseudo-spheres during the induction or aseptic sowing of plant vegetative bodies. After individual cells, they can regenerate into a new pseudo-sphere and develop into a plant (Arditti, J., 1992, Fundamentals of Orchid Biology, John Wiley and Sons, New York). The term "regeneration" as used herein refers to a method of growing from a plant cell, a group of plant cells, or a part of a plant to a plant, the method of regeneration being well known to those of ordinary skill in the art to which the invention pertains. .

於本發明製造轉殖植物之方法之較佳態樣中,步驟(a)係將核酸分子以基因槍或真空侵入導入細胞中,使擬原球體中之某些細胞形成轉殖細胞,可經由載體上之選擇標記篩選並區分經轉殖及未經轉殖之細胞,再進行步驟(b)將該轉殖細胞再生為該轉殖植物。In a preferred aspect of the method for producing a transgenic plant of the present invention, the step (a) introduces the nucleic acid molecule into the cell by gene gun or vacuum intrusion, and the certain cells in the pseudo-sphere are transformed into a transgenic cell. The selection marker on the vector screens and distinguishes the transfected and non-transfected cells, and then proceeds to step (b) to regenerate the transfected cells into the transgenic plants.

本發明再提供一種由前述之核酸分子所編碼之蛋白質。根據發明之較佳態樣,該蛋白質係為具有如SEQ ID NO: 2或4所胺基酸所示序列之蛋白質。The invention further provides a protein encoded by the aforementioned nucleic acid molecule. According to a preferred aspect of the invention, the protein is a protein having the sequence set forth in the amino acid of SEQ ID NO: 2 or 4.

本發明之蛋白質可藉由習知之重組技術獲得,較佳是使用SEQ ID NO: 1或3之核苷酸序列當作模板,倘有需要,可適當選擇及修飾相對於蛋白質胺基酸殘基之密碼來設計該核苷酸序列。The protein of the present invention can be obtained by a conventional recombinant technique, and preferably the nucleotide sequence of SEQ ID NO: 1 or 3 is used as a template, and if necessary, the amino acid residue relative to the protein can be appropriately selected and modified. The code is used to design the nucleotide sequence.

亦可利用一般化學合成方法,根據SEQ ID NO: 2或4胺基酸序列製備本發明蛋白質,該合成方法之實例包括一般液相合成方法或固相合成方法。The protein of the present invention can also be produced according to the amino acid sequence of SEQ ID NO: 2 or 4 by a general chemical synthesis method, and examples of the synthesis method include a general liquid phase synthesis method or a solid phase synthesis method.

肽合成作用方法的特別實例包括逐步加長方法,其係根據胺基酸序列資訊,逐步依序將胺基酸鍵結至另一胺基酸殘基上,藉此加長胺基酸鏈;及片段縮合方法,其中片段係由數個事先合成之胺基酸所組成,經由偶合反應將一片段與另一片段鍵結。本發明蛋白質可用任何一種方法合成。Specific examples of the peptide synthesis method include a stepwise lengthening method of sequentially bonding an amino acid to another amino acid residue according to amino acid sequence information, thereby lengthening the amino acid chain; A condensation method in which a fragment is composed of a plurality of previously synthesized amino acids, and a fragment is bonded to another fragment via a coupling reaction. The protein of the present invention can be synthesized by any method.

在此種肽合成作用中,可以慣用的方法進行縮合作用。縮合作用方法實例包括疊氮化合物方法、混合酸酐方法、DCC方法、活化酯方法、氧化-還原方法、DPPA(二苯基磷酸基疊氮)方法、DCC+添加物(1-羥基苯并三唑、N-羥基琥珀醯胺、N-羥基-5-去甲-2,3-二羧基亞醯胺)方法及Woodward方法。In such peptide synthesis, condensation can be carried out by a conventional method. Examples of the condensation method include an azide compound method, a mixed acid anhydride method, a DCC method, an activated ester method, an oxidation-reduction method, a DPPA (diphenylphosphoryl azide) method, a DCC+ additive (1-hydroxybenzotriazole, N-hydroxy succinylamine, N-hydroxy-5-nor -2,3-Dicarboxyliminium) method and Woodward method.

在此方法中所用的溶劑可選自肽縮合反應中廣泛所用的溶劑,溶劑實例包括二甲基甲醯胺(DMF)、二甲基碸(DMSO)、六磷酸醯胺、二烷、四氫呋喃(THF),乙酸乙酯,及其溶劑混合物。The solvent used in this method may be selected from solvents widely used in peptide condensation reactions, and examples of the solvent include dimethylformamide (DMF), dimethylhydrazine (DMSO), decylamine hexaphosphate, and Alkane, tetrahydrofuran (THF), ethyl acetate, and solvent mixtures thereof.

在前述肽合成作用過程中,可利用酯化作用將未參與反應之胺基酸或肽上的羧基酯化,而將其保護起來,例如低碳數烷酯;例如甲酯,乙酯,第三-丁酯,及芳香烷酯;例如苄酯,對-甲氧基苄酯,及對-硝基苄酯。In the foregoing peptide synthesis, esterification may be used to esterify a carboxyl group on a non-reactive amino acid or peptide, and to protect it, for example, a lower alkyl ester; for example, a methyl ester, an ethyl ester, Tri-butyl ester, and aryl alkyl ester; for example, benzyl ester, p-methoxybenzyl ester, and p-nitrobenzyl ester.

可利用基團(例如乙醯基,苄基,苄基氧羰基,或第三-丁基)將具有側鏈官能基之胺基酸(例如酪胺酸的羥基)保護起來。然而,保護作用是視情況進行的。除此之外,例如,精胺酸上的胍基可用適當的保護基團(諸如硝基,甲苯磺醯基基、對-甲氧基苯磺醯基、伸甲基-2-磺醯基、苄基氧羰基、異基氧羰基或金剛烷基氧羰基)保護。An amino acid having a side chain functional group (e.g., a hydroxyl group of tyrosine) can be protected by a group such as an ethenyl group, a benzyl group, a benzyloxycarbonyl group, or a third-butyl group. However, protection is carried out as appropriate. In addition to this, for example, a mercapto group on arginine may be a suitable protecting group (such as a nitro group, a toluenesulfonyl group, a p-methoxyphenylsulfonyl group, a methyl-2-sulfonyl group). Benzyloxycarbonyl, different Protection by oxycarbonyl or adamantyloxycarbonyl).

經由例行性方法可將包括於前述胺基酸、肽及本發明蛋白質上的保護基團去保護;例如催化還原作用或利用液態氨/鈉、氟化氫、溴化氫、氯化氫、三氟乙酸、乙酸、甲酸或甲烷磺酸等試劑。The protecting group included on the aforementioned amino acid, peptide and protein of the present invention can be deprotected by a routine method; for example, catalytic reduction or utilization of liquid ammonia/sodium, hydrogen fluoride, hydrogen bromide, hydrogen chloride, trifluoroacetic acid, Reagents such as acetic acid, formic acid or methanesulfonic acid.

倘有需要,根據蛋白質的物理及化學特性,可利用各式習知的分離及純化技術,獲得經純化的蛋白質[參考"Biochemistry Data Book II",1175-1259頁,第一版,首印,1980年6月23日,Tokyo Kagaku Dojin印行;Biochemistry,25,(25),8274(1986);Eur. J. Biochem.,163,313(1987)]。If necessary, depending on the physical and chemical properties of the protein, various purified separation and purification techniques can be used to obtain purified proteins [Ref. "Biochemistry Data Book II", pp. 1175-1259, first edition, first print, Tokyo Kagaku Dojin, June 23, 1980; Biochemistry, 25, (25), 8274 (1986); Eur. J. Biochem., 163, 313 (1987)].

蛋白質分離技術的特別實例包括一般回復原狀處理、蛋白沉澱物處理(鹽析)、離心作用、滲透壓電擊方法、超音波、超過濾作用、分子篩層析法(膠片過濾法)、吸附層析法、離子交換層析法、親合力層析法、高效液態層析法(HPLC)、透析法、及其組合。更佳者,可採用含有能與本發明蛋白專一性鍵結抗體之管柱的親合力層析法。或者,可利用例如離子交換樹脂、分配層析法、膠片層析法及逆流分布純化本發明之蛋白質。Specific examples of protein separation techniques include general restitution treatment, protein precipitation treatment (salting out), centrifugation, penetrating piezoelectric impact method, ultrasonic, ultrafiltration, molecular sieve chromatography (film filtration), adsorption chromatography , ion exchange chromatography, affinity chromatography, high performance liquid chromatography (HPLC), dialysis, and combinations thereof. More preferably, affinity chromatography containing a column capable of specifically binding an antibody to the protein of the present invention can be employed. Alternatively, the protein of the invention may be purified using, for example, ion exchange resins, partition chromatography, film chromatography, and countercurrent distribution.

本發明再提供一種於蘭科植物中控制合蕊柱發育之方法,其包含改變前述之蛋白質於該植物體的表現量。The present invention further provides a method of controlling the development of a spheroid in a orchid plant comprising altering the amount of expression of the aforementioned protein in the plant.

本發明適用於植物及其細胞,較佳為單子葉植物或阿拉伯芥及其細胞;更佳為蘭科植物及其細胞;尤佳為四季蘭及其細胞。根據本發明,其中植物包含野生種之植物及以人工方法製造之突變種,該人工方法包含如化學物質或X-射線誘發之隨意突變(random mutagenesis)或利用重組技術修飾植物之遺傳物質。The present invention is applicable to plants and cells thereof, preferably monocotyledons or Arabidopsis and its cells; more preferably orchids and cells thereof; more preferably, Silybum and its cells. According to the invention, the plant comprises a plant of wild species and a mutant produced by an artificial method comprising genetic material or X-ray induced random mutagenesis or genetic modification of the plant using recombinant techniques.

根據本發明之方法,其較佳係包含於該植物體之至少一細胞內改變編碼該蛋白質之核酸分子之套數;更佳地,該細胞係源自擬原球體。Preferably, the method according to the invention comprises varying the number of sets of nucleic acid molecules encoding the protein in at least one cell of the plant; more preferably, the cell line is derived from a pseudo-sphere.

本發明亦提供一種於蘭科植物中控制花形發育之方法,其包含前述之控制合蕊柱發育之方法。The present invention also provides a method for controlling flower shape development in orchid plants, which comprises the aforementioned method for controlling the development of a spheroid.

根據本發明之方法,較佳地,其係進一步控制叢瓣花形、花序、分生組織、花梗或胚珠之發育。Preferably, the method according to the invention further controls the development of the florets, inflorescences, meristems, pedicels or ovules.

茲以下列實例予以詳細說明本發明,唯其並不意味本發明僅侷限於此等實例所揭示之內容。The invention is illustrated by the following examples, which are not intended to limit the invention to the invention.

實例Instance 材料及方法Materials and methods 植物材料Plant material

野生型四季蘭與叢瓣突變體皆由Chun-Rong Hu之蘭花苗圃(Guanling Vil.,Baihe Township,Tainan County,Taiwan)提供,並在自然光及23℃至27℃控制溫度之溫室中生長。Wild type four season orchids and plexus mutants were supplied by Chun-Rong Hu's orchid nursery (Guanling Vil., Baihe Township, Tainan County, Taiwan) and grown in natural light and a greenhouse controlled temperature of 23 ° C to 27 ° C.

掃描電子顯微鏡scanning electron microscope

將樣品固定於FAA(18:1:1之乙醇[50%]、冰乙酸、甲醛)中。在一系列乙醇-丙酮中脫水後,對樣品進行臨界點乾燥,並濺射塗佈鉑,再於掃描電子顯微鏡(Hitachi S-4200,Tokyo)下以15 kV之加速電壓進行觀察。並使用Verichrome全色軟片(Kodak,Rochester,NY,U.S.A.)拍照。The sample was fixed in FAA (18:1:1 ethanol [50%], glacial acetic acid, formaldehyde). After dehydration in a series of ethanol-acetone, the sample was subjected to critical point drying, and sputter-coated with platinum, and observed under a scanning electron microscope (Hitachi S-4200, Tokyo) at an accelerating voltage of 15 kV. Photographs were taken using a Verichrome panchromatic film (Kodak, Rochester, NY, U.S.A.).

RNA製備RNA preparation

對於RNA萃取,收集野生型四季蘭之花蕾的各種部器(包括萼片、花瓣、唇部及蕊柱)及兩種叢瓣突變型之完整花蕾且浸泡於液氮中,儲存於-80℃下直至萃取RNA。根據Tsai等人(Tsai et al,2004,Plant Cell Physiol. 45: 831-844)所述之方法萃取總RNA。For RNA extraction, collect the various flower buds of the wild type Four Seasons orchids (including sepals, petals, lips and pillars) and the complete buds of the two plexus mutants and soak them in liquid nitrogen and store at -80 °C. Until the RNA is extracted. Total RNA was extracted according to the method described by Tsai et al. (Tsai et al, 2004, Plant Cell Physiol. 45: 831-844).

CeMADSCeMADS cDNA末端之3'及5'快速擴增(RACE) 3' and 5' rapid amplification of cDNA ends (RACE)

藉由使用SMART RACE cDNA擴增套組(Clontech,Palo Alto,CA)延長cDNA之3'及5'端,以獲得全長cDNA。根據製造商之指示,將花蕾之300 ng總RNA用作合成3'-及5'-RACE之第一股cDNA。利用PCR擴增含有3'端cDNA之CeMADS純系,並使用3'與5'特異性通用引子(Clontech)及不同CeMADS基因之5'與3'基因特異性引子來進行。用於CeMADS-N之基因特異性引子CeMADS1CeMADS2分別為5'-TGCCATCAACAAGCACTGAGTATGA-3'(SEQ ID NO. 5)、5'-CTATTACACAACTGTATCACCAACTCTCGAGC-3'(SEQ ID NO. 6)及5'-CTCTACAGATAAAACTAACTTGGCAAGACAGAG-3'(SEQ ID NO. 7)。熱循環為在94℃下初始變性5分鐘,隨後25個在94℃下30秒、在60℃下30秒及在72℃下2分鐘之循環,並在72℃下最終延長5分鐘。用CeMADS基因特異性巢式引子及RACE套組中所提供之巢式通用引子再擴增RACE產物。The full-length cDNA was obtained by extending the 3' and 5' ends of the cDNA using a SMART RACE cDNA amplification kit (Clontech, Palo Alto, CA). According to the manufacturer's instructions, 300 ng of total RNA of the flower bud was used as the first cDNA for the synthesis of 3'- and 5'-RACE. The CeMADS- pure line containing the 3'-end cDNA was amplified by PCR and carried out using the 3' and 5'-specific universal primers (Clontech) and the 5' and 3' gene-specific primers of the different CeMADS genes. The gene-specific primers CeMADS1 and CeMADS2 for CeMADS-N are 5'-TGCCATCAACAAGCACTGAGTATGA-3' (SEQ ID NO. 5), 5'-CTATTACACAACTGTATCACCAACTCTCGAGC-3' (SEQ ID NO. 6) and 5'-CTCTACAGATAAAACTAACTTGGCAAGACAGAG-, respectively. 3' (SEQ ID NO. 7). The thermal cycle was initially denatured at 94 °C for 5 minutes, followed by 25 cycles at 94 °C for 30 seconds, at 60 °C for 30 seconds, and at 72 °C for 2 minutes, and finally at 72 °C for a final extension of 5 minutes. The RACE product was re-amplified using the CeMADS gene-specific nested primer and the nested universal primer provided in the RACE kit.

基因特異性巢式引子CeMADS-N2為5'-CAAGAAGCCWCAAAACTGCGTCA-3'(SEQ ID NO. 8),CeMADS1CeMADS2為5'-TCATACTCAGTGCTTGTTGATGGCA-3'(SEQ ID NO. 9)。PCR為在94℃下初始變性5分鐘,隨後30個在94℃下30秒、在60℃下30秒及在72℃下2分鐘之循環,及在72℃下最終延長5分鐘。將PCR產物選殖至pGEM-T Easy載體(Promega,Madison,WI)中,且對來自10個陽性純系之兩股進行測序。The gene-specific nested primer CeMADS-N2 is 5'-CAAGAAGCCWCAAAACTGCGTCA-3' (SEQ ID NO. 8), and CeMADS1 and CeMADS2 are 5'-TCATACTCAGTGCTTGTTGATGGCA-3' (SEQ ID NO. 9). The PCR was initially denatured at 94 °C for 5 minutes, followed by 30 cycles of 30 seconds at 94 °C, 30 seconds at 60 °C and 2 minutes at 72 °C, and a final extension of 5 minutes at 72 °C. The PCR product was cloned into the pGEM-T Easy vector (Promega, Madison, WI) and two strands from 10 positive lines were sequenced.

序列資料分析Sequence data analysis

原始DNA序列資料使用Sequencher V. 4.1(GeneCode,Ann Arbor,MI)進行編輯,以移除載體及poly A序列以及不良品質資料。與電泳圖相比,手動檢查經電腦處理之序列,必要時進一步編輯以改良資料之品質及可靠性。每個經編輯之序列皆轉譯出六個閱讀框架,並使用BLASTX程式與國家生物技術資訊中心(National Center for Biotechnology Information,NCBI)之非冗餘(nr)資料庫相比較(Altschul et al,1997,Nucleic Acids Res. 25: 3389-3402),並使用預設BLAST參數值。The original DNA sequence data was edited using Sequencher V. 4.1 (GeneCode, Ann Arbor, MI) to remove vector and poly A sequences as well as poor quality data. Manually inspect the computer-processed sequence and further edit as necessary to improve the quality and reliability of the data compared to the electropherogram. Each edited sequence translates six reading frames and uses the BLASTX program to compare with the National Center for Biotechnology Information (NCBI) non-redundant (nr) database (Altschul et al, 1997). , Nucleic Acids Res. 25: 3389-3402), and uses preset BLAST parameter values.

系統發生分析Systematic analysis

系統發生分析中所使用之41個基因係自GenBank下載而得,並以Clustal W進行序列比對(Thompson et al,1994,Nucleic Acids Res. 22: 4673-4680)。自該比對中排除非保守性I及C區。藉由鄰接法(neighbor-joining method)構建系統樹,並經1,000次平行操作所估計之自展值(bootstrap value)對其進行評估。The 41 gene lines used in the phylogenetic analysis were downloaded from GenBank and sequence aligned with Clustal W (Thompson et al, 1994, Nucleic Acids Res. 22: 4673-4680). Non-conservative I and C regions were excluded from this alignment. The phylogenetic tree was constructed by the neighbor-joining method and evaluated by the bootstrap value estimated by 1,000 parallel operations.

分離基因體DNA及南方墨點分析Isolation of genomic DNA and Southern blot analysis

根據Tsai等人(Tsai et al,2004,Plant Cell Physiol. 45: 831-844)所述之方法自葉分離基因體DNA。用限制酶EcoR I及Dra I消化基因體DNA之樣品,在0.8%瓊脂糖凝膠中解析,且使用真空轉移系統(Amersham Pharmacia Biotech)轉移至Hybond-N+耐綸(nylon)膜(Amersham Pharmacia Biotech,Piscataway,NJ)。選擇部分C端區及3'-UTR序列作為探針。藉由PCR,使用CeMADS1特異性內部引子對5'-CTATTACACAACTGTATCACCAACTCTCGAGC-3'(SEQ ID NO. 10)及5'-TGCCATCAACAAGCACTGAGTATGA-3'(SEQ ID NO. 11)產生CeMADS1特異性探針(258 bp)。使用CeMADS2特異性內部引子對5'-CTCTACAGATAAAACTAACTTGGCAAGACAGAG-3'(SEQ ID NO. 12)及5'-TGCCATCAACAAGCACTGAGTATGA-3'(SEQ ID NO. 13)擴增CeMADS2特異性探針(292 bp)。使南方墨點與標記α-32P之探針雜交。根據標準程序進行預雜交及雜交(Sambrook et al,2001,Molecular Cloning: A Laboratory Manual,3rd edn. Cold Spring Harbor Laboratory Press,Cold Spring Harbor,NY)。The genomic DNA was isolated from the leaves according to the method described by Tsai et al. (Tsai et al, 2004, Plant Cell Physiol. 45: 831-844). A sample of the genomic DNA was digested with restriction enzymes Eco R I and Dra I, resolved in a 0.8% agarose gel, and transferred to a Hybond-N + nylon membrane using a vacuum transfer system (Amersham Pharmacia Biotech) (Amersham Pharmacia) Biotech, Piscataway, NJ). A partial C-terminal region and a 3'-UTR sequence were selected as probes. Generation of CeMADS1- specific probe (258 bp) by PCR using the CeMADS1- specific internal primer pair 5'-CTATTACACAACTGTATCACCAACTCTCGAGC-3' (SEQ ID NO. 10) and 5'-TGCCATCAACAAGCACTGAGTATGA-3' (SEQ ID NO. 11) . Use CeMADS2 specific primer internal to the 5'-CTCTACAGATAAAACTAACTTGGCAAGACAGAG-3 '(SEQ ID NO. 12) and 5'-TGCCATCAACAAGCACTGAGTATGA-3' (SEQ ID NO. 13) amplified CeMADS2 specific probe (292 bp). The Southern blot is hybridized to the probe labeled α- 32P . Pre-hybridization and hybridization were performed according to standard procedures (Sambrook et al, 2001, Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY).

北方墨點雜交Northern ink dot hybridization

對於北方墨點分析,在1%瓊脂糖凝膠中分離來自不同花蕾或不同組織之總RNA(每個泳道10 μg),且將其轉移至Hybond-N+耐綸膜(Amersham Pharmacia,Biotech)上。對於預雜交,將該膜置於玻璃試管中且在42℃下添加雜交緩衝液(5 M NaCl、50 mM Tris(pH 7.5)、10% SDS、1% Na2P2O4、10 mM EDTA、100×鄧哈德溶液(Denhard's solution)(0.1 mg/ml)、50%硫酸葡聚糖及50%甲醯胺)。於預雜交溶液中添加0.1 mg/ml鮭魚精子DNA,在95℃下變性5分鐘,在冰上保持5分鐘且在42℃下進行2小時。使RNA墨點與如上文所述相同之探針雜交。根據標準方案進行預雜交及雜交(Sambrook et al,2001,Molecular Cloning: A Laboratory Manual,3rd edn. Cold Spring Harbor Laboratory Press,Cold Spring Harbor,NY)。在室溫下用2 X SSC、0.1% SDS洗滌濾膜兩次各15分鐘,隨後在42℃下用0.1 X SSC、0.1% SDS最後洗滌30分鐘,接著在-80℃下進行自動放射照相並保持3天。用FLA-7000螢光影像分析器(Fujifilm,Stamford,CT)偵測信號。For northern blot analysis, total RNA from different flower buds or different tissues (10 μg per lane) was isolated on a 1% agarose gel and transferred to Hybond-N + nylon membrane (Amersham Pharmacia, Biotech) on. For pre-hybridization, the membrane was placed in a glass test tube and hybridization buffer (5 M NaCl, 50 mM Tris (pH 7.5), 10% SDS, 1% Na 2 P 2 O 4 , 10 mM EDTA) was added at 42 °C. 100×Denhard's solution (0.1 mg/ml), 50% dextran sulfate and 50% formamide. 0.1 mg/ml salmon sperm DNA was added to the prehybridization solution, denatured at 95 ° C for 5 minutes, kept on ice for 5 minutes and at 42 ° C for 2 hours. The RNA dots were hybridized to the same probe as described above. Pre-hybridization and hybridization were performed according to standard protocols (Sambrook et al, 2001, Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY). The filter was washed twice with 2 X SSC, 0.1% SDS for 15 minutes at room temperature, then finally washed with 0.1 X SSC, 0.1% SDS for 30 minutes at 42 ° C, followed by autoradiography at -80 ° C and Stay for 3 days. Signals were detected using a FLA-7000 fluorescence image analyzer (Fujifilm, Stamford, CT).

即時定量RT-PCRReal-time quantitative RT-PCR

用RQ1 DNase(Promega)處理RNA樣品以移除殘餘DNA,且使用Superscript II套組(Invitrogen)合成第一股cDNA。使用Primer Express(Applied Biosystems,Foster City,CA)經設計即時RT-PCR之引子。用於CeMADS1之基因特異性引子為5'-GGTAAGGGAAGATTGTTGCAGTGA-3'(SEQ ID NO. 14)及5'-TTTCCATCCATACTTTTCTTACAAAACATA-3'(SEQ ID NO. 15)。用於CeMADS2之基因特異性引子為5'-AAATCTGGAGTGAATTGGAATGGT-3'(SEQ ID NO. 16)及5'-AAGTAGAGTCTCTACAGATAAAACTAACTTG-3'(SEQ ID NO. 17)。使用ubiqutin基因作為內部定量對照組。用於ubiqutin之基因特異性引子為5'-CCGGATCAGCAAAGGTTGA-3'(SEQ ID NO. 18)及5'-AAGATTTGCATCCCTCCCC-3'(SEQ ID NO. 19)。各即時RT-PCR反應物含有5 ng cDNA、20 μM引子及12.5 μl SYBR GREEN PCR混合物(Applied Biosystems)且添加水至25 μl。使用ABI 7500即時PCR儀器(Applied Biosystems)進行即時PCR。PCR由在94℃下初始變性10分鐘、隨後40個在94℃下15秒、在60℃下1分鐘之循環及在95℃下15秒、在60℃下1分鐘、在95℃下15秒之解離階段組成。對於各即時RT-PCR反應,各樣品進行三重複分析。使用測序偵測軟體1.2.2版(Applied Biosystems)分析資料。RNA samples were treated with RQ1 DNase (Promega) to remove residual DNA, and the first strand of cDNA was synthesized using the Superscript II kit (Invitrogen). Primers for real-time RT-PCR were designed using Primer Express (Applied Biosystems, Foster City, CA). The gene-specific primers used for the CeMADS1 5'-GGTAAGGGAAGATTGTTGCAGTGA-3 '(SEQ ID NO. 14) and 5'-TTTCCATCCATACTTTTCTTACAAAACATA-3' (SEQ ID NO. 15). The gene-specific primers for CeMADS2 as 5'-AAATCTGGAGTGAATTGGAATGGT-3 '(SEQ ID NO. 16) and 5'-AAGTAGAGTCTCTACAGATAAAACTAACTTG-3' (SEQ ID NO. 17). The ubiqutin gene was used as an internal quantitative control group. Ubiqutin-specific primers for the gene of 5'-CCGGATCAGCAAAGGTTGA-3 '(SEQ ID NO. 18) and 5'-AAGATTTGCATCCCTCCCC-3' (SEQ ID NO. 19). Each RT-PCR reaction contained 5 ng cDNA, 20 μM primer and 12.5 μl SYBR GREEN PCR mix (Applied Biosystems) and water was added to 25 μl. Real-time PCR was performed using an ABI 7500 real-time PCR instrument (Applied Biosystems). PCR was initially denatured at 94 ° C for 10 minutes, followed by 40 cycles at 94 ° C for 15 seconds, at 60 ° C for 1 minute, and at 95 ° C for 15 seconds, at 60 ° C for 1 minute, at 95 ° C for 15 seconds. The dissociation phase consists of. For each of the real-time RT-PCR reactions, each sample was subjected to three replicate analyses. The data was analyzed using the sequencing detection software version 1.2.2 (Applied Biosystems).

原位雜交In situ hybridization

在4℃下將四季蘭花序固定於4%(v/v)三聚甲醛及0.5%(v/v)戊二醛中並保持24小時。經由一系列乙醇使其脫水,包埋於Histoplast中且使用Shandon Finesse 325花序轉切片機(Thermo,Waltham,MA)得到8 μm切片。根據製造商之說明書(Roche Applied Science,Penzberg,Germany)合成含有如上文所述之部分C端區及3'-UTR的地高辛(Digoxigenin)標記之正股及反股RNA探針,並使用鹼性磷酸酶進行信號之雜交及免疫學偵測(Boehringer Mannheim,Mannheim,Germany)。The four season orchids were fixed in 4% (v/v) trioxane and 0.5% (v/v) glutaraldehyde at 4 ° C for 24 hours. It was dehydrated via a series of ethanol, embedded in Histoplast and 8 μm sections were obtained using a Shandon Finesse 325 inflorescence microtome (Thermo, Waltham, MA). Synthetic and anti-strand RNA probes containing Dichoxigenin-labeled partial C-terminal regions and 3'-UTR as described above were synthesized and used according to the manufacturer's instructions (Roche Applied Science, Penzberg, Germany). Alkaline phosphatase for signal hybridization and immunological detection (Boehringer Mannheim, Mannheim, Germany).

酵母雙雜交分析Yeast two-hybrid analysis

使用MATCHMAKER系統(Clontech)進行酵母雙雜交(Y2H)分析。經由PCR擴增產生含有蘭屬之兩個C群基因CeMADS1CeMADS2、姬蝴蝶蘭之一個E群基因PeMADS8的全長編碼區之EcoR I片段且將其選殖至載體pGBKT7之結合域及載體pGADT7之活化域中。用於選殖CeMADS1之全長編碼區的引子為5'-GAATTCATGGAGCCCAAGGAGAAGATGG-3'(SEQ ID NO. 20)及5'-GAATTCTTACCCAAGCTGCAGAGCAGTCTG-3'(SEQ ID NO. 21)。用於選殖CeMADS2之全長編碼區的引子為5'-GAATTCATGGGAAGGGGAAAGATAGAGATCAAGAG-3'(SEQ ID NO. 22)及5'-GAATTCCTAACCTAATTGGAGGGCAGTCTGCTG-3'(SEQ ID NO. 23)。用於選殖PeMADS8之全長編碼區的引子為5'-GAATTCATGGGAAGAGGGAGAGTGGAGC-3'(SEQ ID NO. 24)及5'-GAATTCGGGGGAAAGCCAGAAATTTGTA-3'(SEQ ID NO. 25)。藉由序列測定證實構築體是否適當融合。使用酵母菌株AH109進行轉型、乙酸鋰方法及群落提昇過濾檢驗(Gietz et al,1992,Nucleic Acids Res. 20: 1425)。根據製造商之說明書(Clontech),在缺乏組胺酸、白胺酸及色胺酸(-3)之選擇培養基上篩選含有結合域與活化域質體之轉型體。Yeast two-hybrid (Y2H) analysis was performed using the MATCHMAKER system (Clontech). The Eco RI fragment containing the full-length coding region of the two C-group genes CeMADS1 and CeMADS2 , and the E-group gene PeMADS8 of Hydrangea , was amplified by PCR and cloned into the binding domain of the vector pGBKT7 and the vector pGADT7. Activation domain. Primer for cloning full-length coding region of the CeMADS1 5'-GAATTCATGGAGCCCAAGGAGAAGATGG-3 '(SEQ ID NO. 20) and 5'-GAATTCTTACCCAAGCTGCAGAGCAGTCTG-3' (SEQ ID NO. 21). Primer for cloning full-length coding region of the CeMADS2 5'-GAATTCATGGGAAGGGGAAAGATAGAGATCAAGAG-3 '(SEQ ID NO. 22) and 5'-GAATTCCTAACCTAATTGGAGGGCAGTCTGCTG-3' (SEQ ID NO. 23). Primer for cloning full-length coding region of the PeMADS8 5'-GAATTCATGGGAAGAGGGAGAGTGGAGC-3 '(SEQ ID NO. 24) and 5'-GAATTCGGGGGAAAGCCAGAAATTTGTA-3' (SEQ ID NO. 25). Whether the construct is properly fused is confirmed by sequence analysis. Transformation using yeast strain AH109, lithium acetate method and community lift filtration test (Gietz et al, 1992, Nucleic Acids Res. 20: 1425). The transformants containing the binding domain and the activating domain plastid were screened on selection medium lacking histidine, leucine and tryptophan (-3) according to the manufacturer's instructions (Clontech).

使用酵母菌株Y187(Clontech)進行酵母雙雜交分析之定量。使在選擇培養基上生長之陽性轉型體進一步生長且再懸浮於含有O-硝基苯酚-b-D-哌喃半乳糖苷(4 mM,於Z緩衝液中)作為受質之Z緩衝液(100 mM NaPO4、10 mM KCl、1 mM MgSO4、50 mMβ-巰基乙醇(pH 7.0))中。對於蛋白質-蛋白質相互作用之強度定量,係使用DU 640B分光光度計(Beckman Coulter Inc.,Fullerton,CA)在OD420下量測β-半乳糖苷酶活性且根據Miller所述之方法(Miller,1992,A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. Cold Spring Harbor Laboratory Press,Cold Spring Harbor,NY)進行計算。Quantification of the yeast two-hybrid assay was performed using yeast strain Y187 (Clontech). The positive transformant grown on the selection medium was further grown and resuspended in O-nitrophenol-bD-galactopyranoside (4 mM in Z buffer) as the substrate Z buffer (100 mM). NaPO 4 , 10 mM KCl, 1 mM MgSO 4 , 50 mM β-mercaptoethanol (pH 7.0)). For intensity quantification of protein-protein interactions, β-galactosidase activity was measured at OD 420 using a DU 640B spectrophotometer (Beckman Coulter Inc., Fullerton, CA) and according to the method described by Miller (Miller, 1992, A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY).

轉型融合體之構建Construction of transformational fusion

在花椰菜花葉病毒(CaMV)35S啟動子之控制下,將含有CeMADS1CeMADS2之全長cDNA的Sma I片段分別選殖至穿梭載體pBI121(Clontech)中。使用PCR檢驗正股構築體且將其用於植物轉型。用於全長CeMADS1 cDNA之引子對為5'-CCCGGGGAGTGAAATAGATCGAGAAAGCTA-3'(SEQ ID NO. 26)、5'-CCCGGGGGAAGATTAAAGTTCCATGAAATA-3'(SEQ ID NO. 27)。用於全長CeMADS2 cDNA之引子對為5'-CCCGGGGAAAACTGGCTTTCTTTCAGGCAG-3'(SEQ ID NO. 28)及5'-CCCGGGCTTGTATTTTATTTCTTCTACAAAATATAGAGT-3'(SEQ ID NO. 29)。The Sma I fragment containing the full-length cDNA of CeMADS1 and CeMADS2 was separately selected into the shuttle vector pBI121 (Clontech) under the control of the cauliflower mosaic virus (CaMV) 35S promoter. The positive strand construct was tested using PCR and used for plant transformation. The primer pair for the full-length CeMADS1 cDNA was 5'-CCCGGGGAGTGAAATAGATCGAGAAAGCTA-3' (SEQ ID NO. 26), 5'-CCCGGGGGAAGATTAAAGTTCCATGAAATA-3' (SEQ ID NO. 27). The primer pair for the full length CeMADS2 cDNA was 5'-CCCGGGGAAAACTGGCTTTCTTTCAGGCAG-3' (SEQ ID NO. 28) and 5'-CCCGGGCTTGTATTTTATTTCTTCTACAAAATATAGAGT-3' (SEQ ID NO. 29).

植物轉型Plant transformation

藉由添加含0.02%(v/v)Silwet L-77(Lehle Seeds,Round Rock,Tx)之轉型培養基,經真空侵入(Bechtold et al,1993,C R Acad. Sci. Ser. III Sci. Vie. 316: 1194-1199)使阿拉伯芥轉型。為選擇轉型阿拉伯芥,在補充有50 μg ml-1康納黴素(Sigma-Aldrich)之培養基上篩選種子(T0)。選擇2週後,將康納黴素抗性幼苗(T1)轉移至土壤中且在上述條件下生長。藉由使用卡方檢驗(Chi-square test)分析T1代中之康納黴素分離。使用純合康納黴素抗性T2代來證實各構築體進行PCR所得之整合片段。收集分離比率為3:1之轉型系以供進一步分析。Invasion by vacuum was carried out by adding a transformation medium containing 0.02% (v/v) Silwet L-77 (Lehle Seeds, Round Rock, Tx) (Bechtold et al, 1993, CR Acad. Sci. Ser. III Sci. Vie. 316: 1194-1199) Transforming Arabis mustard. Arabidopsis transformation was selected, supplemented with 50 μg ml -1 screening seeds (T 0) on Connor neomycin (Sigma-Aldrich) of media. After 2 weeks of selection, the kanamycin-resistant seedlings (T 1 ) were transferred to soil and grown under the above conditions. The connamycin separation in the T 1 generation was analyzed by using a Chi-square test. Connor neomycin resistance using homozygous T 2 of each construct was confirmed by substituting the integration fragment obtained from PCR. A transformation ratio of 3:1 was collected for further analysis.

結果result

野生型與叢瓣突變體之間花形態發生之比較使用四季蘭之野生型(圖1A)及兩種叢瓣突變體(A型及B型)(圖1B及1C)作為植物材料。該植物具有不定花序,其中野生型花在第1花序中具有三個萼片,在第2花序中具有兩個花瓣及一個唇部,且在花中心具有一個由雄性及雌性生殖部器合生之合蕊柱。此等花通常香味很濃。萼片與花瓣之形狀及顏色彼此類似,除了花瓣通常具有較強中心帶及朝向基部之紅棕色斑點。唇部(高度進化之花瓣)為淺黃色或綠色且具有紅色邊緣。唇部之形狀為卵形至三角形且具有扭折至波狀之邊緣。合蕊柱為淺黃色且在下部具有紅色短線。合蕊柱或蕊柱在半圓形黏著體(viscidium)上具有4個花粉塊。花序分生組織以螺旋葉序產生花分生組織,而花分生組織以花序生葉序產生花原基(圖1D及1E)。A型(圖1B)及B型(圖1C)叢瓣突變體具有自最外層的花序至中心具有重複被片模式之不定花。A型及B型突變體中完全不存在合蕊柱(圖1B、1C及1F)。Flower morphogenesis between wild type and plexus mutants was performed using wild type of Four Seasons Orchid (Fig. 1A) and two plexus mutants (Type A and Type B) (Figs. 1B and 1C) as plant material. The plant has an indeterminate inflorescence, wherein the wild-type flower has three sepals in the first inflorescence, two petals and one lip in the second inflorescence, and one in the center of the flower, which is a combination of male and female reproductive organs. Pillar. These flowers usually have a strong aroma. The shape and color of the sepals and petals are similar to each other except that the petals usually have a strong central band and reddish-brown spots toward the base. The lip (the highly evolved petal) is light yellow or green with red edges. The shape of the lip is oval to triangular and has a kinked to wavy edge. The column is light yellow and has a short red line at the bottom. The column or column has four pollen blocks on a semi-circular viscidium. Inflorescence meristems produce floral meristems in spiral leaf order, while flower meristems produce flower primordia in inflorescence leaf order (Fig. 1D and 1E). Type A (Fig. 1B) and Type B (Fig. 1C) plexus mutants have indefinite flowers with repeating plate patterns from the outermost inflorescence to the center. There is no colloidal column in the type A and type B mutants (Figs. 1B, 1C and 1F).

來自四季蘭之C群MADS-box基因的鑑別及序列分析Identification and sequence analysis of the C-group MADS-box gene from Four Seasons

為選殖C群基因,藉由使用cDNA末端之快速擴增(RACE)獲得cDNA之全長序列,並選殖得四季蘭中之C群基因兩全長cDNA,命名為CeMADS1CeMADS2CeMADS1CeMADS2之核苷酸序列一致性為83%。ORF轉譯產生233 aa蛋白(CeMADS1)及234 aa蛋白(CeMADS2),且一致性及相似性分別為85%及96%。與植物之其他C群蛋白的多重序列比對顯示,兩種蛋白皆具有典型MIKC型域結構(圖2)。另外,CeMADS1及CeMADS2在其C端含有AG基元I及II(圖2)。此等基元在被子植物中之許多AG同系物中具有保守性(Kramer et al,2004,Genetics 166: 1011-1023)。In order to select the C gene, the full-length cDNA was obtained by rapid amplification (RACE) of the cDNA end, and the two full-length cDNAs of the C gene in the four seasons were selected and named as CeMADS1 and CeMADS2 . The nucleotide sequence identity of CeMADS1 and CeMADS2 was 83%. ORF translation resulted in 233 aa protein (CeMADS1) and 234 aa protein (CeMADS2) with consistency and similarity of 85% and 96%, respectively. Multiple sequence alignments with other Group C proteins of plants showed that both proteins have a typical MIKC type domain structure (Figure 2). In addition, CeMADS1 and CeMADS2 contain AG motifs I and II at their C-terminus (Fig. 2). These motifs are conserved in many AG homologs in angiosperms (Kramer et al, 2004, Genetics 166: 1011-1023).

CeMADS旁系同源物與其他類AGAMOUS基因之系統發生關係 Phylogenetic relationship between CeMADS paralogs and other AGAMOUS genes

為判定CeMADS1CeMADS2及其他類AGAMOUS基因之間的系統發生關係,使用各別基因之胺基酸序列作為輸入資料來重建MADS-box基因之已知AGAMOUS子家族之系統發生。此等基因之系統發生分析顯示,蘭科C群具有單源性且在蘭花中存在C群基因之兩個子系。此表明由基因重複引起之蘭花C群基因係在樹蘭亞科物種趨異之前發生(圖3)。To determine the phylogenetic relationship between CeMADS1 , CeMADS2, and other AGAMOUS genes, the amino acid sequence of each gene was used as input to reconstruct the phylogeny of the known AGAMOUS subfamily of the MADS-box gene. Phylogenetic analysis of these genes revealed that the Orchidaceae C group is unimodal and has two subfamilies of the C gene in orchids. This indicates that the orchid C gene line caused by gene duplication occurs before the genus of the subfamily species (Fig. 3).

CeMADS基因之基因體分佈 Genomic distribution of CeMADS gene

為瞭解四季蘭基因體中CeMADS1CeMADS2之基因體分佈,進行南方墨點分析。使含有20 μg經EcoR I(泳道1及3)及Dra I(泳道2及4)消化之四季蘭基因體DNA的墨點在嚴格條件下與自CeMADS基因之3'特異性區域衍生的探針雜交(圖4)。結果顯示CeMADS1CeMADS2在蘭屬(Cymbidium)基因體中皆以單複本基因呈現。另外,南方墨點法中所用之探針為對於CeMADS1CeMADS2之間的區別具有特異性之基因。In order to understand the distribution of the genomic distribution of CeMADS1 and CeMADS2 in the genome of the four seasons, Southern blot analysis was carried out. A probe containing 20 μg of the genomic DNA of the Four Seasons genomic DNA digested with Eco R I (lanes 1 and 3) and Dra I (lanes 2 and 4) under stringent conditions and probes derived from the 3' specific region of the CeMADS gene Hybridization (Figure 4). The results showed that both CeMADS1 and CeMADS2 were expressed as single-replicon genes in the Cymbidium genome. In addition, the probe used in the Southern dot method is a gene specific for the difference between CeMADS1 and CeMADS2 .

兩種CeMADS基因之表現概況Performance profile of two CeMADS genes

由於蘭屬中存在此兩種C群旁系同源物,因此進一步探討兩種基因之作用。首先藉由北方墨點分析來比較野生型與叢瓣突變體花蕾之間CeMADS1CeMADS2基因之空間表現模式(圖5)。使用CeMADS基因之3'端基因特異性區域作為上述探針。Since these two C group paralogs exist in the genus, the roles of the two genes are further explored. First, the spatial expression patterns of CeMADS1 and CeMADS2 genes between wild-type and plexus mutant flower buds were compared by northern blot analysis (Fig. 5). The 3'-end gene-specific region of the CeMADS gene was used as the above probe.

CeMADS1之表現僅在蕊柱中偵測到(圖5,第1列,泳道1-4)。然而,在所有花部器中,主要是蕊柱,偵測到CeMADS2之表現(圖5,第2列,泳道1-4)。此等結果表明,此兩種CeMADS基因在合蕊柱發育中具重要作用。另外,CeMADS2基因產物可在蘭花的花發育之不同態樣中具有多種功能。The performance of CeMADS1 was only detected in the column (Fig. 5, column 1, lanes 1-4). However, in all flower organs, mainly the column, the performance of CeMADS2 was detected (Fig. 5, column 2, lanes 1-4). These results indicate that these two CeMADS genes play an important role in the development of the core column. In addition, the CeMADS2 gene product can have multiple functions in different aspects of orchid flower development.

進一步分析叢瓣突變體中此兩種CeMADS基因在花形態發生方面之差異功能(圖5)。在野生型花蕾中偵測到CeMADS1表現之強信號。相比之下,在來自A型或B型叢瓣花蕾之RNA樣品中未偵測到CeMADS1轉錄物(圖5,第1列,泳道5-7)。然而,在野生型與A型或B型叢瓣突變體之間,未觀察到CeMADS2之偵測信號存在明顯差異(圖5,第2列,泳道5-7)。此等結果表明在蘭花的花形態發生中,CeMADS1之表現明顯與正常合蕊柱發育有關。The differential function of these two CeMADS genes in flower morphogenesis in the plexus mutant was further analyzed (Fig. 5). A strong signal of CeMADS1 expression was detected in wild-type flower buds. In contrast, no CeMADS1 transcript was detected in RNA samples from A-type or B-type bud flower buds (Fig. 5, column 1, lanes 5-7). However, no significant difference in the detection signal of CeMADS2 was observed between wild-type and type A or B-type plexus mutants (Fig. 5, column 2, lanes 5-7). These results indicate that in the flower morphogenesis of orchids, the performance of CeMADS1 is significantly related to the development of normal spheroids .

此外,在花蕾之各個發育階段(第1階段:0.5-1 cm,第2階段:1-2 cm,第3階段:2-3 cm)及在四季蘭之不同營養組織中測定CeMADS1CeMADS2之時間表現(圖6及7)。結果顯示在所有花蕾發育階段均偵測到CeMADS1CeMADS2,其仍具有極特殊表現模式。CeMADS1在第1階段更強烈表現;而相較於CeMADS1CeMADS2在後續階段中更表現顯著(圖6)。此等結果表明CeMADS1可啟動合蕊柱發育,接著CeMADS2發揮維持作用以完成合蕊柱形態發生。然而,在諸如根、葉及嫩芽之營養組織中CeMADS1CeMADS2並不表現(圖7)。有趣的是,CeMADS2 RNA轉錄物在花梗中之表現比CeMADS1高得多(圖7),此表明CeMADS2亦可參與花梗/胚珠發育。In addition, in the various developmental stages of flower buds (1st stage: 0.5-1 cm, stage 2: 1-2 cm, stage 3: 2-3 cm) and determination of CeMADS1 and CeMADS2 in different vegetative tissues of Four Seasons Time performance (Figures 6 and 7). The results showed that CeMADS1 and CeMADS2 were detected in all flower bud development stages, and they still had very special performance patterns. CeMADS1 performed more strongly in the first stage; compared to CeMADS1 , CeMADS2 performed more significantly in the subsequent stages (Fig. 6). These results indicate that CeMADS1 can initiate the development of the core column, and then CeMADS2 plays a maintenance role to complete the morphogenesis of the core column. However, CeMADS1 and CeMADS2 do not appear in vegetative tissues such as roots, leaves and shoots (Fig. 7). Interestingly, the CeMADS2 RNA transcript performed much better in peduncle than CeMADS1 (Figure 7), suggesting that CeMADS2 can also be involved in pedicel/ovule development.

CeMADS轉錄物之原位定位In situ localization of CeMADS transcripts

使用反股RNA探針之原位雜交進行CeMADS1CeMADS2基因之空間及時間表現模式之研究。結果顯示,CeMADS1CeMADS2轉錄物具有高度類似之表現模式(圖8)。在花原基之極早階段偵測到CeMADS1CeMADS2(圖8A、8E)。在稍後階段,其更集中於發育中之合蕊柱的近軸面(圖8B、8C、8F)。此等結果亦證明CeMADS1CeMADS2可能與合蕊柱發育有關。使用正股RNA探針進行陰性對照(圖8D、8G)。The spatial and temporal expression patterns of the CeMADS1 and CeMADS2 genes were studied using in situ hybridization of anti-strand RNA probes. The results showed that CeMADS1 and CeMADS2 transcripts have highly similar expression patterns (Fig. 8). CeMADS1 and CeMADS2 were detected at very early stages of the flower primordium (Figs. 8A, 8E). At a later stage, it is more focused on the paraxial plane of the developing column (Figs. 8B, 8C, 8F). These results also prove that CeMADS1 and CeMADS2 may be related to the development of the core column. A negative control was performed using a positive strand RNA probe (Fig. 8D, 8G).

兩種CeMADS蛋白之相互作用行為Interaction behavior of two CeMADS proteins

為研究蘭花中C群與E群基因之間的蛋白質-蛋白質相互作用,進行包括群落提昇過濾(colony-lift filter)及液體培養檢驗在內之酵母雙雜交分析。將CeMADS1CeMADS2及類SEPALLATA(E群)基因PeMADS8(姬蝴蝶蘭MADS8,圖11)分別選殖至結合域載體pGBKT7與活化域載體pGADT7中。結果顯示,CeMADS1與CeMADS2皆具有形成均二聚體及雜二聚體之能力(圖9)。另外,其亦可獨立地與E群PeMADS8相互作用(圖9)。CeMADS1均二聚體之相互作用強度類似於CeMADS1-CeMADS2雜二聚體,但比CeMADS2均二聚體強(圖9)。另外,CeMADS1-PeMADS8雜二聚體之相互作用強度亦比CeMADS2-PeMADS8雜二聚體強(圖9)。此等結果表明,CeMADS1均二聚體、CeMADS1-CeMADS2雜二聚體及/或C-E複合物對四季蘭之合蕊柱形態發生具關鍵作用。To study protein-protein interactions between Group C and Group E genes in orchids, yeast two-hybrid assays including colony-lift filter and liquid culture assays were performed. CeMADS1 , CeMADS2 and the SEPALLATA (E group) gene PeMADS8 (Hymenoptera MADS8 , Fig. 11) were separately selected into the binding domain vector pGBKT7 and the activation domain vector pGADT7. The results showed that both CeMADS1 and CeMADS2 have the ability to form homodimers and heterodimers (Fig. 9). Alternatively, it can interact with the E group PeMADS8 independently (Fig. 9). The interaction strength of the CeMADS1 homodimer was similar to that of the CeMADS1-CeMADS2 heterodimer, but it was stronger than the CeMADS2 homodimer (Fig. 9). In addition, the interaction strength of the CeMADS1-PeMADS8 heterodimer was also stronger than that of the CeMADS2-PeMADS8 heterodimer (Fig. 9). These results indicate that the CeMADS1 homodimer, CeMADS1-CeMADS2 heterodimer and/or CE complex play a key role in the morphogenesis of the four-phase blue column.

藉由阿拉伯芥中之異位表現進行兩種CeMADS基因之功能分析Functional analysis of two CeMADS genes by ectopic expression in Arabidopsis

為研究C群CeMADS基因之功能,經由土壤桿菌(Agrobacterium)介導之轉型構築體分別在花椰菜花葉病毒(CaMV)35S啟動子之控制下表現CeMADS1CeMADS2之轉殖基因阿拉伯芥。在所獲得之11個獨立的CeMADS1轉殖基因株中,5個株顯示初生花序之有限生長(圖10)。亦在19個過表現CeMADS2之獨立轉殖基因阿拉伯芥的6個中觀察到類似表型。如圖10A至10C中所示,初生花序頂尖異常地以一叢花蕾終止。然而,在CeMADS1CeMADS2轉殖基因阿拉伯芥中,初生花序之分枝不以頂尖花結束。此等結果表明,CeMADS1CeMADS2功能可能有助於生殖初生花序中之花分生組織特性。To study the function of the C-group CeMADS gene, the Agrobacterium- mediated transformation constructs showed the Arabidopsis thaliana of CeMADS1 and CeMADS2 under the control of the cauliflower mosaic virus (CaMV) 35S promoter. Of the 11 independent CeMADS1 transgenic strains obtained, 5 showed finite growth of primary inflorescences (Fig. 10). A similar phenotype was also observed in 6 of the 19 independent transgenic Arabidopsis thaliana expressing CeMADS2 . As shown in Figures 10A to 10C, the primary inflorescence tip abnormally terminates with a cluster of flower buds. However, in the CeMADS1 and CeMADS2 transgenic Arabidopsis, the branches of the primary inflorescence did not end with the top flower. These results suggest that the function of CeMADS1 or CeMADS2 may contribute to the meristematic characteristics of the flower in the primary flowering inflorescence.

除在確定花分生組織特性中之作用外,AG之功能亦在於形成雄蕊及心皮特性。AG在阿拉伯芥中之異位表現分別達成心皮化(carpelloid)及雄蕊化(staminoid)部器在第1花序及第2花序中的同源異型轉化(Mizukami and Ma,1992,Cell 71: 119-131)。然而,過度表現CeMADS1CeMADS2之轉殖基因阿拉伯芥未改變花形態(圖10)。In addition to its role in determining the characteristics of floral meristems, the function of AG is also to form stamen and carpel characteristics. The ectopic expression of AG in Arabidopsis reached the homeomorphic transformation of carpelloid and staminoid parts in the first inflorescence and the second inflorescence, respectively (Mizukami and Ma, 1992, Cell 71: 119 -131). However, the Arabidopsis thaliana, which overexpresses the transgenic gene of CeMADS1 or CeMADS2 , did not alter flower morphology (Fig. 10).

上述實施例僅為說明本發明之原理及其功效,而非限制本發明。習於此技術之人士對上述實施例所做之修改及變化仍不違背本發明之精神。本發明之權利範圍應如後述之申請專利範圍所列。The above-described embodiments are merely illustrative of the principles and effects of the invention, and are not intended to limit the invention. Modifications and variations of the embodiments described above will be apparent to those skilled in the art without departing from the spirit of the invention. The scope of the invention should be as set forth in the appended claims.

<110> 國立成功大學<110> National Cheng Kung University

<120> 控制合蕊柱發育之基因、蛋白質及方法<120> Genes, proteins and methods for controlling the development of the core

<130> 無<130> None

<160> 29<160> 29

<170> PatentIn version 3.3<170> PatentIn version 3.3

<210> 1<210> 1

<211> 926<211> 926

<212> DNA<212> DNA

<213> 四季蘭<213> Four Seasons

<220><220>

<221> CDS<221> CDS

<222> (61)..(762)<222> (61)..(762)

<400> 1<400> 1

<210> 2<210> 2

<211> 233<211> 233

<212> PRT<212> PRT

<213> 四季蘭<213> Four Seasons

<400> 2<400> 2

<210> 3<210> 3

<211> 1096<211> 1096

<212> DNA<212> DNA

<213> 四季蘭<213> Four Seasons

<220><220>

<221> CDS<221> CDS

<222> (87)..(791)<222> (87)..(791)

<400> 3<400> 3

<210> 4<210> 4

<211> 234<211> 234

<212> PRT<212> PRT

<213> 四季蘭<213> Four Seasons

<400> 4<400> 4

<210> 5<210> 5

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<400> 5<400> 5

<210> 6<210> 6

<211> 32<211> 32

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<400> 6<400> 6

<210> 7<210> 7

<211> 33<211> 33

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<400> 7<400> 7

<210> 8<210> 8

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<400> 8<400> 8

<210> 9<210> 9

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<400> 9<400> 9

<210> 10<210> 10

<211> 32<211> 32

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<400> 10<400> 10

<210> 11<210> 11

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<400> 11<400> 11

<210> 12<210> 12

<211> 33<211> 33

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<400> 12<400> 12

<210> 13<210> 13

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<400> 13<400> 13

<210> 14<210> 14

<211> 24<211> 24

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<400> 14<400> 14

<210> 15<210> 15

<211> 30<211> 30

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<400> 15<400> 15

<210> 16<210> 16

<211> 24<211> 24

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<400> 16<400> 16

<210> 17<210> 17

<211> 31<211> 31

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<400> 17<400> 17

<210> 18<210> 18

<211> 19<211> 19

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<400> 18<400> 18

<210> 19<210> 19

<211> 19<211> 19

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<400> 19<400> 19

<210> 20<210> 20

<211> 28<211> 28

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<400> 20<400> 20

<210> 21<210> 21

<211> 30<211> 30

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<400> 21<400> 21

<210> 22<210> 22

<211> 35<211> 35

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<400> 22<400> 22

<210> 23<210> 23

<211> 33<211> 33

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<400> 23<400> 23

<210> 24<210> 24

<211> 28<211> 28

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<400> 24<400> 24

<210> 25<210> 25

<211> 28<211> 28

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<400> 25<400> 25

<210> 26<210> 26

<211> 30<211> 30

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<400> 26<400> 26

<210> 27<210> 27

<211> 30<211> 30

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<400> 27<400> 27

<210> 28<210> 28

<211> 30<211> 30

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<400> 28<400> 28

<210> 29<210> 29

<211> 39<211> 39

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<400> 29<400> 29

圖1顯示四季蘭之野生型花與叢瓣突變花。(A)四季蘭之野生型花。該花具有三個萼片及三個花瓣。一個花瓣在結構形態上不同且稱為唇瓣或唇部。雄性與雌性生殖部分合生於花中心之結構中,即合蕊柱。花粉粒黏在一起形成花粉塊,其位於合蕊柱頂部、花粉蓋下。(B)及(c)四季蘭之叢瓣突變A型及B型花。叢瓣突變花表示合蕊柱,合生之雄性與雌性生殖部器由新萌發之花替代,且此異位花繼續向心地產生萼片及花瓣。(D、E)野生型四季蘭之初期花發育階段的掃描電子顯微圖(SEM)。比例尺=200 μm。(F)四季蘭叢瓣突變體之初期花發育階段的SEM。比例尺=500 μm。Im,花序分生組織;Fm,花分生組織;Se,萼片原基;Pe,花瓣原基;Li,唇部原基;Co,蕊柱原基。Te,被片。Figure 1 shows wild-type flowers and plexus mutant flowers of the four seasons. (A) Wild-type flowers of the Four Seasons Orchid. The flower has three sepals and three petals. A petal is structurally distinct and is referred to as a lip or lip. Male and female reproductive parts are born in the structure of the flower center, that is, the core column. The pollen grains stick together to form a pollen block, which is located at the top of the pegs and under the pollen cover. (B) and (c) Four-season orchid plexus mutant type A and type B flowers. The plexus mutant flower represents the spheroidal column, and the male and female genitals are replaced by new germinated flowers, and the ectopic flower continues to produce sepals and petals. (D, E) Scanning electron micrograph (SEM) of the initial flower development stage of wild type Four Seasons. Scale bar = 200 μm. (F) SEM of the initial flower development stage of the Four Seasons orchid plexus mutant. Scale bar = 500 μm. Inflorescence meristem; Fm, floral meristem; Se, bract primordium; Pe, petal primordium; Li, lip primordium; Co, primordium. Te, was filmed.

圖2顯示所推導之CeMADS基因及其他C類基因之胺基酸序列的比對。由電腦程式PILEUP產生多次比對且由PRETTYBOX呈現。共同一致性由黑盒表示。共同相似性由灰色表示,不同之處由白色指示,比對間隙由點指示,且未被胺基酸佔據之位置由「~」指示。MADS、I、K及C域在各欄頂部指示。AG基元由黑線指示。AGAMOUS(CAA16753)來自擬南芥(Arabidopsis thaliana);CsAG1(AAS67610)來自番紅花(Crocus sativus);DcOAG1(AAZ95250)來自鴿石斛;FARINELLI(CAB42988)來自金魚草(Antirrhinum majus);且OSMADS3(Q40704)來自稻(Oryza sativa)。Figure 2 shows an alignment of the deduced amino acid sequence of the CeMADS gene and other class C genes. Multiple comparisons are generated by the computer program PILEUP and presented by the PRETTYBOX. Common consistency is represented by a black box. The common similarity is indicated by gray, the difference is indicated by white, the comparison gap is indicated by a dot, and the position not occupied by the amino acid is indicated by "~". The MADS, I, K, and C fields are indicated at the top of each column. The AG primitive is indicated by a black line. AGAMOUS (CAA16753) is from Arabidopsis thaliana ; CsAG1 (AAS67610) is from Crocus sativus ; DcOAG1 (AAZ95250) is from pigeon sarcophagus; FARINELLI (CAB42988) is from Antirrhinum majus ; and OSMADS3 (Q40704) From rice ( Oryza sativa ).

圖3顯示C及D系及裸子植物AG樣基因之系統發生分析。公開之植物MADS-box蛋白質序列係自GenBank資料庫取回(PLENA{AAB25101}[金魚草];FARINELLI{CAB42988}[金魚草];FBP6{CAA48635}[矮牽牛(Petunia hybrida)];FBP7{CAA57311}[矮牽牛];FBP11{CAA57445}[矮牽牛];pMADS3{CAA51417}[矮牽牛];NAG1{AAA17033}[菸草(Nicotiana tabacum)];TAG1{AAA34197}[類番茄茄(Solanum lycopersicon)];TAG11{AAA34197}[類番茄茄];DcMADS4{CAC81071}[胡蘿蔔(Daucus carota)];GAGA1{CAA08800}[非洲.菊(Gerbera hybrida)];GAGA2{CAA08801}[非洲菊];AGAMOUS{CAA37642}[擬南芥];SHP1{AAA32730}[擬南芥];SHP2{AAA32735}[擬南芥];STK{AAC49080}[擬南芥];MdMADS10{CAA04324}[蘋果(Malus domestica)];MdMADS14{CAC80857}[蘋果];GhMADS2{AAN15183}[陸地棉(Gossypium hirsutum)];STAG1{AAD45814}[草莓(Fragaria ananassa)];VvMADS1{AAK58564}[葡萄(Vitis vinifera)];VvMADS5{AAM21345}[葡萄];SLM1{CAA56655}[叉枝蠅子草(Silene latifolia)];MpMADS2{BAB70737}[皺葉木蘭(Magnolia precossimina)];McAG{AAO20104}[苦瓜(Momordica charantia)];PeMADS1{AAL76415}[姬蝴蝶蘭];DcOAG1{AAZ95250}[鴿石斛];DcOAG2{AAZ95251}[鴿石斛];DthyrAG1{AAY86364}[鴿石斛];DthyrAG2{AAY86365}[鴿石斛];Pha1AG1{BAE80120}[矮牽牛栽培品種];Pha1AG2{BAE80121}[矮牽牛栽培品種];ApMADS2{BAC66963}[愛情花(Agapanthus praecox)];LLAG1{AAR98731}[麝香百合(Lilium longiflorum)];LMADS2{AAS01766}[麝香百合];HvAG1{AAL93196}[大麥(Hordeum vulgare)];HvAG2{AAL93197}[大麥];WAG{BAC22939}[小麥(Triticum aestivum)];OsMADS3{AAA99964}[稻];OsMADS58{BAE54300}[稻];OsMADS13{AAF13594}[稻];ZAG1{AAA02933}[玉米(Zea mays)];ZMM1{CAA57073}[玉米];DAL2{CAA55867}[歐洲雲杉];CeMADS1{GU123626}[四季蘭];CeMADS2{GU123627}[四季蘭])。來自1000次平行操作之自展值在大部分主要節點上指示。CeMADS1及CeMADS2由空框突出顯示。單源花同源異型基因組在右邊緣處由黑線標記。Figure 3 shows the phylogenetic analysis of the AG-like genes of C and D lines and gymnosperms. The published plant MADS-box protein sequence was retrieved from the GenBank database (PLENA{AAB25101}[金鱼草];FARINELLI{CAB42988}[金鱼草];FBP6{CAA48635}[ Petunia hybrida ];FBP7{CAA57311 }[小牛牛];FBP11{CAA57445}[Petunia];pMADS3{CAA51417}[Petunia];NAG1{AAA17033}[Tobacco ( Nicotiana tabacum )];TAG1{AAA34197}[ Solanum lycopersicon ]; TAG11{AAA34197}[category of tomato]; DcMADS4{CAC81071}[ Daucus carota ];GAGA1{CAA08800}[ Gerbera hybrida ];GAGA2{CAA08801}[gerbera];AGAMOUS{CAA37642}[ Arabidopsis thaliana]; SHP1{AAA32730}[Arabidopsis thaliana]; SHP2{AAA32735}[Arabidopsis thaliana]; STK{AAC49080}[Arabidopsis thaliana]; MdMADS10{CAA04324}[Apple (Musus domestica )];MdMADS14{CAC80857 }[Apple];GhMADS2{AAN15183}[ Gossypium hirsutum ];STAG1{AAD45814}[ Fragaria ananassa ];VvMADS1{AAK58564}[ Vitis vinifera ];VvMADS5{AAM21345}[Grape]; SLM1{CAA56655}[Siene latifolia ]; MpMADS2{BAB70737}[ Magnolia precossimina ]; McAG{AAO20104}[Morordica charantia ]; PeMADS1{AAL76415}[Hime phalaenopsis]; DcOAG1{AAZ95250}[ pigeon sarcophagus]; DcOAG2{AAZ95251}[ pigeon sarcophagus]; DthyrAG1{AAY86364}[ pigeon sarcophagus]; DthyrAG2 {AAY86365}[ pigeon sarcophagus]; Pha1AG1{BAE80120}[dwarf cultivar]; Pha1AG2{BAE80121}[dwarf cultivar];ApMADS2{BAC66963}[ Agapanthus praecox ];LLAG1{AAR98731}[musk lily ( Lilium longiflorum )]; LMADS2 {AAS01766} [musk lily]; HvAG1{AAL93196} [hordeum vulgare ]; HvAG2{AAL93197} [barley]; WAG{BAC22939} [wheat ( Triticum aestivum )]; OsMADS3{AAA99964 }[稻];OsMADS58{BAE54300}[Rice];OsMADS13{AAF13594}[Rice];ZAG1{AAA02933}[Malay ( Zea mays )];ZMM1{CAA57073}[Corn];DAL2{CAA55867}[European Spruce] ;CeMADS1{GU123626}[Four Seasons]; CeMADS2{GU123627}[Four Seasons]). The self-expanding values from 1000 parallel operations are indicated on most of the main nodes. CeMADS1 and CeMADS2 are highlighted by an empty frame. The single-source flower homeotype genome is marked by a black line at the right edge.

圖4顯示四季蘭基因組中之CeMADS1CeMADS2基因的南方墨點分析。使用自CeMADS1CeMADS2基因之3'特異性區域衍生的探針,使含有30 μg經EcoR I(泳道1及3)及Dra I(泳道2及4)消化之基因組DNA的DNA凝膠墨點在嚴格條件下雜交。DNA標記物之大小在左邊緣處顯示(kb)。Figure 4 shows Southern blot analysis of the CeMADS1 and CeMADS2 genes in the Four Seasons blue genome. Using a probe derived from the 3'-specific region of the CeMADS1 and CeMADS2 genes, a DNA gel containing 30 μg of genomic DNA digested with Eco R I (lanes 1 and 3) and Dra I (lanes 2 and 4) was spotted. Hybridization under stringent conditions. The size of the DNA marker is shown at the left edge (kb).

圖5顯示不同花部器及四季蘭之野生型與叢瓣突變花蕾中之CeMADS1CeMADS2的北方墨點分析。各泳道含有10 μg來自以下各物之總RNA:萼片(泳道1);花瓣(泳道2);唇部(泳道3);蕊柱(泳道4);w花蕾:野生型花蕾(泳道5);mA花蕾:叢瓣突變A型花蕾(泳道6);mB花蕾:叢瓣突變B型花蕾(泳道7)。28S核糖體RNA指示各泳道中裝載等量之總RNA。Figure 5 shows the northern blot analysis of CeMADS1 and CeMADS2 in different flower organs and wild type and plexus mutant flower buds of Four Seasons. Each lane contained 10 μg of total RNA from the following: bracts (lane 1); petals (lane 2); lip (lane 3); column (lane 4); w bud: wild-type flower bud (lane 5); mA flower bud: plexus mutant type A flower bud (lane 6); mB flower bud: plexus mutant B type flower bud (lane 7). The 28S ribosomal RNA indicates that an equal amount of total RNA is loaded in each lane.

圖6顯示在花蕾之各個發育階段中CeMADS1CeMADS2之相對表現。第1階段(0.5-1 cm)、第2階段(1-2 cm)、第3階段(2-3 cm)。進行三重複即時PCR實驗。Figure 6 shows the relative performance of CeMADS1 and CeMADS2 at various developmental stages of flower buds. Stage 1 (0.5-1 cm), Stage 2 (1-2 cm), Stage 3 (2-3 cm). Three replicates of real-time PCR experiments were performed.

圖7顯示藉由即時RT-PCR實驗測定在不同營養組織中CeMADS1CeMADS2之相對表現。進行三重複即時PCR實驗。Figure 7 shows the relative performance of CeMADS1 and CeMADS2 in different vegetative tissues as determined by real-time RT-PCR experiments. Three replicates of real-time PCR experiments were performed.

圖8顯示在發育中之花蕾的縱切片中CeMADS1CeMADS2之原位定位。使切片與反股3'特異性CeMADS1(A、B、C)或CeMADS2(E、F)RNA探針或正股RNA探針(D,CeMADS1;G,CeMADS2)雜交。在花分生組織(Fm)中偵測CeMADS1CeMADS2轉錄物,接著雜交信號集中於蕊柱(Co)中。Se,萼片;Pe,花瓣;Li,唇部。Figure 8 shows the in situ localization of CeMADS1 and CeMADS2 in the longitudinal section of the developing flower bud. The sections were hybridized to a counter-strand 3' specific CeMADS1 (A, B, C) or CeMADS2 (E, F) RNA probe or a positive strand RNA probe (D, CeMADS1 ; G, CeMADS2 ). The CeMADS1 and CeMADS2 transcripts were detected in floral meristem (Fm), and the hybridization signal was then concentrated in the column (Co). Se, sepals; Pe, petals; Li, lip.

圖9顯示CeMADS1、CeMADS2及蘭花SEPALLATA樣PeMADS8蛋白之間的蛋白質-蛋白質相互作用行為。將四季蘭中之CeMADS1CeMADS2及姬蝴蝶蘭中之類SEPALLATA(E群)基因PeMADS8選殖至結合域載體pGBKT7及活化域載體pGADT7中。HIS3lacZ之活化分別藉由在缺乏組胺酸、白胺酸及色胺酸(-3)之選擇培養基上生長且指示藍色來指示。分別使用經載體pGADT7+pGBKT7及PeMADS4+PeMADS6轉型之酵母作為陰性及陽性對照。Figure 9 shows the protein-protein interaction behavior between CeMADS1, CeMADS2 and orchid SEPALLATA-like PeMADS8 proteins. The SEPALLATA (E group) gene PeMADS8 , such as CeMADS1 and CeMADS2 in Rhododendron and Hybrid Phalaenopsis, was cloned into the binding domain vector pGBKT7 and the activation domain vector pGADT7. Activation of HIS3 and lacZ is indicated by growth on selected medium lacking histidine, leucine and tryptophan (-3), respectively, and indicating blue. Yeast transformed with the vectors pGADT7+pGBKT7 and PeMADS4+PeMADS6 were used as negative and positive controls, respectively.

圖10顯示過表現CeMADS1CeMADS2之轉殖基因芥菜屬的表型。(A)野生型芥菜屬。(B)過表現CeMADS1之轉殖基因芥菜屬。(C)放大的(B)中之白色圓圈區域。(D)過表現CeMADS2之轉殖基因芥菜屬。(E)放大的(D)中之白色圓圈區域。Figure 10 shows the phenotype of the transgenic gene Mustard genus showing CeMADS1 and CeMADS2 . (A) Wild type Brassica. (B) Transgenic gene mustard genus that expresses CeMADS1 . (C) A magnified white circle area in (B). (D) Transgenic gene mustard genus that expresses CeMADS2 . (E) The white circle area in the enlarged (D).

(無元件符號說明)(no component symbol description)

Claims (18)

一種經單離之核酸分子,其包括選自下列聚核苷酸所組成之群:(a) SEQ ID NO: 1或3之核苷酸序列;(b)編碼SEQ ID NO: 2或4胺基酸序列所示聚肽之聚核苷酸;(c)與(a)或(b)互補之聚核苷酸;及(d)高度嚴苛條件下,與(a)、(b)、(c)、(d)或(e)雜合的聚核苷酸。An isolated nucleic acid molecule comprising a population consisting of: (a) a nucleotide sequence of SEQ ID NO: 1 or 3; (b) an amine encoding SEQ ID NO: 2 or 4 a polynucleotide of a polypeptide represented by a base acid sequence; (c) a polynucleotide complementary to (a) or (b); and (d) under highly stringent conditions, with (a), (b), (c), (d) or (e) a heterozygous polynucleotide. 一種載體,其包含根據請求項1之核酸分子。A vector comprising the nucleic acid molecule according to claim 1. 根據請求項2之載體,其係可於植物體中表現之穿梭載體。According to the carrier of claim 2, it is a shuttle vector which can be expressed in a plant body. 根據請求項2之載體,其包含可誘導之啟動子。According to the vector of claim 2, it comprises an inducible promoter. 一種細胞,其包含如請求項2至4中任何一項之載體。A cell comprising the vector of any one of claims 2 to 4. 根據請求項5之細胞,其中該細胞為原核細胞或植物細胞。The cell according to claim 5, wherein the cell is a prokaryotic cell or a plant cell. 根據請求項6之細胞,其中該細胞為蘭科植物細胞。The cell according to claim 6, wherein the cell is a orchid plant cell. 一種擬原球體(protocorn-like body),其包含如請求項1之核酸分子。A protocorn-like body comprising the nucleic acid molecule of claim 1. 一種製造轉殖植物之方法,其步驟包含:(a) 將根據請求項1之核酸分子導引至植物細胞以獲得植物轉殖細胞;及(b) 將該植物轉殖細胞再生製造該轉殖植物。A method for producing a transgenic plant, the method comprising the steps of: (a) directing a nucleic acid molecule according to claim 1 to a plant cell to obtain a plant transgenic cell; and (b) regenerating the plant transgenic cell to produce the transfection plant. 根據請求項9之方法,其中該植物細胞為蘭科植物細胞。The method of claim 9, wherein the plant cell is a orchid plant cell. 根據請求項9之方法,其中步驟(a)係以基因槍(gene gun)或真空侵入(vacuum infiltration)將該核酸分子導引至該植物細胞。The method of claim 9, wherein the step (a) directs the nucleic acid molecule to the plant cell by a gene gun or vacuum infiltration. 一種蛋白質,其係由根據請求項1之核酸分子所編碼。A protein encoded by the nucleic acid molecule according to claim 1. 根據請求項13之蛋白質,其係具有如SEQ ID NO: 2所示之胺基酸序列。The protein according to claim 13 which has the amino acid sequence as shown in SEQ ID NO: 2. 一種於蘭科植物中控制合蕊柱發育之方法,其包含改變根據請求項13或14之蛋白質於該植物體的表現量。A method of controlling the development of a spheroid in a orchid plant comprising altering the amount of expression of the protein according to claim 13 or 14 in the plant. 根據請求項15之方法,其包含於該植物體之至少一細胞內改變編碼該蛋白質之核酸分子之套數。According to the method of claim 15, which comprises changing the number of sets of nucleic acid molecules encoding the protein in at least one cell of the plant. 根據請求項16之方法,其中該細胞係源自擬原球體。The method of claim 16, wherein the cell line is derived from a pseudo-sphere. 一種於蘭科植物中控制花形發育之方法,其包含根據請求項15至17中任一項之控制合蕊柱發育之方法。A method of controlling flower shape development in a plant of the family Orchidaceae, comprising the method of controlling the development of a core column according to any one of claims 15 to 17. 根據請求項18之方法,其係控制叢瓣花形、花序、分生組織、花梗或胚珠之發育。According to the method of claim 18, it controls the development of a petal flower, an inflorescence, a meristem, a peduncle or an ovule.
TW100126703A 2011-07-28 2011-07-28 Gene, protein and method for controlling gynostemium perianth development TWI545197B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100126703A TWI545197B (en) 2011-07-28 2011-07-28 Gene, protein and method for controlling gynostemium perianth development

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100126703A TWI545197B (en) 2011-07-28 2011-07-28 Gene, protein and method for controlling gynostemium perianth development

Publications (2)

Publication Number Publication Date
TW201305339A true TW201305339A (en) 2013-02-01
TWI545197B TWI545197B (en) 2016-08-11

Family

ID=48169040

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100126703A TWI545197B (en) 2011-07-28 2011-07-28 Gene, protein and method for controlling gynostemium perianth development

Country Status (1)

Country Link
TW (1) TWI545197B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI639701B (en) * 2017-05-05 2018-11-01 蕭郁芸 Gene regulation of ovule development and method thereof for orchids

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI639701B (en) * 2017-05-05 2018-11-01 蕭郁芸 Gene regulation of ovule development and method thereof for orchids

Also Published As

Publication number Publication date
TWI545197B (en) 2016-08-11

Similar Documents

Publication Publication Date Title
Nole-Wilson et al. AINTEGUMENTA-like (AIL) genes are expressed in young tissues and may specify meristematic or division-competent states
US7847156B2 (en) Plants having improved growth characteristics and methods for making the same
CA2575597C (en) Biotic and abiotic stress tolerance in plants
EP1928226B1 (en) Stress tolerance in plants
US20100132071A1 (en) Plants Having Enhanced Yield-Related Traits And A Method For Making The Same
AU2009208640B2 (en) Plants having altered growth and/or development and a method for making the same
US20080301840A1 (en) Conferring biotic and abiotic stress tolerance in plants
US20150337326A1 (en) Plants having enhanced yield-related traits and method for making the same
US20140059716A1 (en) Plants having altered agronomic characteristics under nitrogen limiting conditions and related constructs and methods involving genes encoding lnt2 polypeptides and homologs thereof
MX2011001581A (en) Plants with altered root architecture, related constructs and methods involving genes encoding protein phophatase 2c (pp2c) polypeptides and homologs thereof.
WO2009158591A1 (en) Strong activation domain
CA2459756C (en) A method to modify cell number, architecture and yield of plants by overexpressing the e2f transcription factor
TWI545197B (en) Gene, protein and method for controlling gynostemium perianth development
US20030093835A1 (en) Chimeric genes controlling flowering
US20150135360A1 (en) Stress tolerance in plants
EP2128251A1 (en) Genes having activity of promoting endoreduplication
US7393997B2 (en) Methods for modification of plant inflorescence architecture
JP2003525026A (en) Proteins that regulate systemic acquired resistance in plants
ES2361749T3 (en) TRANSCRIPTIONAL PLANTS REGULATORS.
Albertini PLANT TOLERANCE TO DROUGHT: MODULATION OF STOMATAL MOVEMENTS
Ji Comparative genetic analyses of WOX3 and WOX4 functions during plant development
JP2004121122A (en) Plant leaf formation-related protein as2, and gene encoding the same