TW201300861A - Bidirectional reconfigurable optical wavelength routing device for all optical network - Google Patents

Bidirectional reconfigurable optical wavelength routing device for all optical network Download PDF

Info

Publication number
TW201300861A
TW201300861A TW100123143A TW100123143A TW201300861A TW 201300861 A TW201300861 A TW 201300861A TW 100123143 A TW100123143 A TW 100123143A TW 100123143 A TW100123143 A TW 100123143A TW 201300861 A TW201300861 A TW 201300861A
Authority
TW
Taiwan
Prior art keywords
wavelength
nxn
arrayed waveguide
grating
waveguide grating
Prior art date
Application number
TW100123143A
Other languages
Chinese (zh)
Other versions
TWI440909B (en
Inventor
Cheng-Mu Tsai
Original Assignee
Univ Kun Shan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Kun Shan filed Critical Univ Kun Shan
Priority to TW100123143A priority Critical patent/TWI440909B/en
Publication of TW201300861A publication Critical patent/TW201300861A/en
Application granted granted Critical
Publication of TWI440909B publication Critical patent/TWI440909B/en

Links

Landscapes

  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)
  • Optical Communication System (AREA)

Abstract

This patent proposes a bidirectional optical add-drop multiplexer (BROADM) with allowing white spectral channels input. By using the filter routing rule of array waveguide grating (AWG), the wavelength channels we want to add-drop can be reflected by using the corresponding fiber Bragg grating (FBG). The wavelength channels we don't want to add-drop can pass through the output by making FBG wavelength away from the wavelength channels. The bandwidth between two adjacent wavelength channels in each AWG pair ports is wider than one wavelength channels so that the filter property of the AWG is regarded to make the FBG modulation to realize the wavelength routing function without interfering other wavelength channels. The proposed BROADM allows the wavelength management in bidirectional optical network as well as the wavelength channels can be flexible handled by installing the corresponding FBG. Therefore, the RAODM make the optical network more flexibly and higher transmission capacity.

Description

雙向全光式全頻光波長組態路由裝置Bidirectional all-optical full-frequency optical wavelength configuration routing device

  本發明係有關於雙向全光式全頻光波長組態路由裝置,係為一種藉由陣列波導光柵波長濾波的路由規則,結合適當的可調式布雷格光纖光柵,提供雙向光網路的波長路由管理。The invention relates to a bidirectional all-optical full-frequency optical wavelength configuration routing device, which is a routing rule for wavelength filtering by array waveguide grating, and a suitable adjustable Bragg fiber grating to provide wavelength routing of a bidirectional optical network. management.

  習用一般光纖網路只使用單向的組態波長路由裝置,且需限制波長訊號輸入的數量,無法提供更彈性的網路需求,且成本也相對昂貴,無法對網路管理者提供更為彈性的網路管理服務,對於國內光纖網路難以提供更低廉及更為彈性的波長路由設備。Conventional fiber optic networks use only one-way configuration of wavelength routing devices, and need to limit the number of wavelength signal inputs, can not provide more flexible network requirements, and the cost is relatively expensive, can not provide more flexibility to network managers Network management services are difficult to provide cheaper and more flexible wavelength routing equipment for domestic fiber networks.

  上述習用光纖網路單向組態波長路由裝置之最大的缺點在於:The biggest disadvantages of the above-mentioned conventional optical fiber network unidirectional configuration wavelength routing device are:

  1.一般光纖網路只使用單向的組態波長路由裝置。1. General fiber optic networks use only one-way configured wavelength routing devices.

  2.需限制波長訊號輸入的數量,網路需求彈性差。2. It is necessary to limit the number of wavelength signal inputs, and the network demand elasticity is poor.

  3.雙向組態波長路由機制建置成本高,經濟性低。3. Two-way configuration of the wavelength routing mechanism is costly to implement and low in economic efficiency.

  4.不適用國內光纖通訊網路路由設備,彈性不佳。4. It is not applicable to domestic fiber-optic communication network routing equipment, which is not flexible.

  前述所提及關於習用光纖網路單向組態波長路由裝置之架構,儘管能夠達成在網路訊號處理過程中所應具備一般基本要求與成效,但在實際應用時之裝置的統整性與網路介面建置的整合能力及成本控管等產業應用專屬性上,皆存在諸多缺點與不足的情況下,無法發揮更具體之產業應用性。The above mentioned architecture of the unidirectional configuration wavelength routing device for the conventional optical fiber network, although it can achieve the general basic requirements and effects in the process of network signal processing, the integrity of the device in practical application and Under the circumstances that there are many shortcomings and deficiencies in the industrial application specific properties such as the integration capability of the network interface and the cost control, it is impossible to exert more specific industrial applicability.

  綜上所述,由於習用光纖網路單向組態波長路由裝置之架構,存在上述之缺失與不足,基於產業進步之未來趨勢前提下,實在有必要提出具體的改善方案,以符合產業進步之所需,更進一步提供業界更多的技術性選擇。In summary, due to the above-mentioned shortcomings and shortcomings of the optical fiber network unidirectional configuration wavelength routing device architecture, it is necessary to propose specific improvement solutions based on the future trend of industrial progress to meet the industrial progress. Need to further provide more technical options in the industry.

  本發明係以解決習用光纖網路單向組態波長路由裝置的統整性與網路介面建置的整合能力及成本控管等產業應用專屬性等方面不足之缺點,因而本發明專利提出雙向全光式全頻光波長組態路由裝置,針對波長循環特性允許白光波長訊號的輸入,且NxN陣列波導光柵具有對稱特性,雙邊可作為輸入也可作為輸出,因而利用此特性可以實現雙向性組態波長的路由機制,相對上可以節省大量的布雷格光纖光柵,對於現今的光網路環境無需更改網路架構也可直接運用。The invention solves the shortcomings of the integration of the unidirectional configuration wavelength routing device of the conventional optical fiber network, the integration capability of the network interface construction and the industrial application specificity such as cost control, and thus the invention patent proposes two-way. The all-optical full-frequency optical wavelength configuration routing device allows the input of the white light wavelength signal for the wavelength cycle characteristic, and the NxN array waveguide grating has a symmetrical characteristic, and the bilateral can be used as an input or an output, so that the bidirectional group can be realized by using this characteristic. The wavelength routing mechanism can save a lot of Bragg fiber gratings, and can be directly used in today's optical network environment without changing the network architecture.

  所以不論由主客觀條件觀之,雙向全光式全頻光波長組態路由裝置,在國內外專利中目前確實無相關技術應用於高效能之網路訊號處理架構建置,具備市場無可取代之技術之優勢,極適合應用於雙向全光式全頻光波長組態路由裝置產業等設備市場,勢必可以帶來雙向全光式全頻光波長組態路由裝置及其設備之生產與設計製造產業相關市場之莫大商機。Therefore, regardless of the subjective and objective conditions, the bidirectional all-optical full-frequency optical wavelength configuration routing device has no relevant technology in domestic and foreign patents and is currently applied to high-performance network signal processing frame construction, which has no substitute for the market. The advantages of the technology are extremely suitable for the equipment market such as the bidirectional all-optical full-frequency optical wavelength configuration routing device industry, which is bound to bring the production and design of the bidirectional all-optical full-frequency optical wavelength configuration routing device and its equipment. A great business opportunity in the industry-related market.

  本發明係藉由雙向全光式全頻光波長組態路由裝置,使用一對NxN陣列波導光柵及多重可調式布雷格光纖光柵,即可達成雙向組態波長路由機制。The invention realizes the bidirectional configuration wavelength routing mechanism by using a bidirectional all-optical full-frequency optical wavelength configuration routing device, using a pair of NxN array waveguide gratings and multiple adjustable Bragg fiber gratings.

  為了達成上述目的及功效,一種雙向全光式全頻光波長組態路由裝置,包含一NxN陣列波導光柵模組、一光纖光柵模組、一第一迴光器模組及一第二迴光器模組,其具體可行之實施方式如下:In order to achieve the above object and effect, a bidirectional all-optical full-frequency optical wavelength configuration routing device comprises an NxN arrayed waveguide grating module, a fiber grating module, a first photodetector module and a second return light. The specific implementation of the module is as follows:

  一NxN陣列波導光柵模組,係具有一第一NxN陣列波導光柵及第二NxN陣列波導光柵,該第一NxN陣列波導光柵及該第二NxN陣列波導光柵均包含2N個連結埠,另,該第一NxN陣列波導光柵之其中二個連結埠係作In/Out埠。An NxN arrayed waveguide grating module has a first NxN arrayed waveguide grating and a second NxN arrayed waveguide grating, and the first NxN arrayed waveguide grating and the second NxN arrayed waveguide grating each comprise 2N connection ports, and Two of the first NxN arrayed waveguide gratings are connected as In/Out.

  一光纖光柵模組,係具有2(N-1)個可調式光纖光柵列,該可調式光纖光柵列均包含複數可調式光纖光柵;A fiber grating module having 2 (N-1) adjustable fiber grating columns, the adjustable fiber grating columns each comprising a plurality of adjustable fiber gratings;

  一第一迴光器模組,係具有2(N-1)個四埠迴光器,該四埠迴光器包含四個連結埠,該每二個四埠迴光器之二個連結埠間連結二可調式光纖光柵列,另二個連結埠分別連結於第一NxN陣列波導光柵及第二NxN陣列波導光柵之對應連結埠。A first photoreceiver module has 2 (N-1) four-turn photoreactors, and the four-turn photoreactor comprises four connecting ports, and two of the two four-turn photoreactors are connected. Interconnecting two adjustable fiber grating columns, the other two connecting wires are respectively connected to corresponding links of the first NxN arrayed waveguide grating and the second NxN arrayed waveguide grating.

  一第二迴光器模組,係具有二個三埠迴光器,該三埠迴光器包含三個連結埠,其中二個連結埠係分別作Add加入埠及Drop取出埠,另一連結埠係連結於第二NxN陣列波導光柵之連結埠。A second photoreceiver module has two three-turn photoreactors, and the three-turn photoreactor comprises three interlocking ports, two of which are respectively added as Add and Drop, and the other is connected. The lanthanum is connected to the junction of the second NxN arrayed waveguide grating.

  上述NxN之階數係四階以上。The order of the above NxN is more than four orders.

  上述第一NxN陣列波導光柵之In/Out埠係具雙向輸出與輸入之對稱特性。The In/Out埠 of the first NxN arrayed waveguide grating has a symmetrical characteristic of bidirectional output and input.

  上述可調式光纖光柵列之複數可調式光纖光柵列均係布雷格光纖光柵。The plurality of adjustable fiber grating columns of the above-mentioned adjustable fiber grating columns are both Bragg fiber gratings.

  本發明雙向全光式全頻光波長組態路由裝置之具體特點與功效在於:The specific features and effects of the bidirectional all-optical full-frequency optical wavelength configuration routing device of the present invention are as follows:

  1.以一對NxN陣列波導光柵及多重可調式布雷格光纖光柵,來實現雙向全光式全頻光波長組態路由機制。1. A pair of NxN arrayed waveguide gratings and multiple adjustable Bragg fiber gratings are used to realize a bidirectional all-optical full-frequency optical wavelength configuration routing mechanism.

  2.陣列波導光柵波長循環具有較大自由頻譜範圍。2. The arrayed waveguide grating wavelength cycle has a large free spectral range.

  3.波長訊號進入NxN陣列波導光柵分波後,隨即由可調式布雷格光纖光柵進行是否加入取出的機制,路由篩選彈性大。3. After the wavelength signal enters the NxN array waveguide grating, the mechanism is added or removed by the adjustable Bragg fiber grating, and the route screening elasticity is large.

  4.較大自由頻譜範圍,可允許布雷格光纖光柵進行較大調變範圍,波長循環特性允許白光波長訊號輸入。4. The large free spectral range allows the Bragg fiber grating to have a large modulation range, and the wavelength cycling characteristic allows white light wavelength signal input.

  5. NxN陣列波導光柵具有對稱特性,雙邊可作為輸入或輸出,利用此特性可實現雙性組態波長路由機制。5. NxN arrayed waveguide gratings have symmetrical characteristics, and can be used as inputs or outputs on both sides. This feature can realize the dual-configuration wavelength routing mechanism.

  6.無需限制波長訊號輸入的數量,運作成本也相對低廉,可對網路管理者提供更為彈性的網路管理服務。6. There is no need to limit the number of wavelength signal inputs, and the operating cost is relatively low, which can provide network administrators with more flexible network management services.

  7.提供國內光纖通訊網路低廉且彈性的路由設備。7. Provide low-cost and flexible routing equipment for domestic optical fiber communication networks.

  8.利用陣列波導光柵波長濾波路由規則,結合適當可調式布雷格光纖光柵反射欲Add加入-Drop取出的波長訊號。8. Using the arrayed waveguide grating wavelength filtering routing rule, combined with the appropriate adjustable Bragg fiber grating reflection to add the wavelength signal extracted by -Drop.

  9.調整可調式布雷格光纖光柵中心波長遠離波長訊號,使波長訊號可以直接抵達輸出埠。9. Adjust the center wavelength of the adjustable Bragg fiber grating away from the wavelength signal so that the wavelength signal can directly reach the output port.

  10.經由陣列波導光柵的濾波特性,每埠間相鄰的波長訊號頻寬可供給可調式布雷格光纖光柵調變不同波長以進行不同光路徑的路由機制,而不會干擾其它的波長訊號。10. Through the filtering characteristics of the arrayed waveguide grating, the adjacent wavelength signal bandwidth between turns can be supplied to the adjustable Bragg fiber grating to modulate different wavelengths to perform routing mechanisms for different optical paths without interfering with other wavelength signals.

  11.本波長路由裝置可提供雙向光網路的波長路由管理且可依需求來放置相對應的布雷格光纖光柵,因而提供現有光網路更為彈性及更高容量的網路波長管理系統。11. The wavelength routing device can provide wavelength routing management of the bidirectional optical network and can place corresponding Bragg fiber gratings according to requirements, thereby providing a more flexible and higher capacity network wavelength management system of the existing optical network.

  請參閱第一圖,為本發明一實施例之雙向全光式全頻光波長組態路由裝置連結架構示意圖,本發明係一種雙向全光式全頻光波長組態路由裝置,包含一NxN陣列波導光柵模組(1)、一光纖光柵模組(2)、一第一迴光器模組(3)及一第二迴光器模組(4),其中:Please refer to the first figure, which is a schematic diagram of a connection architecture of a bidirectional all-optical full-frequency optical wavelength configuration routing device according to an embodiment of the present invention. The present invention is a bidirectional all-optical full-frequency optical wavelength configuration routing device, including an NxN array. a waveguide grating module (1), a fiber grating module (2), a first photoreceiver module (3) and a second photoreactor module (4), wherein:

  NxN陣列波導光柵模組(1)連結第一迴光器模組(3)與第二迴光器模組(4),且第一迴光器模組(3)連結光纖光柵模組(2)。The NxN array waveguide grating module (1) is connected to the first photoreceiver module (3) and the second photoreactor module (4), and the first photoreceiver module (3) is coupled to the fiber grating module (2) ).

  請參閱第二、三圖,為本發明一實施例之第一單組雙向全光式全頻光波長組態路由裝置連結示意圖及第二單組雙向全光式全頻光波長組態路由裝置連結示意圖,本發明係一種雙向全光式全頻光波長組態路由裝置,包含一NxN陣列波導光柵模組(1)、一光纖光柵模組(2)、一第一迴光器模組(3)及一第二迴光器模組(4),其中:Please refer to the second and third figures, which are schematic diagrams of a first single set bidirectional all-optical full-frequency optical wavelength configuration routing device and a second single-group bidirectional all-optical full-frequency optical wavelength configuration routing device according to an embodiment of the invention The present invention is a bidirectional all-optical full-frequency optical wavelength configuration routing device, comprising an NxN array waveguide grating module (1), a fiber grating module (2), and a first photoreactor module ( 3) and a second photoreceiver module (4), wherein:

  一NxN陣列波導光柵模組(1),係具有第一NxN陣列波導光柵(11)及第二NxN陣列波導光柵(12),該第一NxN陣列波導光柵(11)及第二NxN陣列波導光柵(12)均包含2N個連結埠(111,121),另,該第一NxN陣列波導光柵(11)之其中二個連結埠(111)係作In/Out埠,上述NxN之階數係四階以上,且該第一NxN陣列波導光柵(1)之In/Out埠係具雙向輸出與輸入之對稱特性。An NxN arrayed waveguide grating module (1) having a first NxN arrayed waveguide grating (11) and a second NxN arrayed waveguide grating (12), the first NxN arrayed waveguide grating (11) and the second NxN arrayed waveguide grating (12) each includes 2N connection ports (111, 121). In addition, two of the first NxN arrayed waveguide gratings (11) are connected to each other (111) as In/Out, and the order of the above NxN is four. Above the order, and the In/Out埠 of the first NxN arrayed waveguide grating (1) has a symmetrical characteristic of bidirectional output and input.

  一光纖光柵模組(2),係具有2(N-1)個可調式光纖光柵列(21),該可調式光纖光柵列(21)均包含複數可調式光纖光柵(211),上述可調式光纖光柵列(21)之複數可調式光纖光柵(211)列均係布雷格光纖光柵。A fiber grating module (2) having 2 (N-1) adjustable fiber grating columns (21), the adjustable fiber grating columns (21) each comprising a plurality of adjustable fiber gratings (211), the above adjustable The complex tunable fiber grating (211) columns of the fiber grating array (21) are both Bragg fiber gratings.

  一第一迴光器模組(3),係具有2(N-1)個四埠迴光器(31),該四埠迴光器(31)包含四個連結埠(311),該每二個四埠迴光器(31)之二個連結埠(311)間連結二可調式光纖光柵列(21),另二個連結埠(311)分別連結於第一NxN陣列波導光柵(11)及第二NxN陣列波導光柵(12)之對應連結埠(111,121)。A first photoreceiver module (3) has 2 (N-1) four-turn photoreactors (31), and the four-turn photoreactor (31) includes four connection ports (311), each of which Two connecting 埠 (311) of the two four-turn ejector (31) are connected to the two adjustable fiber grating columns (21), and the other two connecting 埠 (311) are respectively connected to the first NxN array waveguide grating (11) And a corresponding connection 埠 (111, 121) of the second NxN arrayed waveguide grating (12).

  一第二迴光器模組(4),係具有二個三埠迴光器(41),該三埠迴光器(41)包含三個連結埠(411),其中二個連結埠(411)係分別作Add加入埠及Drop取出埠,另一連結埠(411)係連結於第二NxN陣列波導光柵(12)之連結埠(121)。A second photoreceiver module (4) has two three-turn photoreactors (41), and the three-turn photoreactor (41) includes three connecting ports (411), two of which are connected to each other (411). The 埠 and the Drop are respectively taken out, and the other 埠 (411) is connected to the connection 埠 (121) of the second NxN arrayed waveguide grating (12).

  具體可行的實施方式及理論內容詳述如下:The specific feasible implementation methods and theoretical contents are detailed as follows:

  第一圖所示之雙向可重組態光信號塞取多工器係由一對4x4陣列波導光柵〔包含第一NxN (N=4)陣列波導光柵(11)及第二NxN (N=4)陣列波導光柵(12)〕,結合三組四埠迴光器(31)、二個3埠迴光器(41)及多個多重可調式布雷格光纖光柵〔即光纖光柵模組(2)中之可調式光纖光柵列(21)〕所組合而成,當波長訊號λ12, …λ N ,從In1/Out2輸入時,則上面第一NxN (N=4)陣列波導光柵(11)會先執行波長解多工,也就是R1得到波長訊號λ159…,R2得到波長訊號λ2610…,R3得到波長訊號λ3711…,R4得到波長訊號λ4812…,而NxN陣列波導光柵模組(1)的波長路由規則,則顯示在第四圖。The two-way reconfigurable optical signal plug-in multiplexer shown in the first figure is composed of a pair of 4x4 arrayed waveguide gratings (including a first NxN (N=4) arrayed waveguide grating (11) and a second NxN (N=4). Array waveguide grating (12)], combining three sets of four-turn photoreactors (31), two three-turn photoreactors (41) and a plurality of multi-adjustable Bragg fiber gratings (ie, fiber grating modules (2) The tunable fiber grating column (21) is combined. When the wavelength signals λ 1 , λ 2 , ... λ N are input from In1/Out2, the first NxN (N=4) arrayed waveguide grating is above ( 11) Wavelength multiplexing is performed first, that is, R1 obtains wavelength signals λ 1 , λ 5 , λ 9 ..., and R2 obtains wavelength signals λ 2 , λ 6 , λ 10 ..., and R3 obtains wavelength signals λ 3 , λ 7 , λ 11 ..., R4 obtains the wavelength signals λ 4 , λ 8 , λ 12 ..., and the wavelength routing rule of the NxN arrayed waveguide grating module (1) is shown in the fourth figure.

  當NxN陣列波導光柵模組(1)執行完波長的解多工任務後,各埠對〔L2-R2、L3-R3及L4-R4〕間會透過二個四埠迴光器(31)連結兩個多重布雷格光纖光柵之可調式光纖光柵列(21),換句話說,R2與L2間放置二個四埠迴光器(31)及相對於λ2610…的其一可調式光纖光柵列(21),R3與L3間放置二個四埠迴光器(31)及相對於λ3711…的其二可調式光纖光柵列(21),R4與L4間放置二個四埠迴光器及相對於λ4812…的其三可調式光纖光柵列(21),經由各埠〔L2、L3及L4或R2、R3及R4〕波長解多工出來的波長訊號經由四埠迴光器(31)進入相對應的多重可調式布雷格光纖光柵之可調式光纖光柵列(21),決定是否反射波長訊號以進行取出機制,若要取出該波長訊號,則透過布雷格光纖光柵之可調式光纖光柵列(21)反射該波長訊號至下方的第二NxN (N=4)陣列波導光柵(12),而從第二NxN (N=4)陣列波導光柵(12) 右方所輸入的波長訊號,經由NxN陣列波導光柵模組(1)的路由規則〔如第四圖〕,以相對應的波長輸入執行波長多工機制,我們可以從Drop1取得波長訊號,而此時,我們可以從Add1埠輸入相對於取出埠所得到的相同波長輸入此埠,而由Add1埠所輸入的波長同樣透過下方的第二NxN (N=4)陣列波導光柵(12)執行波長解多工任務,之後會經由四埠迴光器(31)至相對應的布雷格光纖光柵之可調式光纖光柵列(21)進行反射,而之後所反射的波長訊號會至上方第一NxN (N=4)陣列波導光柵(11),經由NxN陣列波導光柵模組(1)的路由規則,以相對應的波長輸入執行波長多工機制,我們可以從In1/Out2得到由Add1所加入的波長訊號,然而,若我們不取出從In1/Out2所輸入的波長訊號時,則布雷格光纖光柵之可調式光纖光柵列(21)就不要調至相對應波長訊號波長,以避免反射波長訊號,讓波長訊號可以直接穿透可調式光纖光柵列(21)式而行逕至上方第一NxN (N=4)陣列波導光柵(11)左方以進行如同加入機制最後的波長多工機制一樣,經由NxN陣列波導光柵模組(1)的路由規則,以相對應的波長輸入執行波長多工機制,我們可以從In2/Out1得到由In1/Out2所輸入的波長訊號,而從In2/Out1所輸入的波長訊號與從In1/Out2的波長訊號的Add加入-Drop取出原理一樣。After the NxN arrayed waveguide grating module (1) performs the wavelength multiplexing task, each pair of pairs [L2-R2, L3-R3 and L4-R4] is connected through two four-turn photoreactors (31). Two tunable fiber grating rows (21) of multiple Bragg fiber gratings, in other words, two four-turn photoreactors (31) between R2 and L2 and their relative to λ 2 , λ 6 , λ 10 ... An adjustable fiber grating array (21), two four-turn photoreactors (31) between R3 and L3, and two adjustable fiber grating columns (21), R4 with respect to λ 3 , λ 7 , λ 11 ... Two four-turn photoreactors are placed between L4 and three adjustable fiber grating rows (21) with respect to λ 4 , λ 8 , λ 12 ... via respective 埠 [L2, L3 and L4 or R2, R3 and R4 Wavelength-demultiplexed wavelength signal enters the corresponding multi-adjustable Bragg fiber grating tunable fiber grating column (21) via a four-turn photoreactor (31) to determine whether to reflect the wavelength signal for the removal mechanism. To extract the wavelength signal, the tunable fiber grating column (21) through the Bragg fiber grating reflects the wavelength signal to the second NxN (N=4) arrayed waveguide grating (12) below, and from the second NxN ( N=4) The wavelength signal input to the right of the arrayed waveguide grating (12), through the routing rule of the NxN arrayed waveguide grating module (1) [as shown in the fourth figure], performs the wavelength multiplexing mechanism with the corresponding wavelength input. We can get the wavelength signal from Drop1. At this time, we can input this 埠 from the same wavelength as the input Add from Add1埠, and the wavelength input by Add1埠 also passes through the second NxN below (N=4 The arrayed waveguide grating (12) performs a wavelength demultiplexing task, which is then reflected by the four-turn photoreactor (31) to the corresponding Bragg fiber grating tunable fiber grating column (21), and then reflected The wavelength signal will go to the first NxN (N=4) arrayed waveguide grating (11). The routing rule of the NxN arrayed waveguide grating module (1) is used to perform the wavelength multiplexing mechanism with the corresponding wavelength input. We can get from In1. /Out2 gets the wavelength signal added by Add1. However, if we do not take out the wavelength signal input from In1/Out2, then the Bragg fiber grating adjustable fiber grating column (21) should not be adjusted to the corresponding wavelength signal. Wavelength to avoid reflection The long signal allows the wavelength signal to pass directly through the tunable fiber grating column (21) to the left of the first NxN (N=4) arrayed waveguide grating (11) to perform the wavelength multiplex mechanism as the joining mechanism. Similarly, via the routing rules of the NxN arrayed waveguide grating module (1), the wavelength multiplexing algorithm is performed with the corresponding wavelength input. We can get the wavelength signal input by In1/Out2 from In2/Out1, and from In2/Out1. The input wavelength signal is the same as the Add-Drop take-out principle of the wavelength signal from In1/Out2.

  第二圖所示之雙向可重組態光信號塞取多工器可以允許白光波長訊號,卻無法管理波長訊號λ159…等,但可以依照第四圖所示適當以不同埠組合來允許管理波長訊號λ159…等,如第三圖,但第三圖所示之架構,無法管理波長訊號λ4812…等,但經串接第二圖及第三圖後,所有的波長訊號都可以進行管理作業。The two-way reconfigurable optical signal plug-in multiplexer shown in the second figure can allow white light wavelength signals, but cannot manage wavelength signals λ 1 , λ 5 , λ 9 ... etc., but can be appropriately Different combinations of 来 allow to manage wavelength signals λ 1 , λ 5 , λ 9 ... etc., as shown in the third figure, but the architecture shown in the third figure cannot manage the wavelength signals λ 4 , λ 8 , λ 12 ... etc. After connecting the second and third diagrams in series, all wavelength signals can be managed.

  綜合上述,本發明係針對雙向全光式全頻光波長組態路由裝置之應用技術,特別係指一種藉由包含一NxN陣列波導光柵模組(1)、一光纖光柵模組(2)、一第一迴光器模組(3)及一第二迴光器模組(4)之雙向全光式全頻光波長組態路由裝置,以NxN陣列波導光柵模組(1)連結第一迴光器模組(3)與第二迴光器模組(4),且第一迴光器模組(3)連結光纖光柵模組(2),在僅使用一對NxN陣列波導光柵及多重可調式布雷格光纖光柵的條件下,達成雙向組態波長路由機制。In view of the above, the present invention is directed to a bidirectional all-optical full-frequency optical wavelength configuration routing device application technology, in particular, comprising an NxN array waveguide grating module (1), a fiber grating module (2), A bidirectional all-optical full-frequency optical wavelength configuration routing device of a first photoreceiver module (3) and a second photoreceiver module (4) is connected to the first by an NxN array waveguide grating module (1) a returning light module (3) and a second light returning module (4), and the first light returning module (3) is coupled to the fiber grating module (2), using only a pair of NxN arrayed waveguide gratings and Under the condition of multiple adjustable Bragg fiber gratings, a bidirectional configuration wavelength routing mechanism is achieved.

  綜合上述實施例之說明,當可充分瞭解本發明之操作、使用及本發明產生之功效,惟以上所述實施例僅係為本發明之較佳實施例,當不能以此限定本發明實施之範圍,即依本發明申請專利範圍及發明說明內容所作簡單的等效變化與修飾,皆屬本發明涵蓋之範圍內。In view of the foregoing description of the embodiments, the operation and the use of the present invention and the effects of the present invention are fully understood, but the above described embodiments are merely preferred embodiments of the present invention, and the invention may not be limited thereto. Included within the scope of the present invention are the scope of the present invention.

(1)...NxN陣列波導光柵模組(1). . . NxN array waveguide grating module

(11)...第一NxN陣列波導光柵(11). . . First NxN array waveguide grating

(111)...連結埠(111). . . Link

(12)...第二NxN陣列波導光柵(12). . . Second NxN array waveguide grating

(121)...連結埠(121). . . Link

(2)...光纖光柵模組(2). . . Fiber grating module

(21)...可調式光纖光柵列(twenty one). . . Adjustable fiber grating column

(211)...可調式光纖光柵(211). . . Adjustable fiber grating

(3)...第一迴光器模組(3). . . First light return module

(31)...四埠迴光器(31). . . Four-turn light return

(311)...連結埠(311). . . Link

(4)...第二迴光器模組(4). . . Second light return module

(41)...三埠迴光器(41). . . Three-turn photoreactor

(411)...連結埠(411). . . Link

  第一圖:本發明一實施例之雙向全光式全頻光波長組態組態路由裝置連結架構示意圖。First: A schematic diagram of a connection architecture of a bidirectional all-optical full-frequency optical wavelength configuration configuration routing device according to an embodiment of the present invention.

  第二圖:本發明一實施例之第一單組雙向全光式全頻光波長組態組態路由裝置連結示意圖。The second figure is a schematic diagram of the connection of the first single-group bidirectional all-optical full-frequency optical wavelength configuration configuration routing device according to an embodiment of the present invention.

  第三圖:本發明一實施例之第二單組雙向全光式全頻光波長組態組態路由裝置連結示意圖。The third figure is a schematic diagram of the connection of the second single-group bidirectional all-optical full-frequency optical wavelength configuration configuration routing device according to an embodiment of the present invention.

  第四圖:本發明NxN陣列波導光柵輸入埠及輸出埠之濾波波長對應示意圖。The fourth figure is a schematic diagram of the filter wavelength corresponding to the input chirp and the output chirp of the NxN array waveguide grating of the present invention.

(1)...NxN陣列波導光柵模組(1). . . NxN array waveguide grating module

(11)...第一NxN陣列波導光柵(11). . . First NxN array waveguide grating

(111)...連結埠(111). . . Link

(12)...第二NxN陣列波導光柵(12). . . Second NxN array waveguide grating

(121)...連結埠(121). . . Link

(2)...光纖光柵模組(2). . . Fiber grating module

(21)...可調式光纖光柵列(twenty one). . . Adjustable fiber grating column

(211)...可調式光纖光柵(211). . . Adjustable fiber grating

(3)...第一迴光器模組(3). . . First light return module

(31)...四埠迴光器(31). . . Four-turn light return

(311)...連結埠(311). . . Link

(4)...第二迴光器模組(4). . . Second light return module

(41)...三埠迴光器(41). . . Three-turn photoreactor

(411)...連結埠(411). . . Link

Claims (4)

一種雙向全光式全頻光波長組態路由裝置g4,包括:
  一NxN陣列波導光柵模組,係具有第一NxN陣列波導光柵及第二NxN陣列波導光柵,該第一NxN陣列波導光柵及第二NxN陣列波導光柵均包含2N個連結埠,另,該第一NxN陣列波導光柵之其中二個連結埠係作In/Out埠;
  一光纖光柵模組,係具有2(N-1)個可調式光纖光柵列,該可調式光纖光柵列均包含複數可調式光纖光柵;
  一第一迴光器模組,係具有2(N-1)個四埠迴光器,該四埠迴光器包含四個連結埠,該每二個四埠迴光器之二個連結埠間連結二可調式光纖光柵列,另二個連結埠分別連結於第一NxN陣列波導光柵及第二NxN陣列波導光柵之對應連結埠;
  一第二迴光器模組,係具有二個三埠迴光器,該三埠迴光器包含三個連結埠,其中二個連結埠係分別作Add埠及Drop埠,另一連結埠係連結於第二NxN陣列波導光柵之連結埠。
A bidirectional all-optical full-frequency optical wavelength configuration routing device g4, comprising:
An NxN arrayed waveguide grating module has a first NxN arrayed waveguide grating and a second NxN arrayed waveguide grating, the first NxN arrayed waveguide grating and the second NxN arrayed waveguide grating each comprising 2N connected ports, and the first Two of the NxN arrayed waveguide gratings are connected as In/Out埠;
A fiber grating module having 2 (N-1) adjustable fiber grating columns, the adjustable fiber grating columns each comprising a plurality of adjustable fiber gratings;
A first photoreceiver module has 2 (N-1) four-turn photoreactors, and the four-turn photoreactor comprises four connecting ports, and two of the two four-turn photoreactors are connected. Interconnecting two adjustable fiber grating columns, and the other two connecting wires are respectively connected to corresponding links of the first NxN arrayed waveguide grating and the second NxN arrayed waveguide grating;
A second photoreceiver module has two three-turn photoreactors, and the three-turn photoreactor comprises three interlocking ports, two of which are respectively an Add埠 and a Drop埠, and the other is a link Connected to the second NxN arrayed waveguide grating.
如申請專利範圍第1項所述之雙向全光式全頻光波長組態路由裝置,其中該NxN之階數係四階以上。The bidirectional all-optical full-frequency optical wavelength configuration routing device according to claim 1, wherein the order of the NxN is more than four orders. 如申請專利範圍第1項所述之雙向全光式全頻光波長組態路由裝置,其中該第一NxN陣列波導光柵之In/Out埠係具雙向輸出與輸入之對稱特性。The bidirectional all-optical full-frequency optical wavelength configuration routing device according to claim 1, wherein the In/Out埠 of the first NxN arrayed waveguide grating has a symmetrical characteristic of bidirectional output and input. 如申請專利範圍第1項所述之雙向全光式全頻光波長組態路由裝置,其中該可調式光纖光柵列之複數可調式光纖光柵列均係布雷格光纖光柵。The bidirectional all-optical full-frequency optical wavelength configuration routing device according to claim 1, wherein the plurality of adjustable fiber grating columns of the adjustable fiber grating column are Bragg fiber gratings.
TW100123143A 2011-06-30 2011-06-30 Bidirectional reconfigurable optical wavelength routing device for all optical network TWI440909B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100123143A TWI440909B (en) 2011-06-30 2011-06-30 Bidirectional reconfigurable optical wavelength routing device for all optical network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100123143A TWI440909B (en) 2011-06-30 2011-06-30 Bidirectional reconfigurable optical wavelength routing device for all optical network

Publications (2)

Publication Number Publication Date
TW201300861A true TW201300861A (en) 2013-01-01
TWI440909B TWI440909B (en) 2014-06-11

Family

ID=48137477

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100123143A TWI440909B (en) 2011-06-30 2011-06-30 Bidirectional reconfigurable optical wavelength routing device for all optical network

Country Status (1)

Country Link
TW (1) TWI440909B (en)

Also Published As

Publication number Publication date
TWI440909B (en) 2014-06-11

Similar Documents

Publication Publication Date Title
KR101978191B1 (en) Scalable optical switches and switching modules
CN105474565B (en) Photon switch chip for expansible reconfigurable optical add/drop multiplexer
JP4739928B2 (en) Wavelength selective optical switch and wavelength selective optical switch module
US9788089B2 (en) Optical cross-connect
JP6021492B2 (en) Optical cross-connect device
US9172488B2 (en) Optical terminating apparatus for optical path network
CN103069320B (en) Wavelength selection switch
JP2009530970A5 (en)
US9647790B2 (en) Reconfigurable optical switch apparatus
Gunkel et al. A cost model for the WDM layer
US9496979B2 (en) Space switch device
CN100495098C (en) A reconfigurable optical switching system
Nemoto et al. 8× 8 wavelength cross connect with add/drop ports integrated in spatial and planar optical circuit
US9654851B2 (en) Optical cross-connect device
JP5526389B2 (en) Hierarchical optical path cross-connect equipment for optical path networks
CN104297853B (en) Modular wavelength and space All-optical routing device
TWI440909B (en) Bidirectional reconfigurable optical wavelength routing device for all optical network
Ishii et al. Development of hierarchical optical path cross-connect systems employing wavelength/waveband selective switches
JP3878013B2 (en) Optical wavelength multiplexing / demultiplexing module
JP2010219828A (en) Optical path cross connection apparatus for optical path network and hierarchical optical path cross connection apparatus
CN1545238A (en) Eight-channel full fiber coarse wavelength-division multiplexer/demultiplexer
CN100539491C (en) The cross connector that is used for light signal
JP5610350B2 (en) Optical circuit for optical node
TWI422185B (en) Reconfigurable white spectrum optical add-drop multiplexer
TW201300859A (en) Selective wavelength management routing device with white spectral channel input

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees