TW201304240A - Composite ionic conducting electrolytes - Google Patents

Composite ionic conducting electrolytes Download PDF

Info

Publication number
TW201304240A
TW201304240A TW101112073A TW101112073A TW201304240A TW 201304240 A TW201304240 A TW 201304240A TW 101112073 A TW101112073 A TW 101112073A TW 101112073 A TW101112073 A TW 101112073A TW 201304240 A TW201304240 A TW 201304240A
Authority
TW
Taiwan
Prior art keywords
redox active
ion conductive
oxide
electrolyte
active additive
Prior art date
Application number
TW101112073A
Other languages
Chinese (zh)
Inventor
Clive A Randall
Ramakrishnan Rajagopalan
Soo-Nil Lee
Amanda Baker
Mehdi Mirsaneh
Wei-Guo Qu
Enkhtuvshin Dorjpalam
Aram Yang
Niall J Donnelly
Original Assignee
Recapping Inc
Penn State Res Found
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Recapping Inc, Penn State Res Found filed Critical Recapping Inc
Publication of TW201304240A publication Critical patent/TW201304240A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Ionically conducting, redox active additive composite electrolytes are disclosed. The electrolytes include an ionically conductive component and a redox active additive. The ionically conductive component may be an ionically conductive material such as an ionically conductive polymer, ionically conducting glass-ceramic, ionically conductive ceramic, and mixture thereof.Electrical energy storage devices that employ the ionically conducting, redox active additive composite electrolytes also are disclosed.

Description

複合離子導電電解質Composite ion conductive electrolyte

無。
no.

現代電化學能量儲存裝置(例如鋰離子電池及電化學雙層電容器(EDLC))係包含一陽極以及一陰極,陽極與陰極係藉由電解質而分隔開。電解質的功能是使在陽極及陰極之間的離子載體通過,且其在操作電壓範圍內是電化學穩定的。電解質也可作為電絕緣體,以避免在陽極及陰極之間的短路。這些需求藉由使用浸泡在離子導電性電解質的溶液中之多孔性聚合物薄膜在此技藝中而被滿足。
在鋰離子電池中,已經使用了在碳酸伸乙酯(EC)溶劑及/或碳酸二甲基酯(DMC)溶劑中的LiPF6之Li+及PF6導電性電解質溶液。相較於水溶液系統,這個類型的Li+導電性電解質提供了對鋰的較大電壓穩定性。然而,這個類型的Li+導電性電解質的導電性通常是比水溶液系統低數個等級。
離子導電性電解質也可從單一相材料(例如離子導電性聚合物)形成。選擇離子導電性電解質以用於能量儲存/產生裝置中的限制因素是電解質導電性。低電解質導電性會增加裝置的內部電氣阻抗,並且減少尖峰功率輸出。
在使用Li+電解質的能量儲存裝置中(例如電容器),該裝置可被充電的最大操作電壓是受到電解質的分解及/或電解質及碳電極之間的反應而限制。目前,電容式能量儲存裝置之可達成的體積能量密度是低於電池的大約100倍。
仍存在著對於改良能量儲存裝置(例如電容式裝置)的體積能量密度之需求。
Modern electrochemical energy storage devices, such as lithium ion batteries and electrochemical double layer capacitors (EDLC), comprise an anode and a cathode, the anode and cathode being separated by an electrolyte. The function of the electrolyte is to pass the ionophore between the anode and the cathode, and it is electrochemically stable over the operating voltage range. The electrolyte can also act as an electrical insulator to avoid short circuits between the anode and the cathode. These needs are met in this art by using a porous polymer film immersed in a solution of an ion conductive electrolyte.
In lithium ion batteries, Li + 6 and PF 6 conductive electrolyte solutions of LiPF 6 in an ethylene carbonate (EC) solvent and/or a dimethyl carbonate (DMC) solvent have been used. This type of Li + conductive electrolyte provides greater voltage stability to lithium compared to aqueous systems. However, the conductivity of this type of Li + conductive electrolyte is generally several orders of magnitude lower than that of aqueous systems.
The ion conductive electrolyte can also be formed from a single phase material such as an ion conductive polymer. The limiting factor in the selection of ionically conductive electrolytes for use in energy storage/production devices is electrolyte conductivity. Low electrolyte conductivity increases the internal electrical impedance of the device and reduces spike power output.
In energy storage devices using Li + electrolytes (e.g., capacitors), the maximum operating voltage at which the device can be charged is limited by decomposition of the electrolyte and/or reaction between the electrolyte and the carbon electrode. Currently, the achievable volumetric energy density of a capacitive energy storage device is about 100 times lower than that of a battery.
There is still a need for improved energy density of energy storage devices, such as capacitive devices.

所揭露的發明是有關於離子導電性氧化還原活性添加物複合電解質,以及使用該等電解質的裝置,例如能量儲存裝置。在這些類型的裝置中所使用的電極,可發揮在電解質中交換離子載體的功能,以及在這些類型的裝置中所使用的另一電極,可發揮離子阻斷或氧化還原活性的功能。這些離子導電性氧化還原活性添加物複合電解質可使用離子導電性成分及氧化還原活性添加物,其中離子導電性成分是任何一種或多種的離子導電性聚合物、離子導電性玻璃陶瓷、離子導電性陶瓷及其混合物。
在一構想中,本發明是有關於離子導電性聚合物氧化還原活性添加物複合電解質。在第二種構想中,本發明是有關於離子導電性玻璃陶瓷氧化還原活性添加物複合電解質。在第三種構想中,本發明是有關於離子導電性陶瓷氧化還原活性添加物複合電解質。在第四種構想中,本發明是有關於使用離子導電性氧化還原活性添加物複合電解質之電能量儲存/產生裝置。
包含任何一種或多種的離子導電性聚合物及氧化還原活性添加物、離子導電性玻璃及氧化還原活性添加物、離子導電性玻璃陶瓷及氧化還原活性添加物、離子導電性陶瓷及氧化還原活性添加物、以及離子導電性膠體及氧化還原活性添加物的離子導電性複合電解質可達到較高的電壓操作穩定性,並可使用較大的電解質量以儲存能量。
離子導電性複合電解質可用於各種不同的能量儲存/產生裝置(例如電容及電池能量儲存)、電化學裝置(例如燃料電池)、電致變色裝置以及氣體感測器。離子導電性複合電解質也可用於催化作用,以及作為氣體分隔薄膜。
The disclosed invention relates to an ion conductive redox active additive composite electrolyte, and a device using the same, such as an energy storage device. The electrodes used in these types of devices can function to exchange ion carriers in the electrolyte, and the other electrode used in these types of devices can function as ion blocking or redox activity. The ion conductive redox active additive composite electrolyte can use an ion conductive component and a redox active additive, wherein the ion conductive component is any one or more kinds of ion conductive polymers, ion conductive glass ceramics, and ionic conductivity. Ceramics and their mixtures.
In one concept, the present invention relates to an ion conductive polymer redox active additive composite electrolyte. In the second concept, the present invention relates to an ion conductive glass ceramic redox active additive composite electrolyte. In a third concept, the present invention relates to an ion conductive ceramic redox active additive composite electrolyte. In a fourth concept, the present invention relates to an electrical energy storage/generation device using an ion conductive redox active additive composite electrolyte.
Any one or more of an ion conductive polymer and a redox active additive, an ion conductive glass, a redox active additive, an ion conductive glass ceramic, a redox active additive, an ion conductive ceramic, and a redox active addition The ion conductive composite electrolyte of the substance, the ion conductive colloid and the redox active additive can achieve high voltage operation stability, and can use a large amount of electrolyte to store energy.
The ionically conductive composite electrolyte can be used in a variety of different energy storage/generation devices (eg, capacitor and battery energy storage), electrochemical devices (eg, fuel cells), electrochromic devices, and gas sensors. The ion conductive composite electrolyte can also be used for catalysis, and as a gas separation film.

此處所使用的下列名詞應理解為具有以下意義:
CTFE:三氟氯乙烯
HFP:六氟丙烯
DMC:碳酸二甲基酯
EC:碳酸伸乙酯
HFP:六氟丙烯
LAGP:鋰鋁鍺磷酸
LiTf:三氟甲烷鋰
LIBETI:LiNC2F5(SO2)2
LiBOB:雙乙二酸硼酸鋰
LiTFSI:三氟甲烷磺醯亞胺鋰
MBL:α-亞甲基-γ-丁內酯
MEEP:聚合(雙(甲氧基乙氧基)乙氧基)磷腈
MEK:甲基乙基酮
Nafion:四氟乙烯-全氟-3,6-二環氧-4-甲基-7-癸烯磺酸共聚物
PAEOA:聚(乙醯基-寡(氧乙烯)丙烯酸酯)
PBI:聚苯並咪唑
PDE:聚(乙二醇)二甲基丙烯酸酯
PEEK:聚二醚酮
PEDA:聚酯二丙烯酸酯
PEDOT:聚(3,4-乙撑二氧噻吩)
PEG:聚(乙二醇)
PEGMA:聚(乙二醇)甲基醚甲基丙烯酸酯
PEO:聚(氧乙烯)
PEOMA:聚(氧乙烯)甲基醚甲基丙烯酸酯
PES:聚醚碸
PME:聚(乙二醇)甲基丙烯酸酯
PPI:聚(丙烯亞胺)
PPO:聚(氧化丙烯)
PS:聚(碸)
PVA:聚(乙烯醇)
PVDF:聚偏二氟乙烯
SMA:甲基丙烯酸十八烷基酯
TEGDA:三(乙二醇)二丙烯酸酯
TFE:四氟乙烯
TrFE:三氟乙烯
本發明揭露離子導電性聚合物複合電解質,以及一種或多種離子導電性聚合物,該離子導電性聚合物複合電解質具有一種或多種氧化還原活性內含物、氧化還原活性相及其混合物。
一般而言,離子導電性聚合物氧化還原活性添加物複合電解質可藉由將離子導電性聚合物溶液與氧化還原活性添加物混合而製得。可選擇地,也可將包含氧化還原添加物的非導電性聚合物以所要的金屬之離子導電性溶液處理,以提供聚合物離子導電性而產生離子導電性聚合物氧化還原活性添加物複合電解質。
可用於離子導電性聚合物的溶液中之聚合物包含但並不限於氟聚合物及共聚物,例如但並不限於PVDF、PVDF-HFP、PVDF-TFE、PVDF-CTFE、PVDF-TrFE及其混合物。其他可使用的聚合物包含但並不限於氧乙烯,例如PEO、PEOMA、PAEOA、PEG、PEDAO-PEG共聚物、PDE、PME、PEGMA、TEGDA、聚(二甲基矽氧烷)、聚(甲醛[氧乙烯])、MEEP、共聚物(例如PEOMA-MBL、PAEOA、PEDA-PEG、PME-SMA、PDE-PME-PEG、PS-PEGMA、PPI、PS-PDVP、聚苯乙烯段共聚物、無規共聚物)、聚磷腈、及其混合物,無規共聚物例如是聚(二噁烷)、聚矽氧烷,聚磷腈例如但並不限於聚(二氯磷腈)、PVA、PPO。
可用於離子導電性聚合物溶液中之溶劑包含但並不限於非質子型溶劑,例如DMAc、NMP、DMF及其混合物。當使用DMF時,可溶解於DMF的聚合物的量,可以是約1重量%至約50重量%,較佳是約5重量%至約40重量%,更佳是約10重量%至約30重量%,所有的量都是以聚合物的重量為基準。
許多的離子導電性聚合物溶液都可用於離子導電性聚合物氧化還原活性添加物複合電解質的製造。離子導電性聚合物溶液可藉由將聚合物的溶劑溶液以離子鹽類處理而製得。可用於離子導電性聚合物氧化還原活性添加物複合電解質的離子導電性聚合物溶液包含但並不限於銀離子(Ag+)導電性聚合物溶液、氫離子(H+)導電性聚合物溶液、氫氧離子(OH-)導電性聚合物溶液、鋰離子(Li+)導電性聚合物溶液、鎂離子(Mg+)導電性聚合物溶液、鈉離子(Na+)導電性聚合物溶液、氧離子(O-)導電性聚合物溶液及其混合物。
可使用的Ag+導電性聚合物溶液包含聚合物(例如但並不限於PEO、PVDF、PVDF-HFP、PBI及其混合物)的Ag+導電性聚合溶液。Ag+導電性聚合物溶液可藉由將Ag+鹽類(例如但並不限於碘化銀、氯化銀、硝酸銀及其混合物)與Ag+導電性聚合物的聚合溶液及非質子型溶劑(例如但並不限於EC、DMC)混合而形成。
可使用的H+導電性聚合物溶液包含聚合物(例如但並不限於PEO、PBI、Nafion、PEEK、PES及其混合物)的H+導電性聚合溶液。H+導電性聚合物溶液可藉由將非質子酸(例如但並不限於磷酸、硫酸及其混合物)與H+導電性聚合物的聚合溶液及非質子型溶劑(例如但並不限於EC、DMC)混合而形成。
可使用的OH-導電性聚合物溶液包含聚合物(例如但並不限於PEO、PBI、Nafion、PEEK、PES及其混合物)的OH-導電性聚合溶液。OH-導電性聚合物溶液可藉由將OH-鹽類(例如但並不限於氫氧化鈉、氫氧化鉀及其混合物)與OH-導電性聚合物的聚合溶液及非質子型溶劑(例如但並不限於EC、DMC)混合而形成。
可使用的Li+導電性聚合物溶液包含Li+導電性聚合材料,例如但並不限於PEO、PVDF-HFP、PVDF-TFE、LiTf、LiTfSI、LIBETI、LiClO4、LiBOB、LiPF6、LiBF4及其混合物。Li+導電性聚合物溶液可藉由將Li+鹽類(例如但並不限於LiTf、LiTfSI、LIBETI、LiClO4、LiBOB、LiPF6、LiBF4及其混合物)與Li+導電性聚合物的聚合溶液及非質子型溶劑(例如但並不限於EC、DMC)混合而形成。較佳地,可使用在1:1的EC:DMC(w/w)混合物中之LiPF6溶液。在這方面中,在1:1的EC:DMC混合物中之LiPF6的濃度可從約0.5 M改變至約1.2 M,較佳從約0.8 M至約1 M。
可使用的Mg+導電性聚合物溶液包含聚合物(例如但並不限於PEO、PVDF-HFP、PBI、PEEK、PES及其混合物)的Mg+導電性聚合溶液。Mg+導電性聚合物溶液可藉由將Mg+鹽類(例如但並不限於氯化鎂、過氯酸鎂及其混合物)與Mg+導電性聚合物的聚合溶液及非質子型溶劑(例如但並不限於EC、DMC)混合而形成。
可使用的Na+導電性聚合物溶液包含聚合物(例如但並不限於PEO、PVDF-HFP、PBI、PEEK、PES及其混合物)的Na+導電性聚合溶液。Na+導電性聚合物溶液可藉由將Na+鹽類(例如但並不限於碘化鈉、氯化鈉、硝酸鈉及其混合物)與Na+導電性聚合物的聚合溶液及非質子型溶劑(例如但並不限於EC、DMC)混合而形成。當Na+導電性聚合物溶液用於複合電解質時,電極活性材料可以是鈉金屬或非化學計量的鈉氧化物化合物,其可使鈉離子交換至電解質中。
氧化還原活性添加物可以各種形式納入到離子導電性聚合物中,例如以氧化還原活性添加物的前驅物、氧化還原活性添加物的溶液及氧化還原活性添加物的顆粒之形式。可用於離子導電性聚合物的溶液中之氧化還原活性添加物可根據所使用的離子導電性聚合物而改變。當氧化還原活性添加物是以顆粒的形式而使用時,顆粒可具有約5奈米至約100微米的大小,較佳是約10奈米至約100奈米的大小。
當使用Ag+導電性聚合溶液以製造Ag+導電性聚合物氧化還原活性複合電解質時,氧化還原活性添加物可包含但並不限於金屬,例如銅、鉛、鉍、錫,其可在相對於SCE(飽和甘汞電極)少於約-0.8V的電位時與銀成為合金。當使用H+導電性聚合物時,氧化還原活性添加物包含但並不限於具有相對於SCE(飽和甘汞電極)約1V的電位之金屬氧化物。
當使用Mg+導電性聚合物時,氧化還原活性添加物可包含但並不限於TiS2、V6O13及鉻氧化物。當使用Na+導電性聚合物時,氧化還原活性添加物包含但並不限於TiS2、 V6O13及鉻氧化物。
當使用Li+導電性聚合溶液以製造Li+導電性聚合物氧化還原活性複合電解質時,氧化還原活性添加物可包含但不限於陽極型的金屬氧化物(其相對於鋰的氧化還原電位具有約2V或更少的電位)、陰極型的金屬氧化物顆粒(其相對於鋰的氧化還原電位具有約2V或更多的電位)、金屬顆粒(其相對於鋰/鋰具有約2V或更多的合金電位)、陰極型金屬氧化物及金屬顆粒的混合物、陽極型金屬氧化物及金屬顆粒的混合物、以及陰極型氧化物與陽極型氧化物的混合物。可使用在Li+導電性聚合物中之具有約2V或更少(相對於鋰/鋰)的低氧化還原電位之氧化還原活性氧化物包含但並不限於MoO3、SnO2、WO3、PbO、ZnO、Fe2O3、Cr2O3、V2O5、MnO2、Li4Ti5O12、   Li4+xTi5O12及其混合物。可使用之具有約2V或更多(相對於鋰/鋰)的高氧化還原電位之氧化還原活性氧化物包含但並不限於LiMn2O4、LiCoO2、LiNiO2、LiFeO2、   Lix(CoyAl1-y)(1-x)O2(其中0<x<1,0<y<1)及其混合物。
可將高氧化還原氧化物、低氧化還原氧化物及其混合物以約0.5重量%至約30重量%的量加到Li+導電性聚合物中,較佳是約1重量%至約10重量%(以Li+導電性聚合物溶液的重量為基準)。當使用三氧化鉬作為氧化還原活性添加物時,三氧化鉬可以約1重量%至約30重量%的量,較佳是約1重量%至約10重量%的量存在於Li+導電性聚合物的溶液中,所有的量都是以聚合物溶液的重量為基準。
可在Li+導電性聚合物溶液中使用作為氧化還原添加物的氧化還原活性金屬包含但並不限於鉑、金、錫、鉛、鋅、矽、其混合物及其合金。當使用金顆粒時,顆粒的大小可從約1奈米改變至約200奈米。氧化還原活性金屬可以約0.1重量%至約10重量%的量,較佳是約1重量%至約5重量%的量存在於Li+導電性聚合物的溶液中,以聚合物溶液的重量為基準。
包含離子導電性聚合物氧化還原活性添加物複合電解質的產物之製造:
離子導電性聚合物氧化還原活性添加物複合電解質可藉由例如旋轉塗佈、薄膜濺鍍、氣膠噴霧、氣膠顆粒沉積、電泳沉積、帶體成形、網印及刮刀成形之方法而鑄造成各種產品(例如薄膜)。當使用刮刀成形時,複合電解質可刮刀成形於移動的基板上(例如玻璃基板或聚合物基板),以形成複合電解質之澆鑄片材(例如薄膜片材)。
複合電解質的澆鑄薄膜片材之厚度,可藉由控制漿料的溶劑含量、移動基板的速度及刮刀成形開口的寬度而改變。薄膜片材的厚度因此可廣泛地改變。通常,澆鑄薄膜片材具有約1微米至約450微米之厚度,較佳是約10微米至約100微米之厚度。
澆鑄薄膜片材是在基板上乾燥,然後藉由與低級烷醇(例如但並不限於乙醇、甲醇、異丙醇及其混合物,較佳是乙醇)接觸而進行相反轉。在相反轉之後,將澆鑄薄膜片材從玻璃基板移除,並且再次以低級烷醇(例如但並不限於乙醇、甲醇、異丙醇及其混合物,較佳是乙醇),在約攝氏20度至約攝氏50度處理約1小時至約16小時。將處理的薄膜例如在約攝氏20度至約攝氏60度,較佳是約攝氏20度至約攝氏40度,藉由真空乾燥而乾燥。通常,乾燥是在足夠達到<1%濕度含量的溫度及時間而進行。接著將乾燥的薄膜片材浸泡在離子導電性溶液中,以使聚合物膨脹。膨脹可藉由將薄膜在離子導電性溶液中加熱至約攝氏55度達約2小時至約4小時而增強。
離子導電性聚合物氧化還原活性金屬氧化物複合電解質所形成的隔離薄膜之製備:
實例P1:Li+導電性PVDF-HFP聚合物三氧化鉬複合電解質隔離薄膜
將2克的PVDF-HFP試劑級顆粒(來自Aldrich,分子量400,000 g/mol)於攝氏20度溶解在19毫升試劑級的DMF,以產生聚合物溶液。將10克的聚合物溶液與0.05克具有100奈米平均大小的三氧化鉬氧化還原活性顆粒混合,以形成一混合物。
三氧化鉬顆粒是藉由將0.8467克的H2MoO4溶解於2M氨水溶液而製得,以產生5 mM的H2MoO4溶液。將溶液的pH藉由逐滴加入4M氫氯酸而調整至pH 2-3。
將額外的4M氫氯酸在連續攪拌下加入,以形成白色沉澱物。將沉澱物藉由離心而收集,並且以絕對乙醇潤洗,以形成潤洗的沉澱物。接著將0.8克潤洗的沉澱物分散於15毫升的絕對乙醇中,並在攝氏150度加熱8小時,以得到經處理的沉澱物。
將經處理的沉澱物進一步以絕對乙醇清洗,並且在攝氏80度乾燥16小時,以得到乾燥的沉澱物。將乾燥的沉澱物以每分鐘攝氏5度的速度加熱至攝氏350度,在攝氏350度維持5小時,然後冷卻以得到α-三氧化鉬。將氧化還原活性三氧化鉬顆粒與聚合物溶液的混合物進行超音波震動20分鐘,以產生經處理的混合物。將經處理的混合物刮刀成形於玻璃基板上,以產生厚度25微米的澆鑄薄膜片材。
將澆鑄薄膜片材乾燥1小時(大氣條件)。然後將乾燥的片材藉由將片材與絕對乙醇接觸5分鐘而進行相反轉。將所得到經處理的薄膜片材從基板移除,在絕對乙醇中浸泡16小時,並在攝氏20度真空乾燥,以形成在其中具有三氧化鉬顆粒的PVDF-HFP之乾燥薄膜。
將乾燥薄膜浸泡在Li+導電性聚合物溶液,其係藉由將0.46克的LiPF6溶解在EC:DMC的1:1重量比混合物中而形成。將薄膜在Li+導電性溶液浸泡2天,以得到Li+導電性PVDF-HFP聚合物三氧化鉬複合電解質隔離薄膜。
實例P2:Li+導電性PVDF-HFP聚合物二氧化錫複合電解質隔離薄膜
依循實例P1的程序(除了以0.05克的二氧化錫取代三氧化鉬之外),以得到具有厚度240微米的薄膜。二氧化錫是得自Aldrich。
實例P3:Li+導電性PVDF-HFP聚合物三氧化鎢複合電解質隔離薄膜
將2克的PVDF-HFP試劑級顆粒(來自Aldrich,分子量400,000 g/mol)於攝氏20度溶解在19毫升試劑級的DMF,以使聚合物溶液能夠形成。將10克的聚合物溶液與0.05克具有100奈米平均大小的三氧化鎢氧化還原活性顆粒混合,以形成一混合物。
將氧化還原活性三氧化鎢顆粒與聚合物溶液的混合物進行超音波震動20分鐘,以使經處理的混合物能夠形成。將經處理的混合物刮刀成形於玻璃基板上,以形成澆鑄薄膜片材。將澆鑄薄膜片材乾燥1小時(大氣條件)、與絕對乙醇接觸5分鐘、從基板移除、在絕對乙醇中浸泡16小時、在攝氏20度真空乾燥,並且在Li+導電性聚合物溶液中浸泡2天(其係藉由將0.46克的LiPF6溶解在EC:DMC的1:1重量比混合物中而形成)。
實例P4:Li+導電性PVDF-HFP聚合物氧化鉛複合電解質隔離薄膜
依循實例P3的程序(除了以0.05克的氧化鉛取代三氧化鎢之外)。氧化鉛是得自Aldrich。
實例P5:Li+導電性PVDF-HFP聚合物氧化鋅複合電解質隔離薄膜
依循實例P3的程序(除了以0.05克的氧化鋅取代三氧化鎢之外)。氧化鋅是得自Aldrich。
實例P6:Li+導電性PVDF-HFP聚合物Li1-xMn2O4複合電解質隔離薄膜
依循實例P3的程序(除了以0.05克的Li1-xMn2O4取代三氧化鎢之外)。Li1-xMn2O4是得自Aldrich。
實例P6A:Li+導電性PVDF-HFP聚合物LiMn2O4複合電解質隔離薄膜
依循實例P3的程序(除了以0.05克的LiMn2O4取代三氧化鎢之外)。LiMn2O4是得自Aldrich。
實例P7:Li+導電性PVDF-HFP聚合物LixCoO2複合電解質隔離薄膜
依循實例P3的程序(除了以0.05克的LixCoO2取代三氧化鎢之外)。LixCoO2是得自Aldrich。
實例P7A:Li+導電性PVDF-HFP聚合物LiCoO2複合電解質隔離薄膜
依循實例P3的程序(除了以0.05克的LiCoO2取代三氧化鎢之外)。LiCoO2是得自Aldrich。
實例P8:Li+導電性PVDF-HFP聚合物三氧化鉬複合電解質
將2克的Li+導電性PVDF聚合物連同0.46克的LiPF6溶解於19毫升的DMF溶劑,以形成Li+導電性聚合物溶液。將0.05克具有100奈米平均大小的三氧化鉬加到這個溶液中。將所得的混合物利用實例P1的程序澆鑄成薄膜,並在攝氏20度乾燥至恆重,以形成Li+導電性聚合物三氧化鉬複合電解質。
離子導電性聚合物氧化還原活性金屬添加物複合電解質所形成的隔離薄膜之製備:
將金屬前驅物(例如乙醯丙酮金屬、金屬氫氧化物、中鏈/長鏈羧酸金屬鹽)、氯代金屬酸(例如HPtCl4、HAuCl4及其混合物)溶解在烷基二醇(例如乙二醇、1,2-丁二醇、C4-C8烷醇及其混合物),以得到一混合物。將混合物在約攝氏110度至約攝氏190度迴流約2小時至約16小時,以得到氧化還原活性金屬的凝膠。可使用的乙醯丙酮金屬包含但並不限於乙醯丙酮鉑、乙醯丙酮金、乙醯丙酮錫二氯化物、乙醯丙酮鉛、乙醯丙酮鋅水合物、其混合物及其合金。
氧化還原活性金屬的凝膠是與離子導電性聚合物溶液混合,以形成離子導電性聚合物氧化還原活性金屬複合電解質混合物。接著可將混合物利用例如上述刮刀成形的技術而澆鑄成產物,例如薄膜。
隔離薄膜Li+PVDF-HFP聚合物氧化還原活性鉑複合電解質之製備:
具有奈米顆粒形式的氧化還原活性鉑之PVDF-HFP薄膜可藉由將鉑前驅物(例如乙醯丙酮鉑)溶解在低級烷基二醇(例如乙二醇)而製得,以形成鉑前驅物溶液。鉑前驅物可以約1重量%至約10重量%的量而存在於鉑前驅物溶液中,較佳是約1重量%至約5重量%,以及烷基二醇可以約90重量%至約99重量%的量而存在於鉑前驅物溶液中,所有的百分比都是以前驅物溶液的總重量為基準。
將前驅物溶液迴流以得到具有平均顆粒大小約2奈米至約10奈米的鉑凝膠,較佳是約10奈米。將約1重量%的鉑凝膠至約15重量%的鉑凝膠,較佳是約1重量%的鉑凝膠至約5重量%的鉑凝膠,與聚合物的溶液混合,以形成聚合物鉑氧化還原添加物混合物。經處理的混合物可接著刮刀成形於玻璃基板上,以產生澆鑄薄膜片材。
可將澆鑄薄膜片材乾燥例如約1小時(大氣條件)。接著將乾燥的片材藉由將片材與絕對乙醇接觸5分鐘而進行相反轉。將所得到經處理的薄膜片材從基板移除,在絕對乙醇中浸泡16小時,並在攝氏20度真空乾燥。
將乾燥薄膜浸泡在Li+導電性聚合物溶液,其係藉由將0.46克的LiPF6溶解在EC:DMC的1:1重量比混合物中而形成。接著將薄膜在Li+導電性溶液中浸泡2天。
實例P9:Li+PVDF-鉑氧化還原添加物複合電解質薄膜
將0.63克試劑級的乙醯丙酮鉑於攝氏20度溶解在10毫升的乙二醇,以形成金屬前驅物溶液。
將前驅物溶液在攝氏190度迴流5小時而得到10奈米鉑顆粒的鉑凝膠。將1克得自Sigma-Aldrich的PVDF-HFP顆粒在攝氏20度溶解於9.5毫升試劑級的DMF,以產生PVDF/DMF溶液。
將1.9克的鉑凝膠與10克的10重量%之PVDF/DMF溶液混合,以形成一混合物。將鉑顆粒於PVDF/DMF溶液中之混合物進行超音波震動20分鐘,以產生經處理的混合物。將經處理的混合物刮刀成形於玻璃基板上,以產生厚度250微米的澆鑄薄膜片材。將澆鑄薄膜片材乾燥4小時(大氣條件)。然後將乾燥的片材藉由將薄膜片材與絕對乙醇接觸5分鐘而進行相反轉,以形成經處理的薄膜片材。將經處理的薄膜片材從基板移除,在絕對乙醇中浸泡16小時,然後在攝氏20度真空乾燥。接著將所得到的乾燥薄膜在0.46克LiPF6於EC:DMC的1:1重量比混合物之溶液中浸泡2天,以產生具有厚度240微米的薄膜形式之Li+導電性鉑添加物複合電解質。
實例P10:Li+PVDF-金氧化還原添加物複合電解質
將0.63克試劑級的乙醯丙酮金於攝氏20度溶解在10毫升的乙二醇,以形成金屬前驅物溶液。
將前驅物溶液在攝氏190度迴流5小時而得到10奈米金顆粒的金凝膠。將1克得自Sigma-Aldrich的PVDF-HFP顆粒在攝氏20度溶解於9.5毫升試劑級的DMF,以產生PVDF/DMF溶液。
將1.9克的金凝膠與10克的10重量%之PVDF/DMF溶液混合,以形成一混合物。將金顆粒於PVDF/DMF溶液中之混合物進行超音波震動20分鐘,以產生經處理的混合物。
將經處理的混合物刮刀成形於玻璃基板上,以產生厚度250微米的澆鑄薄膜片材。
將澆鑄薄膜片材乾燥4小時(大氣條件)、藉由與絕對乙醇接觸5分鐘而進行相反轉、在絕對乙醇中浸泡16小時、在攝氏20度真空乾燥,並接著在0.46克LiPF6於EC:DMC的1:1重量比混合物之溶液中浸泡2天。
實例P11:Li+PVDF-錫氧化還原添加物複合電解質
將0.63克試劑級的乙醯丙酮錫於攝氏20度溶解在10毫升的乙二醇,以形成金屬前驅物溶液。將前驅物溶液在攝氏190度迴流5小時而得到10奈米錫顆粒的錫凝膠。將1克得自Sigma-Aldrich的PVDF-HFP顆粒在攝氏20度溶解於9.5毫升(試劑級)的DMF,以產生PVDF/DMF溶液。
將1.9克的錫凝膠與10克的10重量%之PVDF/DMF溶液混合,以形成一混合物。將錫顆粒於PVDF/DMF溶液中之混合物進行超音波震動20分鐘,以產生經處理的混合物。將經處理的混合物刮刀成形於玻璃基板上,以產生厚度250微米的澆鑄薄膜片材。
將澆鑄薄膜片材乾燥4小時(大氣條件)。然後將乾燥的片材藉由將薄膜片材與絕對乙醇接觸5分鐘而進行相反轉,以形成經處理的薄膜片材。將經處理的薄膜片材從基板移除,在絕對乙醇中浸泡16小時,然後在攝氏20度真空乾燥,接著在0.46克LiPF6於EC:DMC的1:1重量比混合物之溶液中浸泡2天。
實例P12:Li+PVDF-鉛氧化還原添加物複合電解質
依循實例P10的程序(除了以乙醯丙酮鉛取代乙醯丙酮金之外)。
實例P13:Li+PVDF-鋅氧化還原添加物複合電解質
依循實例P10的程序(除了以乙醯丙酮鋅取代乙醯丙酮金之外)。
實例P14:Li+PVDF-矽氧化還原添加物複合電解質
依循實例P10的程序(除了以0.05克得自Reade公司的100奈米大小之矽顆粒取代乙醯丙酮金之外)。
實例P5:
將2克的Li+導電性聚合物(例如PVDF)連同0.46克的LiPF6溶解於19毫升的DMF溶劑,以形成Li+導電性聚合物溶液。將0.05克具有100奈米平均大小的鉑加到這個溶液中。將所得的聚合物溶液利用實例P1的程序澆鑄成薄膜,並在攝氏20度乾燥至恆重,以形成Li+導電性聚合物鉑複合電解質。
離子導電性聚合複合薄膜於硬幣電池中之應用:
實例C1:
將實例P1所製造的薄膜使用作為2032硬幣電池(coin cell)中之隔離電解質。在電池中,使用具有1700 m2/g的表面積並衍生自聚呋喃醇的活性碳作為陰極,以及使用鋰金屬作為陽極。
陰極是藉由將活性碳、得自Electrochem公司的聚四氯乙烯(Teflon)乳液及乙炔黑混合形成漿料而製得。在漿料中,活性碳是以85重量%的量而存在,聚四氯乙烯乳液是以10重量%的量而存在,以及乙炔黑是以5重量%的量而存在,所有的量都是以漿料的總重量為基準。將漿料施加到碳紙上至250微米的厚度,然後在攝氏20度乾燥以形成一電流收集器。
實例C2:
依循實例C1的程序(除了是使用實例P9所製造的薄膜之外)。
實例C3:
依循實例C1的程序(除了是使用實例P2所製造的薄膜之外)。
硬幣電池的表現是利用電化學阻抗光譜及固定電流充電/放電而測試。電化學阻抗測量是在開放式迴路電壓狀態下,於充電/放電測量之前及之後而進行。電池的充電/放電測量是利用基於活性碳質量之100毫安培/克的固定負載電流而進行。使用作為陰極的活性碳質量是1毫克。將電池在5.2伏特至2伏特之間循環至少25個週期。充電/放電測量是在200毫安培/克重複。
實例C1-C3所製造的硬幣電池之表現顯示在表1。在表1中,硬幣電池的表現是與對照組硬幣電池的表現作比較。對照組硬幣電池是與實例1相同的硬幣電池,除了對照組電池中所使用的薄膜是根據實例P1的程序而製得以及薄膜不包含三氧化鉬之外。能量密度計算是以包含活性碳、鋰及聚合物薄膜的樣品電池之總體積為基準。
The following nouns used herein shall be understood to have the following meanings:
CTFE: chlorotrifluoroethylene
HFP: hexafluoropropylene
DMC: dimethyl carbonate
EC: ethyl carbonate
HFP: hexafluoropropylene
LAGP: lithium aluminum bismuth phosphate
LiTf: lithium trifluoromethane
LIBETI: LiNC 2 F 5 (SO 2 ) 2
LiBOB: Lithium bis(dicarboxylate)
LiTFSI: lithium trifluoromethanesulfonate
MBL: α-methylene-γ-butyrolactone
MEEP: Polymerization (bis(methoxyethoxy)ethoxy)phosphazene
MEK: methyl ethyl ketone
Nafion: tetrafluoroethylene-perfluoro-3,6-diepoxy-4-methyl-7-decenesulfonic acid copolymer
PAEOA: poly(ethenyl-oligo(oxyethylene) acrylate)
PBI: polybenzimidazole
PDE: poly(ethylene glycol) dimethacrylate
PEEK: polydiether ketone
PEDA: polyester diacrylate
PEDOT: poly(3,4-ethylenedioxythiophene)
PEG: poly(ethylene glycol)
PEGMA: poly(ethylene glycol) methyl ether methacrylate
PEO: poly(oxyethylene)
PEOMA: Poly(oxyethylene) methyl ether methacrylate
PES: polyether oxime
PME: poly(ethylene glycol) methacrylate
PPI: poly(propyleneimine)
PPO: poly(propylene oxide)
PS: Poly (碸)
PVA: poly(vinyl alcohol)
PVDF: Polyvinylidene fluoride
SMA: octadecyl methacrylate
TEGDA: tris(ethylene glycol) diacrylate
TFE: tetrafluoroethylene
TrFE: Trifluoroethylene The present invention discloses an ion conductive polymer composite electrolyte, and one or more ion conductive polymers having one or more redox active inclusions, a redox active phase, and Its mixture.
In general, the ion conductive polymer redox active additive composite electrolyte can be obtained by mixing an ion conductive polymer solution with a redox active additive. Alternatively, the non-conductive polymer containing the redox additive may also be treated with a desired metal ion conductive solution to provide polymer ion conductivity to produce an ion conductive polymer redox active additive composite electrolyte. .
Polymers useful in solutions of ionically conductive polymers include, but are not limited to, fluoropolymers and copolymers such as, but not limited to, PVDF, PVDF-HFP, PVDF-TFE, PVDF-CTFE, PVDF-TrFE, and mixtures thereof . Other polymers that can be used include, but are not limited to, oxyethylene, such as PEO, PEOMA, PAEOA, PEG, PEDAO-PEG copolymer, PDE, PME, PEGMA, TEGDA, poly(dimethyloxane), poly(formaldehyde). [oxyethylene]), MEEP, copolymer (eg PEOMA-MBL, PAEOA, PEDA-PEG, PME-SMA, PDE-PME-PEG, PS-PEGMA, PPI, PS-PDVP, polystyrene copolymer, none Synthetic copolymer), polyphosphazene, and mixtures thereof, such as poly(dioxane), polyoxyalkylene, polyphosphazenes such as, but not limited to, poly(dichlorophosphazene), PVA, PPO .
Solvents useful in the ionically conductive polymer solution include, but are not limited to, aprotic solvents such as DMAc, NMP, DMF, and mixtures thereof. When DMF is used, the amount of polymer soluble in DMF may range from about 1% by weight to about 50% by weight, preferably from about 5% by weight to about 40% by weight, more preferably from about 10% by weight to about 30% by weight. % by weight, all amounts are based on the weight of the polymer.
Many ion conductive polymer solutions are available for the manufacture of ion conductive polymer redox active additive composite electrolytes. The ion conductive polymer solution can be obtained by treating a solvent solution of the polymer with an ionic salt. The ion conductive polymer solution which can be used for the ion conductive polymer redox active additive composite electrolyte includes, but is not limited to, a silver ion (Ag + ) conductive polymer solution, a hydrogen ion (H + ) conductive polymer solution, Hydroxide (OH - ) conductive polymer solution, lithium ion (Li + ) conductive polymer solution, magnesium ion (Mg + ) conductive polymer solution, sodium ion (Na + ) conductive polymer solution, oxygen Ionic (O - ) conductive polymer solution and mixtures thereof.
Ag + may be used a conductive polymer solution comprising a polymer (such as but not limited to PEO, PVDF, PVDF-HFP, PBI , and mixtures thereof) of the conductive polymer solution of Ag +. The Ag + conductive polymer solution can be obtained by polymerizing a solution of an Ag + salt such as, but not limited to, silver iodide, silver chloride, silver nitrate, and a mixture thereof with an Ag + conductive polymer and an aprotic solvent (for example, It is not limited to EC and DMC).
H H + can be used a conductive polymer solution comprising a polymer (such as but not limited to PEO, PBI, Nafion, PEEK, PES , and mixtures thereof) + the conductive polymer solution. The H + conductive polymer solution can be obtained by polymerizing a solution of an aprotic acid (such as, but not limited to, phosphoric acid, sulfuric acid, and mixtures thereof) with an H + conductive polymer and an aprotic solvent (such as, but not limited to, EC, DMC) is formed by mixing.
Usable OH - conducting polymer solution comprises a polymer (such as but not limited to PEO, PBI, Nafion, PEEK, PES , and mixtures thereof) of OH - conductive polymer solution. The OH - conductive polymer solution can be obtained by using a polymerization solution of an OH - salt (such as, but not limited to, sodium hydroxide, potassium hydroxide, and a mixture thereof) with an OH - conductive polymer and an aprotic solvent (for example, It is not limited to EC and DMC).
The Li + conductive polymer solution that can be used comprises a Li + conductive polymeric material such as, but not limited to, PEO, PVDF-HFP, PVDF-TFE, LiTf, LiTfSI, LIBETI, LiClO 4 , LiBOB, LiPF 6 , LiBF 4 and Its mixture. Li + by the conductive polymer solution may be Li + salts (e.g., but not limited LiTf, LiTfSI, LIBETI, LiClO 4 , LiBOB, LiPF 6, LiBF 4 , and mixtures thereof) Li + polymerization of the conductive polymer The solution is formed by mixing a mixture of aprotic solvents such as, but not limited to, EC, DMC. Preferably, a LiPF 6 solution in a 1:1 EC:DMC (w/w) mixture can be used. In this aspect, the concentration of LiPF 6 in the 1:1 EC:DMC mixture can vary from about 0.5 M to about 1.2 M, preferably from about 0.8 M to about 1 M.
Mg + conductive polymer solution may be used include a polymer (e.g., but not limited to PEO, PVDF-HFP, PBI, PEEK, PES , and mixtures thereof) of Mg + conductive polymer solution. The Mg + conductive polymer solution can be obtained by polymerizing a Mg + salt such as, but not limited to, magnesium chloride, magnesium perchlorate and a mixture thereof with a Mg + conductive polymer and an aprotic solvent (for example, It is formed by mixing without being limited to EC and DMC.
Na + can be used in the conductive polymer solution containing a polymer (such as but not limited to PEO, PVDF-HFP, PBI, PEEK, PES , and mixtures thereof) of the conductive polymer solution of Na +. The Na + conductive polymer solution can be obtained by polymerizing a Na + salt (for example, but not limited to, sodium iodide, sodium chloride, sodium nitrate, and a mixture thereof) with a Na + conductive polymer and an aprotic solvent. Formed by, for example, but not limited to, EC, DMC. When a Na + conductive polymer solution is used for the composite electrolyte, the electrode active material may be a sodium metal or a non-stoichiometric sodium oxide compound that allows sodium ions to be exchanged into the electrolyte.
The redox active additive may be incorporated into the ionically conductive polymer in various forms, for example, in the form of a precursor of a redox active additive, a solution of a redox active additive, and a particle of a redox active additive. The redox active additive which can be used in the solution of the ion conductive polymer can be changed depending on the ion conductive polymer to be used. When the redox active additive is used in the form of granules, the granules may have a size of from about 5 nanometers to about 100 micrometers, preferably from about 10 nanometers to about 100 nanometers.
When an Ag + conductive polymerization solution is used to produce an Ag + conductive polymer redox active composite electrolyte, the redox active additive may include, but is not limited to, a metal such as copper, lead, antimony, tin, which may be relative to When SCE (saturated calomel electrode) has a potential of less than about -0.8 V, it is alloyed with silver. When an H + conductive polymer is used, the redox active additive includes, but is not limited to, a metal oxide having a potential of about 1 V with respect to SCE (saturated calomel electrode).
When a Mg + conductive polymer is used, the redox active additive may include, but is not limited to, TiS 2 , V 6 O 13 , and chromium oxide. When a Na + conductive polymer is used, the redox active additive includes, but is not limited to, TiS 2 , V 6 O 13 , and chromium oxide.
When a Li + conductive polymerization solution is used to produce a Li + conductive polymer redox active composite electrolyte, the redox active additive may include, but is not limited to, an anode type metal oxide having a ratio with respect to a redox potential of lithium a potential of 2 V or less, a metal oxide particle of a cathode type (having a potential of about 2 V or more with respect to a redox potential of lithium), a metal particle (having about 2 V or more with respect to lithium/lithium) Alloy potential), a mixture of a cathode metal oxide and a metal particle, a mixture of an anode metal oxide and a metal particle, and a mixture of a cathode oxide and an anode oxide. The redox active oxide having a low oxidation-reduction potential of about 2 V or less (relative to lithium/lithium) in the Li + conductive polymer may be used, but not limited to MoO 3 , SnO 2 , WO 3 , PbO ZnO, Fe 2 O 3 , Cr 2 O 3 , V 2 O 5 , MnO 2 , Li 4 Ti 5 O 12 , Li 4+x Ti 5 O 12 and mixtures thereof. Redox active oxides having a high oxidation-reduction potential of about 2 V or more (relative to lithium/lithium), including but not limited to LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , LiFeO 2 , Li x (Co y Al 1-y ) (1-x) O 2 (where 0 < x < 1, 0 < y < 1) and mixtures thereof.
The high redox oxide, the low redox oxide, and mixtures thereof may be added to the Li + conductive polymer in an amount of from about 0.5% by weight to about 30% by weight, preferably from about 1% by weight to about 10% by weight. (Based on the weight of the Li + conductive polymer solution). When molybdenum trioxide is used as the redox active additive, the molybdenum trioxide may be present in the Li + conductive polymerization in an amount of from about 1% by weight to about 30% by weight, preferably from about 1% by weight to about 10% by weight. In the solution of the solution, all amounts are based on the weight of the polymer solution.
The redox active metal that can be used as a redox additive in the Li + conductive polymer solution includes, but is not limited to, platinum, gold, tin, lead, zinc, antimony, mixtures thereof, and alloys thereof. When gold particles are used, the size of the particles can vary from about 1 nanometer to about 200 nanometers. The redox active metal may be present in the solution of the Li + conductive polymer in an amount of from about 0.1% by weight to about 10% by weight, preferably from about 1% by weight to about 5% by weight, based on the weight of the polymer solution Benchmark.
Production of a product comprising an ion conductive polymer redox active additive composite electrolyte:
Ionically Conductive Polymer Redox Active Additive The composite electrolyte can be cast by, for example, spin coating, thin film sputtering, gas gel spray, gas gel particle deposition, electrophoretic deposition, ribbon forming, screen printing, and doctor blade forming. Various products (such as film). When formed using a doctor blade, the composite electrolyte can be blade formed on a moving substrate (e.g., a glass substrate or a polymer substrate) to form a cast sheet of a composite electrolyte (e.g., a film sheet).
The thickness of the cast film sheet of the composite electrolyte can be varied by controlling the solvent content of the slurry, the speed of moving the substrate, and the width of the blade forming opening. The thickness of the film sheet can thus vary widely. Typically, the cast film sheet has a thickness of from about 1 micron to about 450 microns, preferably from about 10 microns to about 100 microns.
The cast film sheet is dried on a substrate and then reversed by contact with a lower alkanol such as, but not limited to, ethanol, methanol, isopropanol, and mixtures thereof, preferably ethanol. After the reverse rotation, the cast film sheet is removed from the glass substrate and again with a lower alkanol (such as, but not limited to, ethanol, methanol, isopropanol, and mixtures thereof, preferably ethanol) at about 20 degrees Celsius The treatment is carried out at about 50 degrees Celsius for about 1 hour to about 16 hours. The film to be treated is dried, for example, at about 20 degrees Celsius to about 60 degrees Celsius, preferably about 20 degrees Celsius to about 40 degrees Celsius, by vacuum drying. Typically, drying is carried out at temperatures and times sufficient to achieve <1% moisture content. The dried film sheet is then immersed in an ionically conductive solution to expand the polymer. The expansion can be enhanced by heating the film in an ionically conductive solution to about 55 degrees Celsius for about 2 hours to about 4 hours.
Preparation of a separator formed by an ion-conductive polymer redox active metal oxide composite electrolyte:
Example P1: Li + Conductive PVDF-HFP Polymer Molybdenum Trioxide Composite Electrolyte Isolation Membrane 2 g of PVDF-HFP reagent grade particles (from Aldrich, molecular weight 400,000 g/mol) were dissolved at 19 ml of reagent at 19 ° C. DMF to produce a polymer solution. Ten grams of the polymer solution was mixed with 0.05 grams of molybdenum trioxide redox active particles having an average size of 100 nanometers to form a mixture.
Molybdenum trioxide particles were prepared by dissolving 0.8467 g of H 2 MoO 4 in a 2 M aqueous ammonia solution to produce a 5 mM H 2 MoO 4 solution. The pH of the solution was adjusted to pH 2-3 by dropwise addition of 4 M hydrochloric acid.
Additional 4 M hydrochloric acid was added with continuous stirring to form a white precipitate. The precipitate was collected by centrifugation and rinsed with absolute ethanol to form a rinsed precipitate. Next, 0.8 g of the rinsed precipitate was dispersed in 15 ml of absolute ethanol and heated at 150 ° C for 8 hours to obtain a treated precipitate.
The treated precipitate was further washed with absolute ethanol and dried at 80 ° C for 16 hours to obtain a dried precipitate. The dried precipitate was heated to a temperature of 5 degrees Celsius per minute to 350 degrees Celsius, maintained at 350 degrees Celsius for 5 hours, and then cooled to obtain α-molybdenum trioxide. The mixture of redox active molybdenum trioxide particles and the polymer solution was subjected to ultrasonic vibration for 20 minutes to produce a treated mixture. The treated mixture doctor blade was formed on a glass substrate to produce a cast film sheet having a thickness of 25 μm.
The cast film sheet was dried for 1 hour (atmospheric conditions). The dried sheet was then reversed by contacting the sheet with absolute ethanol for 5 minutes. The resulting treated film sheet was removed from the substrate, immersed in absolute ethanol for 16 hours, and vacuum dried at 20 degrees Celsius to form a dried film of PVDF-HFP having molybdenum trioxide particles therein.
The dried film was immersed in a Li + conductive polymer solution which was formed by dissolving 0.46 g of LiPF 6 in a 1:1 weight ratio mixture of EC:DMC. The film was immersed in a Li + conductive solution for 2 days to obtain a Li + conductive PVDF-HFP polymer molybdenum trioxide composite electrolyte separator.
Example P2: Li + Conductive PVDF-HFP Polymer Tin Dioxide Composite Electrolyte Isolation Film The procedure of Example P1 was followed (except for the replacement of molybdenum trioxide with 0.05 g of tin dioxide) to obtain a film having a thickness of 240 μm. Tin dioxide is available from Aldrich.
Example P3: Li + Conductive PVDF-HFP Polymer Tungsten Oxide Composite Electrolyte Separation Film 2 grams of PVDF-HFP reagent grade particles (from Aldrich, molecular weight 400,000 g/mol) were dissolved at 19 ° C in 19 ml reagent grade DMF to enable the formation of a polymer solution. Ten grams of the polymer solution was mixed with 0.05 grams of tungsten oxide redox active particles having an average size of 100 nanometers to form a mixture.
The mixture of redox active tungsten trioxide particles and the polymer solution was subjected to ultrasonic vibration for 20 minutes to enable the formed mixture to be formed. The treated mixture doctor blade is formed on a glass substrate to form a cast film sheet. The cast film sheet was dried for 1 hour (atmospheric conditions), contacted with absolute ethanol for 5 minutes, removed from the substrate, soaked in absolute ethanol for 16 hours, vacuum dried at 20 degrees Celsius, and in a Li + conductive polymer solution. Soak for 2 days (formed by dissolving 0.46 grams of LiPF 6 in a 1:1 weight ratio mixture of EC:DMC).
Example P4: Li + Conductive PVDF-HFP Polymer Lead Oxide Composite Electrolyte Isolation Film Following the procedure of Example P3 (except for replacing tungsten trioxide with 0.05 grams of lead oxide). Lead oxide is available from Aldrich.
Example P5: Li + Conductive PVDF-HFP Polymer Zinc Oxide Composite Electrolyte Isolation Film Following the procedure of Example P3 (except for replacing tungsten trioxide with 0.05 g of zinc oxide). Zinc oxide is available from Aldrich.
Example P6: Li + conductive PVDF-HFP polymer Li 1-x Mn 2 O 4 composite electrolyte isolating film according to the procedure of Example P3 (except for replacing tungsten trioxide with 0.05 g of Li 1-x Mn 2 O 4 ) . Li 1-x Mn 2 O 4 is available from Aldrich.
Example P6A: Li + Conductive PVDF-HFP Polymer LiMn 2 O 4 Composite Electrolyte Isolation Film Following the procedure of Example P3 (except for replacing tungsten trioxide with 0.05 g of LiMn 2 O 4 ). LiMn 2 O 4 is available from Aldrich.
Example P7: Li + conductive PVDF-HFP polymer Li x CoO 2 composite electrolyte isolating film Following the procedure of Example P3 (except for replacing tungsten trioxide with 0.05 g of Li x CoO 2 ). Li x CoO 2 is available from Aldrich.
Example P7A: Li + Conductive PVDF-HFP Polymer LiCoO 2 Composite Electrolyte Isolation Film Following the procedure of Example P3 (except for replacing tungsten trioxide with 0.05 gram of LiCoO 2 ). LiCoO 2 is available from Aldrich.
Example P8: Li + conductive PVDF-HFP polymer molybdenum trioxide composite electrolyte 2 g of Li + conductive PVDF polymer together with 0.46 g of LiPF 6 was dissolved in 19 ml of DMF solvent to form Li + conductive polymer Solution. 0.05 g of molybdenum trioxide having an average size of 100 nm was added to this solution. The resulting mixture was cast into a film by the procedure of Example P1 and dried to constant weight at 20 ° C to form a Li + conductive polymer molybdenum trioxide composite electrolyte.
Preparation of a separator film formed by an ion conductive polymer redox active metal additive composite electrolyte:
Dissolving a metal precursor (eg, acetamidine metal, metal hydroxide, medium chain/long chain carboxylic acid metal salt), chlorometal acid (eg, HPtCl 4 , HAuCl 4 , and mixtures thereof) in an alkyl diol (eg, Ethylene glycol, 1,2-butanediol, C4-C8 alkanol, and mixtures thereof) to give a mixture. The mixture is refluxed at about 110 degrees Celsius to about 190 degrees Celsius for about 2 hours to about 16 hours to obtain a gel of redox active metal. The ethyl acetonide metal which can be used includes, but is not limited to, acetamidineacetate, acetamidineacetone, acetoacetate tin dichloride, acetamidine lead, acetophenone zinc hydrate, mixtures thereof and alloys thereof.
The redox active metal gel is mixed with the ion conductive polymer solution to form an ion conductive polymer redox active metal composite electrolyte mixture. The mixture can then be cast into a product, such as a film, using techniques such as knife forming as described above.
Preparation of a separator thin film Li + PVDF-HFP polymer redox active platinum composite electrolyte:
A PVDF-HFP film having redox active platinum in the form of nanoparticles can be prepared by dissolving a platinum precursor such as platinum acetoacetate in a lower alkyl diol such as ethylene glycol to form a platinum precursor. Solution. The platinum precursor may be present in the platinum precursor solution in an amount from about 1% to about 10% by weight, preferably from about 1% to about 5% by weight, and the alkyl diol may be from about 90% to about 99% The amount by weight is present in the platinum precursor solution, all percentages being based on the total weight of the precursor solution.
The precursor solution is refluxed to obtain a platinum gel having an average particle size of from about 2 nm to about 10 nm, preferably about 10 nm. Approximately 1% by weight of platinum gel to about 15% by weight of platinum gel, preferably about 1% by weight of platinum gel to about 5% by weight of platinum gel, mixed with a solution of the polymer to form a polymerization Platinum redox additive mixture. The treated mixture can then be formed into a glass substrate by doctor blade to produce a cast film sheet.
The cast film sheet can be dried, for example, for about 1 hour (atmospheric conditions). The dried sheet was then reversed by contacting the sheet with absolute ethanol for 5 minutes. The resulting treated film sheets were removed from the substrate, soaked in absolute ethanol for 16 hours, and dried under vacuum at 20 degrees Celsius.
The dried film was immersed in a Li + conductive polymer solution which was formed by dissolving 0.46 g of LiPF 6 in a 1:1 weight ratio mixture of EC:DMC. The film was then immersed in a Li + conductive solution for 2 days.
Example P9: Li + PVDF-Platinum Redox Additive Composite Electrolyte Film 0.63 g of reagent grade acetoacetate platinum was dissolved in 10 ml of ethylene glycol at 20 ° C to form a metal precursor solution.
The precursor solution was refluxed at 190 ° C for 5 hours to obtain a platinum gel of 10 nm platinum particles. One gram of PVDF-HFP particles from Sigma-Aldrich was dissolved in 9.5 ml of reagent grade DMF at 20 degrees Celsius to produce a PVDF/DMF solution.
A 1.9 gram platinum gel was mixed with 10 grams of a 10% by weight PVDF/DMF solution to form a mixture. The mixture of platinum particles in PVDF/DMF solution was subjected to ultrasonic vibration for 20 minutes to produce a treated mixture. The treated mixture doctor blade was formed on a glass substrate to produce a cast film sheet having a thickness of 250 μm. The cast film sheet was dried for 4 hours (atmospheric conditions). The dried sheet was then reversed by contacting the film sheet with absolute ethanol for 5 minutes to form a treated film sheet. The treated film sheets were removed from the substrate, soaked in absolute ethanol for 16 hours, and then dried under vacuum at 20 degrees Celsius. The resulting dried film was then immersed in a solution of 0.46 g of LiPF 6 in a 1:1 weight ratio mixture of EC:DMC for 2 days to produce a Li + conductive platinum additive composite electrolyte having a film thickness of 240 μm.
Example P10: Li + PVDF - Gold Redox Additive Composite Electrolyte 0.63 g of reagent grade ethyl acetonide gold was dissolved in 10 ml of ethylene glycol at 20 ° C to form a metal precursor solution.
The precursor solution was refluxed at 190 ° C for 5 hours to obtain a gold gel of 10 nm gold particles. One gram of PVDF-HFP particles from Sigma-Aldrich was dissolved in 9.5 ml of reagent grade DMF at 20 degrees Celsius to produce a PVDF/DMF solution.
A 1.9 gram gold gel was mixed with 10 grams of a 10% by weight PVDF/DMF solution to form a mixture. The mixture of gold particles in PVDF/DMF solution was subjected to ultrasonic vibration for 20 minutes to produce a treated mixture.
The treated mixture doctor blade was formed on a glass substrate to produce a cast film sheet having a thickness of 250 μm.
The cast film sheet was dried for 4 hours (atmospheric conditions), reversed by contact with absolute ethanol for 5 minutes, soaked in absolute ethanol for 16 hours, vacuum dried at 20 degrees Celsius, and then at 0.46 g of LiPF 6 in the EC. : DMC was soaked in a 1:1 weight ratio mixture for 2 days.
Example P11: Li + PVDF-tin redox additive composite electrolyte 0.63 g of reagent grade acetamidine acetone was dissolved in 10 ml of ethylene glycol at 20 ° C to form a metal precursor solution. The precursor solution was refluxed at 190 ° C for 5 hours to obtain a tin gel of 10 nano tin particles. One gram of PVDF-HFP particles from Sigma-Aldrich was dissolved in 9.5 ml (reagent grade) of DMF at 20 degrees Celsius to produce a PVDF/DMF solution.
A 1.9 gram tin gel was mixed with 10 grams of a 10% by weight PVDF/DMF solution to form a mixture. The mixture of tin particles in PVDF/DMF solution was subjected to ultrasonic vibration for 20 minutes to produce a treated mixture. The treated mixture doctor blade was formed on a glass substrate to produce a cast film sheet having a thickness of 250 μm.
The cast film sheet was dried for 4 hours (atmospheric conditions). The dried sheet was then reversed by contacting the film sheet with absolute ethanol for 5 minutes to form a treated film sheet. The treated film sheets were removed from the substrate, immersed in absolute ethanol for 16 hours, then vacuum dried at 20 degrees Celsius, followed by soaking in a solution of 0.46 grams of LiPF 6 in a 1:1:1 weight ratio mixture of EC:DMC. day.
Example P12: Li + PVDF - Lead Redox Additive Composite Electrolyte Following the procedure of Example P10 (except for the replacement of acetamidine acetone with lead acetonide).
Example P13: Li + PVDF-zinc redox additive The composite electrolyte was subjected to the procedure of Example P10 (except for the replacement of ethyl acetonide with zinc acetoacetate).
Example P14: Li + PVDF-矽 redox additive The composite electrolyte was subjected to the procedure of Example P10 (except for the replacement of ethyl acetonide gold with 0.05 g of 100 nm ruthenium particles available from Reade).
Example P5:
Two grams of Li + conductive polymer (for example, PVDF) was dissolved in 19 ml of DMF solvent together with 0.46 g of LiPF 6 to form a Li + conductive polymer solution. 0.05 g of platinum having an average size of 100 nm was added to this solution. The obtained polymer solution was cast into a film by the procedure of Example P1, and dried to constant weight at 20 ° C to form a Li + conductive polymer platinum composite electrolyte.
Application of ion conductive polymer composite film in coin battery:
Example C1:
The film produced in Example P1 was used as an isolating electrolyte in a 2032 coin cell. In the battery, activated carbon having a surface area of 1700 m 2 /g and derived from polyfuranol was used as a cathode, and lithium metal was used as an anode.
The cathode was prepared by mixing activated carbon, a polytetrafluoroethylene (Teflon) emulsion obtained from Electrochem Co., and acetylene black to form a slurry. In the slurry, activated carbon is present in an amount of 85% by weight, polytetrachloroethylene emulsion is present in an amount of 10% by weight, and acetylene black is present in an amount of 5% by weight, all of which are Based on the total weight of the slurry. The slurry was applied to carbon paper to a thickness of 250 microns and then dried at 20 degrees Celsius to form a current collector.
Example C2:
The procedure of Example C1 was followed (except for the film produced using Example P9).
Example C3:
The procedure of Example C1 was followed (except for the film produced using Example P2).
The performance of coin cells was tested using electrochemical impedance spectroscopy and fixed current charging/discharging. Electrochemical impedance measurements were made before and after charge/discharge measurements in an open loop voltage state. The charge/discharge measurement of the battery was carried out using a fixed load current of 100 mA/g based on the mass of activated carbon. The mass of activated carbon used as a cathode was 1 mg. The battery is cycled between 5.2 volts and 2 volts for at least 25 cycles. The charge/discharge measurement is repeated at 200 mA/g.
The performance of the coin cells fabricated in Examples C1-C3 is shown in Table 1. In Table 1, the performance of the coin cell was compared to the performance of the control coin cell. The control coin cell was the same coin cell as in Example 1, except that the film used in the control cell was prepared according to the procedure of Example P1 and the film did not contain molybdenum trioxide. The energy density calculation is based on the total volume of the sample cells containing activated carbon, lithium, and polymer films.


離子導電性玻璃氧化還原添加物複合電解質:
離子導電性玻璃氧化還原添加物複合電解質包含離子導電性玻璃以及氧化還原添加物。離子導電性玻璃可包含但並不限於離子導電性硫系化合物玻璃、離子導電性氟系玻璃、離子導電性氧化物玻璃、離子導電性磷酸鹽玻璃、離子導電性氧氮化物玻璃、離子導電性氧氟化物玻璃、離子導電性氧氯化物玻璃及其混合物。這些玻璃的任何一種都可以是Ag+導電性、F-導電性、H+導電性、K+導電性、Li+導電性、Mg2+導電性、Na+導電性、Mg2+導電性、O2-導電性或其組合。
使用作為離子導電性玻璃的材料包含但並不限於離子導電性玻璃本身、適合用於產生離子導電性玻璃的原料之混合物、以及離子導電性玻璃及該等原料的混合物。
Li+導電性硫系化合物玻璃可包含但並不限於Li2S-SiS2-Li4SiO4、Li2S-SiS2-Li3PO4、Li2S-P2S5-LiI、Li2S-SiS2-LiI、Li2S-SiS2、Li2S-B2S3、Li2S-P2S5、Li2S-GeS2、Li2S-Ga2S3-  GeS2、以碘化物摻雜物(例如LiI)而摻雜之Li2S-Ga2S3-GeS2、以碘化物摻雜物(例如LiI)而摻雜之Li2S-Ga2S3-GeS2、Li2S-Sb2S3-GeS2、Li2S-GeS2-P2S5、Li3PO4-Li2S-SiS2、Li2S-GeS2-PS5及其混合物。
Li+導電性氟系玻璃可包含但並不限於ZrF4-BaF2-LaF3-LiF及其混合物。Li+導電性氧化物、氧氯化物及氧氟化物玻璃玻璃可包含但並不限於Li-F-B-O組合物,例如但並不限於Li2O-LiF-B2O3及其混合物;Li-B-O組合物,例如但並不限於Li4SiO4-Li3BO4、Li2O-LiCl-B2O3及其混合物;Li-B-S-O組合物,例如但並不限於Li2SO4-Li2O-B2O3及其混合物。Li+導電性氧氮化物玻璃可包含但並不限於鋰磷氧氮化物及其混合物。
在離子導電性玻璃中使用的氧化還原活性添加物可以是氧化還原活性金屬、氧化還原活性氧化物、氧化還原活性氧氮化物及其混合物之形式。可使用的氧化還原活性金屬包含但並不限於金、鉑、鈀、錫、鋁、鐵、銻、錫合金、銻合金、矽、其鍺合金及其混合物。當使用金顆粒時,顆粒的大小可從約3奈米改變至約190奈米,較佳是約3奈米至約10奈米,更佳是約10奈米。
可使用的氧化還原活性氧化物包含但並不限於氧化銻、氧化鉍、氧化鉻、氧化鈷、氧化銅、氧化鍺、氧化銦、氧化鐵、氧化鉛、鋰鈷氧化物、氧化鋰、鈦酸鋰、鋰釩、鋰釩氧化物、鋰磷氧化物、磷氧化物、鋰鐵氧化物、鐵磷氧化物、氧化錳、氧化鉬、氧化鈮、氧化銀、氧化鍶、氧化鉭、氧化錫、氧化鈦、氧化鎢、氧化釩、氧化鋅及其混合物。可使用的氧化還原活性氧氮化物包含但並不限於Li7.9MnN3.2O1.6及其混合物。
用於製造離子導電性玻璃氧化還原活性複合電解質的氧化還原活性添加物可以是氧化還原活性添加物的前驅物溶液、氧化還原添加物的溶液及氧化還原活性添加物的顆粒之形式。當使用氧化還原活性添加物的顆粒時,氧化還原活性添加物的顆粒大小可從約1奈米改變至約500奈米。
離子導電性玻璃氧化還原活性添加物複合電解質可藉由將氧化還原活性添加物及離子導電性玻璃的混合物熔融而製得。在離子導電性玻璃氧化還原添加物複合電解質中之離子導電性玻璃以及氧化還原添加物的量可廣泛地改變。相較於使用在離子導電性玻璃氧化還原添加物複合電解質中之離子導電性玻璃,在離子導電性玻璃氧化還原添加物複合電解質中使用之氧化還原添加物的量足夠達到具有增加的離子流及/或更高的電壓之離子導電性玻璃氧化還原添加物複合電解質。通常,氧化還原添加物是以約0.1重量%至約50重量%的量而存在,較佳是約5重量%至約20重量%的量,以離子導電性玻璃的重量為基準。
相較於使用在離子導電性玻璃陶瓷氧化還原添加物複合電解質中之離子導電性玻璃陶瓷,在離子導電性玻璃陶瓷氧化還原添加物複合電解質中使用之氧化還原添加物的量足夠達到具有增加的離子流及/或更高的電壓之離子導電性玻璃陶瓷氧化還原添加物複合電解質。一般而言,氧化還原添加物是以約0.5重量%至約20重量%的量而存在,較佳是約5重量%至約10重量%的離子導電性玻璃陶瓷的量。
相較於使用在離子導電性陶瓷氧化還原添加物複合電解質中之離子導電性陶瓷,在離子導電性陶瓷氧化還原添加物複合電解質中使用之氧化還原添加物的量足夠達到具有增加的離子流之離子導電性陶瓷氧化還原添加物複合電解質。一般而言,氧化還原添加物是以約0.5重量%至約20重量%的量而存在,較佳是約5重量%至約10重量%的離子導電性陶瓷的量。
當離子導電性玻璃是Ag+導電性玻璃時(例如,任何的Ag+導電性硫系化合物玻璃、Ag+導電性氟化物玻璃、Ag+導電性氧化物玻璃及其混合物),相較於使用在Ag+導電性玻璃氧化還原添加物複合電解質中之Ag+導電性玻璃,所使用之氧化還原活性添加物的量足夠達到具有增加的離子流之Ag+導電性玻璃氧化還原添加物複合電解質。通常,氧化還原活性添加物的量是約0.1重量%至約50重量%的Ag+導電性玻璃。
當離子導電性玻璃是Cs+導電性玻璃時(例如,任何的Cs+導電性硫系化合物玻璃、Cs+導電性氟化物玻璃、Cs+導電性氧化物玻璃及其混合物),相較於使用在Cs+導電性玻璃氧化還原添加物複合電解質中之Cs+導電性玻璃,所使用之氧化還原活性添加物的量足夠達到具有增加的離子流之Cs+導電性玻璃氧化還原添加物複合電解質。通常,氧化還原活性添加物的量是約0.1重量%至約50重量%的Cs+導電性玻璃。
當離子導電性玻璃是F-導電性玻璃時(例如,任何的F-導電性硫系化合物玻璃、F-導電性氟化物玻璃、F-導電性氧化物玻璃及其混合物),相較於使用在F-導電性玻璃氧化還原添加物複合電解質中之F-導電性玻璃,所使用之氧化還原活性添加物的量足夠達到具有增加的離子流之F-導電性玻璃氧化還原添加物複合電解質。通常,氧化還原活性添加物的量是約0.1重量%至約50重量%的F-導電性玻璃。
當離子導電性玻璃是H+導電性玻璃時(例如,任何的H+導電性硫系化合物玻璃、H+導電性氟化物玻璃、H+導電性氧化物玻璃及其混合物),相較於使用在H+導電性玻璃氧化還原添加物複合電解質中之H+導電性玻璃,所使用之氧化還原活性添加物的量足夠達到具有增加的離子流之H+導電性玻璃氧化還原添加物複合電解質。
當離子導電性玻璃是K+導電性玻璃時(例如,任何的K+導電性硫系化合物玻璃、K+導電性氟化物玻璃、K+導電性氧化物玻璃及其混合物),相較於使用在K+導電性玻璃氧化還原添加物複合電解質中之K+導電性玻璃,所使用之氧化還原活性添加物的量足夠達到具有增加的離子流之K+導電性玻璃氧化還原添加物複合電解質。通常,氧化還原活性添加物的量是約0.1重量%至約50重量%的K+導電性玻璃。
當離子導電性玻璃是Li+導電性玻璃時(例如,任何的Li+導電性硫系化合物玻璃、Li+導電性氟化物玻璃、Li+導電性氧化物玻璃及其混合物),相較於使用在Li+導電性玻璃氧化還原添加物複合電解質中之Li+導電性玻璃,所使用之氧化還原活性添加物的量足夠達到具有增加的離子流之Li+導電性玻璃氧化還原添加物複合電解質。通常,氧化還原活性添加物的量是約0.1重量%至約50重量%的Li+導電性玻璃。
當離子導電性玻璃是Na+導電性玻璃時(例如,任何的Na+導電性硫系化合物玻璃、Na+導電性氟化物玻璃、Na+導電性氧化物玻璃及其混合物),相較於使用在Na+導電性玻璃氧化還原添加物複合電解質中之Na+導電性玻璃,所使用之氧化還原活性添加物的量足夠達到具有增加的離子流之Na+導電性玻璃氧化還原添加物複合電解質。通常,氧化還原活性添加物的量是約0.1重量%至約50重量%的Na+導電性玻璃。
當離子導電性玻璃是O2-導電性玻璃時(例如,任何的O2-導電性硫系化合物玻璃、O2-導電性氟化物玻璃、O2-導電性氧化物玻璃及其混合物),相較於使用在F-導電性玻璃氧化還原添加物複合電解質中之O2-導電性玻璃,所使用之氧化還原活性添加物的量足夠達到具有增加的離子流之O2-導電性玻璃氧化還原添加物複合電解質。通常,氧化還原活性添加物的量是約0.1重量%至約50重量%的O2-導電性玻璃。
離子導電性玻璃陶瓷氧化還原添加物複合電解質:
離子導電性玻璃陶瓷氧化還原添加物複合電解質包含離子導電性玻璃陶瓷以及氧化還原添加物。離子導電性玻璃陶瓷可包含但並不限於硫系化合物玻璃陶瓷、氟化物玻璃陶瓷、氧化物玻璃陶瓷、磷酸鹽玻璃陶瓷、硫化物玻璃陶瓷及其混合物。這些玻璃陶瓷的任何一種都可以是Ag+導電性、F-導電性、H+導電性、K+導電性、Li+導電性、Mg2+導電性、Na+導電性、O2-導電性或其組合。
離子導電性硫系化合物玻璃陶瓷可包含但並不限於Li2S-P2S5玻璃及其混合物。離子導電性氧化物玻璃陶瓷可包含但並不限於鋰鋁鍺磷酸玻璃陶瓷及其混合物。
用於離子導電性玻璃陶瓷中之氧化還原活性添加物可以是氧化還原活性金屬、氧化還原活性氧化物、氧化還原活性氧氮化物及其混合物的形式。可使用的氧化還原活性金屬包含但並不限於金、鉑、鈀、錫、鋁、鐵、銻、銅-錫合金、銅-銻合金、矽、其合金及其混合物。當使用金顆粒時,顆粒的大小可從約1奈米改變至約200奈米。氧化還原活性氧化物包含但並不限於氧化銻、氧化鋇、氧化鉍、氧化硼、氧化鈣、氧化鉻、氧化鈷、氧化銅、氧化鍺、氧化銦、氧化鐵、氧化鉛、鋰鈷氧化物、氧化鋰、鈦酸鋰、鋰鐵磷氧化物、鐵磷氧化物、磷氧化物、鋰釩氧化物、氧化錳、氧化鉬、氧化鈮、氧化銀、氧化錫、氧化鈦、氧化鎢、氧化釩、氧化鋅及其混合物。可使用的氧化還原活性氧氮化物包含但並不限於Li7.9MnN3.2O1.6及其混合物。
用於製造離子導電性玻璃陶瓷氧化還原活性複合電解質的氧化還原活性添加物,可以是氧化還原活性添加物的前驅物溶液、氧化還原添加物的溶液及氧化還原活性添加物的顆粒之形式。當使用氧化還原活性添加物的顆粒時,氧化還原活性添加物的顆粒大小可從約1奈米改變至約500奈米。
離子導電性玻璃陶瓷氧化還原活性添加物複合電解質可藉由形成離子導電性玻璃及氧化還原活性添加物的混合物之熔化物而製得。使用作為離子導電性玻璃陶瓷的材料可包含但並不限於離子導電性玻璃陶瓷本身、適合用於產生離子導電性玻璃陶瓷的原料之混合物、以及離子導電性玻璃陶瓷及該等原料的混合物。
在離子導電性玻璃陶瓷氧化還原添加物複合電解質中之離子導電性玻璃陶瓷以及氧化還原添加物的量可廣泛地改變。在離子導電性玻璃陶瓷氧化還原添加物複合電解質中使用之氧化還原添加物的量足以形成玻璃陶瓷氧化還原添加物複合電解質,該玻璃陶瓷氧化還原添加物複合電解質比用於複合電解質中之離子導電性玻璃陶瓷具有更大的離子流。通常,氧化還原添加物是以約0.1重量%至約50重量%的量(較佳是約0.1重量%至約40重量%的量,較佳是約1重量%至約25重量%的量,更佳是約1重量%至約20重量%的量)基於離子導電性玻璃陶瓷的重量而存在。
當離子導電性玻璃陶瓷是Ag+導電性玻璃陶瓷時(例如,任何的Ag+導電性硫系化合物玻璃陶瓷、Ag+導電性氟化物玻璃陶瓷、Ag+導電性氧化物玻璃陶瓷及其混合物),所使用之氧化還原活性添加物的量是足夠達到Ag+導電性玻璃陶瓷氧化還原添加物複合電解質,該Ag+導電性玻璃陶瓷氧化還原添加物複合電解質比用於複合電解質中之Ag+導電性玻璃陶瓷具有更大的離子流。通常,氧化還原活性添加物的量是約0.1重量%至約30重量%的Ag+導電性玻璃陶瓷的重量。
當離子導電性玻璃陶瓷是F-導電性玻璃陶瓷時(例如,任何的F-導電性硫系化合物玻璃陶瓷、F-導電性氟化物玻璃陶瓷、F-導電性氧化物玻璃陶瓷及其混合物),所使用之氧化還原活性添加物的量足夠達到F-導電性玻璃陶瓷氧化還原添加物複合電解質,該F-導電性玻璃陶瓷氧化還原添加物複合電解質比用於複合電解質中之F-導電性玻璃陶瓷具有更大的離子流。通常,氧化還原活性添加物的量是約0.1重量%至約30重量%的F-導電性玻璃陶瓷。
當離子導電性玻璃陶瓷是Li+導電性玻璃陶瓷時(例如,任何的Li+導電性硫系化合物玻璃陶瓷、Li+導電性氟化物玻璃陶瓷、Li+導電性氧化物玻璃陶瓷及其混合物),所使用之氧化還原活性添加物的量足夠達到Li+導電性玻璃陶瓷氧化還原添加物複合電解質,該Li+導電性玻璃陶瓷氧化還原添加物複合電解質比用於複合電解質中之Li+導電性玻璃陶瓷具有更大的離子流。通常,氧化還原活性添加物的量是約0.1重量%至約40重量%的Li+導電性玻璃陶瓷。
當離子導電性玻璃陶瓷是Na+導電性玻璃陶瓷時(例如,任何的Na+導電性硫系化合物玻璃陶瓷、Na+導電性氟化物玻璃陶瓷、Na+導電性氧化物玻璃陶瓷及其混合物),所使用之氧化還原活性添加物的量,是足夠達到Na+導電性玻璃陶瓷氧化還原添加物複合電解質,該Na+導電性玻璃陶瓷氧化還原添加物複合電解質比用於複合電解質中之Na+導電性玻璃陶瓷更大的離子流。通常,氧化還原活性添加物的量是約0.1重量%至約50重量%的Na+導電性玻璃陶瓷。
當離子導電性玻璃陶瓷是O2-導電性玻璃陶瓷時(例如,任何的O2-導電性硫系化合物玻璃陶瓷、O2-導電性氟化物玻璃陶瓷、O2-導電性氧化物玻璃陶瓷及其混合物),所使用之氧化還原活性添加物的量足夠達到O2-導電性玻璃陶瓷氧化還原添加物複合電解質,該O2-導電性玻璃陶瓷氧化還原添加物複合電解質比用於複合電解質中之O2-導電性玻璃陶瓷具有更大的離子流。通常,氧化還原活性添加物的量是約0.1重量%至約50重量%的O2-導電性玻璃陶瓷。
在離子導電性玻璃及玻璃陶瓷中原位形成的氧化還原活性物種:
原位形成的氧化還原活性物種離子導電性玻璃及原位形成的氧化還原活性物種離子導電性玻璃陶瓷各自都包含原位形成的離子導電性玻璃或玻璃陶瓷以及氧化還原添加物物種。離子導電性玻璃及玻璃陶瓷可包含但並不限於硫系化合物玻璃及玻璃陶瓷、氟化物玻璃及玻璃陶瓷、氧化物玻璃及玻璃陶瓷、磷酸鹽玻璃及玻璃陶瓷及其混合物。這些陶瓷的任何一種都可以是Ag+導電性、F-導電性、H+導電性、K+導電性、Li+導電性、Mg2+導電性、Na+導電性、O2-導電性或其組合。可使用的離子導電性硫系化合物玻璃陶瓷包含但並不限於Li2S-P2S5玻璃及其混合物。
用於離子導電性玻璃或玻璃陶瓷中之氧化還原活性添加物可以是氧化還原活性金屬、氧化還原活性氧化物、氧化還原活性氧氮化物及其混合物的形式。可使用的氧化還原活性金屬包含但並不限於金、鉑、鈀、錫、鋁、鐵、銻、銅-錫合金、銅-銻合金、矽、其鍺合金及其混合物。當使用金顆粒時,顆粒的大小可從約3.0奈米改變至約500奈米。
氧化還原活性氧化物可包含但並不限於氧化銻、氧化鉻、氧化鈷、氧化銅、氧化鍺、氧化銦、氧化鐵、氧化鉛、鋰鈷氧化物、氧化鋰、鈦酸鋰、鋰釩氧化物、氧化錳、氧化鉬、氧化鈮、氧化銀、氧化錫、氧化鈦、氧化鎢、氧化釩、氧化鋅及其混合物。可使用的氧化還原活性氧氮化物包含但並不限於Li7.9MnN3.2O1.6及其混合物。
用於製造離子導電性玻璃及玻璃陶瓷-原位形成的氧化還原活性物種複合電解質的氧化還原活性添加物可以是氧化還原活性添加物的前驅物溶液、氧化還原添加物的溶液及氧化還原活性添加物的顆粒之形式。當使用氧化還原活性添加物的顆粒時,氧化還原活性添加物的顆粒大小可從約1奈米改變至約100奈米的主要顆粒大小。
離子導電性玻璃及玻璃陶瓷-原位形成的氧化還原活性物種複合電解質可藉由將離子導電性玻璃及玻璃陶瓷以及氧化還原活性添加物的混合物熔融而製得。另一種選擇為,離子導電性玻璃及玻璃陶瓷、氧化還原活性添加物複合電解質可藉由在微結構內分離的化學性質而製得。
使用作為離子導電性玻璃及玻璃陶瓷的材料可包含但並不限於離子導電性玻璃及玻璃陶瓷本身、適合用於產生離子導電性玻璃及玻璃陶瓷的原料之混合物、以及離子導電性玻璃及玻璃陶瓷及該等原料的混合物。在原位形成的氧化還原活性物種離子導電性玻璃及玻璃陶瓷電解質中之離子導電性玻璃及玻璃陶瓷以及氧化還原添加物的量可廣泛地改變。在離子導電性玻璃或玻璃陶瓷電解質中存在之氧化還原添加物的量足夠達到離子導電性玻璃或玻璃陶瓷氧化還原添加物複合電解質,該離子導電性玻璃或玻璃陶瓷氧化還原添加物複合電解質比用於電解質中之離子玻璃或玻璃陶瓷具有更大的離子流。通常,氧化還原添加物是以離子導電性陶瓷之量的約0.01重量%至約60重量%的量而存在,較佳是約0.1重量%至約25重量%的量,更佳是約10重量%至約20重量%的量,還要更佳是約5重量%至約20重量%。
當離子導電性玻璃或玻璃陶瓷是Ag+陶瓷時(例如,任何的Ag+導電性硫系化合物玻璃及玻璃陶瓷、Ag+導電性氟化物玻璃及玻璃陶瓷、Ag+導電性氧化物玻璃及玻璃陶瓷及其混合物),所使用之氧化還原活性添加物的量足夠達到Ag+導電性玻璃或玻璃陶瓷-原位形成的氧化還原添加物複合電解質,該Ag+導電性玻璃或玻璃陶瓷-原位形成的氧化還原添加物複合電解質比用於電解質中之Ag+導電性玻璃或玻璃陶瓷具有更大的離子流。通常,氧化還原活性添加物的量是約0.5重量%至約40重量%的Ag+導電性玻璃或玻璃陶瓷。
當離子導電性陶瓷是F-玻璃或玻璃陶瓷時(例如,任何的F-導電性硫系化合物玻璃及玻璃陶瓷、F-導電性氟化物玻璃及玻璃陶瓷、F-導電性氧氟化物玻璃及玻璃陶瓷及其混合物),所使用之氧化還原活性添加物的量足夠達到F-導電性玻璃或玻璃陶瓷-原位形成的氧化還原添加物複合電解質,該F-導電性玻璃或玻璃陶瓷-原位形成的氧化還原添加物複合電解質比用於電解質中之F-導電性玻璃或玻璃陶瓷具有更大的離子導電性。通常,氧化還原活性添加物的量是約0.1重量%至約50重量%的F-導電性玻璃或玻璃陶瓷。
當離子導電性陶瓷是H+玻璃或玻璃陶瓷時(例如,任何的H+導電性硫系化合物玻璃及玻璃陶瓷、H+導電性氟化物玻璃及玻璃陶瓷、H+導電性氧氟化物玻璃及玻璃陶瓷及其混合物),所使用之氧化還原活性添加物的量足夠達到H+導電性玻璃或玻璃陶瓷-原位形成的氧化還原添加物複合電解質,該H+導電性玻璃或玻璃陶瓷-原位形成的氧化還原添加物複合電解質比用於電解質中之H+導電性玻璃或玻璃陶瓷具有更大的離子導電性。通常,氧化還原活性添加物的量是約0.1重量%至約50重量%的H+導電性玻璃或玻璃陶瓷。
當離子導電性陶瓷是Li+玻璃或玻璃陶瓷時(例如,任何的Li+導電性硫系化合物玻璃及玻璃陶瓷、Li+導電性氟化物玻璃及玻璃陶瓷、Li+導電性氧氟化物玻璃及玻璃陶瓷及其混合物),所使用之氧化還原活性添加物的量足夠達到Li+導電性玻璃或玻璃陶瓷-原位形成的氧化還原添加物複合電解質,Li+導電性玻璃或玻璃陶瓷-原位形成的氧化還原添加物複合電解質比用於電解質中之Li+導電性玻璃或玻璃陶瓷具有更大的離子導電性。通常,氧化還原活性添加物的量是約0.1重量%至約50重量%的Li+導電性玻璃或玻璃陶瓷。
當離子導電性陶瓷是Na+玻璃或玻璃陶瓷時(例如,任何的Na+導電性硫系化合物玻璃及玻璃陶瓷、Na+導電性氟化物玻璃及玻璃陶瓷、Na+導電性氧氟化物玻璃及玻璃陶瓷及其混合物),所使用之氧化還原活性添加物的量足夠達到Na+導電性玻璃或玻璃陶瓷-原位形成的氧化還原添加物複合電解質,該Na+導電性玻璃或玻璃陶瓷-原位形成的氧化還原添加物複合電解質比用於電解質中之Na+導電性玻璃或玻璃陶瓷具有更大的離子導電性。通常,氧化還原活性添加物的量是約0.1重量%至約50重量%的Na+導電性玻璃或玻璃陶瓷。
當離子導電性陶瓷是O2-玻璃或玻璃陶瓷時(例如,任何的O2-導電性硫系化合物玻璃及玻璃陶瓷、O2-導電性氟化物玻璃及玻璃陶瓷、O2-導電性氧氟化物玻璃及玻璃陶瓷及其混合物),所使用之氧化還原活性添加物的量足夠達到O2-導電性玻璃或玻璃陶瓷-原位形成的氧化還原添加物複合電解質,該O2-導電性玻璃或玻璃陶瓷-原位形成的氧化還原添加物複合電解質比用於電解質中之O2-導電性玻璃或玻璃陶瓷具有更大的離子導電性。通常,氧化還原活性添加物的量是約0.1重量%至約50重量%的  O2-導電性玻璃或玻璃陶瓷。
離子導電性玻璃氧化還原活性添加物複合電解質之製造:
一般而言,離子導電性玻璃氧化還原添加物複合電解質可從包含氧化還原活性添加物、一種或多種玻璃形成劑氧化物、視需要的玻璃修飾劑氧化物、以及至少一種可作為導電性離子(例如但並不限於一種或多種的Ag+、F-、H+、K+、Li+、Mg2+、Na+及O2-)的來源之氧化物的混合物中製得。接著將混合物熔融並冷卻,以形成離子導電性玻璃氧化還原添加物複合電解質。另一種選擇為,離子導電性玻璃氧化還原添加物複合電解質可藉由將作為導電性離子的來源之氧化物加到包含氧化還原活性添加物的玻璃(例如,氧化物玻璃、硫系化合物玻璃、磷酸鹽玻璃及其混合物)的熔化物而製得。另一種選擇為,離子導電性玻璃氧化還原添加物複合電解質也可藉由將氧化還原活性添加物加到研磨的離子導電性玻璃而製得。
Li+導電性磷酸鍺玻璃陶瓷氧化還原活性複合電解質之製造:
將Li+前驅物材料(例如Li2CO3)、磷酸鹽前驅物(NH4H2PO4)、視需要的玻璃修飾劑(Al2O3)及玻璃形成劑(Ge2O3)的混合物所形成的組合物進行研磨,以產生磨碎的粉末。研磨的粉末可在約攝氏750度至約攝氏850度煅燒約30分鐘至約60分鐘,以產生煅燒的材料。可再次研磨煅燒的材料以產生研磨的材料。研磨的材料可在約攝氏1200度至約攝氏1400度熔融約2小時至約4小時,以產生熔化物。熔化物可藉由在約攝氏1400度至約攝氏1100度時澆鑄成形於電動滾軸上而淬冷,以形成玻璃片材。玻璃片材接著可視需要地在約攝氏450度至約攝氏550度退火約1小時至約3小時,然後以約每分鐘攝氏1度至約每分鐘攝氏2度的速度冷卻至室溫,以產生冷卻的Li+導電性磷酸鍺玻璃片材。
可將Li+導電性磷酸鍺玻璃壓碎、研磨,並與約0.1重量%至約40重量%的氧化還原活性添加物混合,並在低級烷醇(例如乙醇)中球磨,以產生磨碎的漿料。可將磨碎的漿料通過300-篩孔的篩子,以產生篩過的漿料,其在約攝氏80度至約攝氏120度乾燥,以形成研磨的粉末。將研磨的粉末與約5重量%至約20重量%的黏結劑及至多約5重量%的量之塑化劑(所有的量都是以研磨的粉末的重量為基準)而混合,以形成黏結劑-粉末混合物,其與溶劑混合物(例如50/50甲基乙基酮/乙醇)加以混合,以形成可澆鑄成形於帶體上的漿料。可使用的黏結劑包含但並不限於聚乙烯醇縮丁醛、聚(碳酸丙烯酯)、聚乙烯醇及其混合物。可使用的塑化劑包含但並不限於鄰苯二甲酸二辛基酯、鄰苯二甲酸丁基芐基酯、碳酸丙烯酯及其混合物。澆鑄帶體可例如藉由將厚膜導電性墨水(例如鉑、金或鈀、銀)網印在帶體上而形成電極。所得到的印刷帶體可接著例如在約攝氏50度至約攝氏80度、約3000磅/平方英吋至約4000磅/平方英吋的等靜壓中調準及層疊約10分鐘至約30分鐘,以產生綠色層積板。將綠色層積板在約攝氏800度至約攝氏1000度燃燒約1小時至約12小時,以形成陶瓷氧化還原添加物複合電解質。
實例LGC1:鋰磷酸鍺玻璃二氧化錫複合電解質:
將3.74克Li2CO3、27.92克NH4H2PO4、1.04克Al2O3、14.81克Ge2O3及5.42克SnO2的混合物所形成之組合物進行研磨,以產生磨碎的粉末。將研磨的粉末在攝氏750度煅燒30分鐘,以產生煅燒的材料。將煅燒的材料再次研磨24小時以產生研磨的材料。將研磨的材料在攝氏1350度加熱2小時,以產生熔化物。將熔化物藉由在攝氏1300度澆鑄成形於電動滾軸上而淬冷,以形成玻璃片材。將玻璃片材在攝氏450度加熱1小時,並以每分鐘攝氏1度的速度冷卻至室溫,以產生冷卻的玻璃片材。將冷卻的玻璃片材在攝氏850度熱處理2小時,以形成Li+導電性鋰鋁磷酸鍺玻璃陶瓷,在其中形成氧化還原活性的二氧化錫相。
實例LGC2:
將1.53克Li2CO3、11.44克NH4H2PO4、0.42克Al2O3、6.07克Ge2O3及5.00克HAuCl4‧3H2O的混合物所形成之組合物進行研磨,以產生磨碎的粉末。將研磨的粉末在攝氏750度煅燒30分鐘,以產生煅燒的材料。將煅燒的材料再次研磨24小時以產生研磨的材料。將研磨的材料在攝氏1350度加熱2小時,以產生熔化物。將熔化物藉由在攝氏1300度澆鑄成形於電動滾軸上而淬冷,以形成玻璃片材。將玻璃片材在攝氏450度加熱1小時,並以每分鐘攝氏1度的速度冷卻至室溫,以產生冷卻的玻璃片材。將冷卻的玻璃片材在攝氏950度熱處理2小時,以形成Li+導電性鋰鋁磷酸鍺玻璃陶瓷,在其中氧化還原活性的奈米顆粒是分散的。
離子導電性陶瓷氧化還原添加物複合電解質之製造:
離子導電性陶瓷氧化還原添加物複合電解質可藉由形成一種或多種離子導電性陶瓷材料與一種或多種氧化還原活性陶瓷添加物之混合物而製得。將混合物研磨、乾燥及燃燒,以形成離子導電性陶瓷氧化還原添加物複合電解質。所使用的混合物通過其厚度可以是隨機、相同、非相同或分級的。與離子導電性陶瓷材料一起使用的氧化還原活性添加物是根據其可與陶瓷材料中的離子導電性物種進行氧化還原反應的能力而選擇。為了說明起見,當離子導電性陶瓷是Li+導電性陶瓷時(例如(LiLa)TiO3),氧化還原活性陶瓷添加物是根據其可與Li進行氧化還原反應的能力而選擇。Li+導電性陶瓷(其可用於製造Li+導電性陶瓷氧化還原添加物複合電解質)包含但並不限於Li+導電性石榴色型陶瓷(例如但並不限於Li7La3Zr2O12、Li5La3M2O12(其中M=Ta、Nb));鋰超離子導體(LISICON)型陶瓷(例如但並不限於Li14ZnGe4O16Li3.4Si0.4P0.6S4);Li3PO4為基礎的陶瓷(例如但並不限於Li2Ge2(PO4)3及Li1+xTi2-xMx(PO4)3(其中M=Al、Ga、In、Sc));二元氮化物(例如但並不限於Li3N)及鋰鹽(例如但並不限於Li4SiO4)及其混合物。
可與離子導電性陶瓷(例如Li+導電性陶瓷)一起使用的氧化還原活性添加物包含但並不限於LiMn2O4、LiCoO2、LiNiO2、LiFeO2、Lix(CoyAl1-y)(1-x)O2(其中0<x<1,0<y<1)及其混合物。
離子導電性陶瓷材料及氧化還原活性陶瓷添加物的混合物,可在適合的液體(例如乙醇、水、丙酮或其混合物)中球磨,以產生研磨的粉末。將研磨的粉末與至多約5重量%的黏結劑(例如聚乙烯醇縮丁醛、聚乙烯醇、聚甲基丙醯酸甲基酯、聚氧乙烯及其混合物)加以混合,以形成黏結劑-粉末混合物。可將黏結劑-粉末混合物在單軸壓力下壓縮,之後在等靜壓中壓縮,以產生接著可燃燒的預鑄物。另依一種選擇為,將研磨的粉末與約5重量%至約50重量%的黏結劑以及視需要至多約5重量%的量之塑化劑(所有的量都是以研磨的粉末的重量為基準)而混合,以形成黏結劑-粉末混合物,其與溶劑混合物(例如50/50甲基乙基酮/乙醇的溶劑混合物)加以混合,以形成可澆鑄成形於帶體的漿料。可使用的黏結劑包含但並不限於聚乙烯醇縮丁醛、聚(碳酸丙烯酯)、聚(氧乙烯)及其混合物。可使用的塑化劑包含但並不限於鄰苯二甲酸二辛基酯、鄰苯二甲酸丁基芐基酯及其混合物。澆鑄帶體可接著藉由將厚膜導電性墨水(例如鉑、鈀或銀)網印在帶體上而形成電極。所得到的印刷帶體可接著例如在約攝氏50度至約攝氏80度、約3000磅/平方英吋至約4000磅/平方英吋的等靜壓中調準及層疊10分鐘至約30分鐘,以產生綠色層積板。將綠色層積板在約攝氏1150度至約攝氏700度燃燒約1小時至約4小時,以形成陶瓷氧化還原添加物複合電解質。另一種選擇為,可將綠色帶體用於未燃燒的狀態,以作為陶瓷聚合物氧化還原添加物複合電解質。
每個具體實施例的複合電解質都可藉由濺鍍、蒸發或絲網印刷法而形成電極。可使用作為電極的金屬例子包含鋁、銀、鉑、其合金及其混合物。電極可以是氧化還原活性的。
實例LC1:(Li0.33La0.55)TiO3-δ陶瓷-LiCoO2氧化還原複合電解質
將96.644克La2O3、59.900克TiO2及9.145克LiCO3的混合物在乙醇中球磨24小時以產生漿料。將漿料在攝氏80度乾燥8小時,以形成乾燥的粉末。將乾燥的粉末在攝氏900度煅燒6小時,以產生煅燒的粉末。將煅燒的粉末在乙醇中球磨16小時、在攝氏80度乾燥24小時,並在攝氏1100度煅燒6小時,以產生(Li0.33La0.55)TiO3-δ電解質粉末。
將(Li0.33La0.55)TiO3-δ電解質粉末與10重量%的LiCoO2(以電解質粉末的重量為基準)在乙醇中球磨24小時,以產生(Li0.33La0.55)TiO3-δ陶瓷-LiCoO2氧化還原複合電解質之混合研磨的粉末。將混合研磨的粉末在攝氏80度乾燥8小時,並在200 MPa的單軸壓力下壓縮成顆粒物,然後在250 MPa的冷等靜壓中緊壓。
實例LC2:(Li0.33La0.55)TiO3-δ陶瓷-MoO3氧化還原複合電解質
將96.644克La2O3、59.900克TiO2及9.145克LiCO3的混合物在乙醇中球磨24小時以產生漿料。將漿料在攝氏80度乾燥8小時,以形成乾燥的粉末。將乾燥的粉末在攝氏900度煅燒6小時,以產生煅燒的粉末。將煅燒的粉末在乙醇中球磨16小時、在攝氏80度乾燥24小時,並在攝氏1100度煅燒6小時,以產生(Li0.33La0.55)TiO3-δ電解質粉末。
將(Li0.33La0.55)TiO3-δ電解質粉末與10重量%的100奈米大小之三氧化鉬(以電解質粉末的重量為基準)在乙醇中球磨24小時、在攝氏80度乾燥8小時、在200 MPa的單軸壓力下壓縮成顆粒物,然後在250 MPa冷等靜壓縮。
實例LC3:Li7La3Zr2O12陶瓷-LiCoO2氧化還原複合電解質
將29.32克La2O3、17.069克Li2CO3及14.786克ZrO2藉由與ZrO2球在2-丙醇中球磨24小時而混合,以產生漿料。將漿料乾燥,並將所得的乾燥粉末在攝氏900度煅燒6小時。將煅燒的粉末研磨、乾燥,並在攝氏1100度煅燒6小時,以得到Li7La3Zr2O12陶瓷電解質。
將Li7La3Zr2O12陶瓷電解質與10重量%的LiCoO2(以電解質粉末的重量為基準),在乙醇中球磨24小時,以產生Li7La3Zr2O12陶瓷-LiCoO2氧化還原複合電解質之混合研磨的粉末。將混合研磨的粉末在攝氏80度乾燥8小時,並在200 MPa的單軸壓力下壓縮成顆粒物,然後在250 MPa的冷等靜壓中緊壓。
使用氧化還原活性添加物(例如此處所揭露的微粒內含物之形式)的氧化還原活性添加物複合電解質可在各種裝置中以不同的電化學成分而使用,裝置例如但並不限於能量儲存裝置、鋰離子混合複合薄膜、氣體隔離薄膜、用於氫隔離之薄膜、用於水除鹽的薄膜、電位型化學感測器以及電致變色裝置。
可使用氧化還原活性添加物的能量儲存裝置之例子包含但並不限於電池、電容器、混合電池-電容器以及燃料電池。可使用氧化還原活性添加物複合電解質的電池之例子包含但並不限於金屬-空氣電池(例如但並不限於鋰-空氣型電池及鎂-空氣金屬-空氣型電池);原電池(例如但並不限於鋰離子型原電池及鎂離子型原電池);二次電池(例如但並不限於鋰離子型二次電池、質子離子型二次電池及鎂離子型二次電池);高溫電池(例如但並不限於Na-S型高溫電池及LiZr2(PO4)3(LiZP)型高溫電池)。可使用氧化還原活性添加物複合電解質的電容器之例子,包含但並不限於電化學電容器、質子型電容器(例如但並不限於氫氧化鉀質子型電容器及磷酸電解質質子型電容器);鋰離子電容器(例如但並不限於聚偏二氟乙烯鋰離子型電容器(其中鋰鹽是LiPF6、LiClO4、LiTFSi鹽));聚(氧乙烯)鋰離子型電容器(其中鋰鹽是例如LiCl、LiBr、LiClO4鹽);高溫電容器(例如但並不限於LAGP玻璃陶瓷型高溫電容器及硫系型高溫電容器)。可使用氧化還原活性添加物複合電解質的混合電池-電容器之例子包含但並不限於鋰離子混合型電池-電容器。可使用氧化還原活性添加物複合電解質的燃料電池之例子,包含但並不限於以ZrO2為基礎的固態氧化物型燃料電池。
可使用氧化還原活性添加物複合電解質的鋰離子混合複合薄膜之例子包含但並不限於鋰金屬/PVDF/碳混合複合薄膜及磷酸鋰鐵混合型複合薄膜。
可使用氧化還原活性添加物複合電解質的氣體隔離薄膜之例子包含但並不限於鑭鍶釩(LSV,La0.7Sr0.3VO3)/氧化釔穩定化的二氧化鋯(YSZ)複合電解質型氣體隔離薄膜以及鑭鍶釩/釓摻雜的二氧化鈰(GDC)型氣體隔離薄膜。
可使用氧化還原活性添加物複合電解質的電位型化學感測器之例子包含但並不限於二氧化錳摻雜的硼矽酸鋰玻璃型電位型化學感測器。
可使用氧化還原活性添加物複合電解質的電致變色裝置之例子包含但並不限於使用具有一種或多種氧化物填充物(例如三氧化鉬及五氧化二釩)之PVDF-HFP電解質的裝置。
使用氧化還原活性複合電解質之鋰-空氣電池:
在一第一具體實施例中揭露使用氧化還原活性添加物複合電解質之鋰-空氣電池。如第22圖所示之鋰-空氣電池係使用鋰陽極,其係例如藉由空氣陰極而電化學耦合至氧化環境。在放電時,從鋰陽極通過氧化還原活性添加物複合電解質的鋰離子流在陰極與氧氣結合,以形成Li2O或Li2O2。鋰離子流是耦合至從陽極到陰極通過外部負載迴路的電子流。相較於不使用氧化還原活性添加物複合電解質之鋰-空氣電池,使用氧化還原活性添加物複合電解質之鋰-空氣電池可顯示改善的離子流及庫倫效率。
許多的鋰-空氣電池結構可與氧化還原活性添加物複合電解質的使用一起形成。鋰-空氣電池結構係使用氧化還原活性添加物複合電解質,其包含一種或多種的氧化還原活性添加物及任何的玻璃電解質、陶瓷電解質、玻璃陶瓷電解質及其混合物。可使用的氧化還原活性添加物的例子包含但並不限於三氧化二鐵、三氧化鉬、二氧化錫氧化鋅、金、鉑及其混合物。
在氧化還原活性添加物複合電解質中可使用的陶瓷電解質之例子包含但並不限於(Li,La)TiO3(LLTO)型陶瓷電解質(例如,Li3xLa(2/3)-x□(1/3)-2xTiO3,其中□代表空缺位置,以及其中0<x<0.16))、((Li,La)(Ti,Zr,Hf))O3及其混合物,以賦予改善的離子轉換數目。((Li,La)(Ti,Zr,Hf))O3型材料是從標準的固態程序中製得。
離子導電性陶瓷氧化還原添加物複合電解質可藉由形成一種或多種離子導電性陶瓷材料與一種或多種氧化還原活性陶瓷添加物之混合物而製得。將混合物研磨、乾燥及燃燒,以形成離子導電性陶瓷氧化還原添加物複合電解質。如上所述,混合物通過其厚度可以是隨機、相同、非相同或分級的。
可用於氧化還原活性添加物複合電解質中的玻璃電解質之例子包含但並不限於磷酸鋰玻璃,例如但並不限於Li(AlGeTi)(PO4)3、Li1+xAlxGe2-x(PO4)3(其中0<x<1.0)、Li(AlGeTi,Hf)(PO4)3及其混合物。鋰鋁鍺磷酸(LAGP)玻璃可從鋰離子前驅物材料(例如Li2CO3)、磷酸鹽前驅物(例如NH4H2(PO4))、Al2O3作為玻璃修飾劑及玻璃形成劑(例如Ge2O3)的混合物而形成。將混合物研磨以形成研磨的粉末。可將研磨的粉末在約攝氏750度至約攝氏850度煅燒約30分鐘至約60分鐘,以產生煅燒的材料。可將煅燒的材料再次研磨,以產生研磨的材料。可將研磨的材料在約攝氏1100度至約攝氏1200度熔融約2小時至約4小時,以產生熔化物。熔化物可藉由在約攝氏1400度至約攝氏1100度時澆鑄成形於電動滾軸上而淬冷,以形成玻璃片材。玻璃片材接著可視需要地在約攝氏450度至約攝氏550度退火約1小時至約3小時,然後以約每分鐘攝氏1度至約每分鐘攝氏2度的速度冷卻至室溫,以產生冷卻的Li+導電性磷酸鍺玻璃片材。可將Li+導電性磷酸鍺玻璃壓碎、研磨,並與約0.1重量%至約40重量%的氧化還原活性添加物混合,並在低級烷醇(例如乙醇)中球磨,以產生磨碎的漿料。可將磨碎的漿料通過300-篩孔的篩子,以產生篩過的漿料,其在約攝氏80度至約攝氏120度乾燥,以形成研磨的粉末。
將研磨的粉末與約5重量%至約20重量%的黏結劑及至多約5重量%的量之塑化劑(所有的量都是以研磨的粉末的重量為基準)而混合,以形成黏結劑-粉末混合物,其與溶劑混合物(例如50/50甲基乙基酮/乙醇)加以混合,以形成可澆鑄成形於帶體上的漿料。可使用的黏結劑包含但並不限於聚乙烯醇縮丁醛、聚(碳酸丙烯酯)、聚乙烯醇及其混合物。可使用的塑化劑包含但並不限於鄰苯二甲酸二辛基酯、鄰苯二甲酸丁基芐基酯、碳酸丙烯酯及其混合物。
澆鑄帶體可例如藉由將厚膜導電性墨水(例如鉑、金或鈀、銀)網印在帶體上而形成電極。所得到的電極帶體可接著例如在約攝氏50度至約攝氏80度、約3000磅/平方英吋至約4000磅/平方英吋的等靜壓中調準及層疊約10分鐘至約30分鐘,以產生綠色層積板。將綠色層積板在約攝氏800度至約攝氏1000度燃燒約1小時至約12小時,以形成陶瓷氧化還原添加物複合電解質。
可使用的硫系化合物玻璃電解質的例子包含但並不限於Li-硫化物,例如Li2S-P2S5。可使用的玻璃陶瓷電解質的例子包含但並不限於70Li2S-30P2S5。70Li2S-30P2S5玻璃陶瓷電解質可藉由將試劑級的Li2S及P2S5以70Li2S/30P2S5的莫耳比值之混合物加以球磨而製得,並且形成非晶形材料。將非晶形材料加熱至攝氏200-300度2小時,以形成玻璃陶瓷。
使用氧化還原活性複合電極的鋰-空氣電池是藉由以下非限制性的實例而進一步說明:
實例LA1:
將實例LGC2的複合電解質用於鋰-空氣電池配置。將鋰箔(200微米厚)使用作為陽極,並將鉑塗佈的碳薄片使用作為陰極。將實例LGC2具有200微米厚度及10毫米直徑的電解質,嵌入至陽極及陰極之間,以形成硬幣電池形式的鋰-空氣電池,其在陰極側具有網狀的孔洞以容許空氣流動。陽極是利用高溫蠟而與空氣的交互作用隔絕。
使用氧化還原活性複合電解質的鋰-空氣電池之製造:
使用氧化還原活性添加物複合電解質的鋰-空氣電池可藉由將氧化還原活性添加物複合玻璃陶瓷電解質薄膜(例如LAGP玻璃陶瓷電解質薄膜),置於作為陽極的鋰箔及作為陰極的碳層之間而形成。
用於鋰-空氣電池的氧化還原活性添加物玻璃陶瓷電解質複合薄膜可藉由許多方法(例如澆鑄及擠壓)而製得。例如,可將氧化還原活性添加物複合陶瓷電解質、氧化還原活性添加物摻雜的陶瓷玻璃電解質或其混合物之熔塊與液體載體(例如水、低級烷醇或其混合物)混合,以形成可帶體澆鑄成形的漿料。接著澆鑄成形的帶體被乾燥,並形成一帶體。多層的薄膜可藉由形成兩個或多個包含氧化還原活性添加物複合電解質的澆鑄帶體之層積板,並且熱處理該層積板而製造。為了說明起見,可將兩層或多層包含一種或多種氧化還原活性添加物及玻璃熔塊(例如鋰-陶瓷,例如(LiLa)TiO3)之組合物網印在陶瓷帶體或水晶石上,並且堆疊以形成多層結構,其接著可加熱處理,例如藉由熱壓及燒結程序以使層積板密化。
使用氧化還原活性添加物複合電解質之鋰離子型原電池及二次電池:
在另一具體實施例中揭露使用氧化還原活性添加物鋰離子導電性複合電解質之鋰離子原電池及鋰離子二次電池。包含氧化還原活性添加物複合電解質之鋰離子電池可被使用,以支持劇烈、高電流需求的裝置(例如數位相機)並可取代鹼性電池。這些類型的電池可被用於可攜式消費者電子裝置中,例如但並不限於可植入式電子醫療裝置,例如人工節律器、時鐘、攝錄相機、數位相機、溫度計、計算機、膝上型基本輸入/輸出系統、通訊裝備及遙控汽車鎖。
使用氧化還原活性添加物複合電解質的鋰離子電池,可用於各種配置,例如,3伏特「硬幣」型鋰錳電池,其通常是約20毫米的直徑,並且具有約1.6毫米至約4毫米的厚度。
使用氧化還原活性複合電極的鋰離子原電池及二次電池是參考以下非限制性的實例而進一步說明:
實例LP1:
實例P1的薄膜係使用於鋰離子原電池(Lithium-ion Primary battery)中。該電池包含鋰金屬陽極與二氧化錳陰極。該電池係組裝為硬幣電池架構。二氧化錳粉末係與乙炔黑及鐵氟龍黏結劑以質量比85:5:10混合。此混合物係成形為糊體,並經滾軋為100微米之厚度。從滾軋糊體中衝壓出一個直徑為0.635英吋的圓,其係於真空下乾燥24小時以形成陰極電極。陰極電極係被轉移至手套工作箱中,而在此處其被放置到硬幣電池殼中。對陰極電極添加數滴電解質(EC:DMC(50:50重量),1M之LiPF6)。將實例P1之薄膜浸泡於此電解質中,並將其放置在陰極上方。最後,在薄膜上方放置鋰陽極,其係藉由將鋰金屬壓至一銅電流收集器上以形成厚度為40微米之一陽極而形成。然後摺疊該硬幣電池以形成鋰離子原電池。
實例LS1(鋰離子二次電池):
依循實例LP1的程序(除了以LiCoO2來取代二氧化錳作為陰極材料之外)。
實例LS2(鋰離子二次電池):
依循實例LP1的程序(除了以鋰錳氧化物來取代二氧化錳作為陰極材料之外)。
實例LS3(鋰離子二次電池):
依循實例LP1的程序(除了以LiFePO4來取代二氧化錳作為陰極材料之外)。
使用氧化還原活性添加物鋰離子導電複合電解質之鋰離子原電池:
使用氧化還原活性添加物鋰離子導電複合電解質之鋰原電池係使用包含鋰金屬、鋰化合物中之任一或多者之一陽極,包含氧化還原活性添加物鋰導電複合電解質之一薄膜,以及包含二氧化錳、三氧化鉬及其混合物之一陰極;其中鋰化合物係如鋰鹵化物(如亞硫醯氯鋰、溴氯化鋰、碘化鋰及其混合物)、鋰/二氧化硫(Li-SO2)及其混合物。
相較於未使用鋰離子導電複合電解質的鋰離子原電池而言,使用含氧化還原活性添加物鋰離子導電複合電解質之薄膜的鋰離子原電池係可呈現出較大的功率密度。舉例而言,使用鋰金屬之陽極、二氧化錳之陰極、以及含有氧化還原活性添加物與複合物電解質之薄膜(其使用三氧化鉬作為氧化還原活性添加物,且使用PVDF HFP作為電解質)之鋰/二氧化錳原電池可顯現提昇之功率密度與特定電容率。
與氧化還原活性添加物一起使用以用於鋰原電池中氧化還原活性添加物複合電解質之電解質係包含但不限於在碳酸丙烯酯中之高氯酸鋰;在亞硫醯二氯中之四氯鋁酸鋰;在二氧化硫及丙腈的混合物中之溴化鋰;在碳酸丙烯酯中之四氟硼酸鋰;在二甲氧基乙烷中之四氟硼酸鋰;在γ-丁內酯中之四氟硼酸鋰;有機電荷移轉錯合物,例如,聚-2-乙烯吡啶(P2VP);在碳酸丙烯酯及二甲氧基乙烷的混合物中之六氟磷酸鋰;在碳酸丙烯酯及二甲氧基乙烷的混合物中之六氟砷酸鋰;及其混合物。
用於鋰原電池所用之氧化還原活性添加物複合電解質之氧化還原活性添加物係包含但不限於三氧化鉬(MoO3)、金(Au)、鉑(Pt)、SiO1-x(其中0.1<x<1.5)、二氧化錳(MnO2)、氧化亞鐵(FeO)、及其混合物。所使用之氧化還原活性添加物的形式為顆粒、細桿、網桿(mesh and rods)及其組合。氧化還原活性添加物在電解質中係可彼此接觸、也可與彼此隔離。鋰原電池所用之氧化還原活性添加物複合電解質中的氧化還原活性添加物的量係足以達到高能量密度與高功率密度。氧化還原活性添加物的量係可介於約0.05%至約50%(以電解質的重量為基準)之間。
使用氧化還原活性添加物複合電解質之鋰離子原電池係可藉由US 2009/0123844中所述之方法加以製造,其教示內容係藉由引用形式而整體併入本文。
使用氧化還原活性添加物鋰離子導電複合電解質之鋰離子二次電池:
在另一具體實施例中,係揭露了包含一陽極、一陰極、以及一氧化還原活性添加物複合電解質之鋰離子二次電池。使用氧化還原活性添加物複合電解質之鋰離子二次電池係可用於各種消費性電子產品與電動車輛中。相較於未使用氧化還原活性添加物複合電解質之鋰離子二次電池而言,使用氧化還原活性添加物複合電解質之鋰離子二次電池係呈現高出許多的能量密度、增進之庫倫效應與改良之抗衰減效應、以及在未使用時降低之自放電性。
鋰離子二次電池所用之氧化還原活性添加物複合電解質中所使用之聚合性電解質係包含但不限於PVDF、PEO及其混合物。鋰離子二次電池所用之氧化還原活性添加物複合電解質中所使用之氧化還原活性添加物係包含但不限於MnO3、FeO、Fe2O3、V2O5、SnO2、Au、Pt及其混合物。氧化還原活性添加物的量係可以約0.05重量%至約50重量%之量存在、較佳為約1重量%至約10重量%(以電解質的重量為基準)。
可作為鋰離子二次電池中陽極的材料包含、但不限於鋰、嵌鋰碳(lithiated carbon)、鈦酸鋰(Li-titanate)及其混合物。使用氧化還原活性添加物複合電解質之鋰離子二次電池中所用之陰極所使用的材料包含、但不限於碳、LiCoO3-x(其中0<x<1)、LiFePO4-y(其中0<y<1)及其混合物。使用氧化還原活性添加物複合電解質之鋰離子二次電池係可藉由如美國專利公開號2010/0129719中所揭示之方法加以製得,其教示內容係藉由引用形式而整體併入本文。
使用氧化還原活性添加物複合電解質之高溫電池與高溫電容器:
在另一具體實施例中係揭露了高溫電池與高溫電容器(例如一般係於約攝氏20度至約攝氏250度下運作及使用氧化還原活性添加物複合電解質之高溫超級電容器)。相較於未使用氧化還原活性添加物複合電解質之高溫電池與電容器而言,使用氧化還原活性添加物玻璃陶瓷複合電解質之高溫電池與電容器可承受較高的電壓及/或電流,以使能量密度與功率密度增加。
可用於高溫電池與電容器之氧化還原活性添加物複合電解質係包含但不限於氧化還原活性添加物玻璃陶瓷複合電解質。用於高溫電池或高溫電容器之氧化還原活性添加物玻璃陶瓷複合電解質的厚度係可從約1釐米變化至約1.0微米。
可與氧化還原活性添加物使用以於高溫電池與高溫電容器中使用之玻璃陶瓷電解質係包含但不限於LAGP-基底之玻璃陶瓷(例如LiAlGe-磷酸鹽玻璃陶瓷)、碲基底之玻璃陶瓷(例如Li2S-P2O5-TeO2)、硒基底之玻璃陶瓷(例如硫族之硫化物玻璃陶瓷,如Li2S-P2S5及其混合物)。
可與玻璃陶瓷電解質使用以於高溫電池中使用之氧化還原活性添加物係包含但不限於鉑、金、三氧化鉬、氧化鎢、二氧化錫、鋰鈦氧化物及其混合物。
高溫電池與電容器的製造:
使用氧化還原活性添加物複合電解質之高溫電池與電容器中所使用之陰極與陽極電極係被網印至一氧化還原活性添加物陶瓷玻璃複合物上。電極可被網印,例如以有機油墨的形式、厚膜玻璃料(frit)的形式、或其組合。電極也可經沉積成為薄膜,例如藉由化學氣相沉積。
在高溫電池與電容器中所使用之氧化還原活性添加物複合電解質薄膜係藉由層積以氧化還原活性添加物複合電解質漿料所形成之鑄帶(cast tapes)之堆疊物而形成。電解質的表面積係藉由在堆疊物的頂層與底層中加入短效催促劑材料(fugitive material)而增加。短效催促劑材料包含但不限於碳、澱粉及其混合物。可將短效催促劑材料加入用以形成堆疊物頂層與底層的漿料中。在熱處理期間,短效催促劑材料係汽化(vaporized)以產生增加之孔隙度,以提昇電極對氧化還原活性添加物複合電解質薄膜之結合。
藉由置放陽極材料使其接觸複合電解質薄膜的多孔性表面、然後加熱陽極材料至高於其熔點,陽極材料係可形成於一氧化還原活性添加物複合電解質薄膜的多孔性表面上,其中陽極材料係例如鋰金屬、鋰玻璃(例如LAGP)、鋰玻璃之玻璃料(例如LiBO硼酸鹽)、及其混合物。熔化之陽極材料接著將流進複合電解質薄膜的多孔性表面並與其結合。同樣地,含鋰之陰極(例如LiCoO3、LiFePO4、及其混合物)係可形成在電解質(例如陶瓷玻璃電解質)的多孔性表面上。
高溫超級電容器:
在另一具體實施例中揭露了可在約攝氏50度至約攝氏400度下運作之高溫超級電容器。高溫超級電容器係使用一氧化還原活性添加物複合電解質、一陰極混合物與一陽極,其中陰極混合物係包含電極阻絕金屬粉末與鋰玻璃之玻璃料,而陽極係由碳、鋰金屬、LiTiO、及其混合物所形成。可在氧化還原活性添加物複合電解質中與氧化還原活性添加物一起使用之玻璃陶瓷電解質係包含但不限於LAGP-基底之玻璃陶瓷、硒硫化物基底之玻璃陶瓷、碲玻璃陶瓷、及其混合物。可使用的LAGP-基底之玻璃陶瓷係包含但不限於LiAlGe-磷酸鹽玻璃、LiAlGeTi-磷酸鹽玻璃、及其混合物。可使用之硒硫化物玻璃陶瓷係包含但不限於Li2S-P2S5
可用於氧化還原活性添加物玻璃陶瓷複合電解質之氧化還原活性添加物包含但不限於三氧化鉬、二氧化錳、硫化鈦、硫化鋰、及其混合物。一般而言,氧化還原活性添加物的量係介於約0.05重量%至約50重量%之間(以玻璃陶瓷電解質的重量為基準)。
陰極混合物中所使用的阻絕金屬粉末包含但不限於鎳、銅、鎢、鉭、鈮、鐵-鉻-鎳、及其合金和混合物。陰極混合物中所使用的鋰玻璃之玻璃料係包含但不限於鋰-硼酸鹽。阻絕金屬存在於陰極混合物中的量係介於40重量%至約95重量%之間(以鋰玻璃之玻璃料的重量為基準)。也可對陰極混合物添加如石磨與碳黑等碳添加物,用以減少熱處理期間之氧化。當碳添加物被用於陰極混合物時,所含添加物量係介於約1重量%至約10重量%之間(以阻絕金屬與玻璃料的結合重量為基準)。阻絕金屬與玻璃料的混合物(視需要加上碳添加物)係於一控制環境中進行加熱,例如N2-H2、或氬氣,以使氧化達最低。
使用氧化還原活性添加物複合電解質之高溫超級電容器係可根據US 2009/0214957與US 2010/001095中所示程序而製造,其教示內容係藉由引用形式而整體併入本文。使用氧化還原活性添加物複合電解質之高溫超級電容器係由下述非限制實例進一步加以說明。
實例LG1:Li+導電性LAGP-Au氧化還原添加物複合電解質
以球磨方式在乙醇中混合計量成分之Li2CO3、Al2O3、   Ge2O3與H4H2PO4。混合物係經乾燥、研磨為粉末、然後以攝氏750度進行鍛燒達1小時。所合成之粉末係經再次研磨以產生研磨粉末。研磨粉末係在攝氏1300度下熔化2小時。藉由澆鑄於電動捲軸上而進行熔化物淬冷,以形成玻璃片材。玻璃片材係於攝氏500度下退火1小時,然後以1°C/min之速率冷卻至室溫,以產生Li+導電性LAGP。LAGP玻璃係經破碎、研磨、並與5重量%的金氧化還原活性添加物金混合後於乙醇中進行球磨;研磨粉末係與5重量%之聚乙烯醇縮丁醛黏結劑及1重量%之鄰苯二甲酸二丁酯塑化劑在乙醇中混合而形成漿料,其係經澆鑄而形成帶體。澆鑄帶體係於攝氏850度下燃燒4小時,以形成氧化還原添加物複合物。
實例LG2:Li+導電性LAGP-SnO2氧化還原添加物複合電解質
同樣使用上述關於實例LG1之程序,除了以SnO2取代Au以外。
具有氧化還原活性添加物複合電解質之混合電池-電容器:
在另一具體實施例中,揭露了一種使用氧化還原活性添加物複合電解質薄膜之混合電池-電容器(hybrid battery capacitors),例如Li-插入式電池-電容器。使用含氧化還原活性添加物複合電解質(例如氧化還原活性添加物複合聚合物電解質與氧化還原活性添加物玻璃陶瓷電解質中任一或多者)之薄膜的混合電池電容器係可在較短的時間週期中充電、在較短的時間週期下放電,且可顯現出比習知超級電容器或電池更佳的能量儲存及功率密度。
使用含氧化還原活性添加物複合電解質之薄膜的混合電池電容器係顯現出電容器之非常快速的初始放電速率之特性、然後是電池之相對緩慢的放電速率。使用氧化還原活性添加物複合電解質之混合電池電容器裝置的電壓輸出係從約1V變化至約7V,較佳是從約1V至約5.5V。
第1A圖與第1B圖中所示之混合電池-電容器係包含一連續陽極、一多區段陰極、以及一中間氧化還原活性添加物複合電解質。電解質係接觸陽極與多區段陰極兩者。陽極包含鋰離子源,且為可逆式氧化還原反應。多區段陰極(如第1B圖所示)係包含陰極區段(A)與(B)。電池陰極區段(A)係接觸複合氧化還原活性添加物複合電解質的一第一部分,使得電池-電容器係可以電池特性的形式進行放電。電容器陰極區段(B)係接觸一第二部分,使得電池電容器係以電容器特性的形式進行放電。陰極區段(A)與(B)係為連續接觸、或是在材料之間具有介於0毫米(即連續情形)至數毫米之間隔。陰極區段(A)係較佳為LiCoO3,而陰極區段(B)係較佳為碳。
在氧化還原活性添加物複合電解質中所使用的電解質係包含但不限於玻璃陶瓷電解質、聚合物電解質、及其混合物。所使用之玻璃陶瓷電解質包含但不限於Li2S-Li2P、LAGP及其混合物。所使用之聚合物電解質包含但不限於PVDF、PEO及其混合物。在使用玻璃陶瓷電解質時,氧化還原活性添加物一般係以介於約0.1重量%至約40重量%之含量存在於玻璃陶瓷電解質中(以玻璃陶瓷電解質的重量為基準)。在使用聚合物電解質時,氧化還原活性添加物一般係以介於約0.1重量%至約30重量%之含量存在於聚合物電解質中(以聚合物電解質的重量為基準)。
具有氧化還原活性添加物複合電解質之混合電池-電容器係由下述非限制實例進一步加以說明:
實例HB1:具有Li+-PVDF-LixCoO2與MoO3-x氧化還原活性添加物複合電解質薄膜之混合電池-電容器
實例P7(Li+-PVDF-LixCoO2)與P8(Li+-PVDF-    MoO3-x)之150微米厚的複合電解質隔離薄膜係與一嵌鋰碳陽極電極對準。混合電池-電容器的電容器區段之活性碳糊體與混合電池-電容器的電池區段之LiFePO4糊體係經網印以於一電流收集器金屬薄片上形成多區段陰極圖樣。網印之金屬薄片係與薄膜結合,以形成一混合電池-電容器。
多區段陰極:
可用於多區段陰極之電池陰極區段(A)的材料係包含但不限於LiCoO3、LiVOx(其中0<x<3)、Li2Ti4O12(即「LiTiO」)、LiFePO4及其混合物。可用於多區段陰極的電容器陰極區段(B)中的材料係包含、但不限於碳、金屬(例如鉭、鐵、鎳)、其合金、其介金屬及其混合物。電容器陰極區段(B)係具有一強化表面區域,以增加電雙層電容值。
如第1A圖所示,多區段陰極A-B的電池陰極區段(A)係作為一電池陰極使用。多區段陰極A-B之電池陰極區段(A)係包含LiVO、LiCoO2、LiMn2O3及其混合物。在第1A圖中,多區段陰極A-的電容器區段(B)係由例如碳、奈米碳管、阻絕金屬薄片(例如鉭)、阻絕金屬(例如鐵、鐵-鉻-鎳、鉭、鎢、及其混合物)所形成。
使用氧化還原活性複合電解質之多區段陰極係藉由下列非限制實例而進一步說明。
實例MSC1:鑄形電池陰極-LiMn2O4與電容器陰極-AC
在乙醇中以球磨方式混合莫耳比例1:4之Li2O3與MnO2之前驅物。該混合物係經乾燥、研磨為粉末、然後以攝氏650度鍛燒8小時。接著,所合成之粉末係經再次研磨。藉由在空氣中以攝氏750度進行熱處理達20小時,即可得到LiMn2O4之尖晶石(spinel)結構。LiMn2O4與含10重量%鐵氟龍黏結劑之活性碳(activated carbon, AC)糊料係藉由網印方式而鑄形於銅金屬薄片之電流收集器上,以形成一多區段陰極電極。該多區段陰極電極片材係於真空中以攝氏120度進行乾燥48小時,以於一混合電池-電容器中作為陰極電極之用。
實例MSC2:
同樣使用上述關於實例MSC1之程序,除了以鋁取代銅薄片外以外。
混合電池-電容器之電極配置:
第2圖至第10圖繪示了僅為說明而非限制之電極配置,其係用於使用氧化還原活性添加物複合電解質之混合電池-電容器中。第11圖繪示了一混合電池-電容器的多層配置。
使用氧化還原活性添加物複合電解質之混合電池-電容器係可藉由對一氧化還原活性添加物複合聚合物電解質薄膜的一第一側部塗佈一連續陽極而製成。電池區段陰極與陰極區段陽極係塗佈至薄膜的相對側部。
適用於混合電池-電容器之氧化還原活性添加物複合聚合物係藉由將氧化還原活性添加物複合聚合物電解質鑄形為一或多條帶體而處理成薄膜。帶體係可形成為帶體堆疊結構,其接著經熱處理以產生薄膜。或者是,可對單一帶體進行熱處理以產生一薄膜。當於堆疊結構中使用複數個帶體時,用於堆疊結構中的帶體係使用相同或不同的聚合物電解質。
薄膜的第一側部係被塗佈陽極材料。陽極材料塗層係由各種習知方法所形成,例如化學氣相沉積、濺鍍、絲質網印、以及其組合。薄膜的相對側部的一第一部分係被塗佈電池陰極材料,而薄膜的該相對側部之另一區段係被塗佈電容器陰極材料。陰極材料塗層係由各種習知方法所形成,例如化學氣相沉積、濺鍍、絲質網印、以及其組合。
使用氧化還原活性添加物複合聚合物電解質所形成的薄膜之質子超級電容器:
在另一形態中係揭露使用氧化還原活性添加物複合聚合電解質、陽極及陰極之質子超級電容器。這些質子超級電容器相較於不使用氧化還原活性添加物複合聚合電解質的質子超級電容器而言可達到改善的能量儲存。
可使用於氧化還原活性添加物複合聚合物電解質中之聚合物電解質包含但並不限於Nafion、聚乙烯醇、聚苯並咪唑、聚乙醯酸及其混合物。可使用於氧化還原活性添加物複合聚合物電解質中之氧化還原活性添加物包含但並不限於MnO2-x(其中0<x<0.2)、RuO2-x(其中0<x<0.2)、雙層氫氧化物(DLH),例如氫氧化鈷、鎳鋁氫氧化物、鈷鋁氫氧化物、鈷鉻氫氧化物、鎳鉻氫氧化物及其混合物。所使用的氧化還原活性添加物可具有各種形態,例如細絲、管狀、球狀、片狀物及其混合物。氧化還原活性添加物也可被併入及沉積至被電解質嵌入及環繞的篩孔內。氧化還原活性添加物可以約0.01重量%至約50重量%的量(以聚合電解質的重量為基準)而使用於氧化還原活性添加物複合聚合電解質中。
使用氧化還原活性添加物複合聚合電解質所形成的薄膜之質子超級電容器,可根據美國專利第5,136,474號所揭露之程序而製得,其完整教示是以引用之方式而納入本文中。使用氧化還原活性添加物複合聚合物電解質所形成的薄膜之質子超級電容器,是參考以下非限制性的程序而進一步說明:
程序A:利用具有約20微米至約50微米厚度聚合物複合薄膜而將使用活性碳(約100微米厚)作為正極及負極之對稱型電化學電容器夾在一起。聚合物薄膜可藉由將質子導電性聚合物(例如但並不限於Nafion、磺化的聚二醚酮、聚乙烯醇水合膠、聚甲基丙醯酸甲基酯及其組合物)以及氧化還原活性填充物(例如一種或多種的金屬氧化物,其具有約1重量%至約50重量%的二氧化錳、氧化鉬、氧化鐵;一種或多種的金屬雙層氫氧化物,例如氫氧化鈷、鈷鋁氫氧化物、鎳鋁氫氧化物或其混合物;以及一種或多種的導電性聚合物,例如但並不限於聚苯胺、聚吡咯、其PEDOT的混合物)的混合物進行帶體澆鑄而形成。通常,約85重量%活性碳、約10重量%四氯乙烯(Teflon)及約5重量%乙炔黑的漿料是利用四氫呋喃作為溶劑而一起混合。將所得到的混合物被施加到薄碳紙上、乾燥並使用作為電極。接著,將5克的聚乙烯醇溶解於約20毫升的水中而形成溶液,並將約5重量%的聚苯胺(以聚乙烯醇的重量為基準)加到溶液中。然後,將約2重量%的戊二醛(交聯劑)加到溶液中(以聚乙烯醇的重量為基準)。將所得到的溶液帶體澆鑄至約20微米至約40微米的厚度,以形成薄膜。將帶體澆鑄成形的薄膜乾燥,並且在約1 M的硫酸中浸泡隔夜,以形成浸泡的複合薄膜。對稱型電容器(例如在2032不銹鋼硬幣電池或四氯乙烯世偉洛克(Swagelok)電池之中)可藉由將碳電極與浸泡的複合薄膜進行層疊而製得。
程序B:將使用活性碳作為負極以及任何一種或多種的二氧化錳、氫氧化鎳或二氧化鉛作為正極之非對稱型電化學水性電容器,與質子導電性聚合物(例如任何一種或多種的Nafion、磺化的聚二醚酮、聚乙烯醇水合膠、聚甲基丙醯酸甲基酯)連同任何一種或多種的氧化還原活性填充物(例如金屬氧化物,其具有約1重量%至約50重量%之任何一種或多種的二氧化錳、氧化鉬、氧化鐵;或任何一種或多種的雙層氫氧化物,例如氫氧化鈷、鈷鋁氫氧化物、鎳鋁氫氧化物;以及任何一種或多種的導電性聚合物,例如但並不限於聚苯胺、聚吡咯或PEDOT)所製成的聚合物複合薄膜進行層疊。
通常,約85重量%活性碳、約10重量%四氯乙烯(Teflon)及約5重量%乙炔黑的漿料是利用四氫呋喃(THF)作為溶劑而一起混合。將所得到的混合物施加到薄碳紙上、乾燥並使用作為負極。類似地,將包含約70重量%二氧化錳、約20重量%乙炔黑及約10重量%四氯乙烯(Teflon)的漿料溶解在四氫呋喃,並且施加到碳紙上。將乾燥的紙使用作為正極。正極及負極的重量比可分別從約1:1改變至約3:1。接著,將5克的聚苯並咪唑在迴流條件下溶解於二甲基甲醯胺中隔夜,以形成溶液,並將約5重量%的氫氧化鈷(以聚苯並咪唑的重量為基準)加到溶液中,以形成聚合物溶液。將聚合物溶液帶體澆鑄以形成約20微米至約50微米厚的薄膜。將澆鑄成形的薄膜乾燥,並且在約4 M的氫氧化鉀中浸泡隔夜,以形成浸泡的複合薄膜。在2032不銹鋼硬幣電池或四氯乙烯世偉洛克電池中之非對稱型電容器可藉由將正極及負極與浸泡的複合薄膜進行層疊而製得。
具有氧化還原活性添加物複合電解質之鋰離子電容器:
在另一方面中揭露使用氧化還原活性添加物複合電解質之鋰離子電容器。這些電容器可達到輸出電壓及電容之顯著的增加。利用氧化還原活性添加物複合電解質的鋰離子電容器可使用包含活性碳的陰極,以及包含鋰金屬、鋰化石磨、鈦酸鋰、矽、金、錫及其混合物的陽極。
可用於鋰離子電容器中所使用的氧化還原活性添加物複合電解質之聚合電解質包含但並不限於PVDF、HFP、PEO、其混合物及其共聚物。可使用於氧化還原活性添加物複合電解質中之氧化還原活性添加物,包含但並不限於三氧化鉬、氧化錫、氧化鋅及其混合物。在氧化還原活性添加物複合聚合電解質中之氧化還原活性添加物的量通常是約0.05重量%至約50重量%(以聚合電解質的重量為基準)。具有氧化還原活性添加物複合電解質之鋰離子電容器可根據US 20080094778及美國專利7,817,403號所揭露的程序而製得,其完整教示是以引用之方式而納入本文中。
第12圖顯示鋰離子電容器之充電性能,其使用鋰金屬作為陽極、碳作為陰極,以及PVDF聚合電解質,其包含各種二氧化錳、三氧化鉬及矽作為氧化還原活性添加物。二氧化錳具有3伏特的氧化還原電位,並且以5重量%的量(以PVDF聚合物的重量為基準)而存在於PVDF聚合物中;三氧化鉬具有2伏特的氧化還原電位,並且以5重量%的量(以PVDF聚合物的重量為基準)而存在;以及矽具有0.1伏特的氧化還原電位,並且以5重量%的量(以PVDF聚合物的重量為基準)而存在於PVDF聚合物中。將陽極、陰極及氧化還原活性添加物聚合電解質包裝在手套箱環境,並且組裝成硬幣電池。電池的充電性能是藉由固定電流充電/放電方法而利用Gamry公司的標準定電位計而測定。
使用活性碳作為正極以及任何一種或多種的鋰、鈦酸鋰、鋰摻雜的石磨、鋰摻雜的矽作為負極之鋰離子電容器是進一步說明如下。將電極與聚合物膠體(例如,任何一種或多種的聚偏二氯乙烯、聚偏二氯乙烯-共-六氟丙烯、聚甲基丙醯酸甲基酯及聚丙烯腈)連同約5重量%至約20重量%氧化還原填充物(例如,任何一種或多種的氧化鉬、氧化錫、氧化釩及二氧化錳)所形成的聚合物複合薄膜進行層疊。例如,活性碳電極是藉由揉捏85重量%活性碳、10重量%四氯乙烯(Teflon)及5重量%乙炔黑的混合物而製得。將混合物捲壓在鋁箔上以使用作為正極(厚度100微米)。將小量的鋰壓在25微米厚的銅箔上,以使用作為負極。接著,將5克的PVDF-HFP溶解於20毫升的DMF並攪拌隔夜,以形成聚合物溶液。將5重量%的三氧化鉬(以PVDF-HFP的重量為基準)加到聚合物溶液中,並且進行超音波震動。將所得到的溶液帶體澆鑄以形成薄膜,並且乾燥4小時,再利用大量的乙醇進行相反轉。接著剝下澆鑄成形的薄膜,並且在真空下乾燥。然後將處理的薄膜在1 M的LiPF6/EC/DMC中浸泡2天,以形成浸泡的薄膜。藉由將正極及負極與浸泡的薄膜夾在一起而組裝鋰離子電容器。電容器的表現是說明於第23至25圖。第23圖比較固定電流放電曲線,其針對相較於未以氧化還原活性電解質處理的薄膜之利用以三氧化鉬氧化還原活性添加物電解質處理的薄膜所製造之電容器。第23圖所示之電容在相似的放電率之下增加3倍。第24圖顯示電容器的循環穩定性,以及第25圖顯示電容器的充電-放電曲線。電容器顯示一開始250法拉第/克的電容,然後進行高電流循環的短暫爆發。之後,當電容器於100毫安培/克的電流再測量時,電容僅稍微地減少。
非平面鋰離子混合複合薄膜:
在另一實例中揭露使用氧化還原活性添加物複合電解質的非平面鋰離子混合複合薄膜。非平面鋰離子混合複合薄膜包含但並不限於例如第13圖所示之圓柱形的鋰離子混合複合薄膜。
第13圖顯示圓柱形的鋰離子混合複合薄膜,其使用內部陰極、外部陽極以及中間的氧化還原活性添加物複合電解質。可使用於氧化還原活性複合電解質中之電解質包含但並不限於三氧化二鐵及SiOx(其中0.1<x<1.0)。可使用於氧化還原活性複合電解質中之氧化還原活性添加物包含但並不限於三氧化鉬。在電解質中之氧化還原添加物的量通常是約0.01重量%至約50重量%(以電解質的重量為基準)。非平面鋰離子混合複合薄膜可根據美國專利6,426,863號所揭露的程序而製得,其完整教示是以引用之方式而納入本文中。
使用氧化還原活性添加物聚合複合電解質的薄膜可使用於許多的應用中,例如但並不限於超級電容器、超高電容器、原電池、二次電池、燃料電池、離子隔離薄膜、氣體隔離薄膜、化學感測器及除鹽薄膜。可使用於氧化還原活性添加物複合電解質中之聚合電解質(注意到填充物可均質或非均質地分散)包含但並不限於例如PVDF、PEO及其混合物之聚合物,並且可與相容的電解鹽類及溶劑一起使用。
可使用於電解質(例如聚合電解質)中之氧化還原活性添加物包含但並不限於二氧化錳、氧化鐵、氧化鎳、矽、二氧化錫、三氧化鉬、金、鉑及其混合物。氧化還原活性添加物可以足夠引起增強的離子導電性的量而存在於電解質,以及修飾的空間電荷分佈、一個或多個電解質以及電極。通常,氧化還原活性添加物可以約0.01重量%至約99.9重量%的量(以電解質的重量為基準)而存在於電解質,較佳是約0.1重量%至約50重量%,更佳是約1重量%至約15重量%。氧化還原活性添加物可被電解質圍繞,並與陰極及陽極隔離。氧化還原活性添加物的大小可從約0.1奈米改變至約1毫米,並可具有廣泛的配置,例如十二面體、力方體、不規則的多面體、片狀物、棒狀、細絲、圓柱形及其混合。
氧化還原活性添加物可隨機分佈於電解質中作為單一類型的型態、可具有混合的型態及隨機分佈、可與混合的型態混合並塗佈在另一活性相的表面(例如三氧化鉬上的鉑)上。氧化還原活性添加物也可被平行調準或相為垂直於穿過電解質的電極,這可被電場及/或磁場所支援(取決於氧化還原填充物內含物的電性特性)。氧化還原活性添加物也可隨電極而被連續層疊。當氧化還原活性添加物是長度約1奈米至約10微米的棒狀形式或具有約0.1奈米至約1微米的直徑之形式時,棒狀物通常具有約0%至約90%的多孔性。當氧化還原活性添加物是片狀物的形式時,片狀物可具有約1奈米至約100微米的寬度以及約1奈米至約1微米的厚度,以及0%至約90%的多孔性。
包含氧化還原活性添加物複合電解質的薄膜之製造:
氧化還原活性添加物複合電解質(例如氧化還原活性添加物聚合電解質)可藉由例如澆鑄成形及擠壓的方法而形成於帶體。帶體通常具有約0.1微米至約1000微米的厚度,較佳是約10微米至約400微米的厚度。
包含氧化還原活性添加物複合電解質之薄膜可藉由堆疊氧化還原活性添加物複合電解質帶體之層體,並且壓縮堆疊物而形成薄膜。作為說明,將直徑1奈米的氧化還原活性三氧化二鐵顆粒與直徑10奈米、長1.0微米的三氧化二鐵棒狀物混合,以形成混合物。然後將混合物與PVDF聚合電解質混合,以形成混合物。混合物可例如藉由帶體澆鑄成形或擠壓而澆鑄成形,以形成薄膜。澆鑄成形可在強磁場、強電場或其組合下進行。當使用電場時,電場的強度是足以讓氧化還原添加物隨著施加電場的方向而調準。可施加任何一種或多種具有約0.1仟伏/公分至約10仟伏/公分的場強度之交流電及直流電場。當施加磁場至氧化還原添加物時(例如具有抗磁性各向異性者,例如,三氧化二鐵、氧化鎳及其混合物),場強度是足以讓氧化還原添加物隨著施加磁場的方向而調準。通常,可使用的磁場具有約1000高斯或更多的強度。
氧化還原添加物可在帶體內隨機分佈、可在帶體內具有空間上改變的量、或可以各種大小及形狀而存在(如第15圖至第21圖所示)。例如在包含氧化還原添加物的薄膜中使用之帶體可被放置為平行或或垂直於電極(例如陽極或陰極),以及氧化還原添加物可半連續或不連續地分佈於帶體。此外,氧化還原添加物之嵌入的區域可被放置為平行或或垂直於陰極或陽極。在其他方面中,例如第14圖所示,未填充的空氣空間可存在於薄膜及電極之間。
在例如第15圖至第21圖所示的具體實施例中所使用的帶體可層疊成薄膜,以使離子導電性能穿過薄膜的一層或多層。薄膜可具有約0.01微米至約1微米的厚度,較佳是約0.1微米至約400微米的厚度,最佳是約1微米至約200微米的厚度。電極可藉由許多方法(例如但並不限於網印)而印刷於薄膜上。
使用氧化還原活性添加物複合電解質的固態氧化物燃料電池:
在另一具體實施例中,本發明是有關於使用氧化還原活性添加物複合電解質薄膜的固態氧化物燃料電池(SOFC)。相較於使用傳統電解質的固態氧化物燃料電池,使用氧化還原活性添加物複合陶瓷電解質薄膜的固態氧化物燃料電池可具有更高的效率、增加的離子流、長期穩定性、更大的燃料彈性、更低的發散、更短的起始時間、改善的離子擴散動能、更低的操作溫度,並且改善依賴性。使用氧化還原活性添加物複合電解質薄膜的固態氧化物燃料電池,能夠在更低的溫度操作。
可使用於氧化還原活性添加物複合電解質薄膜中之電解質包含但並不限於陶瓷電解質、聚合電解質及其組合。可使用的陶瓷電解質包含但並不限於Y2O3-ZrO2、Sc2O3-ZrO2、Bi2V1-xMexO5.5-x/2(其中0.05<x<0.3,Me是銅、鈦、鋯、鎳、鋁、鈷、錳、鍺、鋅、鎂及其混合物)。可使用的聚合電解質包含但並不限於Nafion及其混合物。
可使用於氧化還原活性添加物複合電解質中(例如在陶瓷電解質中)之氧化還原活性添加物包含但並不限於   MnO2-x(其中0<x<0.2)、PbO、NiO1-y(其中0<y<0.1)、CuO、V2O5-z(其中0<z<0.5)及其混合物。在陶瓷電解質中之氧化還原活性添加物的量,通常是約25重量%(以陶瓷電解質的重量為基準)。當SOFC是質子為基礎的SOFC時,陶瓷電解質可以是波洛斯凱特型氧化物(perovskite),例如BaCeO3、Y2O3摻雜的   BaZrO3及其混合物。當陶瓷電解質Y2O3摻雜的BaZrO3時,可與陶瓷電解質一起使用的氧化還原活性添加物包含但並不限於鎳、鉑、MnO2-x(其中0<x<0.2)、RuO2-z(其中0<z<0.2)、雙層氫氧化物(例如氫氧化鈷、鎳鋁氫氧化物、鈷鋁氫氧化物、鈷鉻氫氧化物、鎳鉻氫氧化物或其混合物)。
可使用氧化還原活性複合電解質之固態氧化物燃料電池是藉由以下非限制性的實例而進一步說明:
實例FC1:將100克氧化釔穩定化氧化鋯與5克的一氧化錳藉由在乙醇中球磨而混合。將混合物乾燥、壓碎至粉末,並且藉由水力壓緊而形成陶瓷圓盤。將圓盤於攝氏1700度的烤箱中,在減壓環境下快速燃燒20分鐘。在藉由於攝氏1200度燃燒風乾的鉑墨水15分鐘而施加鉑電極於任一側之後,將燒結的陶瓷片狀物拋光,以在固態氧化物燃料電池中使用作為電極。
氧化還原活性添加物複合聚合物電解質薄膜燃料電池(PEMFC):
在另一具體實施例中揭露使用氧化還原活性添加物複合聚合電解質的聚合物電解質薄膜燃料電池(PEMFC)。用於PEFMC中之氧化還原活性添加物複合聚合電解質可使燃料電池在約攝氏220度或更高時操作,以達到改善的效率、改善的能量密度、改善的電流、改善的冷卻容易性質以及降低對於鉑觸媒的一氧化碳中毒的靈敏性。可用於PEFMC的薄膜中之氧化還原活性複合聚合物電解質之聚合物電解質包含但並不限於Nafion。可使用在氧化還原活性添加物複合聚合電解質中的氧化還原活性添加物包含但並不限於MnO2-x(其中0<x<0.2)及RuO2-x(其中0<x<0.2)及其混合物。氧化還原活性添加物可以約0.1重量%至約20重量%的量(以聚合電解質的重量為基準)而存在於複合電解質中。
使用氧化還原活性添加物複合電解質之陶瓷氣體隔離薄膜:
在另一具體實施例中揭露使用氧化還原活性添加物複合陶瓷電解質的薄膜,例如用於流體隔離(例如氣體隔離)。這些薄膜可在高達約攝氏1200度的溫度時及在高達約攝氏700度的溫度梯度下使用。在這些溫度及梯度時的操作可增加氧氣浸透(相對於不使用氧化還原活性添加物複合電解質的氣體隔離薄膜)。
可使用於氧化還原活性添加物複合陶瓷氣體隔離薄膜中的陶瓷電解質包含但並不限於Y2O3-ZrO2、Sc2O3-ZrO2、(La1-xCax)yFeO3-δ(其中0<δ<0.3,0.5<x<1.0,以及1.0<y<1.1)及其混合物。可使用於陶瓷電解質中的氧化還原活性添加物包含但並不限於鎳、   CeO2-x(其中0<x<0.2)、MnO2-y(其中0<y<0.2)及其混合物。氧化還原添加物可以約0.1重量%至約50重量%的量(以陶瓷電解質的重量為基準)而存在於陶瓷電解質中。氧化還原活性添加物形態可廣泛地改變。氧化還原活性添加物的大小也可從約1奈米改變至1.0微米。氧化還原活性添加物可在陶瓷電解質內隨機分佈或具有分級的分佈。
使用氧化還原活性陶瓷電解質的陶瓷氣體隔離薄膜可藉由例如帶體澆鑄成形及擠壓的方法所製得的多層層積板而形成。電極可藉由將電極材料共同燃燒或後燃燒在陶瓷薄膜上而結合到陶瓷薄膜,如US 20070237710所示(其完整教示是以引用之方式而納入本文中)。
使用氧化還原活性添加物複合聚合質子導電性電解質之氫隔離薄膜:
在另一具體實施例中揭露使用氧化還原活性添加物質子導電性複合電解質的氫隔離薄膜。這些氫隔離薄膜可用於在約攝氏20度至約攝氏200度的溫度時,將氫氣從混合的氣體中隔離。
可與氧化還原活性添加物複合聚合電解質一起使用的聚合質子導電性電解質包含但並不限於Nafion、磺化的聚苯並咪唑、磺化的聚二醚酮、聚醯亞胺、聚磷腈及其組合物。可使用之磺化的聚苯並咪唑包含但並不限於聚(2,5-苯並咪唑)、磷酸摻雜的聚(2,2’-(1,3-伸苯基)-5,5’-聯苯並咪唑)及PBI與磺化的聚碸之共聚物、磺化的聚二醚酮、吡啶為基礎的PBI及其混合物;可使用的聚醯亞胺包含但並不限於3,3’-雙(磺苯氧基)聯苯胺、2,2’-雙(磺苯氧基)聯苯胺、3,3’-雙(磺丙氧基)聯苯胺、2,2’-雙(磺丙氧基)聯苯胺及其混合物;可使用的聚磷腈包含但並不限於咪唑基、乙胺基、乙基丙胺酸基、芐基丙胺酸基、乙基甘胺酸基及其混合物。
可使用於氧化還原活性添加物複合聚合質子導電性電解質中之氧化還原活性添加物包含但並不限於二氧化釕、氧化錳及其混合物。氧化還原活性添加物可以足夠改善質子穿過薄膜的離子運送的量而包括於聚合質子導電性電解質中。通常,氧化還原活性添加物是以約5重量%至約10重量%的量(以聚合物的重量為基準)而存在於聚合質子導電性電解質中。
使用氧化還原活性添加物複合聚合質子導電性電解質的氫隔離薄膜可藉由形成一種或多種聚合質子導電性電解質以及一種或多種氧化還原活性添加物的混合物而製得,以形成一混合物。然後可根據美國專利第4,664,761號之程序(其完整教示是以引用之方式而納入本文中),而將混合物澆鑄成形於薄膜。
用於水的除鹽及純化之電雙層電容器(EDLC)電極:
在另一具體實施例中,可將利用氧化還原活性添加物複合電解質(例如氧化還原活性添加物複合聚合電解質)的電雙層電容器電極用於將流經電極的水除鹽。在這個方面中,水流經包含氧化還原活性添加物複合電解質之充電的多孔性電雙層電容器棒狀電極。充電的棒狀物會使水中的離子(例如氫離子、鈉離子、鈣離子、鉀離子)移動到相對電荷的EDLC棒狀電極,其中離子可被吸附在棒狀電極上。可藉由各種已知的方式(例如太陽能電池、熱電產生器及其組合)而將電壓施加到棒狀物。EDLC棒狀電極可藉由關閉施加的電壓而再生,以使吸附的離子能夠釋放出來。可控制吸附的離子之釋放,以使電流能夠產生,例如電容器或電池的放電。
可用於棒狀物中之氧化還原活性複合聚合電解質之聚合物電解質可包含但並不限於Nafion、聚苯並咪唑、聚醚醚酮及其組合。可使用的氧化還原活性添加物包含但並不限於三氧化鉬。氧化還原活性添加物可以約0.1重量%至約30重量%的量(以聚合電解質的重量為基準)而存在於聚合電解質中。為了說明起見,將PVDF(分子量=5.73×105)及PMMA(分子量=1.04×105)混合,以提供25重量%共聚物混合物及75重量%環丁碸之混合物,以形成一聚合物溶液。將混合物在氮氣中加熱至攝氏180度3小時。然後,將10重量%層疊的雙層氫氧化物(LDH)粉末(例如鈷-鋁、鎳-鋁、錳-鋁、鋅-鋁,以混合物的重量為基準)加到混合物中。LDH粉末是藉由將個別硝酸鹽溶液於氫氧化鈉溶液中之混合物共同沉澱而製備(利用碳酸鈉作為穩定劑)。將這樣製備的沉澱物在攝氏60度迴流18小時,然後再清洗及乾燥。將LDH粉末加到聚合物懸浮液並混合約2小時。接著,將聚合物懸浮液在液態氮溫度快速淬冷、破裂、切碎並研磨,以將聚合物磨成粉末。將聚合物粉末在約10,000至約50,000磅/平方英吋、約攝氏180度壓縮成水晶石複合片材。將這些複合片材在冰中淬冷,然後暴露在去離子水,以萃取環丁碸。在這之後,將複合片材於攝氏50度真空乾燥24小時。
電位型化學感測器:
在另一方面中,氧化還原活性添加物複合電解質(例如氧化還原活性添加物複合玻璃電解質、氧化還原活性添加物複合陶瓷電解質及其混合物)可用於電位型化學感測器中,例如氧氣感測器及pH感測器。使用任何一種或多種氧化還原活性添加物玻璃複合電解質及氧化還原活性添加物陶瓷複合電解質之電位型化學感測器可顯示偵測微量氣體(例如,在一氧化碳中的二氧化氮、氧氣、氮氣、二氧化硫及其混合物)的改善能力。這些感測器可顯示對於質子濃度之改善的靈敏性,並可在指定的質子濃度增加電壓電位(相較於銀線參考電極)。
可使用於氧化還原活性添加物複合玻璃電解質電位型化學感測器中之玻璃電解質包含但並不限於玻璃,例如硫系化合物玻璃、鋰摻雜的硼矽酸玻璃及其混合物。
可使用的硫系化合物玻璃包含但並不限於錳摻雜的As2S3、Ge28Sb12Se60及其混合物。可使用之鋰摻雜的硼矽酸玻璃包含但並不限於鋰摻雜的硼矽酸玻璃。
當電位型化學感測器是pH感測器時,可使用於氧化還原活性添加物複合電解質中之陶瓷電解質包含但並不限於 Y2O3摻雜的ZrO2。當電位型化學感測器是氧氣感測器時,可使用於氧化還原活性添加物複合電解質中之陶瓷電解質包含但並不限於Y2O3摻雜的ZrO2、鉍銅釩氧化物及其混合物。
可使用於任何一種或多種氧化還原活性添加物複合陶瓷電解質及氧化還原活性添加物玻璃電解質中之氧化還原活性添加物包含但並不限於MoO3、FeOx(其中0<x<1.5)、MnOy(其中0<y<1)、NiOz(其中0<z<1.5)、CuOx(其中0<x<1.5)、TiOy(其中0<y<2)、FeO、Si、Pb、Ni、(La,Sr)(Mn,Co)O3及其混合物。
氧化還原活性添加物可以足夠引起電位增強的量而存在於任何一種或多種玻璃電解質及陶瓷電解質中。通常,這些量是約1重量%至約30重量%(以電解質的重量為基準)。
電薄膜萃取之薄膜:
在另一具體實施例中,氧化還原活性添加物複合聚合物電解質係可藉由施加一電場作為電鍍-透析與電鍍-電透析而使用作為離子物質之電薄膜萃取中之薄膜。使用氧化還原活性添加物複合聚合物電解質之薄膜係可用於水的除鹽、廢水處理以回收電鍍浴中如金、鉑、銀、銅、鈀、鋅、錫、鉛、鎳、鎘及其混合物等重金屬、濕式冶金、紙業與照相術。其他應用則包含了食品與製藥工業中之蛋白質、胺基酸、糖分等等的去酸化、胜肽的去除、及去除水中的有毒/有害藥物。
在電薄膜萃取之薄膜中所用之氧化還原活性添加物複合電解質中使用的聚合物電解質包含聚乙烯醇、聚丙烯酸、聚苯並咪唑、聚二醚酮及其混合物。
在電薄膜萃取之薄膜中所用之氧化還原活性添加物複合電解質中使用的活性添加物係包含但不限於:二氧化錳、雙層氫氧化合物(「LDH」,例如鈷水合物、鎳鋁水合物、鈷鎳水合物、鈷鉻水合物、鎳鉻水合物)、二氧化鉛、及其混合物。在氧化還原活性添加物複合電解質(例如用於電薄膜萃取之薄膜中的氧化還原活性添加物複合聚合物電解質)中所使用的氧化還原活性添加物量係足夠產生較高的分離速率。一般而言,氧化還原活性添加物係存在約0.1重量%至約25重量%(以聚合物電解質的重量為基準)。
電薄膜萃取之薄膜係由美國專利第4,226,688號中所示之下述程序而製成,其教示內容係藉由引用形式而整體併入本文。電薄膜萃取之薄膜係藉由下述非限制實例而進一步加以說明:
實例EM1:混合25重量%之科學聚合物產品PMMA(Mw=93300、Mn=46400)與75重量%之叔丁醇(試劑級J.T. Baker Chemical Co.)以混合形成溶液。在此溶液中加入已經球磨成平均粒徑為1微米之WO3-d粉末(5重量%),並在成形氣體(氫氣5%、氮氣95%)中以攝氏750度退火達3小時。聚合物溶液與懸浮物係於攝氏55度下連續攪拌120分鐘,以使填充粒子達最大混合。之後,藉由冷卻水使混合物在1分鐘內淬冷至室溫,並澆鑄於玻璃板上以形成薄膜。該混合物接著被放置至一乾燥器中,並使用一旋轉真空泵來移除溶劑。接著,以氬氣取代真空、並進行再次蒸汽化兩小時5次,以使具有氧化還原內含物WO3-d之微孔隙PMMA薄膜成形。
使用氧化還原活性添加物聚合物電解質複合電解質之電致變色裝置:
在另一具體實施例中,係揭露了一種含有陽極、陰極、與氧化還原活性添加物聚合物電解質複合電解質之電致變色裝置。電致變色裝置包含電化學單元,其可於單元的電極處發生氧化還原反應期間改變顏色。如顏色改變之電致變色行為係因陽極材料(例如WO3)之氧化狀態的改變而產生。
使用氧化還原活性添加物聚合物電解質之電致變色裝置係使用由導電材料(例如聚苯胺、氧化銥、氧化釩及其混合物)所製成之陰極。所使用之聚合物電解質包含但不限於凝膠電解質(例如,凝膠混合物(例如PVDF-HFP/LiClO4/EC/DMC)及其組合。可使用於氧化還原活性添加物複合聚合物電解質中之氧化還原活性添加物係包含但不限於MoO3、V2O5及其混合物。氧化還原活性添加物的量係介於約1重量%至約5重量%之間(以聚合物電解質的重量為基準)。然而,當使用如PEO-H3PO4之凝膠電解質時,氧化還原活性添加物在凝膠電解質中的量係介於約0.1重量%至約10重量%之間(以凝膠電解質的重量為基準)。利用氧化還原活性添加物複合聚合物電解質之電致變色裝置係顯現出改善的電致變色不透光性(於例如在電致變色裝置在一彩色半透明狀態(通常是藍色)與一透明狀態之間變化時發生)。使用氧化還原活性添加物聚合物電解質複合電解質之電致變色裝置係可藉由例如在美國專利第5,099,356號與第4,773,741號中所揭露之方法來製造,其教示內容係藉由引用形式而整體併入本文。
使用氧化還原活性添加物複合電解質薄膜或厚膜之能量儲存裝置:
使用由氧化還原活性添加物複合電解質所形成之薄膜的能量儲存裝置係顯現出較短的電極間離子傳輸擴散長度,這可降低裝置的中性時間常數並可增加功率密度。由氧化還原活性添加物複合電解質所形成的薄膜係可用於減少表面固定式能量儲存元件中的小型化能量儲存裝置之大小。這些小型化裝置係包含次微米厚之膜層,且可在一電氣系統中提供多個電路板上之能量儲存點,並消除了使用中央、單一能量來源之需求。這些小型化裝置可提供當主要電力來源失效時的備用電力。
使用氧化還原活性添加物複合電解質之膜層係由氣膠沉積法及由溶膠-凝膠沉積法(較佳是藉由氣膠沉積法)所製備。膜層的厚度係介於約100奈米至約300微米。氣膠沉積法以及溶膠-凝膠沉積法係可用以形成一薄膜層組合,其中薄膜層係由氧化還原活性添加物複合電解質所形成。使用氧化還原活性添加物複合電解質薄膜或厚膜之能量儲存裝置係進一步由下列非限制實例加以說明:
實例CF1:
鋰鋁鍺磷酸(LAGP)複合物係與厚度為約10奈米至約1微米之氧化還原活性相的薄膜係利用射頻濺鍍/直流濺鍍技術而共同沉積。LAGP玻璃材料係澆鑄成形為一個直徑為2英吋之底模(die),以形成透明玻璃片,這些透明玻璃片係於約攝氏850度下退火約2小時至4小時,以形成適合濺鍍之靶材。金係作為氧化還原活性相,且在約10-6托耳的真空下在氬氣環境中與LAGP共同濺鍍。每一成份的沉積速率係經控制以得到95/5之體積比率,以產生薄膜,這些薄膜係於攝氏300度至攝氏600度間退火達約30分鐘至約4小時,以形成複合電解質膜層。
含氧化還原活性內含物之氣膠沉積離子導電性複合薄/厚膜電解質複合物:
一般具有厚度為約100奈米至約10微米之薄膜、以及一般具有厚度為約1微米至約300微米之厚膜係可藉由氣膠沉積法而自各式各樣的氧化還原活性添加物複合離子性導電電解質形成。所使用之離子性導電電解質係包含但不限於鈉離子導電電解質、鋰離子導電電解質、及其混合物。當使用鋰離子導電電解質時,鋰離子導電電解質(例如LLT電解質、LAGP玻璃電解質、LiS-硫族化合物之玻璃電解質、及其混合物)係與一或多種氧化還原活性添加物混合,並藉由氣膠沉積法而形成厚度為約1微米至約300微米之鋰導電性電解質膜層。
鋰離子導電電解質係與氧化還原活性添加物(例如、但不限於MoO3粒子)一起使用以用於氣膠沉積法中。鋰導電性電解質與氧化還原活性添加物的相對量係可大範圍變化,以提供適用於膜層(例如薄膜與厚膜)之氣膠沉積的氧化還原活性添加物複合電解質組成。
作為非限制之說明,約1重量%至約99重量%之LLT粉末(例如95重量%之LLT)與約1重量%至約99重量%之MoO3(例如5重量%之MoO3)粉末之混合物係經球磨以形成平均粒徑約100奈米至約10微米之摻合物。LLT與MoO3粉末係各經冷凍乾燥。球磨係於乾燥下進行、或是在有液體(例如乙醇或丙-2-醇)的存在下進行。經研磨之摻合物係與一流體(例如水)結合,以用於MoO3氧化還原活性添加物LLT複合電解質薄膜與MoO3氧化還原活性添加物LLT複合電解質厚膜之氣膠沉積中。
氣膠沉積法係可用以在一基板材料(例如矽晶圓、不鏽鋼或其他氧化物)上沉積一薄膜或厚膜。基板係預先塗佈一電極材料。該電極材料係依欲形成之結構的類型而加以變化。當要形成的是超級電容器結構時,適當的電極材料係包含但不限於Pt、Au、Ni、Ta、W、Al、Fe、高表面積碳(例如奈米碳管)及其混合物。當要形成的是電池結構時,電極材料係包含氧化還原活性物種,例如嵌鋰材料(例如但不限於Si、LTO、LiCoO、LiMnO及其混合物)。陽極電極與陰極電極的組成係匹配於一電池結構類型裝置中。
複合電極係由兩種粉末同時進行氣膠沉積而形成(藉由預先混合粉末之雙沉積流或藉由單一沉積流)。複合物將包含離子性導電物種與鋰阻絕材料,其將產生一高表面積電極材料。經薄膜塗佈之基板(電極形式及非電極形式兩者)係於大範圍溫度下、在各種環境中、在一壓力範圍下進行退火,以增進薄膜的結晶性,並增進薄膜對基板的介面間鍵結。退火可在各種溫度、壓力、時間與環境條件下進行,以使薄膜對基板之擴散達最小。當對一氧化還原活性添加物複合LTO電解質薄膜(例如在像是不鏽鋼之一基板上之一MoO3活性添加物LTO複合電解質薄膜)進行退火時,係於大氣空氣環境下、約0.01至約16磅/平方英吋之壓力下、在約攝氏300度至約攝氏600度間進行退火達約5小時至約10小時。
電化學能量儲存裝置(例如電池或超級電容器)可使用一沉積鋰金屬之陽極(例如藉由蒸鍍方式),以提供一可逆轉之鋰來源。鋰金屬電極係受一環氧樹脂或聚合物(例如聚丙烯或鐵氟龍)之保護性覆層保護,以保護鋰免於氧化。對鋰電極之電氣接點係經由一接觸金屬而設置,例如銀、鋁、其合金及其混合物。接觸金屬係於塗佈保護性覆層之前先塗佈至電極。具有氧化還原活性內含物之氣膠沉積離子導電性複合薄/厚膜電解質複合物係藉由下列非限制之實例而進一步說明。
實例AF1:
厚度介於約100奈米至約10微米之厚膜係經由氣膠沉積法而製成。鋰鋁鍺磷酸與氧化錫之微細粉末(約100奈米至約900奈米)係藉由氣膠沉積而沉積在鉑或碳基板上以產生膜層。膜層係以約攝氏500度至約攝氏800度進行後退火達30分鐘至約2小時,以形成電解質。
溶膠-凝膠沉積之複合鋰導電薄膜電解質:
利用溶膠-凝膠程序係可產生一MoO3之氧化還原活性添加物LLT複合電解質。藉由溶膠-凝膠之使用,可於溶解於2-甲氧基乙醇中之乙氧化鋰、異丙醇鈦、與異丙醇鑭之LLT前驅物溶液中分散奈米尺寸之MoO3粒子(其大小係介於約10奈米至約500奈米),以使溶膠形成。
利用去離子水(DI H2O)來使計量之乙氧化鋰、異丙醇鈦、異丙醇鑭與2-甲氧基乙醇部分水解,以形成前驅物溶液。在前驅物溶液中加入比例為5重量%至50重量%(相對於LLT的量)之MoO3粒子被加入並強力攪拌,以使MoO3粒子分散而產生一MoO3活性添加物LLT電解質複合前驅物溶液。該複合前驅物溶液係用以在一適當基板(例如被塗佈鉑之矽基板)上利用滴塗或旋塗等方法製備一溶膠-凝膠薄膜。無論是使用滴塗方式或旋塗方式,所沉積的第一層係於攝氏400度下(例如在一快速熱退火加熱爐中)高溫分解。接著在已高溫分解的層體上,其他層被沉積,並進行高溫分解,以建置一所需膜層厚度。在達到所需膜層厚度後,該膜層係於約攝氏700度下、在氧化環境中進行熱處理6小時。
濺鍍之氧化還原活性添加物複合電解質薄膜:
氧化還原活性添加物複合電解質薄膜亦可藉由濺鍍方式來製備,其中係使用了兩個以上的濺鍍靶材。一第一濺鍍靶材係一離子性導電電解質,例如但不限於LLT。另一濺鍍靶材係一氧化還原活性添加物材料,例如但不限於LiCoO2
薄膜與厚膜之濺鍍沉積係藉由交替的濺鍍靶材而進行,以產生氧化還原活性添加物複合電解質之一化學異質薄膜。典型的膜厚係介於10奈米至2微米的範圍內。濺鍍溫度係足以緩和顯著的內擴散作用。所使用之濺鍍溫度係從約攝氏100度改變至約攝氏800度。在進行氧化還原活性添加物之濺鍍時,氧化還原活性添加物的濺鍍時段可為脈衝式。這可產生從分離島狀變化至連續層之多樣性化學分佈。
亦可藉由濺鍍一單一複合靶材來製備氧化還原活性添加物複合電解質之薄膜,以產生一均質薄膜,其中該單一複合靶材係包含一導電性玻璃陶瓷電解質(例如但不限於LAGP)與一氧化還原活性添加物(例如、但不限於金)。當使用LAGP時,金係可作為氧化還原活性添加物,例如金的量約為5重量%(以LAGP的重量為基準)。沉積之薄膜係於適當溫度下進行退火,以於電解質內析出氧化還原活性添加物,藉此,氧化還原活性添加物係作用為一氧化還原活性中心。當金與LAGP一起使用時,退火係於約攝氏800度下進行,以使金在LAGP玻璃陶瓷基底內析出而讓金作為氧化還原活性中心。

Ionic Conductive Glass Redox Additive Composite Electrolyte:
The ion conductive glass redox additive composite electrolyte contains an ion conductive glass and a redox additive. The ion conductive glass may include, but is not limited to, an ion conductive sulfur-based compound glass, an ion conductive fluorine glass, an ion conductive oxide glass, an ion conductive phosphate glass, an ion conductive oxynitride glass, and an ion conductivity. Oxyfluoride glass, ionically conductive oxychloride glass, and mixtures thereof. Any of these glasses can be Ag + Conductivity, F - Conductivity, H + Conductivity, K + Conductivity, Li + Conductivity, Mg 2+ Conductivity, Na + Conductivity, Mg 2+ Conductivity, O 2- Conductivity or a combination thereof.
The material to be used as the ion conductive glass includes, but is not limited to, an ion conductive glass itself, a mixture of a raw material suitable for producing an ion conductive glass, and an ion conductive glass and a mixture of such raw materials.
Li + Conductive sulfur-based compound glass may include, but is not limited to, Li 2 S-SiS 2 -Li 4 SiO 4 Li 2 S-SiS 2 -Li 3 PO 4 Li 2 SP 2 S 5 -LiI, Li 2 S-SiS 2 -LiI, Li 2 S-SiS 2 Li 2 SB 2 S 3 Li 2 SP 2 S 5 Li 2 S-GeS 2 Li 2 S-Ga 2 S 3 - GeS 2 Li doped with an iodide dopant such as LiI 2 S-Ga 2 S 3 -GeS 2 Li doped with an iodide dopant such as LiI 2 S-Ga 2 S 3 -GeS 2 Li 2 S-Sb 2 S 3 -GeS 2 Li 2 S-GeS 2 -P 2 S 5 Li 3 PO 4 -Li 2 S-SiS 2 Li 2 S-GeS 2 -P 2 S 5 And mixtures thereof.
Li + Conductive fluorine-based glass may include, but is not limited to, ZrF 4 -BaF 2 -LaF 3 -LiF and mixtures thereof. Li + Conductive oxide, oxychloride, and oxyfluoride glass glasses may include, but are not limited to, Li-FBO compositions such as, but not limited to, Li 2 O-LiF-B 2 O 3 And mixtures thereof; Li-BO compositions such as, but not limited to, Li 4 SiO 4 -Li 3 BO 4 Li 2 O-LiCl-B 2 O 3 And mixtures thereof; Li-BSO compositions such as, but not limited to, Li 2 SO 4 -Li 2 OB 2 O 3 And mixtures thereof. Li + Conductive oxynitride glasses can include, but are not limited to, lithium phosphorus oxynitrides and mixtures thereof.
The redox active additive used in the ion conductive glass may be in the form of a redox active metal, a redox active oxide, a redox active oxynitride, and a mixture thereof. Redox active metals that may be used include, but are not limited to, gold, platinum, palladium, tin, aluminum, iron, ruthenium, tin alloys, niobium alloys, niobium, niobium alloys thereof, and mixtures thereof. When gold particles are used, the size of the particles can vary from about 3 nanometers to about 190 nanometers, preferably from about 3 nanometers to about 10 nanometers, more preferably about 10 nanometers.
Redox active oxides which may be used include, but are not limited to, cerium oxide, cerium oxide, chromium oxide, cobalt oxide, copper oxide, cerium oxide, indium oxide, iron oxide, lead oxide, lithium cobalt oxide, lithium oxide, and titanic acid. Lithium, lithium vanadium, lithium vanadium oxide, lithium phosphorus oxide, phosphorus oxide, lithium iron oxide, iron phosphorus oxide, manganese oxide, molybdenum oxide, cerium oxide, silver oxide, cerium oxide, cerium oxide, tin oxide, Titanium oxide, tungsten oxide, vanadium oxide, zinc oxide, and mixtures thereof. Redox reactive oxynitrides that may be used include, but are not limited to, Li 7.9 MnN 3.2 O 1.6 And mixtures thereof.
The redox active additive for producing the ion conductive glass redox active composite electrolyte may be in the form of a precursor solution of a redox active additive, a solution of a redox additive, and a particle of a redox active additive. When particles of the redox active additive are used, the particle size of the redox active additive can vary from about 1 nanometer to about 500 nanometers.
The ion conductive glass redox active additive composite electrolyte can be obtained by melting a mixture of a redox active additive and an ion conductive glass. The amount of the ion conductive glass and the redox additive in the ion conductive glass redox additive composite electrolyte can be widely changed. The amount of the redox additive used in the ion conductive glass redox additive composite electrolyte is sufficient to have an increased ion current and compared to the ion conductive glass used in the ion conductive glass redox additive composite electrolyte / or higher voltage ionic conductive glass redox additive composite electrolyte. Typically, the redox additive is present in an amount from about 0.1% to about 50% by weight, preferably from about 5% to about 20% by weight, based on the weight of the ionically conductive glass.
The amount of redox additive used in the ion-conductive glass ceramic redox additive composite electrolyte is sufficient to have an increase compared to the ion-conductive glass ceramic used in the ion-conductive glass ceramic redox additive composite electrolyte Ionically conductive glass ceramic redox additive composite electrolyte with ion current and/or higher voltage. Generally, the redox additive is present in an amount from about 0.5% to about 20% by weight, preferably from about 5% to about 10% by weight, of the ionically conductive glass ceramic.
The amount of the redox additive used in the ion conductive ceramic redox additive composite electrolyte is sufficient to have an increased ion current compared to the ion conductive ceramic used in the ion conductive ceramic redox additive composite electrolyte. Ionic conductive ceramic redox additive composite electrolyte. Generally, the redox additive is present in an amount from about 0.5% to about 20% by weight, preferably from about 5% to about 10% by weight of the ionically conductive ceramic.
When the ion conductive glass is Ag + When conductive glass (for example, any Ag + Conductive sulfur-based compound glass, Ag + Conductive fluoride glass, Ag + Conductive oxide glass and mixtures thereof) compared to those used in Ag + Ag in conductive glass redox additive composite electrolyte + Conductive glass, the amount of redox active additive used is sufficient to achieve Ag with increased ion current + Conductive glass redox additive composite electrolyte. Typically, the amount of redox active additive is from about 0.1% to about 50% by weight Ag + Conductive glass.
When the ion conductive glass is Cs + When conductive glass (for example, any Cs + Conductive sulfur-based compound glass, Cs + Conductive fluoride glass, Cs + Conductive oxide glass and mixtures thereof) compared to use in Cs + Cs in conductive glass redox additive composite electrolyte + Conductive glass, the amount of redox active additive used is sufficient to achieve Cs with increased ion current + Conductive glass redox additive composite electrolyte. Typically, the amount of redox active additive is from about 0.1% to about 50% by weight of Cs + Conductive glass.
When the ion conductive glass is F - When conductive glass (for example, any F - Conductive sulfur-based compound glass, F - Conductive fluoride glass, F - Conductive oxide glass and mixtures thereof) compared to used in F - Conductive glass redox additive F in composite electrolyte - Conductive glass, the amount of redox active additive used is sufficient to achieve an increased ion flux F - Conductive glass redox additive composite electrolyte. Typically, the amount of redox active additive is from about 0.1% to about 50% by weight of F. - Conductive glass.
When the ion conductive glass is H + When conductive glass (for example, any H + Conductive sulfur-based compound glass, H + Conductive fluoride glass, H + Conductive oxide glass and mixtures thereof) compared to used in H + Conductive glass redox additive H in composite electrolyte + Conductive glass, the amount of redox active additive used is sufficient to achieve an increased ion current H + Conductive glass redox additive composite electrolyte.
When the ion conductive glass is K + When conductive glass (for example, any K + Conductive sulfur-based compound glass, K + Conductive fluoride glass, K + Conductive oxide glass and mixtures thereof) compared to used in K + K in conductive glass redox additive composite electrolyte + Conductive glass, the amount of redox active additive used is sufficient to achieve K with increased ion current + Conductive glass redox additive composite electrolyte. Typically, the amount of redox active additive is from about 0.1% to about 50% by weight K + Conductive glass.
When the ion conductive glass is Li + When conductive glass (for example, any Li + Conductive sulfur-based compound glass, Li + Conductive fluoride glass, Li + Conductive oxide glass and mixtures thereof) compared to used in Li + Li in conductive glass redox additive composite electrolyte + Conductive glass, the amount of redox active additive used is sufficient to achieve Li with increased ion current + Conductive glass redox additive composite electrolyte. Typically, the amount of redox active additive is from about 0.1% to about 50% by weight of Li. + Conductive glass.
When the ion conductive glass is Na + When conductive glass (for example, any Na + Conductive sulfur-based compound glass, Na + Conductive fluoride glass, Na + Conductive oxide glass and mixtures thereof) compared to used in Na + Conductive glass redox additive Na in a composite electrolyte + Conductive glass, the amount of redox active additive used is sufficient to achieve Na with increased ion current + Conductive glass redox additive composite electrolyte. Typically, the amount of redox active additive is from about 0.1% to about 50% by weight Na + Conductive glass.
When the ion conductive glass is O 2- When conductive glass (for example, any O 2- Conductive sulfur-based compound glass, O 2- Conductive fluoride glass, O 2- Conductive oxide glass and mixtures thereof) compared to used in F - O in conductive glass redox additive composite electrolyte 2- Conductive glass, the amount of redox active additive used is sufficient to achieve an increased ion current 2- Conductive glass redox additive composite electrolyte. Typically, the amount of redox active additive is from about 0.1% to about 50% by weight of O. 2- Conductive glass.
Ionic conductive glass ceramic redox additive composite electrolyte:
The ion conductive glass ceramic redox additive composite electrolyte contains an ion conductive glass ceramic and a redox additive. The ion conductive glass ceramic may include, but is not limited to, a sulfur-based compound glass ceramic, a fluoride glass ceramic, an oxide glass ceramic, a phosphate glass ceramic, a sulfide glass ceramic, and a mixture thereof. Any of these glass ceramics can be Ag + Conductivity, F - Conductivity, H + Conductivity, K + Conductivity, Li + Conductivity, Mg 2+ Conductivity, Na + Conductivity, O 2- Conductivity or a combination thereof.
The ion conductive sulfur-based compound glass ceramic may include, but is not limited to, Li 2 SP 2 S 5 Glass and mixtures thereof. The ion conductive oxide glass ceramics may include, but are not limited to, lithium aluminum silicate phosphoric acid glass ceramics and mixtures thereof.
The redox active additive for use in the ion conductive glass ceramic may be in the form of a redox active metal, a redox active oxide, a redox active oxynitride, and mixtures thereof. Redox active metals that may be used include, but are not limited to, gold, platinum, palladium, tin, aluminum, iron, ruthenium, copper-tin alloys, copper-bismuth alloys, ruthenium, alloys thereof, and mixtures thereof. When gold particles are used, the size of the particles can vary from about 1 nanometer to about 200 nanometers. Redox active oxides include, but are not limited to, cerium oxide, cerium oxide, cerium oxide, boron oxide, calcium oxide, chromium oxide, cobalt oxide, copper oxide, cerium oxide, indium oxide, iron oxide, lead oxide, lithium cobalt oxide. , lithium oxide, lithium titanate, lithium iron phosphorus oxide, iron phosphorus oxide, phosphorus oxide, lithium vanadium oxide, manganese oxide, molybdenum oxide, cerium oxide, silver oxide, tin oxide, titanium oxide, tungsten oxide, oxidation Vanadium, zinc oxide and mixtures thereof. Redox reactive oxynitrides that may be used include, but are not limited to, Li 7.9 MnN 3.2 O 1.6 And mixtures thereof.
The redox active additive for producing the ion conductive glass ceramic redox active composite electrolyte may be in the form of a precursor solution of a redox active additive, a solution of a redox additive, and a particle of a redox active additive. When particles of the redox active additive are used, the particle size of the redox active additive can vary from about 1 nanometer to about 500 nanometers.
The ion conductive glass ceramic redox active additive composite electrolyte can be obtained by forming a melt of a mixture of an ion conductive glass and a redox active additive. The material to be used as the ion conductive glass ceramic may include, but is not limited to, an ion conductive glass ceramic itself, a mixture of raw materials suitable for producing an ion conductive glass ceramic, and an ion conductive glass ceramic and a mixture of such materials.
The amount of the ion conductive glass ceramic and the redox additive in the ion conductive glass ceramic redox additive composite electrolyte can be widely changed. The amount of the redox additive used in the ion conductive glass ceramic redox additive composite electrolyte is sufficient to form a glass ceramic redox additive composite electrolyte, which is more conductive than the ion electrolyte used in the composite electrolyte Glass ceramics have a larger ion current. Typically, the redox additive is present in an amount of from about 0.1% to about 50% by weight, preferably from about 0.1% to about 40% by weight, preferably from about 1% to about 25% by weight, More preferably, it is present in an amount of from about 1% by weight to about 20% by weight based on the weight of the ion-conductive glass ceramic.
When the ion conductive glass ceramic is Ag + Conductive glass ceramics (for example, any Ag + Conductive sulfur-based compound glass ceramic, Ag + Conductive Fluoride Glass Ceramics, Ag + Conductive oxide glass ceramics and mixtures thereof), the amount of redox active additive used is sufficient to reach Ag + Conductive glass ceramic redox additive composite electrolyte, the Ag + Conductive glass ceramic redox additive composite electrolyte is used for Ag in composite electrolyte + Conductive glass ceramics have a larger ion current. Typically, the amount of redox active additive is from about 0.1% to about 30% by weight Ag + The weight of the conductive glass ceramic.
When the ion conductive glass ceramic is F - When conducting glass ceramics (for example, any F - Conductive sulfur-based compound glass ceramic, F - Conductive Fluoride Glass Ceramic, F - Conductive oxide glass ceramics and mixtures thereof), the amount of redox active additive used is sufficient to achieve F - Conductive glass ceramic redox additive composite electrolyte, the F - Conductive glass ceramic redox additive composite electrolyte ratio F used in composite electrolyte - Conductive glass ceramics have a larger ion current. Typically, the amount of redox active additive is from about 0.1% to about 30% by weight of F. - Conductive glass ceramic.
When the ion conductive glass ceramic is Li + Conductive glass ceramics (for example, any Li + Conductive sulfur-based compound glass ceramic, Li + Conductive Fluoride Glass Ceramic, Li + Conductive oxide glass ceramics and mixtures thereof), the amount of redox active additive used is sufficient to achieve Li + Conductive glass ceramic redox additive composite electrolyte, the Li + Conductive glass ceramic redox additive composite electrolyte ratio for Li in composite electrolyte + Conductive glass ceramics have a larger ion current. Typically, the amount of redox active additive is from about 0.1% to about 40% by weight of Li. + Conductive glass ceramic.
When the ion conductive glass ceramic is Na + When conducting glass ceramics (for example, any Na + Conductive sulfur-based compound glass ceramic, Na + Conductive Fluoride Glass Ceramic, Na + Conductive oxide glass ceramics and mixtures thereof), the amount of redox active additive used is sufficient to reach Na + Conductive glass ceramic redox additive composite electrolyte, the Na + Conductive glass ceramic redox additive composite electrolyte is used for Na in composite electrolyte + Conductive glass ceramics have a larger ion current. Typically, the amount of redox active additive is from about 0.1% to about 50% by weight Na + Conductive glass ceramic.
When the ion conductive glass ceramic is O 2- Conductive glass ceramics (for example, any O 2- Conductive sulfur-based compound glass ceramic, O 2- Conductive fluoride glass ceramic, O 2- Conductive oxide glass ceramics and mixtures thereof), the amount of redox active additive used is sufficient to achieve O 2- Conductive glass ceramic redox additive composite electrolyte, the O 2- Conductive glass ceramic redox additive composite electrolyte is used in composite electrolyte 2- Conductive glass ceramics have a larger ion current. Typically, the amount of redox active additive is from about 0.1% to about 50% by weight of O. 2- Conductive glass ceramic.
Redox active species formed in situ in ionically conductive glass and glass ceramics:
The in-situ redox active species ion conductive glass and the in situ formed redox active species ion conductive glass ceramic each comprise an in situ formed ionically conductive glass or glass ceramic and a redox additive species. The ion conductive glass and the glass ceramic may include, but are not limited to, a sulfur-based compound glass and a glass ceramic, a fluoride glass and a glass ceramic, an oxide glass and a glass ceramic, a phosphate glass, and a glass ceramic, and a mixture thereof. Any of these ceramics can be Ag + Conductivity, F - Conductivity, H + Conductivity, K + Conductivity, Li + Conductivity, Mg 2+ Conductivity, Na + Conductivity, O 2- Conductivity or a combination thereof. Ion-conductive sulfur-based compound glass ceramics that can be used include, but are not limited to, Li 2 SP 2 S 5 Glass and mixtures thereof.
The redox active additive for use in ion conductive glass or glass ceramic may be in the form of a redox active metal, a redox active oxide, a redox active oxynitride, and mixtures thereof. Redox active metals that may be used include, but are not limited to, gold, platinum, palladium, tin, aluminum, iron, ruthenium, copper-tin alloys, copper-bismuth alloys, niobium, niobium alloys thereof, and mixtures thereof. When gold particles are used, the size of the particles can vary from about 3.0 nanometers to about 500 nanometers.
The redox active oxide may include, but is not limited to, cerium oxide, chromium oxide, cobalt oxide, copper oxide, cerium oxide, indium oxide, iron oxide, lead oxide, lithium cobalt oxide, lithium oxide, lithium titanate, lithium vanadium oxide. , manganese oxide, molybdenum oxide, cerium oxide, silver oxide, tin oxide, titanium oxide, tungsten oxide, vanadium oxide, zinc oxide, and mixtures thereof. Redox reactive oxynitrides that may be used include, but are not limited to, Li 7.9 MnN 3.2 O 1.6 And mixtures thereof.
The redox active additive for producing ion-conductive glass and glass ceramic-in-situ formed redox active species composite electrolyte may be a precursor solution of a redox active additive, a solution of a redox additive, and a redox activity addition. The form of the particles of the object. When particles of the redox active additive are used, the particle size of the redox active additive can vary from about 1 nanometer to a major particle size of about 100 nanometers.
The ion conductive glass and the glass ceramic - the redox active species composite electrolyte formed in situ can be obtained by melting a mixture of ion conductive glass and glass ceramics and a redox active additive. Alternatively, the ionically conductive glass and the glass ceramic, redox active additive composite electrolyte can be prepared by chemical properties that are separated within the microstructure.
The material to be used as the ion conductive glass and the glass ceramic may include, but is not limited to, an ion conductive glass and a glass ceramic itself, a mixture of raw materials suitable for producing an ion conductive glass and a glass ceramic, and an ion conductive glass and a glass ceramic. And a mixture of such materials. The amount of the ion conductive glass and the glass ceramic and the redox additive in the redox active species ion conductive glass and the glass ceramic electrolyte formed in situ can be widely changed. The amount of the redox additive present in the ion conductive glass or the glass ceramic electrolyte is sufficient to achieve an ion conductive glass or a glass ceramic redox additive composite electrolyte, and the ion conductive glass or glass ceramic redox additive composite electrolyte is used. Ionic glass or glass ceramics in the electrolyte have a larger ion current. Typically, the redox additive is present in an amount from about 0.01% to about 60% by weight of the ionically conductive ceramic, preferably from about 0.1% to about 25% by weight, more preferably about 10% by weight. The amount of % to about 20% by weight, more preferably about 5% by weight to about 20% by weight.
When ionic conductive glass or glass ceramic is Ag + When ceramics (for example, any Ag + Conductive sulfur-based compound glass and glass ceramic, Ag + Conductive Fluoride Glass and Glass Ceramic, Ag + Conductive oxide glass and glass ceramics and mixtures thereof), the amount of redox active additive used is sufficient to reach Ag + Conductive glass or glass ceramic - in situ formed redox additive composite electrolyte, the Ag + Conductive glass or glass ceramic - in situ formed redox additive composite electrolyte than Ag used in electrolytes + Conductive glass or glass ceramics have a larger ion current. Typically, the amount of redox active additive is from about 0.5% to about 40% by weight Ag + Conductive glass or glass ceramic.
When the ion conductive ceramic is F - Glass or glass ceramic (for example, any F - Conductive sulfur-based compound glass and glass ceramic, F - Conductive Fluoride Glass and Glass Ceramic, F - Conductive oxyfluoride glass and glass ceramics and mixtures thereof), the amount of redox active additive used is sufficient to achieve F - Conductive glass or glass ceramic - in situ formed redox additive composite electrolyte, the F - Conductive glass or glass ceramic - in situ formed redox additive composite electrolyte than used in electrolytes - Conductive glass or glass ceramics have greater ionic conductivity. Typically, the amount of redox active additive is from about 0.1% to about 50% by weight of F. - Conductive glass or glass ceramic.
When the ion conductive ceramic is H + Glass or glass ceramic (for example, any H + Conductive sulfur-based compound glass and glass ceramic, H + Conductive Fluoride Glass and Glass Ceramic, H + Conductive oxyfluoride glass and glass ceramics and mixtures thereof), the amount of redox active additive used is sufficient to reach H + Conductive glass or glass ceramic - in situ formed redox additive composite electrolyte, the H + Conductive glass or glass ceramic - in situ formed redox additive composite electrolyte than H used in electrolytes + Conductive glass or glass ceramics have greater ionic conductivity. Typically, the amount of redox active additive is from about 0.1% to about 50% by weight of H. + Conductive glass or glass ceramic.
When the ion conductive ceramic is Li + Glass or glass ceramic (for example, any Li + Conductive sulfur-based compound glass and glass ceramic, Li + Conductive Fluoride Glass and Glass Ceramic, Li + Conductive oxyfluoride glass and glass ceramics and mixtures thereof), the amount of redox active additive used is sufficient to achieve Li + Conductive glass or glass ceramic - in situ formed redox additive composite electrolyte, Li + Conductive glass or glass ceramic - in situ formed redox additive composite electrolyte than Li used in electrolytes + Conductive glass or glass ceramics have greater ionic conductivity. Typically, the amount of redox active additive is from about 0.1% to about 50% by weight of Li. + Conductive glass or glass ceramic.
When the ion conductive ceramic is Na + Glass or glass ceramic (for example, any Na + Conductive sulfur-based compound glass and glass ceramic, Na + Conductive Fluoride Glass and Glass Ceramic, Na + Conductive oxyfluoride glass and glass ceramics and mixtures thereof), the amount of redox active additive used is sufficient to reach Na + Conductive glass or glass ceramic - in situ formed redox additive composite electrolyte, the Na + Conductive glass or glass ceramic - in situ formed redox additive composite electrolyte than Na used in electrolytes + Conductive glass or glass ceramics have greater ionic conductivity. Typically, the amount of redox active additive is from about 0.1% to about 50% by weight Na + Conductive glass or glass ceramic.
When the ion conductive ceramic is O 2- Glass or glass ceramic (for example, any O 2- Conductive sulfur-based compound glass and glass ceramic, O 2- Conductive fluoride glass and glass ceramic, O 2- Conductive oxyfluoride glass and glass ceramics and mixtures thereof), the amount of redox active additive used is sufficient to achieve O 2- Conductive glass or glass ceramic - in situ formed redox additive composite electrolyte, the O 2- Conductive glass or glass ceramic - in situ formed redox additive composite electrolyte than used in electrolytes 2- Conductive glass or glass ceramics have greater ionic conductivity. Typically, the amount of redox active additive is from about 0.1% to about 50% by weight of O 2- Conductive glass or glass ceramic.
ION conductive glass redox active additive composite electrolyte manufacturing:
In general, the ionically conductive glass redox additive composite electrolyte may comprise from a redox active additive, one or more glass former oxides, optionally a glass modifier oxide, and at least one act as a conductive ion ( For example but not limited to one or more Ag + , F - , H + , K + Li + , Mg 2+ Na + And O 2- ) is prepared from a mixture of oxides of the source. The mixture is then melted and cooled to form an ion conductive glass redox additive composite electrolyte. Alternatively, the ion conductive glass redox additive composite electrolyte can be added to a glass containing a redox active additive by adding an oxide as a source of conductive ions (for example, an oxide glass, a sulfur-based compound glass, Made from a melt of phosphate glass and its mixture). Alternatively, the ion-conducting glass redox additive composite electrolyte can also be prepared by adding a redox active additive to the ground ion-conducting glass.
Li + Manufacture of conductive yttrium phosphate glass ceramic redox active composite electrolyte:
Will Li + Precursor material (such as Li 2 CO 3 ), phosphate precursor (NH 4 H 2 PO 4 ), as needed glass modifier (Al 2 O 3 And glass former (Ge 2 O 3 The composition formed by the mixture is ground to produce a ground powder. The ground powder can be calcined at about 750 degrees Celsius to about 850 degrees Celsius for about 30 minutes to about 60 minutes to produce a calcined material. The calcined material can be ground again to produce a ground material. The ground material can be melted from about 1200 degrees Celsius to about 1400 degrees Celsius for about 2 hours to about 4 hours to produce a melt. The melt may be quenched by casting onto an electric roller at about 1400 degrees Celsius to about 1100 degrees Celsius to form a glass sheet. The glass sheet is then optionally annealed at about 450 degrees Celsius to about 550 degrees Celsius for about 1 hour to about 3 hours, and then cooled to room temperature at a rate of about 1 degree Celsius per minute to about 2 degrees Celsius per minute to produce Cooled Li + Conductive yttrium phosphate glass sheet.
Li can be + The conductive barium phosphate glass is crushed, ground, and mixed with from about 0.1% to about 40% by weight of the redox active additive, and ball milled in a lower alkanol such as ethanol to produce a ground slurry. The ground slurry can be passed through a 300-mesh screen to produce a screened slurry that is dried at about 80 degrees Celsius to about 120 degrees Celsius to form a ground powder. The ground powder is mixed with from about 5% by weight to about 20% by weight of the binder and up to about 5% by weight of the plasticizer (all amounts are based on the weight of the ground powder) to form a bond A powder-powder mixture is mixed with a solvent mixture (e.g., 50/50 methyl ethyl ketone/ethanol) to form a slurry that can be cast onto the belt. Adhesives that can be used include, but are not limited to, polyvinyl butyral, poly(propylene carbonate), polyvinyl alcohol, and mixtures thereof. Plasticizers that can be used include, but are not limited to, dioctyl phthalate, butyl benzyl phthalate, propylene carbonate, and mixtures thereof. The cast strip can be formed, for example, by screen printing a thick film conductive ink (e.g., platinum, gold or palladium, silver) onto the strip. The resulting print ribbon can then be aligned, for example, in an isostatic pressure of from about 50 degrees Celsius to about 80 degrees Celsius, from about 3000 pounds per square inch to about 4000 pounds per square inch, and laminated for about 10 minutes to about 30 seconds. Minutes to produce a green laminate. The green laminate is burned at about 800 degrees Celsius to about 1000 degrees Celsius for about 1 hour to about 12 hours to form a ceramic redox additive composite electrolyte.
Example LGC1: Lithium phosphate bismuth glass tin dioxide composite electrolyte:
Will 3.74 g Li 2 CO 3 , 27.92 grams of NH 4 H 2 PO 4 , 1.04 grams of Al 2 O 3 , 14.81 g Ge 2 O 3 And 5.42 grams of SnO 2 The composition formed by the mixture is ground to produce a ground powder. The ground powder was calcined at 750 degrees Celsius for 30 minutes to produce a calcined material. The calcined material was again ground for 24 hours to produce a ground material. The ground material was heated at 1350 degrees Celsius for 2 hours to produce a melt. The melt was quenched by casting on a motorized roller at 1300 ° C to form a glass sheet. The glass sheet was heated at 450 degrees Celsius for 1 hour and cooled to room temperature at a rate of 1 degree Celsius per minute to produce a cooled glass sheet. The cooled glass sheet was heat treated at 850 ° C for 2 hours to form Li + A conductive lithium aluminum phosphide glass ceramic in which a redox active tin dioxide phase is formed.
Example LGC2:
Will be 1.53g Li 2 CO 3 , 11.44 grams of NH 4 H 2 PO 4 , 0.42 g of Al 2 O 3 , 6.07 g Ge 2 O 3 And 5.00 grams of HAuCl 4 ‧3H 2 The composition formed by the mixture of O is ground to produce a ground powder. The ground powder was calcined at 750 degrees Celsius for 30 minutes to produce a calcined material. The calcined material was again ground for 24 hours to produce a ground material. The ground material was heated at 1350 degrees Celsius for 2 hours to produce a melt. The melt was quenched by casting on a motorized roller at 1300 ° C to form a glass sheet. The glass sheet was heated at 450 degrees Celsius for 1 hour and cooled to room temperature at a rate of 1 degree Celsius per minute to produce a cooled glass sheet. The cooled glass sheet was heat treated at 950 ° C for 2 hours to form Li + Conductive lithium aluminum strontium phosphate glass ceramic in which the redox active nanoparticle is dispersed.
Manufacture of ion conductive ceramic redox additive composite electrolyte:
The ionically conductive ceramic redox additive composite electrolyte can be prepared by forming a mixture of one or more ionically conductive ceramic materials and one or more redox active ceramic additives. The mixture is ground, dried and burned to form an ion conductive ceramic redox additive composite electrolyte. The mixtures used may be random, identical, non-identical or hierarchical by their thickness. The redox active additive used with the ion conductive ceramic material is selected based on its ability to undergo redox reactions with ionic conductive species in the ceramic material. For the sake of explanation, when the ion conductive ceramic is Li + In the case of conductive ceramics (for example, (LiLa)TiO 3 The redox active ceramic additive is selected based on its ability to undergo a redox reaction with Li. Li + Conductive ceramics (which can be used to make Li + Conductive ceramic redox additive composite electrolyte) including but not limited to Li + Conductive pomegranate ceramics (such as but not limited to Li 7 La 3 Zr 2 O 12 Li 5 La 3 M 2 O 12 (where M = Ta, Nb)); Lithium superionic conductor (LISICON) type ceramics (such as but not limited to Li 14 ZnGe 4 O 16 Li 3.4 Si 0.4 P 0.6 S 4 ); Li 3 PO 4 Based ceramics (such as but not limited to Li 2 Ge 2 (PO 4 ) 3 And Li 1+x Ti 2-x M x (PO 4 ) 3 (where M = Al, Ga, In, Sc)); binary nitride (such as but not limited to Li 3 N) and lithium salts (such as but not limited to Li 4 SiO 4 ) and mixtures thereof.
Can be combined with ion conductive ceramics (such as Li + Redox active additives used together with conductive ceramics include, but are not limited to, LiMn 2 O 4 LiCoO 2 LiNiO 2 LiFeO 2 Li x (Co y Al 1-y ) (1-x) O 2 (where 0 < x < 1, 0 < y < 1) and mixtures thereof.
A mixture of ionically conductive ceramic material and redox active ceramic additive can be ball milled in a suitable liquid such as ethanol, water, acetone or a mixture thereof to produce a ground powder. Mixing the ground powder with up to about 5% by weight of a binder such as polyvinyl butyral, polyvinyl alcohol, polymethyl methacrylate, polyoxyethylene, and mixtures thereof to form a binder - a powder mixture. The binder-powder mixture can be compressed under uniaxial pressure and then compressed in isostatic pressing to produce a subsequent combustible crucible. Further, according to one option, the ground powder is added with from about 5% by weight to about 50% by weight of the binder and, if desired, up to about 5% by weight of the plasticizer (all amounts are based on the weight of the ground powder) The base is mixed to form a binder-powder mixture which is mixed with a solvent mixture (e.g., a solvent mixture of 50/50 methyl ethyl ketone/ethanol) to form a slurry that can be cast into the belt. Adhesives that can be used include, but are not limited to, polyvinyl butyral, poly(propylene carbonate), poly(oxyethylene), and mixtures thereof. Plasticizers that can be used include, but are not limited to, dioctyl phthalate, butyl benzyl phthalate, and mixtures thereof. The cast strip can then be formed by screen printing a thick film conductive ink (e.g., platinum, palladium or silver) onto the strip. The resulting print ribbon can then be aligned and laminated for 10 minutes to about 30 minutes, for example, at an isostatic pressure of from about 50 degrees Celsius to about 80 degrees Celsius, from about 3000 pounds per square inch to about 4000 pounds per square inch. To produce a green laminate. The green laminate is burned at about 1150 degrees Celsius to about 700 degrees Celsius for about 1 hour to about 4 hours to form a ceramic redox additive composite electrolyte. Alternatively, the green ribbon can be used in an unburned state as a ceramic polymer redox additive composite electrolyte.
The composite electrolyte of each of the specific examples can be formed by sputtering, evaporation or screen printing. Examples of metals that can be used as electrodes include aluminum, silver, platinum, alloys thereof, and mixtures thereof. The electrode can be redox active.
Example LC1: (Li 0.33 La 0.55 TiO 3-δ Ceramic-LiCoO 2 Redox composite electrolyte
Will be 96.644g La 2 O 3 59.900 g TiO 2 And 9.145 grams of LiCO 3 The mixture was ball milled in ethanol for 24 hours to produce a slurry. The slurry was dried at 80 ° C for 8 hours to form a dry powder. The dried powder was calcined at 900 ° C for 6 hours to produce a calcined powder. The calcined powder was ball milled in ethanol for 16 hours, dried at 80 degrees Celsius for 24 hours, and calcined at 1100 degrees Celsius for 6 hours to produce (Li 0.33 La 0.55 TiO 3-δ Electrolyte powder.
Will (Li 0.33 La 0.55 TiO 3-δ Electrolyte powder with 10% by weight of LiCoO 2 (based on the weight of the electrolyte powder) by ball milling in ethanol for 24 hours to produce (Li 0.33 La 0.55 TiO 3-δ Ceramic-LiCoO 2 A mixed ground powder of a redox composite electrolyte. The mixed ground powder was dried at 80 ° C for 8 hours, and compressed into pellets under a uniaxial pressure of 200 MPa, and then pressed in a cold isostatic pressing at 250 MPa.
Example LC2: (Li 0.33 La 0.55 TiO 3-δ Ceramic-MoO 3 Redox composite electrolyte
Will be 96.644g La 2 O 3 59.900 g TiO 2 And 9.145 grams of LiCO 3 The mixture was ball milled in ethanol for 24 hours to produce a slurry. The slurry was dried at 80 ° C for 8 hours to form a dry powder. The dried powder was calcined at 900 ° C for 6 hours to produce a calcined powder. The calcined powder was ball milled in ethanol for 16 hours, dried at 80 degrees Celsius for 24 hours, and calcined at 1100 degrees Celsius for 6 hours to produce (Li 0.33 La 0.55 TiO 3-δ Electrolyte powder.
Will (Li 0.33 La 0.55 TiO 3-δ The electrolyte powder was ball-milled with 10% by weight of 100 nm-sized molybdenum trioxide (based on the weight of the electrolyte powder) in ethanol for 24 hours, dried at 80 ° C for 8 hours, and compressed into pellets under a uniaxial pressure of 200 MPa. And then cold isostatic compression at 250 MPa.
Example LC3: Li 7 La 3 Zr 2 O 12 Ceramic-LiCoO 2 Redox composite electrolyte
Will 29.32g La 2 O 3 , 17.069 grams of Li 2 CO 3 And 14.786 grams of ZrO 2 By with ZrO 2 The balls were ball milled in 2-propanol for 24 hours to mix to produce a slurry. The slurry was dried, and the resulting dry powder was calcined at 900 ° C for 6 hours. The calcined powder was ground, dried, and calcined at 1100 ° C for 6 hours to obtain Li 7 La 3 Zr 2 O 12 Ceramic electrolyte.
Will Li 7 La 3 Zr 2 O 12 Ceramic electrolyte with 10% by weight of LiCoO 2 (Based on the weight of the electrolyte powder), ball milling in ethanol for 24 hours to produce Li 7 La 3 Zr 2 O 12 Ceramic-LiCoO 2 A mixed ground powder of a redox composite electrolyte. The mixed ground powder was dried at 80 ° C for 8 hours, and compressed into pellets under a uniaxial pressure of 200 MPa, and then pressed in a cold isostatic pressing at 250 MPa.
The redox active additive composite electrolyte using a redox active additive (such as in the form of particulate inclusions disclosed herein) can be used in various devices with different electrochemical compositions, such as, but not limited to, energy storage devices. , lithium ion mixed composite film, gas barrier film, film for hydrogen isolation, film for water desalination, potentiometric chemical sensor and electrochromic device.
Examples of energy storage devices that may use redox active additives include, but are not limited to, batteries, capacitors, hybrid battery-capacitors, and fuel cells. Examples of batteries that can use redox active additive composite electrolytes include, but are not limited to, metal-air batteries (such as, but not limited to, lithium-air batteries and magnesium-air metal-air batteries); primary batteries (eg, but Not limited to lithium ion type primary batteries and magnesium ion type primary batteries; secondary batteries (such as, but not limited to, lithium ion type secondary batteries, proton ion type secondary batteries, and magnesium ion type secondary batteries); high temperature batteries (for example) But not limited to Na-S type high temperature battery and LiZr 2 (PO 4 ) 3 (LiZP) type high temperature battery). Examples of capacitors that can use redox active additive composite electrolytes include, but are not limited to, electrochemical capacitors, proton capacitors (such as, but not limited to, potassium hydroxide proton capacitors and phosphoric acid proton type capacitors); lithium ion capacitors ( For example, but not limited to, a polyvinylidene fluoride lithium ion type capacitor (wherein the lithium salt is LiPF) 6 LiClO 4 , LiTFSi salt)); poly(oxyethylene) lithium ion type capacitor (wherein the lithium salt is, for example, LiCl, LiBr, LiClO 4 Salt); high temperature capacitors (such as, but not limited to, LAGP glass-ceramic high-temperature capacitors and sulfur-based high-temperature capacitors). Examples of hybrid battery-capacitors that can use redox active additive composite electrolytes include, but are not limited to, lithium ion hybrid battery-capacitors. Examples of fuel cells that can use redox active additive composite electrolytes, including but not limited to ZrO 2 Based on solid oxide fuel cells.
Examples of the lithium ion mixed composite film which can use the redox active additive composite electrolyte include, but are not limited to, a lithium metal/PVDF/carbon mixed composite film and a lithium iron phosphate mixed type composite film.
Examples of gas barrier films that can use redox active additive composite electrolytes include, but are not limited to, vanadium (LSV, La 0.7 Sr 0.3 VO 3 ) / yttria-stabilized zirconium dioxide (YSZ) composite electrolyte type gas barrier film and ruthenium vanadium / antimony doped ruthenium dioxide (GDC) type gas barrier film.
Examples of potentiometric chemical sensors that can use redox active additive composite electrolytes include, but are not limited to, manganese dioxide doped lithium borosilicate glass type potentiometric chemical sensors.
Examples of electrochromic devices that can use redox active additive composite electrolytes include, but are not limited to, devices that employ PVDF-HFP electrolytes having one or more oxide fillers such as molybdenum trioxide and vanadium pentoxide.
Lithium-air battery using redox active composite electrolyte:
A lithium-air battery using a redox active additive composite electrolyte is disclosed in a first embodiment. A lithium-air battery as shown in Fig. 22 uses a lithium anode which is electrochemically coupled to an oxidizing environment, for example, by an air cathode. At the time of discharge, a lithium ion current from the lithium anode through the redox active additive composite electrolyte is combined with oxygen at the cathode to form Li 2 O or Li 2 O 2 . The lithium ion stream is coupled to the flow of electrons from the anode to the cathode through an external load loop. A lithium-air battery using a redox active additive composite electrolyte can exhibit improved ion current and coulombic efficiency compared to a lithium-air battery that does not use a redox active additive composite electrolyte.
Many lithium-air battery structures can be formed with the use of redox active additive composite electrolytes. The lithium-air battery structure uses a redox active additive composite electrolyte comprising one or more redox active additives and any glass electrolyte, ceramic electrolyte, glass ceramic electrolyte, and mixtures thereof. Examples of redox active additives that may be used include, but are not limited to, ferric oxide, molybdenum trioxide, tin oxide zinc oxide, gold, platinum, and mixtures thereof.
Examples of ceramic electrolytes that can be used in the redox active additive composite electrolyte include, but are not limited to, (Li, La) TiO 3 (LLTO) type ceramic electrolyte (for example, Li 3x La (2/3)-x□(1/3)-2x TiO 3 , where □ represents the vacancy position, and where 0<x<0.16)), ((Li, La)(Ti, Zr, Hf))O 3 And mixtures thereof to impart improved ion exchange numbers. ((Li, La)(Ti,Zr,Hf))O 3 Type materials are made from standard solid state procedures.
The ionically conductive ceramic redox additive composite electrolyte can be prepared by forming a mixture of one or more ionically conductive ceramic materials and one or more redox active ceramic additives. The mixture is ground, dried and burned to form an ion conductive ceramic redox additive composite electrolyte. As noted above, the mixture may be random, identical, non-identical or graded by its thickness.
Examples of glass electrolytes that can be used in the redox active additive composite electrolyte include, but are not limited to, lithium phosphate glass such as, but not limited to, Li(AlGeTi) (PO) 4 ) 3 Li 1+x Al x Ge 2-x (PO 4 ) 3 (where 0<x<1.0), Li(AlGeTi,Hf)(PO 4 ) 3 And mixtures thereof. Lithium aluminum bismuth phosphate (LAGP) glass can be derived from lithium ion precursor materials (eg Li 2 CO 3 ), phosphate precursors (such as NH 4 H 2 (PO 4 )), Al 2 O 3 As a glass modifier and glass former (such as Ge 2 O 3 Formed by a mixture of ). The mixture is ground to form a ground powder. The ground powder can be calcined at about 750 degrees Celsius to about 850 degrees Celsius for about 30 minutes to about 60 minutes to produce a calcined material. The calcined material can be ground again to produce a ground material. The ground material can be melted from about 1100 degrees Celsius to about 1200 degrees Celsius for about 2 hours to about 4 hours to produce a melt. The melt may be quenched by casting onto an electric roller at about 1400 degrees Celsius to about 1100 degrees Celsius to form a glass sheet. The glass sheet is then optionally annealed at about 450 degrees Celsius to about 550 degrees Celsius for about 1 hour to about 3 hours, and then cooled to room temperature at a rate of about 1 degree Celsius per minute to about 2 degrees Celsius per minute to produce Cooled Li + Conductive yttrium phosphate glass sheet. Li can be + The conductive barium phosphate glass is crushed, ground, and mixed with from about 0.1% to about 40% by weight of the redox active additive, and ball milled in a lower alkanol such as ethanol to produce a ground slurry. The ground slurry can be passed through a 300-mesh screen to produce a screened slurry that is dried at about 80 degrees Celsius to about 120 degrees Celsius to form a ground powder.
The ground powder is mixed with from about 5% by weight to about 20% by weight of the binder and up to about 5% by weight of the plasticizer (all amounts are based on the weight of the ground powder) to form a bond A powder-powder mixture is mixed with a solvent mixture (e.g., 50/50 methyl ethyl ketone/ethanol) to form a slurry that can be cast onto the belt. Adhesives that can be used include, but are not limited to, polyvinyl butyral, poly(propylene carbonate), polyvinyl alcohol, and mixtures thereof. Plasticizers that can be used include, but are not limited to, dioctyl phthalate, butyl benzyl phthalate, propylene carbonate, and mixtures thereof.
The cast strip can be formed, for example, by screen printing a thick film conductive ink (e.g., platinum, gold or palladium, silver) onto the strip. The resulting electrode strip can then be aligned, for example, in an isostatic pressure of from about 50 degrees Celsius to about 80 degrees Celsius, from about 3000 pounds per square inch to about 4000 pounds per square inch, and laminated for about 10 minutes to about 30 minutes. Minutes to produce a green laminate. The green laminate is burned at about 800 degrees Celsius to about 1000 degrees Celsius for about 1 hour to about 12 hours to form a ceramic redox additive composite electrolyte.
Examples of sulfur-based compound glass electrolytes that can be used include, but are not limited to, Li-sulfides, such as Li 2 SP 2 S 5 . Examples of glass ceramic electrolytes that can be used include, but are not limited to, 70Li 2 S-30P 2 S 5 . 70Li 2 S-30P 2 S 5 Glass ceramic electrolyte can be obtained by reagent grade Li 2 S and P 2 S 5 With 70Li 2 S/30P 2 S 5 A mixture of molar ratios is obtained by ball milling and forms an amorphous material. The amorphous material is heated to 200-300 degrees Celsius for 2 hours to form a glass ceramic.
A lithium-air battery using a redox active composite electrode is further illustrated by the following non-limiting examples:
Example LA1:
The composite electrolyte of the example LGC2 was used in a lithium-air battery configuration. A lithium foil (200 micrometers thick) was used as the anode, and a platinum coated carbon foil was used as the cathode. An example LGC2 having an electrolyte thickness of 200 microns and a diameter of 10 mm was embedded between the anode and the cathode to form a lithium-air battery in the form of a coin cell having a mesh-like hole on the cathode side to allow air to flow. The anode is isolated from the interaction of air using high temperature wax.
Manufacture of lithium-air batteries using redox active composite electrolytes:
A lithium-air battery using a redox active additive composite electrolyte can be placed in a lithium foil as an anode and a carbon layer as a cathode by a redox active additive composite glass ceramic electrolyte film (for example, a LAGP glass ceramic electrolyte film) Formed between.
A redox active additive for a lithium-air battery The glass ceramic electrolyte composite film can be produced by a number of methods such as casting and extrusion. For example, a frit of a redox active additive composite ceramic electrolyte, a redox active additive-doped ceramic glass electrolyte or a mixture thereof may be mixed with a liquid carrier (for example, water, a lower alkanol or a mixture thereof) to form a band. The body is formed into a slurry. The cast formed strip is then dried and formed into a strip. The multilayer film can be produced by forming a laminated board of two or more cast strips containing a redox active additive composite electrolyte, and heat treating the laminated board. For purposes of illustration, two or more layers may comprise one or more redox active additives and glass frits (eg, lithium-ceramics, such as (LiLa) TiO. 3 The composition is screen printed on a ceramic strip or crystal stone and stacked to form a multilayer structure which can then be heat treated, for example by hot pressing and sintering procedures to densify the laminated sheet.
A lithium ion type primary battery and a secondary battery using a redox active additive composite electrolyte:
In another specific embodiment, a lithium ion primary battery and a lithium ion secondary battery using a redox active additive lithium ion conductive composite electrolyte are disclosed. A lithium ion battery comprising a redox active additive composite electrolyte can be used to support devices that require severe, high current requirements (such as digital cameras) and can replace alkaline batteries. These types of batteries can be used in portable consumer electronic devices such as, but not limited to, implantable electronic medical devices such as artificial rhythms, clocks, camcorders, digital cameras, thermometers, computers, laptops. Basic input/output system, communication equipment and remote control car lock.
A lithium ion battery using a redox active additive composite electrolyte can be used in various configurations, for example, a 3 volt "coin" type lithium manganese battery, which is usually about 20 mm in diameter and has a thickness of about 1.6 mm to about 4 mm. .
A lithium ion primary battery and a secondary battery using a redox active composite electrode are further described with reference to the following non-limiting examples:
Example LP1:
The film of Example P1 was used in a Lithium-ion Primary Battery. The battery comprises a lithium metal anode and a manganese dioxide cathode. The battery is assembled into a coin battery architecture. The manganese dioxide powder is mixed with acetylene black and Teflon binder at a mass ratio of 85:5:10. This mixture was formed into a paste and rolled to a thickness of 100 μm. A circle having a diameter of 0.635 inch was punched out from the rolling paste and dried under vacuum for 24 hours to form a cathode electrode. The cathode electrode is transferred to a glove box where it is placed into the coin cell housing. Add a few drops of electrolyte to the cathode electrode (EC: DMC (50:50 weight), 1M LiPF 6 ). The film of Example P1 was immersed in this electrolyte and placed over the cathode. Finally, a lithium anode was placed over the film by pressing the lithium metal onto a copper current collector to form an anode having a thickness of 40 microns. The coin cell is then folded to form a lithium ion galvanic cell.
Example LS1 (Lithium Ion Secondary Battery):
Follow the procedure of example LP1 (except with LiCoO 2 To replace manganese dioxide as a cathode material).
Example LS2 (Lithium Ion Secondary Battery):
The procedure of Example LP1 was followed (in addition to replacing manganese dioxide as a cathode material with lithium manganese oxide).
Example LS3 (Lithium Ion Secondary Battery):
Follow the procedure of example LP1 (except with LiFePO 4 To replace manganese dioxide as a cathode material).
A lithium ion primary battery using a redox active additive lithium ion conductive composite electrolyte:
A lithium primary battery using a redox active additive lithium ion conductive composite electrolyte uses an anode including one or more of lithium metal and a lithium compound, and includes a film of a redox active additive lithium conductive composite electrolyte, and includes a cathode of manganese dioxide, molybdenum trioxide, and a mixture thereof; wherein the lithium compound is such as a lithium halide (such as lithium sulfoxide, lithium bromide, lithium iodide, and mixtures thereof), lithium/sulfur dioxide (Li-SO) 2 ) and mixtures thereof.
A lithium ion primary battery using a film containing a redox active additive lithium ion conductive composite electrolyte can exhibit a larger power density than a lithium ion primary battery not using a lithium ion conductive composite electrolyte. For example, an anode of a lithium metal, a cathode of manganese dioxide, and a film containing a redox active additive and a composite electrolyte using molybdenum trioxide as a redox active additive and using PVDF HFP as an electrolyte are used. Lithium/manganese dioxide primary cells exhibit enhanced power density and specific permittivity.
An electrolyte for use with a redox active additive for a redox active additive composite electrolyte in a lithium primary battery includes, but is not limited to, lithium perchlorate in propylene carbonate; tetrachloroethylene in sulfite dichloride Lithium aluminate; lithium bromide in a mixture of sulfur dioxide and propionitrile; lithium tetrafluoroborate in propylene carbonate; lithium tetrafluoroborate in dimethoxyethane; tetrafluoro in γ-butyrolactone Lithium borate; organic charge transfer complex, for example, poly-2-vinyl pyridine (P 2 VP); lithium hexafluorophosphate in a mixture of propylene carbonate and dimethoxyethane; lithium hexafluoroarsenate in a mixture of propylene carbonate and dimethoxyethane; and mixtures thereof.
The redox active additive for the redox active additive composite electrolyte used in the lithium primary battery includes, but is not limited to, molybdenum trioxide (MoO) 3 ), gold (Au), platinum (Pt), SiO 1-x (where 0.1<x<1.5), manganese dioxide (MnO) 2 ), ferrous oxide (FeO), and mixtures thereof. The redox active additives used are in the form of granules, fine rods, mesh and rods, and combinations thereof. The redox active additives may be in contact with each other in the electrolyte or may be isolated from each other. The amount of the redox active additive in the redox active additive composite electrolyte used in the lithium primary battery is sufficient to achieve high energy density and high power density. The amount of redox active additive can range from about 0.05% to about 50% by weight of the electrolyte.
A lithium ion galvanic cell using a redox active additive composite electrolyte can be made by the method described in US 2009/0123844, the teachings of which are hereby incorporated by reference in its entirety.
A lithium ion secondary battery using a redox active additive lithium ion conductive composite electrolyte:
In another embodiment, a lithium ion secondary battery comprising an anode, a cathode, and a redox active additive composite electrolyte is disclosed. A lithium ion secondary battery system using a redox active additive composite electrolyte can be used in various consumer electronic products and electric vehicles. Compared with a lithium ion secondary battery that does not use a redox active additive composite electrolyte, a lithium ion secondary battery system using a redox active additive composite electrolyte exhibits a much higher energy density, enhanced coulomb effect and improvement Its anti-attenuation effect and self-discharge that is reduced when not in use.
The polymerizable electrolyte used in the redox active additive composite electrolyte used for the lithium ion secondary battery includes, but is not limited to, PVDF, PEO, and a mixture thereof. The redox active additive used in the redox active additive composite electrolyte used in the lithium ion secondary battery includes, but is not limited to, MnO 3 , FeO, Fe 2 O 3 V 2 O 5 , SnO 2 , Au, Pt and mixtures thereof. The amount of redox active additive may be present in an amount from about 0.05% to about 50% by weight, preferably from about 1% to about 10% by weight, based on the weight of the electrolyte.
Materials which can be used as anodes in lithium ion secondary batteries include, but are not limited to, lithium, lithiated carbon, lithium titanate (Li-titanate), and mixtures thereof. The material used for the cathode used in the lithium ion secondary battery using the redox active additive composite electrolyte includes, but is not limited to, carbon, LiCoO 3-x (where 0<x<1), LiFePO 4-y (where 0 < y < 1) and mixtures thereof. A lithium ion secondary battery system using a redox active additive composite electrolyte can be obtained by a method as disclosed in U.S. Patent Publication No. 2010/0129719, the entire disclosure of which is incorporated herein by reference.
High temperature batteries and high temperature capacitors using a redox active additive composite electrolyte:
In another embodiment, a high temperature battery and a high temperature capacitor (e.g., a high temperature supercapacitor that operates generally at about 20 degrees Celsius to about 250 degrees Celsius and uses a redox active additive composite electrolyte) is disclosed. High temperature batteries and capacitors using redox active additive glass-ceramic composite electrolytes can withstand higher voltages and/or currents to achieve energy density compared to high temperature batteries and capacitors that do not use redox active additive composite electrolytes With increased power density.
The redox active additive composite electrolyte which can be used for a high temperature battery and a capacitor includes, but is not limited to, a redox active additive glass ceramic composite electrolyte. The thickness of the redox active additive glass ceramic composite electrolyte for a high temperature battery or a high temperature capacitor may vary from about 1 cm to about 1.0 μm.
The glass ceramic electrolyte that can be used with the redox active additive for use in high temperature batteries and high temperature capacitors includes, but is not limited to, a LAGP-based glass ceramic (for example, LiAlGe-phosphate glass ceramic), a tantalum-based glass ceramic (for example, Li). 2 SP 2 O 5 -TeO 2 ), a glass-ceramic of a selenium base (for example, a chalcogenide glass ceramic such as Li) 2 SP 2 S 5 And mixtures thereof).
Redox active additives that can be used with glass ceramic electrolytes for use in high temperature batteries include, but are not limited to, platinum, gold, molybdenum trioxide, tungsten oxide, tin dioxide, lithium titanium oxide, and mixtures thereof.
Manufacturing of high temperature batteries and capacitors:
The cathode and anode electrodes used in the high temperature battery and capacitor using the redox active additive composite electrolyte are screen printed onto the redox active additive ceramic glass composite. The electrodes can be screen printed, for example in the form of an organic ink, in the form of a thick film frit, or a combination thereof. The electrodes can also be deposited as a thin film, for example by chemical vapor deposition.
The redox active additive composite electrolyte film used in a high temperature battery and a capacitor is formed by laminating a stack of cast tapes formed by a redox active additive composite electrolyte slurry. The surface area of the electrolyte is increased by the addition of a fugitive material to the top and bottom layers of the stack. Short-acting promoter materials include, but are not limited to, carbon, starch, and mixtures thereof. The fugitive catalyz material can be added to the slurry used to form the top and bottom layers of the stack. During the heat treatment, the fugitive chemist material is vaporized to produce increased porosity to enhance the bonding of the electrode to the redox active additive composite electrolyte film.
The anode material can be formed on the porous surface of the redox active additive composite electrolyte membrane by placing the anode material in contact with the porous surface of the composite electrolyte membrane and then heating the anode material to above the melting point thereof, wherein the anode material is formed on the porous surface of the redox active additive composite electrolyte membrane. For example, lithium metal, lithium glass (such as LAGP), glass frit of lithium glass (such as LiBO borate), and mixtures thereof. The molten anode material will then flow into and bond with the porous surface of the composite electrolyte membrane. Similarly, lithium-containing cathodes (such as LiCoO) 3 LiFePO 4 And a mixture thereof may be formed on a porous surface of an electrolyte such as a ceramic glass electrolyte.
High temperature supercapacitors:
In another embodiment, a high temperature supercapacitor that can operate at about 50 degrees Celsius to about 400 degrees Celsius is disclosed. The high temperature supercapacitor uses a redox active additive composite electrolyte, a cathode mixture and an anode, wherein the cathode mixture comprises an electrode blocking metal powder and a lithium glass frit, and the anode is made of carbon, lithium metal, LiTiO, and The mixture is formed. The glass ceramic electrolyte that can be used with the redox active additive in the redox active additive composite electrolyte includes, but is not limited to, a LAGP-based glass ceramic, a selenium sulfide based glass ceramic, a bismuth glass ceramic, and mixtures thereof. Useful LAGP-based glass ceramics include, but are not limited to, LiAlGe-phosphate glass, LiAlGeTi-phosphate glass, and mixtures thereof. Selenium sulfide glass ceramics that can be used include, but are not limited to, Li 2 SP 2 S 5 .
Redox active additives useful for redox active additive glass ceramic composite electrolytes include, but are not limited to, molybdenum trioxide, manganese dioxide, titanium sulfide, lithium sulfide, and mixtures thereof. In general, the amount of redox active additive is between about 0.05% and about 50% by weight based on the weight of the glass ceramic electrolyte.
The barrier metal powder used in the cathode mixture includes, but is not limited to, nickel, copper, tungsten, rhenium, ruthenium, iron-chromium-nickel, and alloys and mixtures thereof. The glass frit of lithium glass used in the cathode mixture includes, but is not limited to, lithium-borate. The amount of the barrier metal present in the cathode mixture is between 40% and about 95% by weight based on the weight of the glass frit of the lithium glass. Carbon additions such as stone milling and carbon black can also be added to the cathode mixture to reduce oxidation during heat treatment. When a carbon additive is used in the cathode mixture, the amount of the additive is between about 1% by weight and about 10% by weight based on the combined weight of the metal and the glass frit. Blocking the mixture of metal and frit (adding carbon additives as needed) in a controlled environment for heating, such as N 2 -H 2 Or argon to minimize oxidation.
A high temperature supercapacitor system using a redox active additive composite electrolyte can be made according to the procedures set forth in US 2009/0214957 and US 2010/001095, the teachings of which are hereby incorporated by reference in its entirety. A high temperature supercapacitor using a redox active additive composite electrolyte is further illustrated by the following non-limiting examples.
Example LG1: Li + Conductive LAGP-Au redox additive composite electrolyte
Mixing the metering component in ethanol by ball milling 2 CO 3 Al 2 O 3 Ge 2 O 3 With H 4 H 2 PO 4 . The mixture was dried, ground to a powder, and then calcined at 750 ° C for 1 hour. The synthesized powder was reground to produce an abrasive powder. The ground powder was melted at 1300 ° C for 2 hours. The melt is quenched by casting onto an electric reel to form a glass sheet. The glass sheet was annealed at 500 ° C for 1 hour and then cooled to room temperature at a rate of 1 ° C/min to produce Li. + Conductive LAGP. LAGP glass is crushed, ground, and mixed with 5% by weight of gold redox active additive gold, and then ball milled in ethanol; ground powder and 5% by weight of polyvinyl butyral binder and 1% by weight The dibutyl phthalate plasticizer is mixed in ethanol to form a slurry which is cast to form a belt. The cast strip system was burned at 850 degrees Celsius for 4 hours to form a redox additive complex.
Example LG2: Li + Conductive LAGP-SnO 2 Redox additive composite electrolyte
Also use the above procedure for instance LG1, except for SnO 2 Replace Au.
Mixed battery-capacitor with redox active additive composite electrolyte:
In another embodiment, a hybrid battery capacitor, such as a Li-plug-in battery-capacitor, using a redox active additive composite electrolyte membrane is disclosed. A hybrid battery capacitor using a film containing a redox active additive composite electrolyte (for example, any one or more of a redox active additive composite polymer electrolyte and a redox active additive glass ceramic electrolyte) can be used in a short period of time It is charged, discharged in a short period of time, and can exhibit better energy storage and power density than conventional supercapacitors or batteries.
A hybrid battery capacitor using a film containing a redox active additive composite electrolyte exhibits a very fast initial discharge rate characteristic of the capacitor followed by a relatively slow discharge rate of the battery. The voltage output of the hybrid battery capacitor device using the redox active additive composite electrolyte varies from about 1 V to about 7 V, preferably from about 1 V to about 5.5 V.
The hybrid battery-capacitor shown in Figures 1A and 1B comprises a continuous anode, a multi-section cathode, and an intermediate redox active additive composite electrolyte. The electrolyte contacts both the anode and the multi-section cathode. The anode contains a source of lithium ions and is a reversible redox reaction. The multi-section cathode (as shown in Figure 1B) comprises cathode segments (A) and (B). The cathode section (A) of the battery contacts a first portion of the composite redox active additive composite electrolyte such that the battery-capacitor system can be discharged in the form of battery characteristics. The cathode section (B) of the capacitor contacts a second portion such that the battery capacitor discharges in the form of a capacitor characteristic. The cathode segments (A) and (B) are in continuous contact or have a spacing of between 0 mm (i.e., continuous) to several millimeters between materials. The cathode section (A) is preferably LiCoO 3 And the cathode section (B) is preferably carbon.
The electrolyte used in the redox active additive composite electrolyte includes, but is not limited to, a glass ceramic electrolyte, a polymer electrolyte, and a mixture thereof. The glass ceramic electrolyte used includes, but is not limited to, Li 2 S-Li 2 P, LAGP and mixtures thereof. The polymer electrolytes used include, but are not limited to, PVDF, PEO, and mixtures thereof. When a glass ceramic electrolyte is used, the redox active additive is generally present in the glass ceramic electrolyte (based on the weight of the glass ceramic electrolyte) in an amount of from about 0.1% by weight to about 40% by weight. When a polymer electrolyte is used, the redox active additive is generally present in the polymer electrolyte (based on the weight of the polymer electrolyte) in an amount of from about 0.1% by weight to about 30% by weight.
A hybrid battery-capacitor having a redox active additive composite electrolyte is further illustrated by the following non-limiting examples:
Example HB1: with Li + -PVDF-Li x CoO 2 With MoO 3-x Hybrid battery-capacitor of redox active additive composite electrolyte membrane
Example P7 (Li + -PVDF-Li x CoO 2 ) with P8 (Li + -PVDF- MoO 3-x The 150 micron thick composite electrolyte isolating film is aligned with a lithium intercalated carbon anode electrode. Mixed cell-capacitor capacitor section of activated carbon paste and hybrid battery-capacitor battery section LiFePO 4 The paste system is screen printed to form a multi-segment cathode pattern on a current collector foil. The screen printed foil is combined with a film to form a hybrid battery-capacitor.
Multi-section cathode:
Materials for battery cathode sections (A) that can be used for multi-section cathodes include, but are not limited to, LiCoO 3 LiVO x (where 0<x<3), Li 2 Ti 4 O 12 (ie "LiTiO"), LiFePO 4 And mixtures thereof. The materials in the cathode section (B) of the capacitor that can be used for the multi-section cathode include, but are not limited to, carbon, metals (e.g., antimony, iron, nickel), alloys thereof, intermetallics thereof, and mixtures thereof. The cathode section (B) of the capacitor has a reinforced surface area to increase the electrical double layer capacitance value.
As shown in Fig. 1A, the battery cathode section (A) of the multi-section cathode AB is used as a battery cathode. The cathode section (A) of the multi-section cathode AB contains LiVO, LiCoO 2 LiMn 2 O 3 And mixtures thereof. In Fig. 1A, the capacitor section (B) of the multi-section cathode A- is made of, for example, carbon, carbon nanotubes, a barrier metal foil (e.g., tantalum), a barrier metal (e.g., iron, iron-chromium-nickel, tantalum). , tungsten, and mixtures thereof).
Multi-section cathodes using redox active composite electrolytes are further illustrated by the following non-limiting examples.
Example MSC1: Cast Battery Cathode - LiMn 2 O 4 With capacitor cathode - AC
Mixing molar ratio 1:4 in a ball mill in ethanol 2 O 3 With MnO 2 Before the drive. The mixture was dried, ground to a powder, and then calcined at 650 ° C for 8 hours. The synthesized powder is then ground again. LiMn can be obtained by heat treatment in air at 750 ° C for 20 hours. 2 O 4 Spinel structure. LiMn 2 O 4 An activated carbon (AC) paste containing 10% by weight of a Teflon binder was cast on a current collector of a copper foil by screen printing to form a multi-section cathode electrode. The multi-section cathode electrode sheet was dried in a vacuum at 120 ° C for 48 hours to serve as a cathode electrode in a hybrid battery-capacitor.
Example MSC2:
The procedure described above with respect to example MSC1 was also used, except that the copper foil was replaced with aluminum.
Hybrid battery - capacitor electrode configuration:
2 to 10 illustrate an electrode configuration for illustrative purposes only and not limitation, which is used in a hybrid battery-capacitor using a redox active additive composite electrolyte. Figure 11 illustrates a multilayer configuration of a hybrid battery-capacitor.
A hybrid battery-capacitor system using a redox active additive composite electrolyte can be produced by coating a continuous side of a first side of a redox active additive composite polymer electrolyte membrane. The battery section cathode and cathode section anodes are coated to opposite sides of the film.
The redox active additive composite polymer suitable for use in a hybrid battery-capacitor is processed into a film by casting a redox active additive composite polymer electrolyte into one or more ribbons. The tape system can be formed into a tape stack structure that is then heat treated to produce a film. Alternatively, a single strip can be heat treated to produce a film. When a plurality of tape bodies are used in a stacked structure, the same or different polymer electrolytes are used for the tape system used in the stacked structure.
The first side of the film is coated with an anode material. Anode material coatings are formed by a variety of conventional methods, such as chemical vapor deposition, sputtering, silk screen printing, and combinations thereof. A first portion of the opposite side of the film is coated with the battery cathode material and another portion of the opposite side of the film is coated with the capacitor cathode material. Cathode material coatings are formed by a variety of conventional methods, such as chemical vapor deposition, sputtering, silk screen printing, and combinations thereof.
A proton supercapacitor using a thin film formed by a redox active additive composite polymer electrolyte:
In another aspect, a proton supercapacitor using a redox active additive complex polyelectrolyte, an anode, and a cathode is disclosed. These proton supercapacitors achieve improved energy storage compared to proton supercapacitors that do not use redox active additive complex polyelectrolytes.
The polymer electrolyte which can be used in the redox active additive composite polymer electrolyte includes, but is not limited to, Nafion, polyvinyl alcohol, polybenzimidazole, polyacetic acid, and mixtures thereof. The redox active additive for use in the redox active additive composite polymer electrolyte may include, but is not limited to, MnO 2-x (where 0<x<0.2), RuO 2-x (where 0 < x < 0.2), double layer hydroxide (DLH), such as cobalt hydroxide, nickel aluminum hydroxide, cobalt aluminum hydroxide, cobalt chromium hydroxide, nickel chromium hydroxide, and mixtures thereof. The redox active additive used can have various forms such as filaments, tubes, spheres, flakes, and mixtures thereof. The redox active additive can also be incorporated and deposited into the mesh holes that are embedded and surrounded by the electrolyte. The redox active additive may be used in the redox active additive composite polyelectrolyte in an amount of from about 0.01% by weight to about 50% by weight based on the weight of the polyelectrolyte.
A proton supercapacitor of a film formed using a redox active additive composite polyelectrolyte can be prepared according to the procedure disclosed in U.S. Patent No. 5,136,474, the entire disclosure of which is incorporated herein by reference. A proton supercapacitor using a thin film formed by a redox active additive composite polymer electrolyte is further described with reference to the following non-limiting procedures:
Procedure A: A symmetric electrochemical capacitor using activated carbon (about 100 microns thick) as the positive and negative electrodes is sandwiched together using a polymer composite film having a thickness of from about 20 microns to about 50 microns. The polymer film can be oxidized by proton conductive polymers such as, but not limited to, Nafion, sulfonated polydiether ketone, polyvinyl alcohol hydrated gel, polymethyl methacrylate methyl ester, and combinations thereof. Reducing an active filler (eg, one or more metal oxides having from about 1% to about 50% by weight manganese dioxide, molybdenum oxide, iron oxide; one or more metal double layer hydroxides, such as hydroxide a mixture of cobalt, cobalt aluminum hydroxide, nickel aluminum hydroxide or a mixture thereof; and one or more conductive polymers such as, but not limited to, a mixture of polyaniline, polypyrrole, and PEDOT thereof, for casting form. Typically, a slurry of about 85% by weight of activated carbon, about 10% by weight of tetrachloroethylene (Teflon) and about 5% by weight of acetylene black is mixed together using tetrahydrofuran as a solvent. The resulting mixture was applied to a thin carbon paper, dried and used as an electrode. Next, 5 g of polyvinyl alcohol was dissolved in about 20 ml of water to form a solution, and about 5% by weight of polyaniline (based on the weight of polyvinyl alcohol) was added to the solution. Then, about 2% by weight of glutaraldehyde (crosslinking agent) was added to the solution (based on the weight of the polyvinyl alcohol). The resulting solution ribbon is cast to a thickness of from about 20 microns to about 40 microns to form a film. The cast-formed film was dried and immersed overnight in about 1 M sulfuric acid to form a soaked composite film. Symmetrical capacitors (for example, in 2032 stainless steel coin cells or tetrachloroethylene Swagelok cells) can be made by laminating carbon electrodes with a soaked composite film.
Procedure B: an asymmetric electrochemical aqueous capacitor using activated carbon as a negative electrode and any one or more of manganese dioxide, nickel hydroxide or lead dioxide as a positive electrode, and a proton conductive polymer (for example, any one or more Nafion, sulfonated polydiether ketone, polyvinyl alcohol hydrated gum, polymethyl methacrylate methyl ester) together with any one or more redox active fillers (eg, metal oxides having about 1% by weight to About 50% by weight of any one or more of manganese dioxide, molybdenum oxide, iron oxide; or any one or more of double layer hydroxides, such as cobalt hydroxide, cobalt aluminum hydroxide, nickel aluminum hydroxide; The polymer composite film made of any one or more of conductive polymers such as, but not limited to, polyaniline, polypyrrole or PEDOT) is laminated.
Typically, about 85% by weight of activated carbon, about 10% by weight of tetrachloroethylene (Teflon) and about 5% by weight of acetylene black are mixed together using tetrahydrofuran (THF) as a solvent. The resulting mixture was applied to a thin carbon paper, dried, and used as a negative electrode. Similarly, a slurry containing about 70% by weight of manganese dioxide, about 20% by weight of acetylene black, and about 10% by weight of tetrachloroethylene (Teflon) was dissolved in tetrahydrofuran and applied to carbon paper. The dried paper was used as a positive electrode. The weight ratio of the positive electrode to the negative electrode can be changed from about 1:1 to about 3:1, respectively. Next, 5 grams of polybenzimidazole was dissolved in dimethylformamide overnight under reflux to form a solution, and about 5% by weight of cobalt hydroxide (based on the weight of polybenzimidazole) It is added to the solution to form a polymer solution. The polymer solution is cast into a film to form a film of from about 20 microns to about 50 microns thick. The cast formed film was dried and immersed overnight in about 4 M potassium hydroxide to form a soaked composite film. An asymmetric capacitor in a 2032 stainless steel coin cell or a tetrachloroethylene Swagelok battery can be obtained by laminating a positive electrode and a negative electrode with a soaked composite film.
Lithium ion capacitor with redox active additive composite electrolyte:
In another aspect, a lithium ion capacitor using a redox active additive composite electrolyte is disclosed. These capacitors achieve a significant increase in output voltage and capacitance. A lithium ion capacitor using a redox active additive composite electrolyte may use a cathode containing activated carbon, and an anode including lithium metal, lithium fossil mill, lithium titanate, ruthenium, gold, tin, and a mixture thereof.
The polyelectrolytes useful in the redox active additive composite electrolyte used in lithium ion capacitors include, but are not limited to, PVDF, HFP, PEO, mixtures thereof, and copolymers thereof. The redox active additive for use in the redox active additive composite electrolyte can include, but is not limited to, molybdenum trioxide, tin oxide, zinc oxide, and mixtures thereof. The amount of the redox active additive in the redox active additive complex polyelectrolyte is usually from about 0.05% by weight to about 50% by weight based on the weight of the polyelectrolyte. A lithium ion capacitor having a redox active additive composite electrolyte can be prepared in accordance with the procedures disclosed in U.S. Patent No. 7,00, 947, 778 and U.S. Patent No. 7,817, 403, the entire disclosure of which is incorporated herein by reference.
Fig. 12 shows the charging performance of a lithium ion capacitor using lithium metal as an anode, carbon as a cathode, and a PVDF polyelectrolyte containing various manganese dioxide, molybdenum trioxide and antimony as redox active additives. Manganese dioxide has an oxidation-reduction potential of 3 volts and is present in the PVDF polymer in an amount of 5% by weight (based on the weight of the PVDF polymer); molybdenum trioxide has an oxidation-reduction potential of 2 volts, and is 5 The amount by weight % (based on the weight of the PVDF polymer); and the ruthenium has an oxidation-reduction potential of 0.1 volt and is present in the PVDF polymer in an amount of 5% by weight based on the weight of the PVDF polymer in. The anode, cathode, and redox active additive polyelectrolyte were packaged in a glove box environment and assembled into coin cells. The charging performance of the battery was measured by a fixed current charging/discharging method using a standard potentiometer from Gamry.
A lithium ion capacitor using activated carbon as a positive electrode and any one or more of lithium, lithium titanate, lithium-doped stone mill, and lithium-doped ruthenium as a negative electrode is further described below. The electrode and the polymer colloid (for example, any one or more of polyvinylidene chloride, polyvinylidene chloride-co-hexafluoropropylene, polymethyl methacrylate, and polyacrylonitrile) together with about 5 weights A polymer composite film of from % to about 20% by weight of a redox filler (for example, any one or more of molybdenum oxide, tin oxide, vanadium oxide, and manganese dioxide) is laminated. For example, an activated carbon electrode is prepared by kneading a mixture of 85% by weight of activated carbon, 10% by weight of tetrachloroethylene (Teflon), and 5% by weight of acetylene black. The mixture was rolled up on an aluminum foil to be used as a positive electrode (thickness: 100 μm). A small amount of lithium was pressed on a 25 μm thick copper foil to be used as a negative electrode. Next, 5 g of PVDF-HFP was dissolved in 20 ml of DMF and stirred overnight to form a polymer solution. 5 wt% of molybdenum trioxide (based on the weight of PVDF-HFP) was added to the polymer solution, and ultrasonic vibration was performed. The resulting solution was cast to form a film, and dried for 4 hours, and then reversed with a large amount of ethanol. The cast film was then peeled off and dried under vacuum. The treated film will then be in 1 M LiPF 6 Soak for 2 days in /EC/DMC to form a soaked film. A lithium ion capacitor is assembled by sandwiching the positive and negative electrodes together with the soaked film. The performance of the capacitor is illustrated in Figures 23-25. Figure 23 compares a fixed current discharge curve for a capacitor fabricated using a film treated with a molybdenum oxide redox active additive electrolyte compared to a film not treated with a redox active electrolyte. The capacitance shown in Figure 23 is increased by a factor of three under a similar discharge rate. Figure 24 shows the cycle stability of the capacitor, and Figure 25 shows the charge-discharge curve of the capacitor. The capacitor shows a capacitance of 250 Faradays/gram at the beginning and then a brief burst of high current cycling. Thereafter, when the capacitor was re-measured at a current of 100 mA/g, the capacitance was only slightly reduced.
Non-planar lithium ion hybrid composite film:
In another example, a non-planar lithium ion hybrid composite film using a redox active additive composite electrolyte is disclosed. The non-planar lithium ion hybrid composite film includes, but is not limited to, a cylindrical lithium ion mixed composite film as shown in FIG.
Figure 13 shows a cylindrical lithium ion hybrid composite film using an internal cathode, an external anode, and an intermediate redox active additive composite electrolyte. The electrolyte used in the redox active composite electrolyte may include, but is not limited to, ferric oxide and SiO x (where 0.1<x<1.0). The redox active additive for use in the redox active composite electrolyte may include, but is not limited to, molybdenum trioxide. The amount of the redox additive in the electrolyte is usually from about 0.01% by weight to about 50% by weight based on the weight of the electrolyte. Non-planar lithium ion hybrid composite films can be made according to the procedures disclosed in U.S. Patent No. 6,426,863, the entire disclosure of which is incorporated herein by reference.
A film that polymerizes a composite electrolyte using a redox active additive can be used in many applications such as, but not limited to, supercapacitors, ultra high capacitors, primary batteries, secondary batteries, fuel cells, ion barrier films, gas barrier films, chemistry Sensor and desalting membrane. The polyelectrolyte used in the redox active additive composite electrolyte (note that the filler may be homogeneously or heterogeneously dispersed) includes, but is not limited to, polymers such as PVDF, PEO, and mixtures thereof, and compatible with electrolysis Salts and solvents are used together.
The redox active additive useful in the electrolyte (e.g., polyelectrolyte) can include, but is not limited to, manganese dioxide, iron oxide, nickel oxide, ruthenium, tin dioxide, molybdenum trioxide, gold, platinum, and mixtures thereof. The redox active additive may be present in the electrolyte in an amount sufficient to cause enhanced ionic conductivity, as well as a modified space charge distribution, one or more electrolytes, and an electrode. In general, the redox active additive may be present in the electrolyte in an amount of from about 0.01% by weight to about 99.9% by weight (based on the weight of the electrolyte), preferably from about 0.1% by weight to about 50% by weight, more preferably about 1% From % by weight to about 15% by weight. The redox active additive can be surrounded by the electrolyte and isolated from the cathode and anode. The size of the redox active additive can vary from about 0.1 nm to about 1 mm and can have a wide variety of configurations, such as dodecahedrons, cubes, irregular polyhedrons, sheets, rods, filaments. , cylindrical and their mixture.
The redox active additive may be randomly distributed in the electrolyte as a single type of form, may have a mixed form and a random distribution, may be mixed with the mixed form and coated on the surface of another active phase (eg, molybdenum trioxide) On the platinum). The redox active additive can also be aligned in parallel or perpendicular to the electrode passing through the electrolyte, which can be supported by an electric field and/or a magnetic field (depending on the electrical properties of the redox fill content). The redox active additive may also be continuously laminated with the electrode. When the redox active additive is in the form of a rod having a length of from about 1 nm to about 10 microns or in the form of a diameter of from about 0.1 nm to about 1 micron, the rod typically has a porosity of from about 0% to about 90%. Sex. When the redox active additive is in the form of a sheet, the sheet may have a width of from about 1 nanometer to about 100 microns and a thickness of from about 1 nanometer to about 1 micrometer, and from 0% to about 90% of the porous. Sex.
Production of a film comprising a redox active additive composite electrolyte:
The redox active additive composite electrolyte (for example, a redox active additive polyelectrolyte) can be formed on the belt by a method such as casting molding and extrusion. The tape body typically has a thickness of from about 0.1 microns to about 1000 microns, preferably from about 10 microns to about 400 microns.
The film comprising the redox active additive composite electrolyte can form a film by stacking a layer of a redox active additive composite electrolyte ribbon and compressing the stack. As an illustration, a redox-active iron oxide particle having a diameter of 1 nm was mixed with a ferrite rod having a diameter of 10 nm and a length of 1.0 μm to form a mixture. The mixture is then mixed with a PVDF polyelectrolyte to form a mixture. The mixture can be cast and formed, for example, by strip casting or extrusion to form a film. Casting can be carried out under strong magnetic fields, strong electric fields, or a combination thereof. When an electric field is used, the strength of the electric field is sufficient for the redox additive to be aligned with the direction in which the electric field is applied. Any one or more of an alternating current and a direct current electric field having a field strength of from about 0.1 volts/cm to about 10 volts/cm can be applied. When a magnetic field is applied to the redox additive (for example, those with magnetic anisotropy, such as ferric oxide, nickel oxide, and mixtures thereof), the field strength is sufficient to allow the redox additive to adjust with the direction of the applied magnetic field. quasi. Generally, the magnetic field that can be used has a strength of about 1000 Gauss or more.
The redox additives may be randomly distributed within the band, may have a spatially varying amount within the band, or may be present in a variety of sizes and shapes (as shown in Figures 15-21). For example, the ribbon used in the film comprising the redox additive can be placed parallel or perpendicular to the electrode (e.g., anode or cathode), and the redox additive can be distributed semi-continuously or discontinuously to the ribbon. Furthermore, the embedded regions of the redox additive can be placed parallel or perpendicular to the cathode or anode. In other aspects, such as shown in Figure 14, an unfilled air space may be present between the film and the electrode.
The tape bodies used in the specific embodiments shown in, for example, Figs. 15 to 21 may be laminated into a film to pass the ion conductive property through one or more layers of the film. The film may have a thickness of from about 0.01 microns to about 1 micron, preferably from about 0.1 microns to about 400 microns, and most preferably from about 1 micron to about 200 microns. The electrodes can be printed on the film by a number of methods such as, but not limited to, screen printing.
Solid oxide fuel cell using a redox active additive composite electrolyte:
In another embodiment, the invention is directed to a solid oxide fuel cell (SOFC) using a redox active additive composite electrolyte membrane. Compared with a solid oxide fuel cell using a conventional electrolyte, a solid oxide fuel cell using a redox active additive composite ceramic electrolyte film can have higher efficiency, increased ion current, long-term stability, and greater fuel elasticity. , lower divergence, shorter start-up time, improved ion diffusion kinetic energy, lower operating temperature, and improved dependence. A solid oxide fuel cell using a redox active additive composite electrolyte membrane can be operated at a lower temperature.
The electrolyte used in the redox active additive composite electrolyte film may include, but is not limited to, a ceramic electrolyte, a polyelectrolyte, and a combination thereof. Ceramic electrolytes that can be used include, but are not limited to, Y 2 O 3 -ZrO 2 , Sc 2 O 3 -ZrO 2 Bi 2 V 1-x Me x O 5.5-x/2 (where 0.05 < x < 0.3, Me is copper, titanium, zirconium, nickel, aluminum, cobalt, manganese, cerium, zinc, magnesium, and mixtures thereof). Polyelectrolytes that can be used include, but are not limited to, Nafion and mixtures thereof.
The redox active additive that can be used in the redox active additive composite electrolyte (for example, in a ceramic electrolyte) includes, but is not limited to, MnO 2-x (where 0<x<0.2), PbO, NiO 1-y (where 0<y<0.1), CuO, V 2 O 5-z (where 0 < z < 0.5) and mixtures thereof. The amount of the redox active additive in the ceramic electrolyte is usually about 25% by weight based on the weight of the ceramic electrolyte. When the SOFC is a proton-based SOFC, the ceramic electrolyte may be a perovskite, such as BaCeO. 3 , Y 2 O 3 Doped BaZrO 3 And mixtures thereof. When ceramic electrolyte Y 2 O 3 Doped BaZrO 3 Redox active additives that can be used with ceramic electrolytes include, but are not limited to, nickel, platinum, MnO 2-x (where 0<x<0.2), RuO 2-z (where 0 < z < 0.2), a double layer hydroxide (for example, cobalt hydroxide, nickel aluminum hydroxide, cobalt aluminum hydroxide, cobalt chromium hydroxide, nickel chromium hydroxide or a mixture thereof).
A solid oxide fuel cell that can use a redox active composite electrolyte is further illustrated by the following non-limiting examples:
Example FC1: 100 g of yttria-stabilized zirconia and 5 g of manganese monoxide were mixed by ball milling in ethanol. The mixture was dried, crushed to a powder, and formed into a ceramic disc by hydraulic compaction. The disc was rapidly burned in an oven at 1,700 ° C for 20 minutes under reduced pressure. After the platinum electrode was applied to either side by burning the air-dried platinum ink for 1500 degrees Celsius for 15 minutes, the sintered ceramic sheet was polished to be used as an electrode in a solid oxide fuel cell.
Redox Active Additive Composite Polymer Electrolyte Thin Film Fuel Cell (PEMFC):
In another embodiment, a polymer electrolyte membrane fuel cell (PEMFC) using a redox active additive complex polyelectrolyte is disclosed. The redox active additive composite polyelectrolyte used in PEFMC allows the fuel cell to operate at about 220 degrees Celsius or higher to achieve improved efficiency, improved energy density, improved current, improved cooling ease, and reduced Sensitivity to carbon monoxide poisoning of platinum catalysts. The polymer electrolyte of the redox active composite polymer electrolyte which can be used in the film of PEFMC includes, but is not limited to, Nafion. The redox active additive that can be used in the redox active additive complex polyelectrolyte includes, but is not limited to, MnO 2-x (where 0<x<0.2) and RuO 2-x (where 0 < x < 0.2) and mixtures thereof. The redox active additive may be present in the composite electrolyte in an amount of from about 0.1% by weight to about 20% by weight based on the weight of the polyelectrolyte.
Ceramic gas barrier film using a redox active additive composite electrolyte:
A film using a redox active additive composite ceramic electrolyte, such as for fluid isolation (e.g., gas barrier), is disclosed in another embodiment. These films can be used at temperatures up to about 1200 degrees Celsius and at temperature gradients up to about 700 degrees Celsius. Operation at these temperatures and gradients increases oxygen permeation (relative to gas barrier films that do not use redox active additive composite electrolytes).
The ceramic electrolyte which can be used in the redox active additive composite ceramic gas barrier film includes but is not limited to Y 2 O 3 -ZrO 2 , Sc 2 O 3 -ZrO 2 (La 1-x Ca x ) y FeO 3-δ (where 0 < δ < 0.3, 0.5 < x < 1.0, and 1.0 < y < 1.1) and mixtures thereof. The redox active additive that can be used in the ceramic electrolyte includes, but is not limited to, nickel, CeO 2-x (where 0<x<0.2), MnO 2-y (where 0 < y < 0.2) and mixtures thereof. The redox additive may be present in the ceramic electrolyte in an amount of from about 0.1% by weight to about 50% by weight based on the weight of the ceramic electrolyte. The redox active additive morphology can vary widely. The size of the redox active additive can also vary from about 1 nanometer to 1.0 micron. The redox active additive may be randomly distributed within the ceramic electrolyte or have a graded distribution.
The ceramic gas barrier film using the redox active ceramic electrolyte can be formed by a multilayer laminated board obtained by, for example, a belt casting and extrusion method. The electrodes can be bonded to the ceramic film by co-combustion or post-combustion of the electrode material on a ceramic film, as shown in US 20070237710 (the entire teachings of which are incorporated herein by reference).
A hydrogen barrier film using a redox active additive to polymerize a proton conductive electrolyte:
In another embodiment, a hydrogen barrier film using a redox active additive substance-conductive composite electrolyte is disclosed. These hydrogen barrier films can be used to isolate hydrogen from the mixed gas at temperatures ranging from about 20 degrees Celsius to about 200 degrees Celsius.
The polymeric proton conductive electrolyte that can be used with the redox active additive complexed polyelectrolyte includes, but is not limited to, Nafion, sulfonated polybenzimidazole, sulfonated polydiether ketone, polyimide, polyphosphazene, and Its composition. Sulfonated polybenzimidazoles which may be used include, but are not limited to, poly(2,5-benzimidazole), phosphoric acid doped poly(2,2'-(1,3-phenylene)-5,5 '-Bibenzimidazole) and a copolymer of PBI with a sulfonated polyfluorene, a sulfonated polydiether ketone, a pyridine-based PBI, and mixtures thereof; the polyimine that can be used includes, but is not limited to, 3'-bis(sulfophenoxy)benzidine, 2,2'-bis(sulfophenoxy)benzidine, 3,3'-bis(sulfopropoxy)benzidine, 2,2'-bis ( Sulfopropoxy)benzidine and mixtures thereof; polyphosphazenes which may be used include, but are not limited to, imidazolyl, ethylamino, ethylalanine, benzylalanine, ethylglycine, and mixtures thereof .
The redox active additive which can be used in the redox active additive composite polymeric proton conductive electrolyte includes, but is not limited to, cerium oxide, manganese oxide, and mixtures thereof. The redox active additive may be included in the polymeric proton conducting electrolyte sufficient to increase the amount of ion transport of protons through the membrane. Typically, the redox active additive is present in the polymeric proton conducting electrolyte in an amount of from about 5% by weight to about 10% by weight, based on the weight of the polymer.
A hydrogen barrier film using a redox active additive composite polymerized proton conductive electrolyte can be prepared by forming a mixture of one or more polymeric proton conductive electrolytes and one or more redox active additives to form a mixture. The mixture can then be cast into a film according to the procedure of U.S. Patent No. 4,664,761, the entire disclosure of which is incorporated herein by reference.
Electrode double layer capacitor (EDLC) electrode for desalination and purification of water:
In another embodiment, an electric double layer capacitor electrode utilizing a redox active additive composite electrolyte (eg, a redox active additive complex polyelectrolyte) can be used to desalinate water flowing through the electrode. In this aspect, water flows through a charged porous electric double layer capacitor rod electrode comprising a redox active additive composite electrolyte. The charged rod moves ions (such as hydrogen ions, sodium ions, calcium ions, potassium ions) in the water to a relatively charged EDLC rod electrode, wherein the ions can be adsorbed on the rod electrode. Voltage can be applied to the rod by various known means, such as solar cells, thermoelectric generators, and combinations thereof. The EDLC rod electrode can be regenerated by turning off the applied voltage so that the adsorbed ions can be released. The release of adsorbed ions can be controlled to enable current generation, such as discharge of a capacitor or battery.
The polymer electrolyte that can be used in the redox active composite polyelectrolyte in the rod can include, but is not limited to, Nafion, polybenzimidazole, polyetheretherketone, and combinations thereof. Redox active additives that may be used include, but are not limited to, molybdenum trioxide. The redox active additive may be present in the polyelectrolyte in an amount of from about 0.1% by weight to about 30% by weight based on the weight of the polyelectrolyte. For the sake of explanation, PVDF (molecular weight = 5.73 × 10) 5 And PMMA (molecular weight = 1.04 × 10) 5 Mixing to provide a mixture of 25% by weight copolymer mixture and 75% by weight cyclobutanide to form a polymer solution. The mixture was heated to 180 degrees Celsius for 3 hours under nitrogen. Then, 10% by weight of a stacked double layer hydroxide (LDH) powder (e.g., cobalt-aluminum, nickel-aluminum, manganese-aluminum, zinc-aluminum, based on the weight of the mixture) is added to the mixture. The LDH powder is prepared by coprecipitating a mixture of individual nitrate solutions in sodium hydroxide solution (using sodium carbonate as a stabilizer). The precipitate thus prepared was refluxed at 60 ° C for 18 hours, and then washed and dried. The LDH powder was added to the polymer suspension and mixed for about 2 hours. Next, the polymer suspension is rapidly quenched, cracked, chopped and ground at a liquid nitrogen temperature to grind the polymer into a powder. The polymer powder is compressed into a crystal stone composite sheet at from about 10,000 to about 50,000 pounds per square inch, at about 180 degrees Celsius. These composite sheets were quenched in ice and then exposed to deionized water to extract the cyclopentane. After this, the composite sheet was vacuum dried at 50 degrees Celsius for 24 hours.
Potential type chemical sensor:
In another aspect, a redox active additive composite electrolyte (eg, a redox active additive composite glass electrolyte, a redox active additive composite ceramic electrolyte, and mixtures thereof) can be used in a potential type chemical sensor, such as oxygen sensing. And pH sensor. Potentiometric chemical sensors using any one or more redox active additive glass composite electrolytes and redox active additive ceramic composite electrolytes can be used to detect trace gases (eg, nitrogen dioxide, oxygen, nitrogen in carbon monoxide, The ability to improve sulfur dioxide and its mixtures). These sensors can show improved sensitivity to proton concentration and can increase the voltage potential at a given proton concentration (as compared to a silver wire reference electrode).
The glass electrolyte that can be used in the redox active additive composite glass electrolyte potential type chemical sensor includes, but is not limited to, glass, such as a sulfur-based compound glass, a lithium-doped borosilicate glass, and mixtures thereof.
The sulfur-based compound glass that can be used includes, but is not limited to, manganese-doped As 2 S 3 Ge 28 Sb 12 Se 60 And mixtures thereof. Lithium-doped borosilicate glasses that can be used include, but are not limited to, lithium-doped borosilicate glass.
When the potential type chemical sensor is a pH sensor, the ceramic electrolyte used in the redox active additive composite electrolyte may be included but not limited to Y 2 O 3 Doped ZrO 2 . When the potential type chemical sensor is an oxygen sensor, the ceramic electrolyte used in the redox active additive composite electrolyte may be included but not limited to Y 2 O 3 Doped ZrO 2 , bismuth copper vanadium oxide and mixtures thereof.
The redox active additive for use in any one or more redox active additive composite ceramic electrolytes and redox active additive glass electrolytes may include, but is not limited to, MoO 3 FeO x (where 0<x<1.5), MnO y (where 0<y<1), NiO z (where 0<z<1.5), CuO x (where 0<x<1.5), TiO y (where 0<y<2), FeO, Si, Pb, Ni, (La,Sr)(Mn,Co)O 3 And mixtures thereof.
The redox active additive may be present in any one or more of the glass electrolyte and ceramic electrolyte in an amount sufficient to cause a potential enhancement. Typically, these amounts are from about 1% to about 30% by weight, based on the weight of the electrolyte.
Electrofilm extraction film:
In another embodiment, the redox active additive composite polymer electrolyte can be used as a thin film in an electrical thin film extraction of an ionic species by applying an electric field as electroplating-dialysis and electroplating-electrodialysis. The thin film system using the redox active additive composite polymer electrolyte can be used for water desalination, wastewater treatment to recover electroplating bath such as gold, platinum, silver, copper, palladium, zinc, tin, lead, nickel, cadmium and mixtures thereof. Equal heavy metals, wet metallurgy, paper and photography. Other applications include deacidification of proteins, amino acids, sugars, etc. in the food and pharmaceutical industries, removal of peptides, and removal of toxic/harmful drugs from water.
The polymer electrolyte used in the redox active additive composite electrolyte used in the film for electric film extraction contains polyvinyl alcohol, polyacrylic acid, polybenzimidazole, polydiether ketone, and a mixture thereof.
The active additive used in the redox active additive composite electrolyte used in the film for electric thin film extraction includes, but is not limited to, manganese dioxide, double layer hydroxide ("LDH", such as cobalt hydrate, nickel aluminum hydrate , cobalt nickel hydrate, cobalt chromium hydrate, nickel chromium hydrate), lead dioxide, and mixtures thereof. The amount of the redox active additive used in the redox active additive composite electrolyte such as the redox active additive composite polymer electrolyte in the film for electric thin film extraction is sufficient to produce a higher separation rate. In general, the redox active additive is present from about 0.1% to about 25% by weight, based on the weight of the polymer electrolyte.
The electro-film-extracted film is made by the following procedure shown in U.S. Patent No. 4,226,688, the disclosure of which is incorporated herein in its entirety by reference. Electrofilm-extracted films are further illustrated by the following non-limiting examples:
Example EM1: A 25% by weight scientific polymer product, PMMA (Mw = 93300, Mn = 46,400), and 75% by weight of tert-butanol (reagent grade JT Baker Chemical Co.) were mixed to form a solution. In this solution, a WO which has been ball milled to have an average particle diameter of 1 μm is added. 3-d Powder (5% by weight) was annealed at 750 ° C for 3 hours in a forming gas (hydrogen 5%, nitrogen 95%). The polymer solution and suspension were continuously stirred for 120 minutes at 55 degrees Celsius to maximize mixing of the filler particles. Thereafter, the mixture was quenched to room temperature in 1 minute by cooling water, and cast on a glass plate to form a film. The mixture was then placed in a desiccator and a rotary vacuum pump was used to remove the solvent. Next, the vacuum was replaced with argon and steamed again for 5 hours for 5 hours to have a redox inclusion WO. 3-d The microporous PMMA film is formed.
Electrochromic device using a redox active additive polymer electrolyte composite electrolyte:
In another embodiment, an electrochromic device comprising an anode, a cathode, and a redox active additive polymer electrolyte composite electrolyte is disclosed. The electrochromic device comprises an electrochemical unit that can change color during the redox reaction occurring at the electrodes of the unit. Electrochromic behavior such as color change is due to anode material (eg WO 3 ) caused by a change in the oxidation state.
An electrochromic device using a redox active additive polymer electrolyte uses a cathode made of a conductive material such as polyaniline, cerium oxide, vanadium oxide, and a mixture thereof. The polymer electrolyte used includes, but is not limited to, a gel electrolyte (eg, a gel mixture (eg, PVDF-HFP/LiClO) 4 /EC/DMC) and its combinations. The redox active additive that can be used in the redox active additive composite polymer electrolyte includes, but is not limited to, MoO 3 V 2 O 5 And mixtures thereof. The amount of redox active additive is between about 1% and about 5% by weight based on the weight of the polymer electrolyte. However, when using such as PEO-H 3 PO 4 In the case of the gel electrolyte, the amount of the redox active additive in the gel electrolyte is between about 0.1% by weight and about 10% by weight based on the weight of the gel electrolyte. An electrochromic device utilizing a redox active additive composite polymer electrolyte exhibits improved electrochromic opacity (for example, in an electrochromic device in a color translucent state (usually blue) with a transparent Occurs when the state changes.) The electrochromic device using the redox active additive polymer electrolyte composite electrolyte can be manufactured by the method disclosed in, for example, U.S. Patent Nos. 5,099,356 and 4,773,741, the disclosure of which is incorporated herein by reference. Into this article.
An energy storage device using a redox active additive composite electrolyte film or a thick film:
The energy storage device using the thin film formed by the redox active additive composite electrolyte exhibits a shorter inter-electrode ion transport diffusion length, which can lower the neutral time constant of the device and increase the power density. The film formed from the redox active additive composite electrolyte can be used to reduce the size of a miniaturized energy storage device in a surface-mounted energy storage element. These miniaturized devices include sub-micron thick layers and provide energy storage points on multiple boards in an electrical system and eliminate the need to use a central, single energy source. These miniaturized devices provide backup power when the primary power source fails.
The film layer using the redox active additive composite electrolyte is prepared by a gas gel deposition method and by a sol-gel deposition method, preferably by a gas gel deposition method. The thickness of the film layer is between about 100 nanometers and about 300 microns. The gas gel deposition method and the sol-gel deposition method can be used to form a film layer combination in which the film layer is formed of a redox active additive composite electrolyte. An energy storage device using a redox active additive composite electrolyte film or thick film is further illustrated by the following non-limiting examples:
Example CF1:
A lithium aluminum bismuth phosphate (LAGP) composite system and a thin film of a redox active phase having a thickness of from about 10 nm to about 1 micron are co-deposited using radio frequency sputtering/DC sputtering techniques. The LAGP glass material is cast into a 2 inch diameter die to form a transparent glass sheet which is annealed at about 850 degrees Celsius for about 2 hours to 4 hours to form a suitable sputtering. Target. Gold as a redox active phase, and at about 10 -6 The torch is co-sputtered with LAGP in an argon atmosphere under vacuum. The deposition rate of each component is controlled to obtain a volume ratio of 95/5 to produce a film which is annealed between 300 degrees Celsius and 600 degrees Celsius for about 30 minutes to about 4 hours to form a composite electrolyte membrane layer. .
A gas-gel deposited ion-conducting composite thin/thick film electrolyte composite containing redox active inclusions:
Films having a thickness of from about 100 nm to about 10 microns, and generally thick films having a thickness of from about 1 micron to about 300 microns, can be obtained from a wide variety of redox active additives by gas gel deposition. A composite ionic conductive electrolyte is formed. The ionic conductive electrolyte used includes, but is not limited to, a sodium ion conductive electrolyte, a lithium ion conductive electrolyte, and a mixture thereof. When a lithium ion conductive electrolyte is used, a lithium ion conductive electrolyte (eg, LLT electrolyte, LAGP glass electrolyte, glass electrolyte of LiS-chalcogenide, and mixtures thereof) is mixed with one or more redox active additives, and by gas A lithium conductive electrolyte membrane layer having a thickness of from about 1 micrometer to about 300 micrometers is formed by a gel deposition method.
Lithium ion conductive electrolytes and redox active additives (such as, but not limited to, MoO) 3 Particles) are used together for use in a gas gel deposition process. The relative amounts of the lithium conductive electrolyte and the redox active additive can vary widely to provide a redox active additive composite electrolyte composition suitable for gas gel deposition of a film layer (e.g., a film and a thick film).
By way of non-limiting example, from about 1% to about 99% by weight of LLT powder (eg, 95% by weight of LLT) and from about 1% to about 99% by weight of MoO 3 (for example, 5% by weight of MoO 3 The mixture of powders is ball milled to form a blend having an average particle size of from about 100 nanometers to about 10 microns. LLT and MoO 3 The powders were each lyophilized. The ball milling is carried out under drying or in the presence of a liquid such as ethanol or propan-2-ol. The milled blend is combined with a fluid (eg water) for use in MoO 3 Redox active additive LLT composite electrolyte film and MoO 3 The redox active additive LLT composite electrolyte thick film in the gas gel deposition.
The gas gel deposition process can be used to deposit a thin film or thick film on a substrate material such as germanium wafer, stainless steel or other oxide. The substrate is previously coated with an electrode material. The electrode material is varied depending on the type of structure to be formed. When a supercapacitor structure is to be formed, suitable electrode materials include, but are not limited to, Pt, Au, Ni, Ta, W, Al, Fe, high surface area carbon (e.g., carbon nanotubes), and mixtures thereof. When a cell structure is to be formed, the electrode material comprises a redox active species, such as a lithium intercalation material such as, but not limited to, Si, LTO, LiCoO, LiMnO, and mixtures thereof. The composition of the anode electrode and the cathode electrode is matched to a battery structure type device.
The composite electrode is formed by simultaneous gas-gel deposition of two powders (by a double deposition stream of premixed powder or by a single deposition stream). The composite will comprise an ionic conductive species and a lithium barrier material that will produce a high surface area electrode material. The thin film coated substrate (both in electrode form and non-electrode form) is annealed under a wide range of temperatures and in a variety of environments at a pressure range to enhance the crystallinity of the film and to enhance the interface of the film to the substrate. Bonding. Annealing can be carried out under a variety of temperature, pressure, time and environmental conditions to minimize diffusion of the film to the substrate. When a LTO electrolyte film is composited on a redox active additive (for example, MoO on one of substrates such as stainless steel) 3 The active additive LTO composite electrolyte film is annealed in an atmosphere of about 0.01 to about 16 psig at about 0.01 to about 16 psig for about 5 hours at about 300 degrees Celsius to about 600 degrees Celsius. It takes about 10 hours.
An electrochemical energy storage device (such as a battery or supercapacitor) can use a lithium metal-deposited anode (e.g., by evaporation) to provide a reversible source of lithium. The lithium metal electrode is protected by a protective coating of an epoxy resin or polymer such as polypropylene or Teflon to protect the lithium from oxidation. The electrical contacts to the lithium electrodes are provided via a contact metal, such as silver, aluminum, alloys thereof, and mixtures thereof. The contact metal is applied to the electrode prior to application of the protective coating. A gas-gel deposited ion-conducting composite thin/thick film electrolyte composite having redox active inclusions is further illustrated by the following non-limiting examples.
Example AF1:
Thick films having a thickness of from about 100 nm to about 10 microns are made by a gas gel deposition process. A fine powder of lithium aluminum strontium phosphate and tin oxide (about 100 nm to about 900 nm) is deposited on a platinum or carbon substrate by gas gel deposition to produce a film layer. The film is post-annealed from about 500 degrees Celsius to about 800 degrees Celsius for 30 minutes to about 2 hours to form an electrolyte.
Sol-gel deposited composite lithium conductive film electrolyte:
A MoO can be produced using a sol-gel program 3 The redox active additive LLT composite electrolyte. By using sol-gel, nano-sized MoO can be dispersed in LHT precursor solution dissolved in 2-methoxyethanol, such as lithium ethoxide, titanium isopropoxide, and bismuth isopropoxide. 3 The particles (having a size ranging from about 10 nm to about 500 nm) are used to form the sol.
Use deionized water (DI H 2 O) The metered lithium ethoxide, titanium isopropoxide, bismuth isopropoxide and 2-methoxyethanol are partially hydrolyzed to form a precursor solution. Adding MoO in a ratio of 5 wt% to 50 wt% (relative to the amount of LLT) in the precursor solution 3 The particles are added and stirred vigorously to make MoO 3 Particles are dispersed to produce a MoO 3 Active Additive LLT Electrolyte Composite Precursor Solution. The composite precursor solution is used to prepare a sol-gel film by a method such as drop coating or spin coating on a suitable substrate (for example, a substrate coated with platinum). Whether using a drop coating method or a spin coating method, the deposited first layer is pyrolyzed at 400 degrees Celsius (for example, in a rapid thermal annealing furnace). Next, on the pyrolyzed layer, the other layers are deposited and pyrolyzed to establish a desired film thickness. After reaching the desired film thickness, the film was heat treated in an oxidizing atmosphere for about 6 hours at about 700 degrees Celsius.
Sputtered redox active additive composite electrolyte film:
The redox active additive composite electrolyte film can also be prepared by sputtering, in which two or more sputtering targets are used. A first sputter target is an ionic conductive electrolyte such as, but not limited to, LLT. Another sputtering target is a redox active additive material such as, but not limited to, LiCoO 2 .
The sputter deposition of the thin film and the thick film is performed by alternately sputtering the target to produce a chemically heterogeneous film of one of the redox active additive composite electrolytes. Typical film thicknesses range from 10 nanometers to 2 microns. The sputtering temperature is sufficient to mitigate significant internal diffusion. The sputtering temperature used was varied from about 100 degrees Celsius to about 800 degrees Celsius. When the sputtering of the redox active additive is performed, the sputtering period of the redox active additive may be pulsed. This can result in a diversity of chemical distributions from separate island to continuous layers.
The thin film of the redox active additive composite electrolyte can also be prepared by sputtering a single composite target to produce a homogeneous film, wherein the single composite target comprises a conductive glass ceramic electrolyte (such as but not limited to LAGP). With a redox active additive (such as, but not limited to, gold). When LAGP is used, the gold system can act as a redox active additive, for example, the amount of gold is about 5% by weight (based on the weight of the LAGP). The deposited film is annealed at a suitable temperature to precipitate a redox active additive in the electrolyte, whereby the redox active additive acts as a redox active site. When gold is used with LAGP, the annealing is carried out at about 800 degrees Celsius to precipitate gold in the LAGP glass-ceramic substrate to allow gold to act as a redox active center.

A、B...陰極區段A, B. . . Cathode section

MnO2...二氧化錳MnO 2 . . . manganese dioxide

MnO3...三氧化錳MnO 3 . . . Manganese trioxide

第1A圖、第1B圖分別繪示了具有多區段陰極的混合電池電容器之上視圖及側視圖。
第2圖至第10圖繪示了可在混合電池電容器中使用之電極配置。
第11圖繪示了用於混合電池電容器之多層配置。
第12圖繪示了鋰離子電容器之充電性能。
第13圖繪示了圓柱形鋰離子混合複合薄膜。
第14圖繪示了在薄膜及電極之間存在未填滿的空氣空間之裝置。
第15圖至第21圖分別繪示在薄膜中具有不同形態的氧化還原活性添加物之帶體。
第22圖繪示了使用陶瓷薄膜的鋰-空氣電池。
第23圖繪示了氧化還原活性電解質對於電容器恆定電流放電的影響。
第24圖繪示了氧化還原活性電解質對於循環穩定性的影響。
第25圖繪示了氧化還原活性電解質對於充電-放電行為的影響。
1A and 1B are respectively a top view and a side view of a hybrid battery capacitor having a multi-section cathode.
Figures 2 through 10 illustrate electrode configurations that can be used in hybrid battery capacitors.
Figure 11 depicts a multilayer configuration for a hybrid battery capacitor.
Figure 12 illustrates the charging performance of a lithium ion capacitor.
Figure 13 depicts a cylindrical lithium ion hybrid composite film.
Figure 14 depicts a device for the presence of an unfilled air space between the membrane and the electrode.
Figures 15 to 21 respectively show the bands of redox active additives having different morphologies in the film.
Figure 22 depicts a lithium-air battery using a ceramic film.
Figure 23 depicts the effect of a redox active electrolyte on the constant current discharge of a capacitor.
Figure 24 depicts the effect of redox active electrolyte on cycle stability.
Figure 25 depicts the effect of redox active electrolyte on charge-discharge behavior.

A、B...陰極區段A, B. . . Cathode section

Claims (26)

一種離子導電性氧化還原活性添加物複合電解質,其包含一離子導電性成分以及一氧化還原活性添加物,其中該離子導電性成分是選自由離子導電性聚合物、離子導電性玻璃-陶瓷、離子導電性陶瓷及其混合物所組成的群組。An ion conductive redox active additive composite electrolyte comprising an ion conductive component and a redox active additive, wherein the ion conductive component is selected from the group consisting of an ion conductive polymer, an ion conductive glass-ceramic, and an ion A group of conductive ceramics and mixtures thereof. 一種電容器,其包含一陽極、一陰極以及一離子導電性氧化還原活性添加物複合電解質,該離子導電性氧化還原活性添加物複合電解質係包含一離子導電性聚合物以及一氧化還原活性添加物,其中該離子導電性成分是選自由離子導電性聚合物、離子導電性玻璃-陶瓷、離子導電性陶瓷及其混合物所組成的群組。A capacitor comprising an anode, a cathode and an ion conductive redox active additive composite electrolyte, the ion conductive redox active additive composite electrolyte comprising an ion conductive polymer and a redox active additive, The ion conductive component is selected from the group consisting of an ion conductive polymer, an ion conductive glass-ceramic, an ion conductive ceramic, and a mixture thereof. 一種原電池,其包含一陽極、一陰極以及一離子導電性氧化還原活性添加物複合電解質,該離子導電性氧化還原活性添加物複合電解質係包含一離子導電性成分以及一氧化還原活性添加物,其中該離子導電性成分是選自由離子導電性聚合物、離子導電性玻璃-陶瓷、離子導電性陶瓷及其混合物所組成的群組。A galvanic cell comprising an anode, a cathode and an ion conductive redox active additive composite electrolyte, the ion conductive redox active additive composite electrolyte comprising an ion conductive component and a redox active additive, The ion conductive component is selected from the group consisting of an ion conductive polymer, an ion conductive glass-ceramic, an ion conductive ceramic, and a mixture thereof. 一種二次電池,其包含一陽極、一陰極以及一離子導電性氧化還原活性添加物複合電解質,該離子導電性氧化還原活性添加物複合電解質係包含一離子導電性聚合物以及一氧化還原活性添加物,其中該離子導電性成分是選自由離子導電性聚合物、離子導電性玻璃-陶瓷、離子導電性陶瓷及其混合物所組成的群組。A secondary battery comprising an anode, a cathode and an ion conductive redox active additive composite electrolyte, the ion conductive redox active additive composite electrolyte comprising an ion conductive polymer and a redox active addition And the ion conductive component is selected from the group consisting of an ion conductive polymer, an ion conductive glass-ceramic, an ion conductive ceramic, and a mixture thereof. 如申請專利範圍第1項所述之電解質,其中該離子導電性聚合物是選自由聚偏二氟乙烯、聚偏二氟乙烯-六氟丙烯、聚偏二氟乙烯-四氟乙烯、聚偏二氟乙烯-三氟氯乙烯、聚偏二氟乙烯-三氟乙烯及其混合物所組成的群組之聚合物。The electrolyte according to claim 1, wherein the ion conductive polymer is selected from the group consisting of polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene, polyvinylidene fluoride-tetrafluoroethylene, and polyethylene terephthalate. A polymer of the group consisting of difluoroethylene-chlorotrifluoroethylene, polyvinylidene fluoride-trifluoroethylene, and mixtures thereof. 如申請專利範圍第1項所述之電解質,其中該離子導電性聚合物是選自由銀離子(Ag+)導電性聚合物、氫離子(H+)導電性聚合物、氫氧離子(OH-)導電性薄膜、鋰離子(Li+)導電性聚合物、鎂離子(Mg+)導電性聚合物、鈉離子(Na+)導電性聚合物、氧離子(O-)導電性聚合物及其混合物所組成的群組。The electrolyte according to claim 1, wherein the ion conductive polymer is selected from the group consisting of a silver ion (Ag + ) conductive polymer, a hydrogen ion (H + ) conductive polymer, and a hydroxide ion (OH - a conductive film, a lithium ion (Li + ) conductive polymer, a magnesium ion (Mg + ) conductive polymer, a sodium ion (Na + ) conductive polymer, an oxygen ion (O - ) conductive polymer, and A group of mixtures. 如申請專利範圍第5項所述之電解質,其中該氧化還原活性添加物是選自由氧化還原活性氧化物、氧化還原活性金屬及其混合物所組成的群組。The electrolyte of claim 5, wherein the redox active additive is selected from the group consisting of redox active oxides, redox active metals, and mixtures thereof. 如申請專利範圍第5項所述之電解質,其中該聚合物是鋰離子(Li+)聚合物,以及該氧化還原活性添加物是選自由三氧化鉬(MoO3)、氧化錫(SnO2)、氧化鎢(WO3)、一氧化鉛(PbO)、氧化鋅(ZnO)、氧化鐵(Fe2O3)、氧化鉻(Cr2O3)、五氧化二釩(V2O5)、二氧化錳(MnO2)、鋰鈦氧化物(LiTiO3)及其混合物所組成的群組。The electrolyte of claim 5, wherein the polymer is a lithium ion (Li + ) polymer, and the redox active additive is selected from the group consisting of molybdenum trioxide (MoO 3 ), tin oxide (SnO 2 ) , tungsten oxide (WO 3 ), lead monoxide (PbO), zinc oxide (ZnO), iron oxide (Fe 2 O 3 ), chromium oxide (Cr 2 O 3 ), vanadium pentoxide (V 2 O 5 ), A group consisting of manganese dioxide (MnO 2 ), lithium titanium oxide (LiTiO 3 ), and mixtures thereof. 一種離子導電性氧化還原活性氧化物複合電解質,其包含鋰離子(Li+)導電性聚偏二氟乙烯-六氟丙烯聚合物以及由三氧化鉬、氧化錫、鉑(Pt)及其混合物所組成的群組中所選出之一氧化還原活性添加物。An ion-conductive redox active oxide composite electrolyte comprising a lithium ion (Li + ) conductive polyvinylidene fluoride-hexafluoropropylene polymer and a mixture of molybdenum trioxide, tin oxide, platinum (Pt) and mixtures thereof One of the constituent redox active additives is selected from the group consisting of. 一種電池單元,其包含一離子導電性聚合物氧化還原活性氧化物複合電解質,該離子導電性聚合物氧化還原活性氧化物複合電解質包含鋰離子(Li+)導電性聚偏二氟乙烯-六氟丙烯聚合物與由三氧化鉬、氧化錫、鉑(Pt)及其混合物所組成的群組中所選出之一氧化還原活性添加物、一活性碳陰極、鋰金屬陽極、及一碳紙電流收集器。A battery unit comprising an ion conductive polymer redox active oxide composite electrolyte comprising lithium ion (Li + ) conductive polyvinylidene fluoride-hexafluoride One of a redox active additive selected from the group consisting of molybdenum trioxide, tin oxide, platinum (Pt), and mixtures thereof, a activated carbon cathode, a lithium metal anode, and a carbon paper current collection Device. 一種離子導電性玻璃-陶瓷氧化還原添加物複合電解質,其包含一離子導電性玻璃-陶瓷以及一氧化還原添加物,其中該離子導電性玻璃-陶瓷是選自由硫系化合物玻璃-陶瓷、氟化物玻璃-陶瓷、氧化物玻璃-陶瓷、磷酸鹽玻璃-陶瓷、硫化物玻璃-陶瓷及其混合物所組成的群組。An ion conductive glass-ceramic redox additive composite electrolyte comprising an ion conductive glass-ceramic and a redox additive, wherein the ion conductive glass-ceramic is selected from the group consisting of a sulfur-based compound glass-ceramic, fluoride A group consisting of glass-ceramic, oxide glass-ceramic, phosphate glass-ceramic, sulfide glass-ceramic, and mixtures thereof. 如申請專利範圍第11項所述之電解質,其中該氧化還原活性添加物是選自由氧化還原活性金屬、氧化還原活性氧化物、氧化還原活性氮氧化物及其混合物所組成的群組。The electrolyte according to claim 11, wherein the redox active additive is selected from the group consisting of a redox active metal, a redox active oxide, a redox active nitrogen oxide, and a mixture thereof. 如申請專利範圍第11項所述之電解質,其中該氧化還原活性添加物是選自由金、鉑、鈀、錫、鋁、鐵、銻、銅-錫合金、銅-銻合金、矽、其合金及其混合物所組成的群組之氧化還原活性金屬。The electrolyte according to claim 11, wherein the redox active additive is selected from the group consisting of gold, platinum, palladium, tin, aluminum, iron, bismuth, copper-tin alloy, copper-bismuth alloy, bismuth, and alloy thereof. A redox active metal of the group consisting of a mixture thereof. 如申請專利範圍第11項所述之電解質,其中該氧化還原活性添加物是選自由氧化銻、氧化鋇、氧化鉍、氧化硼、氧化鈣、氧化鉻、氧化鈷、氧化銅、氧化鍺、氧化銦、氧化鐵、氧化鉛、鋰鈷氧化物、氧化鋰、鈦酸鋰、鋰鐵磷氧化物、鐵磷氧化物、磷氧化物、鋰釩氧化物、氧化錳、氧化鉬、氧化鈮、氧化銀、氧化錫、氧化鈦、氧化鎢、氧化釩、氧化鋅及其混合物所組成的群組之氧化還原活性氧化物。The electrolyte according to claim 11, wherein the redox active additive is selected from the group consisting of cerium oxide, cerium oxide, cerium oxide, boron oxide, calcium oxide, chromium oxide, cobalt oxide, copper oxide, cerium oxide, and oxidation. Indium, iron oxide, lead oxide, lithium cobalt oxide, lithium oxide, lithium titanate, lithium iron phosphorus oxide, iron phosphorus oxide, phosphorus oxide, lithium vanadium oxide, manganese oxide, molybdenum oxide, cerium oxide, oxidation A redox active oxide of the group consisting of silver, tin oxide, titanium oxide, tungsten oxide, vanadium oxide, zinc oxide, and mixtures thereof. 如申請專利範圍第11項所述之電解質,其中該氧化還原活性添加物是一氧化還原活性氮氧化物。The electrolyte of claim 11, wherein the redox active additive is a redox active nitrogen oxide. 一種電化學電容器,其包含一陽極、一陰極以及如申請專利範圍第1項所述之電解質。An electrochemical capacitor comprising an anode, a cathode, and an electrolyte as described in claim 1. 一種固態電池,其包含一複合離子導電聚合物-氧化還原活性添加物電解質本體、一陰極層、一陽極層、一第一收集器電極與一第二收集器電極,該陰極層係結合到該電解質本體的一表面且包含一電極活性物質及該複合電解質,該陽極層係結合到該複合電解質的一表面且包含一電極活性物質及該複合電解質,該第一收集器電極係電氣連接至該陰極層,該第二收集器電極係電氣連接至該陽極層。A solid state battery comprising a composite ion conductive polymer-redox active additive electrolyte body, a cathode layer, an anode layer, a first collector electrode and a second collector electrode, the cathode layer being bonded to the a surface of the electrolyte body comprising an electrode active material and the composite electrolyte, the anode layer being bonded to a surface of the composite electrolyte and comprising an electrode active material and the composite electrolyte, the first collector electrode being electrically connected to the A cathode layer, the second collector electrode being electrically connected to the anode layer. 一種燃料電池,其包含一陽極、一陰極、一離子導電性複合電解質與一流體氧化劑,該離子導電性複合電解質係包含一離子導電性聚合物,該離子導電性聚合物在其中具有一氧化還原活性添加物。A fuel cell comprising an anode, a cathode, an ion conductive composite electrolyte and a fluid oxidant, the ion conductive composite electrolyte comprising an ion conductive polymer having a redox in the ion conductive polymer Active additive. 一種燃料電池,其包含一陽極、一陰極、一離子導電性複合電解質,該離子導電性複合電解質包含一離子導電性陶瓷並具有一氧化還原活性添加物。A fuel cell comprising an anode, a cathode, and an ion conductive composite electrolyte, the ion conductive composite electrolyte comprising an ion conductive ceramic and having a redox active additive. 一種適合用於一混合電容器或電池之薄膜,其中該薄膜包含一陽極、一陰極及氧化還原活性添加物複合電解質,其中該薄膜包含作為一電池或一電容器之分隔區域。A film suitable for use in a hybrid capacitor or battery, wherein the film comprises an anode, a cathode, and a redox active additive composite electrolyte, wherein the film comprises a separation region as a battery or a capacitor. 一種鋰-空氣電池,其包含一鋰陽極、一空氣陰極以及一氧化還原活性添加物複合電解質,其中該複合電解質包含一離子導電性玻璃陶瓷以及一氧化還原活性添加物。A lithium-air battery comprising a lithium anode, an air cathode, and a redox active additive composite electrolyte, wherein the composite electrolyte comprises an ion conductive glass ceramic and a redox active additive. 一種鎂-空氣電池,其包含一鎂陽極、一空氣陰極以及一離子導電性氧化還原活性添加物複合電解質。A magnesium-air battery comprising a magnesium anode, an air cathode, and an ion conductive redox active additive composite electrolyte. 一種適合用於離子物質之電薄膜萃取之薄膜,其包含一離子導電性氧化還原活性添加物複合電解質,其中該複合電解質包含一離子導電性聚合物以及一氧化還原活性添加物。A film suitable for electro-optical film extraction of ionic substances, comprising an ion-conductive redox active additive composite electrolyte, wherein the composite electrolyte comprises an ion conductive polymer and a redox active additive. 一種電位型化學感測器,其中改良包含一薄膜,該薄膜包含一離子導電性氧化還原活性添加物複合電解質,其中該複合電解質包含一離子導電性成分以及一氧化還原活性添加物,其中該離子導電性成分是選自由離子導電性玻璃陶瓷、離子導電性陶瓷、離子導電性聚合物及其混合物所組成的群組。A potential type chemical sensor, wherein the improvement comprises a film comprising an ion conductive redox active additive composite electrolyte, wherein the composite electrolyte comprises an ion conductive component and a redox active additive, wherein the ion The conductive component is selected from the group consisting of ion conductive glass ceramics, ion conductive ceramics, ion conductive polymers, and mixtures thereof. 一種電致變色顯示薄膜,其包含一陽極、一陰極以及一離子導電性氧化還原活性添加物複合電解質,其中該離子導電性氧化還原活性添加物複合電解質包含一離子導電性成分聚合物以及一氧化還原活性添加物,其中該離子導電性成分是選自由離子導電性聚合物、離子導電性玻璃陶瓷及其混合物所組成的群組。An electrochromic display film comprising an anode, a cathode and an ion conductive redox active additive composite electrolyte, wherein the ion conductive redox active additive composite electrolyte comprises an ion conductive component polymer and an oxidation The active additive is reduced, wherein the ion conductive component is selected from the group consisting of an ion conductive polymer, an ion conductive glass ceramic, and a mixture thereof. 一種水除鹽薄膜,其包含一離子導電性氧化還原活性添加物複合電解質,其中該複合電解質包含一離子導電性聚合物以及一氧化還原活性添加物。
A water desalination film comprising an ion conductive redox active additive composite electrolyte, wherein the composite electrolyte comprises an ion conductive polymer and a redox active additive.
TW101112073A 2011-04-08 2012-04-05 Composite ionic conducting electrolytes TW201304240A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161516928P 2011-04-08 2011-04-08
US201161479357P 2011-04-26 2011-04-26
US201161626821P 2011-10-03 2011-10-03

Publications (1)

Publication Number Publication Date
TW201304240A true TW201304240A (en) 2013-01-16

Family

ID=48138230

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101112073A TW201304240A (en) 2011-04-08 2012-04-05 Composite ionic conducting electrolytes

Country Status (1)

Country Link
TW (1) TW201304240A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI603139B (en) * 2015-08-24 2017-10-21 國立臺灣大學 Black-to-transmissive electrochromic device
CN108933283A (en) * 2018-07-13 2018-12-04 国联汽车动力电池研究院有限责任公司 The method that low-temperature solvent assisted sintering prepares solid electrolyte
CN109449494A (en) * 2018-11-06 2019-03-08 成都市银隆新能源产业技术研究有限公司 The preparation method and lithium ion battery of lithium ion battery solid electrolyte interface layer
US10262808B2 (en) 2015-12-24 2019-04-16 Industrial Technology Research Institute Conductive composite and capacitor utilizing the same
CN109728274A (en) * 2018-12-27 2019-05-07 清远佳致新材料研究院有限公司 A kind of lithium ion battery anode glue size and preparation method
CN110165303A (en) * 2019-06-10 2019-08-23 天津瑞晟晖能科技有限公司 Secondary cell and preparation method thereof, electrical equipment
CN110416601A (en) * 2019-08-07 2019-11-05 哈尔滨师范大学 A kind of preparation method of sode cell bath surface metal oxide layer
CN111308822A (en) * 2020-03-26 2020-06-19 宁波祢若电子科技有限公司 Dual-functional electrochromic energy storage device and manufacturing method thereof
CN111755725A (en) * 2020-06-17 2020-10-09 鄂尔多斯市国科能源有限公司 Membrane electrode assembly comprising self-crosslinking ionic polymer and method for preparing same
TWI728676B (en) * 2019-01-31 2021-05-21 日商日本麥克隆尼股份有限公司 Secondary battery
CN113155762A (en) * 2021-04-14 2021-07-23 贵阳海关综合技术中心(贵州国际旅行卫生保健中心、贵阳海关口岸门诊部) Based on V6O13Method for detecting Cd (II) and Pb (II) with nanobelt catalytic activity
CN113545230A (en) * 2021-07-21 2021-10-26 安徽蓝云汇新材料科技有限公司 EPS crushing and cutting machine
CN116120763A (en) * 2022-12-31 2023-05-16 石家庄市油漆厂 Green hyperspectral camouflage inorganic pigment and preparation method thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI603139B (en) * 2015-08-24 2017-10-21 國立臺灣大學 Black-to-transmissive electrochromic device
US10262808B2 (en) 2015-12-24 2019-04-16 Industrial Technology Research Institute Conductive composite and capacitor utilizing the same
CN108933283A (en) * 2018-07-13 2018-12-04 国联汽车动力电池研究院有限责任公司 The method that low-temperature solvent assisted sintering prepares solid electrolyte
CN109449494A (en) * 2018-11-06 2019-03-08 成都市银隆新能源产业技术研究有限公司 The preparation method and lithium ion battery of lithium ion battery solid electrolyte interface layer
CN109449494B (en) * 2018-11-06 2022-12-20 成都市银隆新能源产业技术研究有限公司 Preparation method of solid electrolyte interface layer of lithium ion battery and lithium ion battery
CN109728274B (en) * 2018-12-27 2021-11-19 清远佳致新材料研究院有限公司 Lithium ion battery anode slurry and preparation method thereof
CN109728274A (en) * 2018-12-27 2019-05-07 清远佳致新材料研究院有限公司 A kind of lithium ion battery anode glue size and preparation method
TWI728676B (en) * 2019-01-31 2021-05-21 日商日本麥克隆尼股份有限公司 Secondary battery
CN110165303A (en) * 2019-06-10 2019-08-23 天津瑞晟晖能科技有限公司 Secondary cell and preparation method thereof, electrical equipment
CN110416601A (en) * 2019-08-07 2019-11-05 哈尔滨师范大学 A kind of preparation method of sode cell bath surface metal oxide layer
CN110416601B (en) * 2019-08-07 2022-08-02 哈尔滨师范大学 Preparation method of metal oxide layer on electrolyte surface of sodium battery
CN111308822A (en) * 2020-03-26 2020-06-19 宁波祢若电子科技有限公司 Dual-functional electrochromic energy storage device and manufacturing method thereof
CN111308822B (en) * 2020-03-26 2022-08-02 宁波祢若电子科技有限公司 Dual-functional electrochromic energy storage device and manufacturing method thereof
CN111755725A (en) * 2020-06-17 2020-10-09 鄂尔多斯市国科能源有限公司 Membrane electrode assembly comprising self-crosslinking ionic polymer and method for preparing same
CN111755725B (en) * 2020-06-17 2021-11-26 鄂尔多斯市国科能源有限公司 Membrane electrode assembly comprising self-crosslinking ionic polymer and method for preparing same
CN113155762A (en) * 2021-04-14 2021-07-23 贵阳海关综合技术中心(贵州国际旅行卫生保健中心、贵阳海关口岸门诊部) Based on V6O13Method for detecting Cd (II) and Pb (II) with nanobelt catalytic activity
CN113545230A (en) * 2021-07-21 2021-10-26 安徽蓝云汇新材料科技有限公司 EPS crushing and cutting machine
CN116120763A (en) * 2022-12-31 2023-05-16 石家庄市油漆厂 Green hyperspectral camouflage inorganic pigment and preparation method thereof

Similar Documents

Publication Publication Date Title
US20130026409A1 (en) Composite ionic conducting electrolytes
TW201304240A (en) Composite ionic conducting electrolytes
KR102605650B1 (en) Solid electrolyte, lithium battery comprising solid electrolyte
US11600828B2 (en) Composite membrane including ion-conductive polymer layer and gas blocking inorganic particles, method of preparing the composite membrane, and lithium air battery including the composite membrane
CN109638349B (en) Inorganic-organic nano composite solid electrolyte diaphragm and preparation method and application thereof
US20240105913A1 (en) Dry process formation of solid state lithium ion cell
WO2012008422A1 (en) All-solid-state battery
KR102155696B1 (en) Composite membrane, preparing method thereof, and lithium air battery including the same
TWI528618B (en) Lithium ion secondary battery
KR102654869B1 (en) Composite electrolyte film, Electrochemical cell comprising composite electrolyte film and Preparation method of composite electrolyte film
JP5742940B2 (en) All-solid battery and method for manufacturing the same
US11955595B2 (en) High-ionic conductivity ceramic-polymer nanocomposite solid state electrolyte
WO2013137224A1 (en) All solid state cell and method for producing same
KR101865834B1 (en) All solid lithium secondary battery and method for manufacturing the same
WO2017135553A1 (en) All-solid-state lithium secondary battery containing llzo solid electrolyte and method for preparing same
KR101876861B1 (en) Hybrid solid electrolyte for all solid lithium secondary battery and method for preparing the same
KR101939142B1 (en) ALL SOLID LITHIUM SECONDARY BATTERY INCLUDING Ga-DOPED LLZO SOLID ELECTROLYTE AND MANUFACTURING METHOD FOR THE SAME
JP2015065022A (en) Solid electrolytic material, and all-solid battery
WO2013100002A1 (en) All-solid-state battery, and manufacturing method therefor
WO2014038311A1 (en) All-solid cell
US20210126240A1 (en) Cathode for metal-air battery, preparing method thereof, and metal-air battery comprising the same
JP6201569B2 (en) Solid electrolyte material and all solid state battery
KR20230115924A (en) Method for manufacturing electrode for all solid battery and electrode for all solid battery
CN112602209A (en) Composition for negative electrode, negative electrode sheet for all-solid-state secondary battery, and method for producing negative electrode sheet for all-solid-state secondary battery or method for producing all-solid-state secondary battery
US20240222631A1 (en) Cathode, lithium secondary battery including the same, and method of preparing cathode