TW201251517A - Systems and methods for buffer gas flow stabilization in a laser produced plasma light source - Google Patents

Systems and methods for buffer gas flow stabilization in a laser produced plasma light source Download PDF

Info

Publication number
TW201251517A
TW201251517A TW101116337A TW101116337A TW201251517A TW 201251517 A TW201251517 A TW 201251517A TW 101116337 A TW101116337 A TW 101116337A TW 101116337 A TW101116337 A TW 101116337A TW 201251517 A TW201251517 A TW 201251517A
Authority
TW
Taiwan
Prior art keywords
light
gas
light source
flow
target
Prior art date
Application number
TW101116337A
Other languages
Chinese (zh)
Other versions
TWI576013B (en
Inventor
Vladimir B Fleurov
William N Partlo
Igor V Fomenkov
Alexander I Ershov
Original Assignee
Cymer Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cymer Inc filed Critical Cymer Inc
Publication of TW201251517A publication Critical patent/TW201251517A/en
Application granted granted Critical
Publication of TWI576013B publication Critical patent/TWI576013B/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • H05G2/005X-ray radiation generated from plasma being produced from a liquid or gas containing a metal as principal radiation generating component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/008X-ray radiation generated from plasma involving a beam of energy, e.g. laser or electron beam in the process of exciting the plasma

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • X-Ray Techniques (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

An extreme-ultraviolet (EUV) light source comprising an optic, a target material, and a laser beam passing through said optic along a beam path to irradiate said target material. The EUV light source further includes a system generating a gas flow directed toward said target material along said beam path, said system having a tapering member surrounding a volume and a plurality of gas lines, each gas line outputting a gas stream into said volume.

Description

201251517 • 六、發明說明: 【發明所屬之技彳衧領域】 相關申請案之交互參照 本申請案主張在2011年6月8曰申請之美國發明專利申 請案序號第13/156,188號的優先權,其標題為“SYSTEMS AND METHODS FOR BUFFER GAS FLOW STABILIZATION IN A LASER PRODUCED PLASMA LIGHT SOURCE”,律師檔案號:2010-0020-01,全部内容 併入本文作為參考資料。 發明領域201251517 • VI. Description of the invention: [Technical Fields of the Invention] Cross-Reference to Related Applications This application claims priority to U.S. Patent Application Serial No. 13/156,188, filed on Jun. The title is "SYSTEMS AND METHODS FOR BUFFER GAS FLOW STABILIZATION IN A LASER PRODUCED PLASMA LIGHT SOURCE", attorney docket number: 2010-0020-01, the entire contents of which is incorporated herein by reference. Field of invention

本申請案係有關於極紫外線(“EUV”)光源用以提供由 原料生成之電漿以及收集及導至中間位置的EUV光供EUVThis application relates to an extreme ultraviolet ("EUV") source for providing plasma generated from a raw material and for collecting and directing EUV light to an intermediate position for EUV.

_ I 光源室外’例如,以約100奈米以下的波長使用於製造半導 體積體電路的微影技術》 C先前技術1 發明背景 極紫外線(“EUV”)光,例如,波長約5至100奈米或更短 的電磁輻射(有時也被稱作軟x射線),以及包括波長約13奈 米的光線,可用於微影製程以在基板(例如,矽晶圓)中產生 極小的特徵。 產生EUV光的方法包括但不必受限於:用在EUV範圍 中的發射譜線(emission line)將靶材轉換成有元素(例如, 氙、鋰或錫)的電漿狀態。 在一此類方法中’常稱作雷射生成電漿法(“LPP”),用 201251517 雷射光束輻照靶材可產生所需電漿,例如形式為微滴、串 流(stream)或蒸團(cluster)的材料。在這點上,輸出有中紅 外線波長(亦即,在約9·0微米至11.0微米之間的波長)之光線 的C02雷射在LPP製程中作為輻照靶材的驅動雷射有數個 優點。對於某些I巴材,例如,含錫材料,這特別為真。例 如,優點之一是能夠在驅動雷射輸入功率與輪出EUV功率 之間產生相對高的轉換效率。 以LPP製程而言,電漿通常在密封容器(例如,真空室) 中產生,以及用各種類型的計量設備監視。除了產生EUV 輻射以外,電漿製程通常也在電漿室中產生不合意的副產 品,這可包括熱、高能離子及電漿形成物的分散殘渣,例 如,在電漿形成過程中沒有被完全離子化的原料蒸氣及/或 原料之團塊/微滴。 可惜的是,電漿形成物副產品有可能損壞或降低各種 電漿室光學元件的操作效率包括但不受限於:包括能夠以 正入射及/或切線入射反射EUV之多層鏡(MLM)的反射 鏡,度量衡檢測器的表面,用來顯像電漿形成過程的窗口, 以及雷射輸入光件(例如,可為窗口或聚焦透鏡)。 熱、高能離子及/或原料殘渣可用許多方式損傷該等光 學元件,包括加熱它們,使它們覆上降低透光性的材料, 滲入它們,例如,而損及結構完整性及/或光學性質,例如, 反射鏡反射有如此短之波長之光線的能力,腐蝕或侵蝕它 們及/或擴散於其中。 已有人建議使用緩衝氣體,例如氫、氦、氬或彼等之 201251517 、’且二。緩衝氣體在電漿產生期間可存在於室中以及可用來 減緩電名產生之離子以降低光件劣化及/或增加電漿效 率例如,在電漿、光件之間的空間中,可提供電漿產生 之離子在到達光件表面之前足以使其離子能量降低到約 _以下的緩衝氣體壓力。 在有些實作中’可用一或更多泵浦使緩衝氣體可進出 真空至。适允許熱、蒸氣、清洗反應產物及/或要由真空室 移出的粒子。可丟棄廢氣,或在有些情形下,可處理該氣 體’例如過渡、冷卻'等等以及再使用n氣流也可用 來引導粒子離開關鍵表面,例如反射鏡、透鏡、窗口、檢 測器等等的表面。在這點上,以有璇渦(可包栝流體打旋及 附有逆流)為特徵的湍流是不合意的因為它們可包含向著 關鍵表面的流動。逆流流動可藉由運輸材料至關鍵表面而増 加表面沉積物。湍流也可能以某種隨機方式使靶材微滴串流 失穩。一般而言,這種失穩不容易補償,結果f對於光源成 功準確地輻照相對小靶材微滴的性能可能有不利影響。 已有人建議在LPP光源中使用與沉積材料有化學作用 的一或更多化學物種來移除光件的沉積物。例如,已有人 揭示使用含有化合物(例如,甲基溴、氣化物等等)的鹵素。 當電漿靶材中含有錫時,具潛力的清洗技術之一涉及利用_ I source outdoor 'for example, lithography technology for manufacturing semiconductor integrated circuits at a wavelength of about 100 nm or less. C Prior Art 1 Background of the Invention Extreme ultraviolet ("EUV") light, for example, has a wavelength of about 5 to 100 nm Meters or shorter electromagnetic radiation (sometimes referred to as soft x-rays), as well as light having a wavelength of about 13 nm, can be used in lithography processes to produce very small features in substrates (eg, germanium wafers). Methods of producing EUV light include, but are not necessarily limited to, conversion of the target into a plasma state with elements (e.g., germanium, lithium, or tin) using an emission line in the EUV range. In one such method, 'often referred to as laser-generated plasma method ("LPP"), irradiating a target with a 201251517 laser beam produces the desired plasma, for example in the form of droplets, streams or The material of the cluster. In this regard, there are several advantages to the C02 laser outputting light having a mid-infrared wavelength (i.e., a wavelength between about 9.0 micrometers and 11.0 micrometers) as an irradiation target in the LPP process. . This is especially true for certain I materials, such as tin-containing materials. For example, one of the advantages is the ability to produce relatively high conversion efficiencies between driving laser input power and rotating EUV power. In the case of the LPP process, the plasma is typically produced in a sealed container (e.g., a vacuum chamber) and monitored with various types of metering equipment. In addition to producing EUV radiation, the plasma process typically also produces undesirable by-products in the plasma chamber, which can include dispersed residues of heat, high energy ions, and plasma formers, for example, not fully ionized during plasma formation. Bulk/microdroplets of raw material vapor and/or raw materials. Unfortunately, plasma formation by-products are likely to damage or reduce the operational efficiency of various plasma chamber optics including, but not limited to, reflections including multilayer mirrors (MLM) capable of reflecting EUV at normal incidence and/or tangential incidence. The mirror, the surface of the metrology detector, the window used to visualize the plasma formation process, and the laser input light (eg, can be a window or a focusing lens). Thermal, energetic ions and/or raw material residues can damage the optical components in a number of ways, including heating them, coating them with light transmissive materials, infiltrating them, for example, and damaging structural integrity and/or optical properties, For example, mirrors reflect the ability to have such short wavelengths of light, corrode or erode them and/or diffuse into them. It has been suggested to use buffer gases such as hydrogen, helium, argon or their 201251517, 'and two. The buffer gas may be present in the chamber during plasma generation and may be used to slow down the generation of ions by the electric name to reduce the deterioration of the optical member and/or increase the plasma efficiency. For example, in the space between the plasma and the light member, electricity may be supplied. The ions produced by the slurry are sufficient to reduce their ion energy to a buffer gas pressure of about _ or less before reaching the surface of the light member. In some implementations, one or more pumps may be used to allow the buffer gas to enter and exit the vacuum. Suitable for heat, steam, cleaning reaction products and/or particles to be removed from the vacuum chamber. The exhaust gas may be discarded, or in some cases, the gas may be treated 'eg, transition, cool, etc., and the n-stream may be used to direct the particles away from critical surfaces such as mirrors, lenses, windows, detectors, and the like. . At this point, turbulence characterized by turbulent eddies (which can be swirled with fluid and countercurrent) is undesirable because they can include flow toward critical surfaces. Countercurrent flow can add surface deposits by transporting materials to critical surfaces. Turbulence may also destabilize the target droplets in a random manner. In general, this instability is not easily compensated, and as a result, the accurate radiography of the light source may have an adverse effect on the performance of the small target droplets. It has been suggested to use one or more chemical species that chemically interact with the deposited material in the LPP source to remove deposits of the optical member. For example, it has been disclosed to use a halogen containing a compound (e.g., methyl bromide, vapor, etc.). One of the potential cleaning techniques involves the use of tin when the plasma target contains tin.

I 氫自由基移除光件的錫及含錫沉積物。在一機構中,氫自 由基與沉積錫結合而形成氫化錫蒸氣,然後可由真空室移 出它。不過,例如,如果被湍流旋渦所產生的逆流向後流 向光件表面的話,氫化錫蒸氣可能分解而再沉積錫。接著, 201251517 這意謂被引導離開光件表面的流動減少湍流(以及可能的 話,為層流)可藉由清洗反應產物分解來減少再沉積。 【發明内容】 發明概要 基於上述考量,本案申請人揭示雷射生成電漿光源中 緩衝氣流穩定化的系統與方法。 圖式簡單說明 第1圖為與曝光裝置耦合之EUV光源的簡化示意圖;該 光源有系統用以引導在光件四周之氣流大體沿著光束路徑 以及朝向輻照區同時保持氣體處於實質無湍流狀態; 第2圖更詳細地圖示第1圖之E U V光源中顯示氣流系統 的放大部份; 第3圖的簡化示意圖圖示氣流系統的另一具體實施 例,並係具有護罩; 第4圖的簡化示意圖圖示氣流系統的另一具體實施 例,並係具有由錐化構件伸入氣流的數個流動導件; 第5圖為沿著第4圖之直線5-5繪出以圖示流動導件及 氣體管線的橫截面; 第5A圖為沿著第4圖之直線5-5繪出以圖示流動導件及 氣體管線之替代配置的橫截面; 第6圖的簡化示意圖圖示氣流系統的另一具體實施 例,其係具有護罩以及由護罩伸入氣流的數個流動導件; 第7圖為沿著第6圖之直線7-7繪出以圖示該等流動導 件的橫截面,其係;以及 201251517 第8圖的簡化示意圖圖示氣流系統的另一具體實施 例,其係具有錐化構件用以使柱形殼體的尖銳㈣變平滑: L· 較佳實施例之詳細說明 最初請參考第1圖的簡化示意剖面圖,其係根據具體實 施例之一方面圖不以元件符號10表示之Euv微影裝置的數 個選定部份。例如,裝置10可用Ευν光的具圖案光束 (patterned beam)來曝光基板,例如塗上阻劑的晶圓平板 工件等等。 至於裝置10,利用EUV光的曝光裝置12(例如,積體電 路微影工具,步進器、掃描器、步進及掃描系統、直接寫 入系統、使用接觸及/或近接遮罩的裝置等等)可設有一戈更 多光件,例如,以照射圖案化光件,例如光箪,而產生耳 圖案光束,以及一或更多縮減投影光件,用於投射具圖案 光束於基板上。可裝設用於產生基板與圖案化構件之受控 相對運動的機械總成。 如本文所使用的’術語“光件(〇ptiC),,及其派生詞包括但 不必受限於:反射及/或透射及/或操作入射光的一或更多組 件’包括但不受限於:一或更多透鏡、窗口、渡波器,換 形物、稜鏡、光柵(grism)、分品連接(grading)、傳輸光纖、 標準量具(etalon)、擴散器、均勻器、檢測器及其他儀器組I Hydrogen radicals remove tin and tin-containing deposits from the light. In a mechanism, a hydrogen radical combines with the deposited tin to form a hydrogen hydride vapor which can then be removed from the vacuum chamber. However, for example, if the countercurrent generated by the turbulent vortex flows backward toward the surface of the optical member, the hydrogen hydride vapor may be decomposed to redeposit the tin. Next, 201251517 this means that the flow that is directed away from the surface of the light member reduces turbulence (and, if possible, laminar flow), by reducing the redeposition by cleaning the reaction product decomposition. SUMMARY OF THE INVENTION Based on the above considerations, the applicant of the present invention discloses a system and method for stabilizing buffer flow in a laser generated plasma source. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a simplified schematic diagram of an EUV source coupled to an exposure apparatus having a system for directing airflow around the optical element generally along the beam path and toward the irradiation zone while maintaining the gas in a substantially turbulent state. Figure 2 illustrates in greater detail the enlarged portion of the display airflow system in the EUV source of Figure 1; the simplified schematic of Figure 3 illustrates another embodiment of the airflow system with the shield; Figure 4 A simplified schematic diagram illustrates another embodiment of the airflow system and has a plurality of flow guides that extend into the airflow by the tapered members; Figure 5 is depicted along line 5-5 of Figure 4 to illustrate Cross section of the flow guide and the gas line; Fig. 5A is a cross section taken along line 5-5 of Fig. 4 to illustrate an alternative configuration of the flow guide and the gas line; Another embodiment of the airflow system has a shroud and a plurality of flow guides that extend into the airflow from the shroud; Figure 7 is drawn along line 7-7 of Figure 6 to illustrate the flow. Cross section of the guide, its system; and 2012515 17 is a simplified schematic view of another embodiment of the airflow system with tapered members for smoothing the sharpness of the cylindrical housing: L. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a simplified schematic cross-sectional view of a selected portion of an Euv lithography apparatus not shown by the symbol 10 in accordance with one aspect of the specific embodiment. For example, device 10 may expose a substrate with a patterned beam of Ευν light, such as a wafer plate workpiece coated with a resist, or the like. As for device 10, an exposure device 12 utilizing EUV light (eg, integrated circuit lithography tools, steppers, scanners, step and scan systems, direct write systems, devices that use contacts and/or proximity masks, etc.) Alternatively, more light members may be provided, for example, to illuminate the patterned light member, such as a diaphragm, to produce an ear pattern beam, and one or more reduced projection light members for projecting the patterned beam onto the substrate. A mechanical assembly for producing controlled relative motion of the substrate and the patterned member can be provided. The term 'lighting element' (〇ptiC), as used herein, and its derivatives include, but are not necessarily limited to, one or more components that reflect and/or transmit and/or manipulate incident light 'including but not limited In: one or more lenses, windows, ferrites, commutators, crucibles, grations, grading, transmission optics, standard gauges (etalon), diffusers, homogenizers, detectors, and Other instrument group

I 件、開孔、圓錐透鏡(axicon),以及反射鏡,包括多層鏡、 近垂直入射鏡(near-normal incidence mirror)、切線入射鏡 (grazing incidence mirror)、鏡面反射件(specular reflector)、 7 201251517 擴散反射件(diffuse reflector)及彼等之組合。此外,除非另 有說明’如本文所使用的術語“光件,,或其派生詞並非意指 限於單獨操作的組件或在一或更多特定波長範圍内有利, 例如EUV輸出光波長、輻照雷射波長,適於度量衡的波長 或某些其他波長。 第1圖圖示一特定實施例,其中裝置10包含用於產生 EUV光用以曝光基板的LPP光源2〇。如圖示,可提供系統2ι 用於產生一序列的光脈衝以及輸送光脈衝至光源室26内。 對於裝置ίο,光脈衝可沿著一或更多光束路徑27由系統21 行進及進入室26以照射在輻照區48的一或更多目標以產生 EUV光輸出用以曝光曝光裝置12中之基板。 圖示於第1圖用於系統21的適當雷射可包含脈衝式雷射 袭置,例如,用DC或RF激發,以相對高功率(例如,1〇讀或 更高)及高脈衝重覆率(例如,40kHz或更大)操作產生9至"微 米之輕射的脈衝式氣體放電C〇2雷射裝置。在一特定實作 中,雷射可為軸流式射頻泵浦C〇2雷射,其係有多個放大階 段的振盪器-放大器組態(例如,主振盪器/功率放大器(M〇pA) 或功率振盪器/功率放大器(P0PA)),以及有用9切換振盪器 以相對低能量及高重覆率初始化成能夠例如以1〇〇 kHz操作 的種子脈衝(seed pulsed然後,來自振盪器的雷射脈衝在到 達輻照區48之前可加以放大、形塑及/或聚焦。連續泵浦式 c〇2放大器可用於雷射系統21。例如,有振盪器及3個放大器 (0-PA1-PA2-PA3組態)的適當C〇2雷射裝置揭示於美國專利 申請案序號第11/174,299號(申請於2005年6月29日,標題為 8 201251517 . LPP EUV LIGHT SOURCE DRIVE LASER SYSTEM,律師檔 案號:2005-0044-01,此時為公告於2008年10月21日的美國 專利第7,439,530號),全部内容併入本文作為參考資料。 替換地,可將雷射組態成為所謂的“自標定”雷射系 統’其中微滴用作光學腔之一鏡。在有些“自標定,’配置中, 可能不需要振盪器。有數種自標定雷射系統揭示及主張於 美國專利申請案序號第11/580,414號(申請於2006年10月13 日’標題為DRIVE LASER DELIVERY SYSTEMS FOR EUV LIGHT SOURCE,律師檔案號:2006-0025-01,此時為公 告於2009年2月17日的美國專利第7,491,954號),全部内容 併入本文作為參考資料。 取決於應用,其他類型的雷射也適用,例如,以高功 ' 率及高脈衝重覆率操作的準分子或分子氟雷射。其他適當 實施例包括例如,有纖維、棒、板條或圓盤狀之工作介質 (active media)的固態雷射,有一或更多室(例如,振盪器室 與一或更多並聯或串聯放大室)的其他雷射架構,主振盪器 /功率振盪器(ΜΟΡΟ)配置,主振盪器/電力環放大器 (MOPRA)配置’或以一或更多準分子、分子氟或c〇2放大 器或振盪器室為播種的固態雷射。其他的設計可能適合。 在某些情況下,目標首先可用預脈衝(pre*pulse)韓照, 之後用主脈衝輻照。預脈衝及主脈衝種子可用單一振盪器 或兩個獨立振蘯器產生。在有些設置中,一或更多共用放 大器可用來放大預脈衝種子及主脈衝種子。對於其他的配 置,獨立的放大器可用來放大預脈衝及主脈衝種子。例如, 201251517 種子雷射可為C〇2雷射,其係具有用射頻(RF)放電泵送含有 c〇2低於大氣壓力(例如,0 05_02大氣壓力)的密封氣體。 用此配置,種子雷射可自我調諧至主譜線(dominant line)中 之一條’例如有波長10_591〇352微米的1〇Ρ(2〇)線。在有些 情形下’ Q切換可用來控制種子脈衝參數。 s玄放大器可具有各自有自己之室、工作介質及激發源 (例如,泵送電極)的兩個或更多放大單元。例如,如上述, 以種子雷射包括含有C〇2之增益介質的情形而言,用作放大 單元的適當雷射可包含含有用DC或RF激發泵送之C〇2氣體 的工作介質。在一特定實作中,該放大器可包含多個(例如, 3至5個)軸流RF泵浦式(連續或脈衝化)c〇2放大單元,其係具 有總增益長度約10至25公尺,以及一起以相對高功率(例如, 10kW或更高)操作。其他類型的放大單元可具有板條幾何或 同軸幾何(用於氣體介質)。在有些情形下,可利用使用棒或 圓盤狀增益模組或基於纖維之增益介質的固態工作介質。 雷射系統21可包含有供光束調節用之一或更多光件的 光束調節單元(beam conditioning unit),例如擴展、操縱及/ 或整形在雷射源系統21、輻照部位48之間的光束。例如, 操縱系統(可包含一或更多反射鏡、稜鏡、透鏡、空間過遽 器、等等)可經裝設及配置成可操縱雷射焦點在室26中的不 同的位置。在一設置中,該操縱系統可包含第一平鏡與第 二平鏡,該第一平鏡係裝在可在兩個維度獨立移動第一平 鏡的偏轉傾斜致動器(tip-tilt actuator)上,以及該第二平鏡 裝在可在兩個維度獨立移動第二平鏡的偏轉傾斜致動器。 201251517 • 用此配置’該插縱系統月b可控制地在實質正交於光束傳播 方向的方向中移動焦點。 可裝設聚焦總成以使光束聚焦至輻照部位48以及調整 焦點在光軸上的位置。至於該聚焦總成,可使用光件50, 例如聚焦透鏡或反射鏡’其係耦合至沿著光軸運動的致動 器52(圖示於第2圖),例如步進馬達、伺服馬達、壓電換能 器等等,以使焦點在光軸上移動。在一配置中,光件50可 為由光學等級硒化鋅(ZnSe)製成的177毫米透鏡以及有約 135毫米的透明開孔。用此配置,可方便地使直徑約120毫 米的光束聚焦。以下文獻提供與光束調節系統有關的其他 細節:申請於2004年3月17曰的美國專利申請案序號第 10/803,526號,標題為A HIGH REPETITION RATE LASER ' PRODUCED PLASMA EUV LIGHT SOURCE,律師檔案 號:2003-0125-01,此時為公告於2006年8月8Θ的美國專利 第7,087,914號;申請於2004年7月27日的美國序號第 10/900,839號,標題為EUV LIGHT SOURCE,律師檔案號: 2〇〇4-〇〇44-〇1,此時為公告於2〇〇7年1月16日的美國專利第 7,164,144號,以及申請於2〇〇9年12月15曰的美國專利申請 案序號第12/638,092號,標題為BEAM TRANSPORT SYSTEM FOR EXTREME ULTRAVIOLET LIGHT S0URCE ’律師檔案號:2009-0029-01,以上文獻全部内容 併入本文作為參考資料。 如第1圖所示,EUV光源20也可包含靶材輸送系統90, 例如’輸送靶材(例如,錫)之微滴進入室26内部的輻照區 201251517I-piece, open-hole, axicon, and mirror, including multilayer mirror, near-normal incidence mirror, grazing incidence mirror, specular reflector, 7 201251517 Diffuse reflectors and combinations of them. Moreover, unless otherwise stated, the term "light member," or a derivative thereof, as used herein, is not intended to be limited to a separately operated component or advantageous in one or more particular wavelength ranges, such as EUV output light wavelength, irradiation. Laser wavelength, suitable for measuring the wavelength of the wavelength or some other wavelength. Figure 1 illustrates a particular embodiment in which the apparatus 10 includes an LPP source 2 for generating EUV light for exposing the substrate. As shown, System 2i is used to generate a sequence of light pulses and to deliver light pulses into source chamber 26. For device ίο, light pulses can travel along system one or more beam paths 27 from system 21 and into chamber 26 to illuminate the irradiation region. One or more targets of 48 to produce an EUV light output for exposing the substrate in exposure apparatus 12. The appropriate laser for system 21 illustrated in Figure 1 may include a pulsed laser attack, for example, with DC or RF excitation, with relatively high power (eg, 1 〇 read or higher) and high pulse repetition rate (eg, 40 kHz or greater) operation produces 9 to " micron light pulsed gas discharge C 〇 2 Ray Shooting device. In a specific implementation, The laser can be an axial-flow RF-pumped C〇2 laser with multiple amplification stages of the oscillator-amplifier configuration (eg, main oscillator/power amplifier (M〇pA) or power oscillator/power Amplifier (P0PA)), and a 9-switched oscillator initialized with a relatively low energy and high repetition rate to a seed pulse that can operate, for example, at 1 kHz (seed pulsed, then the laser pulse from the oscillator reaches the irradiation Zone 48 can be magnified, shaped, and/or focused before. Continuously pumped c〇2 amplifiers can be used in laser system 21. For example, there are oscillators and three amplifiers (0-PA1-PA2-PA3 configuration) A suitable C〇2 laser device is disclosed in U.S. Patent Application Serial No. 11/174,299, filed on Jun. 29, 2005, entitled, PCT, PCT, PCT, 01, at this time, U.S. Patent No. 7,439,530, issued Oct. 21, 2008, the entire disclosure of which is incorporated herein in The droplets are used as a mirror in the optical cavity. Some "self-calibration," configurations may not require an oscillator. There are several self-calibrated laser systems disclosed and claimed in US Patent Application Serial No. 11/580,414 (Application on October 13, 2006) titled DRIVE LASER DELIVERY SYSTEMS FOR EUV LIGHT SOURCE, attorney file number: 2006-0025-01, at this time, U.S. Patent No. 7,491,954, issued Feb. 17, 2009, the entire disclosure of which is incorporated herein by reference. Other types of lasers are also suitable depending on the application, for example, excimer or molecular fluorine lasers operating at high power rates and high pulse repetition rates. Other suitable embodiments include, for example, solid state lasers having fibers, rods, slats, or disc-shaped active media, one or more chambers (eg, an oscillator chamber with one or more parallel or series amplifications) Other laser architectures, main oscillator/power oscillator (ΜΟΡΟ) configuration, main oscillator/power loop amplifier (MOPRA) configuration' or with one or more excimer, molecular fluorine or c〇2 amplifier or oscillation The chamber is a solid-state laser for seeding. Other designs may be suitable. In some cases, the target may first be pre-pulse (pre*pulse) and then irradiated with the main pulse. The pre-pulse and main pulse seeds can be generated with a single oscillator or two independent oscillators. In some settings, one or more shared amplifiers can be used to amplify the pre-pulse seed and the main pulse seed. For other configurations, a separate amplifier can be used to amplify the pre-pulse and main pulse seeds. For example, the 201251517 seed laser can be a C〇2 laser that uses a radio frequency (RF) discharge to pump a sealing gas containing c〇2 below atmospheric pressure (eg, 0 05_02 atmospheric pressure). With this configuration, the seed laser can self-tune to one of the main lines', for example, a 1 〇Ρ (2 〇) line having a wavelength of 10_591 〇 352 μm. In some cases the 'Q switch can be used to control the seed pulse parameters. The s-channel amplifiers can have two or more amplification units each having its own chamber, working medium, and excitation source (e.g., pumping electrodes). For example, as described above, where the seed laser includes a gain medium containing C 〇 2, a suitable laser for use as an amplifying unit may comprise a working medium containing C 〇 2 gas pumped by DC or RF excitation. In a particular implementation, the amplifier can include a plurality (eg, 3 to 5) of axial flow RF pumped (continuous or pulsed) c〇2 amplification units having a total gain length of about 10 to 25 ohms. Rulers, and operate together at relatively high power (eg, 10 kW or higher). Other types of amplification units can have slat geometry or coaxial geometry (for gaseous media). In some cases, solid working media using rod or disc shaped gain modules or fiber based gain media may be utilized. The laser system 21 can include a beam conditioning unit for one or more optical components for beam conditioning, such as expansion, manipulation, and/or shaping between the laser source system 21 and the irradiation site 48. beam. For example, the steering system (which may include one or more mirrors, cymbals, lenses, space filters, etc.) may be mounted and configured to manipulate the laser focus at different locations in the chamber 26. In an arrangement, the steering system can include a first flat mirror and a second flat mirror, the first flat mirror being mounted on a tilt-tilt actuator that can independently move the first flat mirror in two dimensions And the second mirror is mounted on a deflection tilt actuator that can independently move the second mirror in two dimensions. 201251517 • With this configuration, the interpolating system month b controllably moves the focus in a direction substantially orthogonal to the direction of propagation of the beam. A focus assembly can be provided to focus the beam onto the irradiation site 48 and to adjust the position of the focus on the optical axis. As for the focus assembly, a light member 50, such as a focusing lens or mirror, can be used that is coupled to an actuator 52 (shown in Figure 2) that moves along the optical axis, such as a stepper motor, a servo motor, Piezoelectric transducers and the like to move the focus on the optical axis. In one configuration, the optical member 50 can be a 177 mm lens made of optical grade zinc selenide (ZnSe) and a transparent opening of about 135 mm. With this configuration, it is convenient to focus a light beam having a diameter of about 120 mm. The following documents provide additional details relating to the beam conditioning system: U.S. Patent Application Serial No. 10/803,526, filed on March 17, 2004, entitled A HIGH REPETITION RATE LASER 'PRODUCED PLASMA EUV LIGHT SOURCE, attorney file number: 2003-0125-01, at this time, U.S. Patent No. 7,087,914, issued August 8, 2006; U.S. Serial No. 10/900,839, filed on July 27, 2004, entitled EUV LIGHT SOURCE, attorney file number: 2〇〇4-〇〇44-〇1, at this time, US Patent No. 7,164,144, published on January 16, 2007, and applied for December 15, 2009. U.S. Patent Application Serial No. 12/638,092, entitled: BEAM TRANSPORT SYSTEM FOR EXTREME ULTRAVIOLET LIGHT S0URCE 'Attorney Docket No.: 2009-0029-01, the entire contents of which is incorporated herein by reference. As shown in Figure 1, the EUV source 20 can also include a target delivery system 90, such as an irradiation zone that delivers droplets of a target (e.g., tin) into the interior of the chamber 26 201251517

48,在此微滴會與一或更多光脈衝相互作用,例如,來自 系統21的零、一或更多預脈衝然後一或更多主脈衝,以最 終產生電漿及產生EUV放射以在曝光裝置12中曝光基板, 例如塗上阻劑的晶圓。由以下文獻可找到與各種微滴分配 器組態有關的更多細節及相對優點:申請於2010年3月10曰 的美國專利申請案序號第12/721,317號,2010年11月25曰以 U.S. 2010/0294953A1公開,標題為 LASER PRODUCED PLASMA EUV LIGHT SOURCE,律師檔案號: 2〇08-0〇55·01 ;申請於2008年6月19日的美國專利序號第 12/214,736號,2009年9月17日以11.3.2009/〇230326八1公 開,標題為 SYSTEMS AND METHODS FOR TARGET MATERIAL DELIVERY IN A LASER PRODUCED PLASMA EUV LIGHT SOURCE,律師檔案號: 2006-0067-02 ;申請於2007年7月13日的美國專利申請案序 號第 11/827,803號,2009年 1 月 15 日以U.S. 2009/0014668A1 公開,標題為LASER PRODUCED PLASMA EUV LIGHT SOURCE HAVING A DROPLET STREAM PRODUCED USING A MODULATED DISTURBANCE WAVE,律師檔案 號:2007-0030-01 ;申請於2006年2月21日的美國專利申請 案序號第11/358,988號,標題為LASER PRODUCED PLASMA EUV LIGHT SOURCE WITH PRE-PULSE,律師稽 案號:2005-0085-01 ,以及2006年11月16日以 US2〇06/〇255298Al公開;申請於2005年2月25日的美國專利 申請案序號第11/067,124號,標題為METHOD AND 12 201251517 APPARATUS FOR EUV PLASMA SOURCE TARGET DELI VERY ’律師檔案號:2004-0008-01;此時為公告於2008 年7月29曰的美國專利第7,405,416號;以及申請於2005年6 月29日的美國專利申請案序號第11/174,443號,標題為LPP EUV PLASMA SOURCE MATERIAL TARGET DELIVERY SYSTEM ’律師檔案號:2005-0003-01,此時為公告於2008 年5月13曰的美國專利第7,372,056號;以上文獻全部内容併 入本文作為參考資料。 該靶材可包括但不必受限於:包含錫、鋰、氙或彼等 之組合的材料。EUV放射元素(例如,錫、鋰、氙等等)的形 式可為液體微滴及/或包含液體微滴内的固體粒子。例如, 元素錫可使用作為純錫,作為錫化合物(例如,SnBr4、 SnBr2、SnH4),作為錫合金(例如,錫-鎵合金、錫-銦合金、 錫-銦-鎵合金或彼等之組合)。取決於所使用的材料,乾材 可以各種溫度呈現於輻照區48,包括室溫或接近室溫(例 如,錫合金,SnBr4),升高溫度(例如,純錫)或以低於室溫 的溫度(例如,SnH4),以及在有些情形下,有相對揮發性, 例如,SnBr4。關於LPPEUV光源所使用的材料以下文獻提 供更多細節:申請於2006年4月17曰的美國專利申請案序號 第 11/406,216號,標題為ALTERNATIVE FUELS FOR EUV LIGHT SOURCE,律師檔案號·· 2006-0003-01,此時為公48, where the droplets interact with one or more light pulses, for example, zero, one or more pre-pulses from system 21 and then one or more main pulses to ultimately produce plasma and generate EUV radiation to The exposure device 12 exposes a substrate, such as a resist coated wafer. Further details and relative advantages associated with the configuration of various droplet dispensers can be found in the following: US Patent Application Serial No. 12/721,317, filed on March 10, 2010, and on November 25, 2010, US 2010/0294953A1 is published under the heading LASER PRODUCED PLASMA EUV LIGHT SOURCE, attorney file number: 2〇08-0〇55·01; US Patent No. 12/214,736, filed on June 19, 2008, September 2009 Published on the 17th as 11.3.2009/〇230326 八1, titled SYSTEMS AND METHODS FOR TARGET MATERIAL DELIVERY IN A LASER PRODUCED PLASMA EUV LIGHT SOURCE, attorney file number: 2006-0067-02; application on July 13, 2007 U.S. Patent Application Serial No. 11/827,803, issued Jan. 15, 2009, to US-A-2009-0014668A1, entitled LASER PRODUCED PLASMA EUV LIGHT SOURCE HAVING A DROPLET STREAM PRODUCED USING A MODULATED DISTURBANCE WAVE, Lawyer File Number: 2007-0030 -01; US Patent Application Serial No. 11/358,988, filed on Feb. 21, 2006, entitled LASER PRODUCED PLASMA EUV LIGHT SOURCE WITH PRE-PULSE, Lawyer Case Number U.S. Patent Application Serial No. 11/067,124, filed on Feb. 25, 2005, entitled, s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s EUV PLASMA SOURCE TARGET DELI VERY 'Attorney's Archives No.: 2004-0008-01; this time is US Patent No. 7,405,416, issued July 29, 2008; and US Patent Application Serial No. on June 29, 2005 No. 11/174,443, entitled LPP EUV PLASMA SOURCE MATERIAL TARGET DELIVERY SYSTEM 'Attorney's File No.: 2005-0003-01, at this time, US Patent No. 7,372,056, published on May 13, 2008; This article is included as a reference. The target may include, but is not necessarily limited to, a material comprising tin, lithium, ruthenium or a combination thereof. EUV radiation elements (e.g., tin, lithium, cesium, etc.) can be in the form of liquid droplets and/or containing solid particles within the liquid droplets. For example, elemental tin can be used as pure tin as a tin compound (eg, SnBr4, SnBr2, SnH4) as a tin alloy (eg, tin-gallium alloy, tin-indium alloy, tin-indium-gallium alloy, or a combination thereof). ). Depending on the materials used, the dry material can be present in the irradiation zone 48 at various temperatures, including room temperature or near room temperature (eg, tin alloy, SnBr4), elevated temperature (eg, pure tin), or below room temperature. The temperature (for example, SnH4), and in some cases, the relative volatility, for example, SnBr4. Materials for use with LPPEUV light sources are provided in more detail in U.S. Patent Application Serial No. 11/406,216, filed on Apr. 17, 2006, entitled ALTERNATIVE FUELS FOR EUV LIGHT SOURCE, attorney file number · 2006- 0003-01, this time is public

I 告於2008年12月16日的美國專利第7,465,946號,其内容併 入本文作為參考資料。 繼續參考第1圖,裝置10也可包含EUV控制器60,它也 13 201251517 可包含驅動雷射控制系統65用以觸發功率輸入至系統21中 的一或更多增益模組(例如,RF產生器燈)及/或其他雷射裝 置以藉此產生光脈衝供輸送至室26内,及/或用以控制光束 調節單元中之光件的運動。裝置10也可包含微滴位置檢測 系統,它可包含一或更多微滴成像器70用來提供表示一或 更多微滴相對於例如輻照區4 8之位置的輸出。該(等)成像器 70可提供此種輸出給微滴位置檢測反饋系統62,它可例如 計算微滴位置及軌跡用來例如以逐個微滴或平均的方式算 出微滴誤差。然後,可提供微滴誤差作為控制器60的輸入, 例如控制器60提供位置、方向及/或時序修正訊號給系統21 以控制來源時序電路及/或以控制光束謫節單元中之光件 的運動’例如,用來改變焦點位置及/或在室26中正輸送至 輕照區48之光脈衝的聚焦功率。此外,對於EUV光源20, 乾材輸送系統90可具有控制系統,它可操作以回應來自控 制益60的訊號(在有些實作中,可包含上述微滴誤差或是它 的何生數量),例如,以修改釋放點,釋放時序及/或微滴調 變來修正到達所欲㈣區48之微滴的誤差。 繼續參考第1圖,裝置10也可包含光件24,例如,有形 球(亦即’橢圓以長軸為中心旋轉而形成者)之反射 面的近垂直\射集絲反射鏡,其係具有例如有交替 夕層的漸變多層膜(graded multi-layer coating),而且 在有些情形下’有一或更多高溫擴散阻障層、平滑層、覆 蓋層及/或麵刻終止層。第1圖圖示可形成有開孔的光件24 以允許由系統21產生以穿過及到達輻照區48的光脈衝。如 14 201251517 圖示,光件24,例如,可為有第一焦點在輻照區48内或附 近及第二焦點在所謂中間區域4〇的長橢球反射鏡在此 EUV光可由EUV光源20輸出及輸入至利用光的曝光裝 置12,例如,積體電路微影工具。溫度控制系統乃可置於 光件24的背面上或附近以選擇性地加熱及/或冷卻光件 24。例如,溫度控制系統35(圖示於第2圖)可包含經形成有 通道讓熱傳遞流體可流通的傳導塊。應瞭解,其他光件可 用來取代長橢球反射鏡用以收集及指引光線至中間位置供 隨後輸送至利用EUV光的裝置’例如,該光件可為繞著長 軸旋轉而成的拋物體或可經組態成能輸送有環狀橫截面的 光束至中間位置,例如參考申請於2006年8月16日的美國專 利申請案序號第11/505,177號,此時為公告於3〇 曰的美國專利第7,843,632 ’標題為EUV OPTICS,律師樓案 號:2006-0027-01,其内容併入本文作為參考資料。 繼續參考第1圖,氣體39可經由管線i〇2a、b引進室% , 如圖示。圖中也顯示’可引導氣體39沿著箭頭1〇4的方向繞 過光件50,通過形成光件24的開孔以便大體沿著光束路^ 27流動以及沿著箭頭106的方向朝向輻照區48。用此配置, 氣體3 9的流動可減少電漿產生的殘渣在由輻照部位向光件 24的方向中流動/擴散,以及在有些情形下,可有利地運輸 清洗光件24表面的反應產物,例如氫化錫,防止它們分解 以及再沉積原料回到光件表面上。 在有些實作中’氣體39可包含離子減緩用緩衝氣體, 例如氫、氦、氬或彼等之組合,清洗氣體,例如包含函素 15 201251517 的氣體及/或可起反應以產生清洗物質的氣體。例如,該氣 體可包含可起反應以產生氫自由基清洗物質的氫或含氫分 子。如以下所詳述的,成分可與氣體39相同或不同的氣體 可導入室39中的其他位置以控制流動樣式及/或氣體壓 力’以及可經由一或更多泵浦(例如,泵浦41a、b)移除室26 之中的氣體。氣體在電漿放電期間可存在室26中以及可用 來減緩電漿生成離子以降低光件劣化及/或提高電漿效 率。替換地,可單獨使用磁場(未圖示),或結合緩衝氣體’ 以減少快速離子的破壞《此外,緩衝氣體的耗盡/補充可用 來控制溫度,例如,去除室26的熱或冷卻室%中的一或更 多組件或光件。在一配置中’光件24與輻照區48有最接近 距離d ’可造成緩衝氣體在電漿、光件24之間流動以建立在 距離d仍可充分操作的氣體密度位準以及使電漿產生之離 子的動能在離子到達光件24之前降到約i〇〇ev以下的位 準。這可減少或排除光件24由電漿產生之離子所致的破壞。I, U.S. Patent No. 7,465,946, issued Dec. 1, 2008, the disclosure of which is incorporated herein by reference. With continued reference to FIG. 1, device 10 may also include EUV controller 60, which may also include 201251517, which may include a laser control system 65 for triggering power input to one or more gain modules in system 21 (eg, RF generation) The lamp and/or other laser device thereby generating a pulse of light for delivery into the chamber 26 and/or for controlling the movement of the light member in the beam conditioning unit. Device 10 may also include a droplet position sensing system that may include one or more droplet imagers 70 for providing an output indicative of the position of one or more droplets relative to, for example, irradiation zone 48. The (equal) imager 70 can provide such output to the droplet position detection feedback system 62 which can, for example, calculate the droplet position and trajectory to calculate the droplet error, e.g., on a droplet by drop or average basis. A droplet error can then be provided as an input to the controller 60, for example, the controller 60 provides position, direction, and/or timing correction signals to the system 21 to control the source sequential circuitry and/or to control the light components in the beam steering unit. The motion 'for example, is used to change the focus position and/or the focus power of the light pulse being delivered to the light-sensitive area 48 in the chamber 26. Moreover, for EUV light source 20, dry material delivery system 90 can have a control system operative to respond to signals from control benefit 60 (in some implementations, the above-described droplet error or its number of occurrences can be included), For example, the error of the droplets reaching the desired (four) region 48 is corrected by modifying the release point, release timing, and/or droplet modulation. With continued reference to FIG. 1, device 10 may also include a light member 24, such as a near vertical/echo wire mirror having a reflective surface of a shaped sphere (ie, an ellipse that is rotated about a major axis). For example, there are alternating multi-layer coatings, and in some cases, one or more high temperature diffusion barrier layers, smoothing layers, cover layers, and/or surface stop layers. FIG. 1 illustrates a light member 24 that may be formed with apertures to allow light pulses generated by system 21 to pass through and reach irradiation zone 48. As illustrated in FIG. 14 201251517, the light member 24 can be, for example, a long ellipsoid mirror having a first focus in or near the irradiation zone 48 and a second focus in the so-called intermediate zone 4 在 where EUV light can be emitted by the EUV light source 20 The output and input are to an exposure device 12 that utilizes light, such as an integrated circuit lithography tool. A temperature control system can be placed on or near the back side of the light member 24 to selectively heat and/or cool the light member 24. For example, temperature control system 35 (shown in Figure 2) can include conductive blocks that are formed with channels to allow heat transfer fluid to circulate. It will be appreciated that other light elements can be used in place of the long ellipsoidal mirror to collect and direct light to an intermediate position for subsequent delivery to a device that utilizes EUV light. For example, the light member can be a parabolic object that is rotated about a long axis. Or can be configured to deliver a beam having a circular cross-section to an intermediate position, for example, in U.S. Patent Application Serial No. 11/505,177, filed on Aug. 16, 2006, which is hereby incorporated by reference. U.S. Patent No. 7,843,632, entitled EUV OPTICS, attorney Docket No.: 2006-0027-01, the contents of which is incorporated herein by reference. With continued reference to Figure 1, gas 39 can be introduced into chamber % via lines i〇2a, b as shown. The figure also shows that 'the guideable gas 39 bypasses the light member 50 in the direction of the arrow 1〇4, through the opening forming the light member 24 so as to flow substantially along the beam path 27 and toward the irradiation in the direction of the arrow 106. District 48. With this configuration, the flow of the gas 39 can reduce the flow/diffusion of the residue generated by the plasma in the direction from the irradiation site to the light member 24, and in some cases, can advantageously transport the reaction product of the surface of the cleaning light member 24. For example, tin hydride prevents them from decomposing and redepositing the material back onto the surface of the light member. In some implementations, the gas 39 may comprise a buffer gas for ion mitigation, such as hydrogen, helium, argon or a combination thereof, a purge gas, such as a gas containing the element 15 201251517, and/or may react to produce a cleaning material. gas. For example, the gas may comprise hydrogen or hydrogen-containing molecules that can react to produce a hydrogen radical cleaning material. As detailed below, gases having the same or different composition as gas 39 can be introduced into other locations in chamber 39 to control flow pattern and/or gas pressure' and can be pumped via one or more pumps (eg, pump 41a) , b) removing the gas in chamber 26. The gas may be present in chamber 26 during plasma discharge and may be used to slow plasma generation of ions to reduce optical degradation and/or improve plasma efficiency. Alternatively, a magnetic field (not shown) may be used alone or in combination with a buffer gas ' to reduce the destruction of fast ions. Furthermore, the depletion/supplement of buffer gas may be used to control the temperature, for example, to remove heat or cooling chamber % of chamber 26 One or more components or light components. In one configuration, 'the closest distance d' between the optical member 24 and the irradiation region 48 can cause the buffer gas to flow between the plasma and the optical member 24 to establish a gas density level that is still sufficiently operable at a distance d and to make electricity. The kinetic energy of the ions produced by the slurry drops to a level below about i〇〇ev before the ions reach the optical member 24. This can reduce or eliminate damage caused by the ions of the optical member 24 generated by the plasma.

泵浦41a、b可為渦輪泵浦(turbopump)及/或鼓風機(roots blower)。在某些情況下’可回收廢氣回到裝置1 〇。例如’ 閉環流動系統(未圖示)可用來使廢氣回到裝置。閉環可包含 一或更多濾波器,熱交換器,分解器(例如,氫化錫分解器) 及/或泵浦。在公告於2010年2月2日的美國專利第7,655,925 號可找到更多與閉環流動路徑有關的細節,其標題為GAS MANAGEMENT SYSTEM FOR A LASERrPRODUCED-PLASMA EUV LIGHT SOURCE,律師權案號: 2007-0039-01 ;以及申請於2010年9月24日的國際專利申請 16 201251517 案第 PCT/EP10/64140,標題為 SOURCE COLLECTOR APPARATUS LITHOGRAPHIC APPARATUS AND DEVICE MANUFACTURING METHOD ,律師檔案號: 2〇10-0〇22-〇2’以上文獻全部内容併入本文作為參考資料。 由第2圖可見’可裝設包圍容積15〇的錐化構件(tapering member)100。此外如圖示’可配置多條氣體管線1〇2a、b 以輸出進入容積150的氣體串流。一旦在容積丨5〇中,用錐 化構件100引導流動繞過光件5〇(在圖示具體實施例中為聚 焦透鏡)而產生貫質無湍流流動通過形成於光件24的開孔 15 2以及大體沿著光束路徑2 7流動而且沿著箭頭丨〇 6的方向 流向韓腿48。對於有些氣流,該錐化構件的可操作表面可 打磨光滑或用其他方式製備成可移除毛刺、折斷銳緣以及有 不超過1曝米的表面_度以,不超過約職米為較佳。 在-配置中,產生沿著該光束路徑向著該乾材之氣流 ,系統可流動大小超過每分⑽標準立方公升(▲)的氮The pumps 41a, b can be turbopumps and/or roots blowers. In some cases, the recoverable exhaust gas returns to the unit 1 〇. For example, a closed loop flow system (not shown) can be used to return the exhaust gases to the unit. The closed loop may contain one or more filters, heat exchangers, resolvers (e.g., tin hydride decomposers) and/or pumps. Further details relating to the closed-loop flow path can be found in US Patent No. 7,655,925, issued Feb. 2, 2010, entitled GAS MANAGEMENT SYSTEM FOR A LASERrPRODUCED-PLASMA EUV LIGHT SOURCE, attorney case number: 2007-0039 -01; and the application of International Patent Application No. 16 201251517, No. PCT/EP10/64140, entitled SOURCE COLLECTOR APPARATUS LITHOGRAPHIC APPARATUS AND DEVICE MANUFACTURING METHOD, attorney file number: 2〇10-0〇22- 〇 2' The above contents are incorporated herein by reference. As can be seen from Fig. 2, a taper member 100 having an enclosure volume of 15 可 can be mounted. Further, as shown, a plurality of gas lines 1〇2a, b can be arranged to output a gas stream entering the volume 150. Once in the volume 〇5〇, the flow is bypassed by the taper member 100 (the focus lens in the illustrated embodiment) to produce a permeate, turbulent flow through the aperture 15 formed in the light member 24. 2 and generally flow along beam path 27 and flow in the direction of arrow 丨〇6 to Korean leg 48. For some airflows, the operable surface of the tapered member can be smoothed or otherwise prepared as a removable burr, a broken sharp edge, and a surface having a surface area of no more than 1 exposure, preferably no more than about two meters. . In the configuration, a flow of gas along the beam path toward the dry material is produced, and the system can flow a nitrogen size greater than (10) standard cubic liters (▲) per minute.

、TH、TD、02及丁2)。 第3圖圖示產生氣流及料其繞過光件5〇(在 實施例中為聚焦透鏡)及沿著雷, TH, TD, 02 and D). Figure 3 illustrates the generation of a gas stream which is bypassed by a light member 5 (in the embodiment, a focusing lens) and along a thunder

的錐化構件100以及配置成 圖示具體 者雷射光束路徑27朝向輻照區 丨示,該系統可包含包圍容積150 可輸出氣體串流進入容積150的 17 201251517 多條氣體管線l〇2a、b。對於第3圖的配置’護罩200可配置 於光件24的開孔152中以及定位成可由開孔152伸向輻照區 48。護罩200在朝向輻照區48的方向可變尖,以及在有些情 形下可呈柱形。護罩200可用來減少由輻照區48流入容積 150的殘渣,在此殘渣可沉積於光件50上及/或可用來引導 或使氣體由容積150流向輻照區48。護罩200在光束路徑27 上的長度可為數厘米至10厘米或更多。使用時,可用氣體 管線102a、b將氣體導入容積150。一旦在容積150中,用錐 化構件100引導流動繞過光件50而產生實質無湍流流動通 過開孔152及護罩200。然後,氣體可由護罩2〇〇大體沿著光 束路徑27流動以及沿著箭頭1 〇6的方向流向輻照區48。 第4圖圖示產生氣流及引導其繞過光件5〇(在圖示具體 實施例中為聚焦透鏡)及沿著雷射光束路徑朝向輻照區 48的另一系統實施例。如圖示,該系統可包含圍繞容積15〇 的錐化構件100以及配置成可輸出氣體串流進入容積150的 多條氣體管線102a、b。對於第4圖及第5圖的配置,多個流 動導件(flow guide)30〇a至h可附著至錐化構件1〇〇或與其整 體成形。如圖示’每個流動導件3〇〇dh可由錐化構件綱 的内壁突出進入容積15〇。雖然以8個流動導件圖示,然而 應瞭解’若使用流動導件的話’可使用8個以上和僅僅一 個。也應注意,有些配置(亦即,第)不使用流動導件。 流動導件可相對短’例如’只影響在錐化構件1〇〇表面附近 之流動的1至5厘米’或可更長,以及在有些情形下,延伸 至由光件的雜錄或其㈣。麵魏置中,流 18 201251517 - 動導件的形狀製作成可與光錐一致。第5A圖圖示使用相對 長之矩形流動導件300a’至c’的另一實施例。該等流動導件 可均勻地或不均勻地分佈於錐化構件的周圍。在有些情开〈 下,可將均勻的分佈改成可適應及/或平滑化繞過非對稱汗 動障礙的流動,例如第2圖的致動器52。 交叉參考第4圖及第5圖’也可看到多條氣體管線1〇2a 至h可經配置成能輸出氣體進入容積15〇。雖然以8個氣體管 線圖示,然而應瞭解,可使用8個以上和僅僅一個。該等氣 體管線可均勻地分佈於錐化構件的周圍,或使氣體管線 102a'至c'不均勻地分佈’如第5A圖所示。若使用多個氣體 . 管線,通過各個氣體管線的流動可與其他氣體管線相同或 不同。在有些情形下,可修改氣體管線的均勻分佈及/或可 修改氣體管線之間的相對流率以適應及/或平滑化繞過非 對稱流動障礙的流動,例如第2圖的致動器520使用時,可 用氣體管線102a至h引導氣體進入容積150。一旦在容積15〇 中,用錐化構件100及流動導件3〇〇a至h引導流動繞過光件 50而產生實質無湍流流動通過開孔152,然後大體沿著光束 路徑27流動以及沿著箭頭106的方向流向輻照區48。 第6圖圖示產生氣流及引導其繞過光件5〇,(在圖示具體 實施例中為窗口)及沿著雷射光束路徑27朝向輻照區48的 另一系統實施例。對於圖示的系統,該窗口可經裝設成允 5午來自雷射系統21的雷射輸入至密封室26。透鏡4〇〇可配置 於室26外以使雷射聚集至在輻照區的焦點。在有些配置中 (未圖示),透鏡400可換成一或更多聚焦鏡,例如,以及可 201251517 使用離軸拋物鏡。如圖示’該系統可包含包園容積150的錐 化構件100以及配置成可輸出氣體串流進入容積15〇的多條 氣體管線102a、b。對於第6圖的配置,護罩200'可配置於光 件24的開孔中以及定位成可由開孔伸向輻照區48。護罩200, 在朝向輕照區48的方向可變尖,以及在有些情形下可呈柱 形。護罩200'可用來減少由輻照區48流入容積150的殘渣, 在此殘渣可沉積於光件50’上及/或可用來引導或使氣體由 容積150流向輻照區48。護罩200'在光軸27上的長度可為數 厘米至10厘米或更多。 對於第6圖及第7圖的配置,多個流動導件402a至d可附 著至護罩200或與其整體成形。如圖示,每個流動導件4〇2a 至d可由護罩200的内壁突出。雖然以4個流動導件圖示,然 而應瞭解,若使用流動導件的話,可使用4個以上和僅僅一 個。也應注意,有些配置(亦即,第3圖)不使用流動導件。 流動導件可相對短,例如,只影響在護罩200表面附近之流 動的1至5厘米,護罩2〇〇通常設計成只稍微Λ於由透鏡400 發出的會聚光錐。在有些配置中,流動導件的形狀製作成 可與光錐一致。該等流動導件可均勻地或不均勻地分佈於 護罩的周圍® 使用時,可用氣體管線l〇2a、b引導氣體進入容積15〇。 一旦在容積15〇中,用錐化構件100引導繞過光件50,產生實 質無湍流流動通過護罩2 〇 〇及流動導件4 02a至d而仍保持實 質無湍流。然後,來自護罩200的氣體可大體沿著光束路徑 27流動以及沿著箭頭1 〇6的方向流向輻照區48。 20 201251517 第8圖圖示產生氣流及引導其繞過光件5〇(在圖示具體 實施例中為聚焦透鏡)及沿著雷射光束路徑27朝向輕照區 48的另一系統實施例。如圖示,該系統可包含包圍容積15〇 及有相對尖銳轉角502的柱形殼體5〇〇。對於該氣流系統, 錐化構件1 〇 〇'可經安置成可平滑化在轉角5 02附近的氣流。 第8圖也圖示在室26的其他位置可導入氣體。如圖示,歧管 504可設在光件24的周圍以在箭頭506的方向提供沿著光件 26表面的氣體流動。 應瞭解,可組合第2圖至第8圖的氣流系統特徵中之一 或更多。例如’流動導件300a(第4圖)可使用護罩2〇〇(第3圖) 或有流動導件402a至d等等的護罩2〇〇,。 儘管為了必須滿足美國專利法第112條第35款的要求 而在本專利申請案中詳細地描述及圖解說明數個本發明特 定具體實施例能夠完全達到上述一或更多個目的,對於待 解決問題或為了任何其他理由或上述具體實施例的目標, 熟諳此藝者應瞭解,該等具體實施例只是示範、圖解說明 及表現本申明案所廣泛涵蓋的專利標的。不希望在以下的 申請專利範圍中以單數表示的元件是意謂或應該意謂該申 請專利範圍中之元件為“一個且只有一個”,而是“一或更 多”,除非另有明示。所有與本技藝一般技術人員已知或以 後會知道的上述具體實施例中之任一元件是結構及功能等 價的元件都明白併入本文作為參考資料,希望本發明申請 專利範圍可涵蓋這些元件。所有與上述具體實施例中之任 一元件(本技藝一般技術人員已知或以後會知道的)在結構 21 201251517 及功能上等價的元件都明白併入本文作為參考資料,希望 本發明申請專利範圍可涵蓋這些元件。用於本專利說明書 及/或本發明申請專利範圍申請項以及本專利說明書及/或 本發明申請項中之意思所明示的任何術語都應具有該意 思,不管任何字典或其他常用意思對於該術語如何解釋。 對於本專利說明書在說明具體實施例任一方面時所描述的 裝置或方法,不是想要或必定針對待由揭示於本申請案之 具體實施例解決的每一個問題,本發明申請項會涵蓋這 些。不希望本揭示内容内的元件、組件、或方法步驟被獻 給大眾,不管該等元件、組件、或方法步驟是否明示於申 請項。隨附申請專利範圍中之元件無一是在美國專利法第 112條第35款第6段下解釋,除非該元件是用“用於...的構件” 或在方法申請項中該元件是用“步驟”而不是“起...作用”的 方式明確陳述。 t圖式簡單說明3 第1圖為與曝光裝置耦合之EUV光源的簡化示意圖;該 光源有系統用以引導在光件四周之氣流大體沿著光束路徑 以及朝向輻照區同時保持氣體處於實質無湍流狀態; 第2圖更詳細地圖示第1圖之EUV光源中顯示氣流系統 的放大部份; 第3圖的簡化示意圖圖示氣流系統的另一具體實施 例,並係具有護罩; 第4圖的簡化示意圖圖示氣流系統的另一具體實施 例,並係具有由錐化構件伸入氣流的數個流動導件; 22 201251517 第5圖為沿著第4圖之直線5-5繪出以圖示流動導件及 氣體管線的橫截面; 第5 A圖為沿著第4圖之直線5 - 5繪出以圖示流動導件及 氣體管線之替代配置的橫截面; 第6圖的簡化示意圖圖示氣流系統的另一具體實施 例,其係具有護罩以及由護罩伸入氣流的數個流動導件; 第7圖為沿著第6圖之直線7-7繪出以圖示該等流動導 件的橫截面,其係;以及 第8圖的簡化示意圖圖示氣流系統的另一具體實施 例,其係具有錐化構件用以使柱形殼體的尖銳轉角變平滑。 【主要元件符號說明】 10.. .EUV微影裝置 12.. .曝光裝置 20.. .LPP 光源 21.. .系統 24、50、50'...光件 26.. .光源室 27.. .雷射光束路徑 35.. .溫度控制系統 39…氣體 40.. .中間區域 41a、41b…泵浦 48.. .輻照區 52.. .致動器 60.. .EUV控制器 62.. .微滴位置檢測反饋系統 23 201251517 65.. .驅動雷射控制系統 70.. .微滴成像器 90.. .靶材輸送系統 100、100'…錐化構件 102a、102b、102a-102h、102a,-102c,...氣體管線 104、106、506...方向箭頭 150.. .容積 152.. .開孔 200、200'...護罩 300a、300b、300a-300h、300a,-300c’·..流動導件 400.. .透鏡 402a-402d···流動導件 500.. .柱形殼體 502.. .轉角 504.. .歧管 24The tapered member 100 is configured to illustrate a specific laser beam path 27 toward the irradiation zone. The system can include a surrounding gas volume 150 that can output a gas stream into the volume 150. 201251517 multiple gas lines l〇2a, b. For the configuration of Figure 3, the shield 200 can be disposed in the aperture 152 of the light member 24 and positioned to extend from the aperture 152 to the irradiation zone 48. The shield 200 can be pointed in a direction toward the irradiation zone 48 and, in some cases, can be cylindrical. The shield 200 can be used to reduce debris flowing into the volume 150 from the irradiation zone 48 where it can be deposited on the light member 50 and/or can be used to direct or flow gas from the volume 150 to the irradiation zone 48. The shield 200 may have a length on the beam path 27 of a few centimeters to 10 centimeters or more. In use, gas can be introduced into volume 150 using gas lines 102a, b. Once in the volume 150, the flow through the optical member 50 is directed by the tapered member 100 to produce substantially no turbulent flow through the aperture 152 and the shield 200. The gas can then flow generally along the beam path 27 from the shroud 2 and into the irradiation zone 48 in the direction of arrow 1 〇6. Figure 4 illustrates another system embodiment for generating a gas stream and directing it around the light member 5 (in the illustrated embodiment, a focus lens) and along the laser beam path toward the irradiation region 48. As illustrated, the system can include a tapered member 100 surrounding a volume 15 以及 and a plurality of gas lines 102a, b configured to output a flow of gas into the volume 150. For the configurations of Figs. 4 and 5, a plurality of flow guides 30a to h may be attached to or integrally formed with the tapered member 1〇〇. As shown, each flow guide 3〇〇dh can protrude into the volume 15〇 from the inner wall of the tapered member. Although illustrated by eight flow guides, it should be understood that 'if a flow guide is used', more than eight and only one may be used. It should also be noted that some configurations (ie, the first) do not use flow guides. The flow guide can be relatively short 'for example, only affecting 1 to 5 cm' of the flow near the surface of the tapered member 1 or can be longer, and in some cases, extending to the miscellaneous recording of the light member or (4) . Face Weizhong, flow 18 201251517 - The shape of the moving guide is made to be consistent with the light cone. Figure 5A illustrates another embodiment using relatively long rectangular flow guides 300a' to c'. The flow guides may be evenly or unevenly distributed around the tapered member. In some cases, the uniform distribution can be modified to accommodate and/or smooth the flow bypassing the asymmetric sweat barrier, such as actuator 52 of Figure 2. Cross-reference to Figures 4 and 5' also shows that the plurality of gas lines 1〇2a to h can be configured to output a gas inlet volume of 15 〇. Although illustrated by eight gas lines, it should be understood that more than eight and only one can be used. The gas lines may be evenly distributed around the tapered member or the gas lines 102a' to c' may be unevenly distributed as shown in Fig. 5A. If multiple gases are used, the flow through each gas line may be the same or different from the other gas lines. In some cases, the uniform distribution of gas lines may be modified and/or the relative flow rates between the gas lines may be modified to accommodate and/or smooth the flow bypassing the asymmetric flow barrier, such as actuator 520 of FIG. In use, the gas lines 102a through h can be used to direct gas into the volume 150. Once in the volume 15 , the flow is bypassed by the tapered member 100 and the flow directors 3 〇〇 a to h to produce substantially turbulent flow through the aperture 152 and then generally flow along the beam path 27 and along The direction of the arrow 106 flows to the irradiation zone 48. Figure 6 illustrates another system embodiment for generating a gas stream and directing it around the light member 5, (in the illustrated embodiment, a window) and along the laser beam path 27 toward the irradiation region 48. For the illustrated system, the window can be installed to allow laser input from the laser system 21 to the sealed chamber 26 at noon. The lens 4 can be disposed outside of the chamber 26 to concentrate the laser to the focus in the irradiation zone. In some configurations (not shown), lens 400 can be replaced with one or more focusing mirrors, for example, and 201251517 using an off-axis parabolic mirror. As shown, the system can include a cone member 100 having a containment volume 150 and a plurality of gas lines 102a, b configured to output a gas stream into the volume 15A. For the configuration of Figure 6, the shield 200' can be disposed in the opening of the light member 24 and positioned to extend from the opening to the irradiation zone 48. The shield 200 can be pointed in the direction toward the light-sensitive area 48 and, in some cases, can be cylindrical. The shroud 200' can be used to reduce debris flowing into the volume 150 from the irradiation zone 48 where it can be deposited on the light member 50' and/or can be used to direct or flow gas from the volume 150 to the irradiation zone 48. The shield 200' may have a length on the optical axis 27 of a few centimeters to 10 centimeters or more. For the configurations of Figures 6 and 7, a plurality of flow guides 402a-d can be attached to or integrally formed with the shield 200. As illustrated, each flow guide 4〇2a to d may protrude from the inner wall of the shroud 200. Although illustrated by four flow guides, it should be understood that more than four and only one can be used if a flow guide is used. It should also be noted that some configurations (i.e., Figure 3) do not use flow guides. The flow guides can be relatively short, e.g., affecting only 1 to 5 centimeters of flow near the surface of the shroud 200, and the shroud 2〇〇 is typically designed to lie only slightly above the converging cone of light emitted by the lens 400. In some configurations, the flow guides are shaped to conform to the light cone. The flow guides may be evenly or unevenly distributed around the shroud. When in use, the gas lines l〇2a, b may be used to direct the gas into the volume 15〇. Once in the volume 15 ,, the lighter 50 is guided by the taper member 100, creating a substantial turbulent flow through the shield 2 〇 and the flow guides 242a through d while still maintaining substantial turbulence. The gas from the shroud 200 can then generally flow along the beam path 27 and flow toward the irradiation zone 48 in the direction of arrow 1 〇6. 20 201251517 Figure 8 illustrates another system embodiment for generating a gas stream and directing it around the light member 5 (in the illustrated embodiment, a focusing lens) and along the laser beam path 27 toward the light-illuminated region 48. As illustrated, the system can include a cylindrical housing 5 that encloses a volume 15 〇 and has a relatively sharp corner 502. For this air flow system, the taper member 1 〇 〇 ' can be arranged to smooth the air flow around the corner 502. Figure 8 also illustrates that gas can be introduced at other locations in chamber 26. As illustrated, a manifold 504 can be disposed about the light member 24 to provide a flow of gas along the surface of the light member 26 in the direction of arrow 506. It will be appreciated that one or more of the airflow system features of Figures 2 through 8 may be combined. For example, the flow guide 300a (Fig. 4) may use a shield 2 (Fig. 3) or a shield 2 having flow guides 402a to d and the like. Although a specific embodiment of the present invention can be fully described and illustrated in the present patent application in order to satisfy the requirements of Section 112, paragraph 35 of the U.S. Patent Law, it is possible to fully achieve one or more of the above objectives, For the sake of any other reason or the objectives of the above-described embodiments, those skilled in the art should understand that the specific embodiments are merely exemplary, illustrative, and representative of the subject matter of the invention. It is intended that the singular and singular s All of the above-described specific embodiments of the above-described embodiments, which are known to those of ordinary skill in the art, which are known to those skilled in the art, are structurally and functionally equivalent, and are hereby incorporated by reference. . All elements that are equivalent to any of the above-described embodiments (known to those of ordinary skill in the art or will be known hereinafter) in structure 21 201251517 and functionally equivalent are hereby incorporated by reference herein in The scope can cover these components. Any terms expressly used in this patent specification and/or the claims of the present application and the meaning of the present specification and/or the application of the present invention should have the meaning, regardless of any dictionary or other commonly used meanings for the term. How to explain. The apparatus or method described in this specification to describe any aspect of the specific embodiments is not intended or necessarily intended to cover each of the problems to be solved by the specific embodiments disclosed herein. . It is not intended that the elements, components, or method steps of the present disclosure be presented to the public, whether or not such elements, components, or method steps are disclosed. None of the components included in the scope of the patent application is explained under paragraph 6 of Article 112, paragraph 35 of the US Patent Law, unless the component is "a component for" or the component is a method application. Make a clear statement with “steps” instead of “acting”. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a simplified schematic diagram of an EUV source coupled to an exposure apparatus having a system for directing airflow around the optical element generally along the beam path and toward the irradiation zone while maintaining the gas substantially free. a turbulent state; Figure 2 illustrates in greater detail the enlarged portion of the airflow system of the EUV source of Figure 1; a simplified schematic of Figure 3 illustrates another embodiment of the airflow system with a shield; 4 is a simplified schematic diagram showing another embodiment of the airflow system and having a plurality of flow guides extending into the airflow by the tapered members; 22 201251517 Figure 5 is a line 5-5 along line 4 The cross section of the flow guide and the gas line is illustrated; Figure 5A is a cross section taken along line 5-5 of Fig. 4 to illustrate an alternative arrangement of the flow conductor and the gas line; A simplified schematic diagram illustrates another embodiment of an airflow system having a shroud and a plurality of flow guides that extend into the airflow by the shroud; Figure 7 is depicted along line 7-7 of Figure 6 A cross-section of the flow guides is illustrated And another simplified schematic diagram illustrating a gas flow system of the embodiment of FIG. 8, which based member having a tapered cylindrical housing for causing the sharp corners smoothed. [Main component symbol description] 10.. EUV lithography device 12.. Exposure device 20.. .LPP light source 21.. System 24, 50, 50'...light 26.. Light source chamber 27. .. laser beam path 35.. temperature control system 39...gas 40.. intermediate zone 41a, 41b...pump 48..irradiation zone 52.. actuator 60.. EUV controller 62 .. droplet position detection feedback system 23 201251517 65.. drive laser control system 70.. droplet imager 90.. target transport system 100, 100'... taper members 102a, 102b, 102a- 102h, 102a, -102c, ... gas lines 104, 106, 506... direction arrows 150.. volume 152.. openings 200, 200'... shields 300a, 300b, 300a-300h, 300a, -300c'·.. Flow Guide 400.. Lens 402a-402d···Flow Guide 500.. . Cylindrical Shell 502.. Corner 504.. Manifold 24

Claims (1)

201251517 七、申請專利範圍: 1. 一種極紫外線(EUV)光源,其係包含: 一光件; 一靶材; 沿著一光束路徑穿經該光件以輻照該靶材的一雷 射光束;以及 產生沿著該光束路徑向著該靶材之一氣流的一系 統,該系統有包圍一容積的一錐化構件與多條氣體管 線,每個氣體管線輸出一氣體串流進入該容積。 2. 如申請專利範圍第1項之光源,其中該錐化構件有一内 壁,以及更包含由該内壁突出的多個流動導件。 * 3.如申請專利範圍第1項之光源,其中該光件為一窗口。 ' 4.如申請專利範圍第1項之光源,其中該光件為使該光束 聚集至在該光束路徑上之一焦點的一透鏡。 5. 如申請專利範圍第1項之光源,其中該錐化構件包圍該 光束路徑。 6. 如申請專利範圍第1項之光源,其中該氣流包含由下列 各氣體所組成之群組選出的一氣體:氫(氕)、氫(氘)及 氫(氣)。 7. 如申請專利範圍第1項之光源,其中該錐化構件不延伸 進入該雷射光束。 8. 如申請專利範圍第1項之光源,其中該氣流有超過每分 鐘40標準立方公升(sclm)的流量。 9. 如申請專利範圍第1項之光源,其更包含有一開孔的一 25 201251517 極紫外線鏡,其中該氣流被引導通過該開孔。 10. 如申請專利範圍第1項之光源,其更包含產生一靶材微 滴串流的一微滴產生器。 11. 如申請專利範圍第1項之光源,其中該光件為直徑大於 150毫米的一透鏡。 12. —種極紫外線(EUV)光源,其係包含: 一光件; 一乾材; 沿著一光束路徑穿經該光件以輻照該靶材的一雷 射光束;以及 產生沿著該光束路徑向著該靶材之一氣流的一系 統,該系統有具包圍一容積之一内壁的一錐化導件、輸 出一氣體_流進入該容積的至少一氣體管線、以及由該 内壁突出的多個流動導件。 13. 如申請專利範圍第12項之光源,其中該光件為一窗口。 14. 如申請專利範圍第12項之光源,其中該光件為使該光束 聚集至在該光束路徑上之一焦點的一透鏡θ 15. 如申請專利範圍第12項之光源,其中該氣流有超過每分 鐘40標準立方公升(sclm)的流量。 16. 如申請專利範圍第12項之光源,其中該光件為直徑大於 150毫米的一透鏡。 17. —種用於產生極紫外線(EUV)光輸出的方法,該方法包 括以下動作: 提供一光件; 26 201251517 提供一靶材; 使一雷射光束沿著一光束路徑穿經該光件以輻照 該靶材;以及 產生沿著該光束路徑向著該靶材的一氣流,其系統 有著具包圍一容積之一内壁的一錐化導件、輸出一氣體 I 串流進入該容積的至少一氣體管線、以及由該内壁突出 的多個流動導件。 18. 如申請專利範圍第17項之方法,其中該光件為一窗口。 19. 如申請專利範圍第17項之方法,其中該光件為使該光束 聚集至在該光束路徑上之一焦點的一透鏡。 20. 如申請專利範圍第17項之方法,其中該氣流有超過每分 鐘40標準立方公升(sclm)的流量,以及該光件為直徑大 於150毫米的一透鏡。 27201251517 VII. Patent Application Range: 1. An extreme ultraviolet (EUV) light source comprising: a light member; a target; a laser beam that passes through the light member along a beam path to irradiate the target And a system for generating a gas flow along the beam path toward the target, the system having a cone of material surrounding a volume and a plurality of gas lines, each gas line outputting a stream of gas into the volume. 2. The light source of claim 1, wherein the tapered member has an inner wall and further comprises a plurality of flow guides projecting from the inner wall. * 3. The light source of claim 1, wherein the light member is a window. 4. The light source of claim 1, wherein the light member is a lens that concentrates the light beam to a focus on the beam path. 5. The light source of claim 1, wherein the tapered member surrounds the beam path. 6. The light source of claim 1, wherein the gas stream comprises a gas selected from the group consisting of hydrogen (hydrogen), hydrogen (hydrogen), and hydrogen (gas). 7. The light source of claim 1, wherein the tapered member does not extend into the laser beam. 8. The source of light of claim 1 wherein the gas stream has a flow rate of more than 40 standard cubic liters per minute (sclm). 9. The light source of claim 1, further comprising a perforated 25 201251517 polar ultraviolet mirror, wherein the air flow is directed through the opening. 10. The light source of claim 1, further comprising a droplet generator for generating a stream of target droplets. 11. The light source of claim 1, wherein the light member is a lens having a diameter greater than 150 mm. 12. An extreme ultraviolet (EUV) light source comprising: a light member; a dry material; a laser beam passing through the light member to irradiate the target along a beam path; and generating a beam along the beam a system of a path toward a flow of one of the targets, the system having a tapered guide enclosing an inner wall of a volume, at least one gas line that outputs a gas stream into the volume, and a plurality of gas lines protruding from the inner wall Flow guides. 13. The light source of claim 12, wherein the light member is a window. 14. The light source of claim 12, wherein the light member is a lens θ that concentrates the light beam to a focus on the beam path. 15. The light source of claim 12, wherein the air flow has More than 40 standard cubic liters per minute (sclm) of flow. 16. The light source of claim 12, wherein the light member is a lens having a diameter greater than 150 mm. 17. A method for producing an extreme ultraviolet (EUV) light output, the method comprising the steps of: providing a light member; 26 201251517 providing a target; passing a laser beam through the light member along a beam path Radiating the target; and generating a gas flow along the beam path toward the target, the system having a tapered guide having an inner wall surrounding one of the volumes, and outputting a gas I stream into the volume at least a gas line, and a plurality of flow guides projecting from the inner wall. 18. The method of claim 17, wherein the light member is a window. 19. The method of claim 17, wherein the light member is a lens that focuses the beam onto a focus on the beam path. 20. The method of claim 17, wherein the gas stream has a flow rate of more than 40 standard cubic liters per minute (sclm) and the light member is a lens having a diameter greater than 150 mm. 27
TW101116337A 2011-06-08 2012-05-08 Systems and methods for buffer gas flow stabilization in a laser produced plasma light source TWI576013B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/156,188 US9516730B2 (en) 2011-06-08 2011-06-08 Systems and methods for buffer gas flow stabilization in a laser produced plasma light source

Publications (2)

Publication Number Publication Date
TW201251517A true TW201251517A (en) 2012-12-16
TWI576013B TWI576013B (en) 2017-03-21

Family

ID=47292352

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101116337A TWI576013B (en) 2011-06-08 2012-05-08 Systems and methods for buffer gas flow stabilization in a laser produced plasma light source

Country Status (6)

Country Link
US (1) US9516730B2 (en)
EP (1) EP2719261A4 (en)
JP (1) JP6043789B2 (en)
KR (1) KR101940162B1 (en)
TW (1) TWI576013B (en)
WO (1) WO2012170144A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI608519B (en) * 2013-02-22 2017-12-11 克萊譚克公司 Laser-sustained plasma illuminator system and method for compensating for optical aberrations
TWI612850B (en) * 2013-03-15 2018-01-21 Asml荷蘭公司 Extreme ultraviolet light source and method for enhancing power from the same
TWI821839B (en) * 2016-09-14 2023-11-11 荷蘭商Asml荷蘭公司 Method of measuring a moving property of a target and optical apparatus

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9390892B2 (en) 2012-06-26 2016-07-12 Kla-Tencor Corporation Laser sustained plasma light source with electrically induced gas flow
JP6099241B2 (en) * 2012-06-28 2017-03-22 ギガフォトン株式会社 Target supply device
US8791440B1 (en) * 2013-03-14 2014-07-29 Asml Netherlands B.V. Target for extreme ultraviolet light source
US8872143B2 (en) 2013-03-14 2014-10-28 Asml Netherlands B.V. Target for laser produced plasma extreme ultraviolet light source
US9557650B2 (en) * 2013-09-09 2017-01-31 Asml Netherlands B.V. Transport system for an extreme ultraviolet light source
US9560730B2 (en) 2013-09-09 2017-01-31 Asml Netherlands B.V. Transport system for an extreme ultraviolet light source
WO2015086232A1 (en) * 2013-12-09 2015-06-18 Asml Netherlands B.V. Radiation source device, lithographic apparatus and device manufacturing method
US9338870B2 (en) 2013-12-30 2016-05-10 Asml Netherlands B.V. Extreme ultraviolet light source
US9539622B2 (en) * 2014-03-18 2017-01-10 Asml Netherlands B.V. Apparatus for and method of active cleaning of EUV optic with RF plasma field
US9155178B1 (en) 2014-06-27 2015-10-06 Plex Llc Extreme ultraviolet source with magnetic cusp plasma control
US9544986B2 (en) 2014-06-27 2017-01-10 Plex Llc Extreme ultraviolet source with magnetic cusp plasma control
US9357625B2 (en) 2014-07-07 2016-05-31 Asml Netherlands B.V. Extreme ultraviolet light source
JP6393196B2 (en) * 2015-01-19 2018-09-19 浜松ホトニクス株式会社 Laser light amplifier
US9776218B2 (en) * 2015-08-06 2017-10-03 Asml Netherlands B.V. Controlled fluid flow for cleaning an optical element
US10128016B2 (en) * 2016-01-12 2018-11-13 Asml Netherlands B.V. EUV element having barrier to hydrogen transport
EP3291650B1 (en) * 2016-09-02 2019-06-05 ETH Zürich Device and method for generating uv or x-ray radiation by means of a plasma
JP7193459B2 (en) * 2017-01-06 2022-12-20 エーエスエムエル ネザーランズ ビー.ブイ. Extreme ultraviolet source (EUV source)
US10955749B2 (en) 2017-01-06 2021-03-23 Asml Netherlands B.V. Guiding device and associated system
US10165664B1 (en) * 2017-11-21 2018-12-25 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus for decontaminating windows of an EUV source module
US10959318B2 (en) 2018-01-10 2021-03-23 Kla-Tencor Corporation X-ray metrology system with broadband laser produced plasma illuminator
NL2022644A (en) * 2018-03-05 2019-09-10 Asml Netherlands Bv Prolonging optical element lifetime in an euv lithography system
NL2023633A (en) * 2018-09-25 2020-04-30 Asml Netherlands Bv Laser system for target metrology and alteration in an euv light source
JP7143439B2 (en) * 2018-11-15 2022-09-28 ギガフォトン株式会社 Extreme ultraviolet light generation device and method for manufacturing electronic device
KR20200133126A (en) * 2019-05-17 2020-11-26 삼성전자주식회사 Apparatus for removing residue for EUV source vessel
JP7368984B2 (en) * 2019-09-05 2023-10-25 ギガフォトン株式会社 Extreme ultraviolet light generation device and electronic device manufacturing method
US10923311B1 (en) * 2019-11-11 2021-02-16 Xia Tai Xin Semiconductor (Qing Dao) Ltd. Cathode for ion source comprising a tapered sidewall

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6452199B1 (en) 1997-05-12 2002-09-17 Cymer, Inc. Plasma focus high energy photon source with blast shield
US6586757B2 (en) * 1997-05-12 2003-07-01 Cymer, Inc. Plasma focus light source with active and buffer gas control
US6538257B2 (en) * 1999-12-23 2003-03-25 Koninklijke Philips Electronics N.V. Method of generating extremely short-wave radiation, and extremely short-wave radiation source unit
US6972421B2 (en) * 2000-06-09 2005-12-06 Cymer, Inc. Extreme ultraviolet light source
US7897947B2 (en) 2007-07-13 2011-03-01 Cymer, Inc. Laser produced plasma EUV light source having a droplet stream produced using a modulated disturbance wave
US7491954B2 (en) 2006-10-13 2009-02-17 Cymer, Inc. Drive laser delivery systems for EUV light source
US7843632B2 (en) * 2006-08-16 2010-11-30 Cymer, Inc. EUV optics
US7439530B2 (en) 2005-06-29 2008-10-21 Cymer, Inc. LPP EUV light source drive laser system
US20060255298A1 (en) 2005-02-25 2006-11-16 Cymer, Inc. Laser produced plasma EUV light source with pre-pulse
US7405416B2 (en) 2005-02-25 2008-07-29 Cymer, Inc. Method and apparatus for EUV plasma source target delivery
US7372056B2 (en) 2005-06-29 2008-05-13 Cymer, Inc. LPP EUV plasma source material target delivery system
US7465946B2 (en) 2004-03-10 2008-12-16 Cymer, Inc. Alternative fuels for EUV light source
US7671349B2 (en) 2003-04-08 2010-03-02 Cymer, Inc. Laser produced plasma EUV light source
US7164144B2 (en) 2004-03-10 2007-01-16 Cymer Inc. EUV light source
US7087914B2 (en) 2004-03-17 2006-08-08 Cymer, Inc High repetition rate laser produced plasma EUV light source
US7184124B2 (en) 2004-10-28 2007-02-27 Asml Holding N.V. Lithographic apparatus having an adjustable projection system and device manufacturing method
US7402825B2 (en) * 2005-06-28 2008-07-22 Cymer, Inc. LPP EUV drive laser input system
US8158960B2 (en) 2007-07-13 2012-04-17 Cymer, Inc. Laser produced plasma EUV light source
DE102007023444B4 (en) * 2007-05-16 2009-04-09 Xtreme Technologies Gmbh Device for generating a gas curtain for plasma-based EUV radiation sources
US7655925B2 (en) * 2007-08-31 2010-02-02 Cymer, Inc. Gas management system for a laser-produced-plasma EUV light source
US7812329B2 (en) * 2007-12-14 2010-10-12 Cymer, Inc. System managing gas flow between chambers of an extreme ultraviolet (EUV) photolithography apparatus
US8115900B2 (en) * 2007-09-17 2012-02-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP5339742B2 (en) * 2008-03-04 2013-11-13 ウシオ電機株式会社 Connection device between a device that emits extreme ultraviolet light and a device that introduces extreme ultraviolet light
US7872245B2 (en) 2008-03-17 2011-01-18 Cymer, Inc. Systems and methods for target material delivery in a laser produced plasma EUV light source
CN103257532B (en) 2008-09-11 2015-04-22 Asml荷兰有限公司 Radiation source and lithographic apparatus
JP5314433B2 (en) 2009-01-06 2013-10-16 ギガフォトン株式会社 Extreme ultraviolet light source device
JP5312959B2 (en) 2009-01-09 2013-10-09 ギガフォトン株式会社 Extreme ultraviolet light source device
EP2414898A1 (en) 2009-04-02 2012-02-08 ETH Zurich Extreme ultraviolet light source with a debris-mitigated and cooled collector optics
US8138487B2 (en) * 2009-04-09 2012-03-20 Cymer, Inc. System, method and apparatus for droplet catcher for prevention of backsplash in a EUV generation chamber
US8304752B2 (en) * 2009-04-10 2012-11-06 Cymer, Inc. EUV light producing system and method utilizing an alignment laser
EP2480936B1 (en) * 2009-09-25 2015-03-18 ASML Netherlands BV Source collector apparatus, lithographic apparatus and device manufacturing method
US8173985B2 (en) * 2009-12-15 2012-05-08 Cymer, Inc. Beam transport system for extreme ultraviolet light source
US8368039B2 (en) * 2010-04-05 2013-02-05 Cymer, Inc. EUV light source glint reduction system
US9066412B2 (en) * 2010-04-15 2015-06-23 Asml Netherlands B.V. Systems and methods for cooling an optic
WO2011131431A1 (en) * 2010-04-22 2011-10-27 Asml Netherlands B.V. Collector mirror assembly and method for producing extreme ultraviolet radiation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI608519B (en) * 2013-02-22 2017-12-11 克萊譚克公司 Laser-sustained plasma illuminator system and method for compensating for optical aberrations
TWI612850B (en) * 2013-03-15 2018-01-21 Asml荷蘭公司 Extreme ultraviolet light source and method for enhancing power from the same
TWI821839B (en) * 2016-09-14 2023-11-11 荷蘭商Asml荷蘭公司 Method of measuring a moving property of a target and optical apparatus

Also Published As

Publication number Publication date
EP2719261A1 (en) 2014-04-16
JP6043789B2 (en) 2016-12-14
US9516730B2 (en) 2016-12-06
WO2012170144A1 (en) 2012-12-13
KR101940162B1 (en) 2019-01-18
JP2014523640A (en) 2014-09-11
KR20140036219A (en) 2014-03-25
EP2719261A4 (en) 2015-04-08
US20120313016A1 (en) 2012-12-13
TWI576013B (en) 2017-03-21

Similar Documents

Publication Publication Date Title
TWI576013B (en) Systems and methods for buffer gas flow stabilization in a laser produced plasma light source
US8785892B2 (en) Laser-produced-plasma EUV light source
US9000404B2 (en) Systems and methods for optics cleaning in an EUV light source
JP5593554B2 (en) Extreme ultraviolet light source
KR101503897B1 (en) System managing gas flow between chambers of an extreme ultraviolet(euv) photolithography apparatus
US8829478B2 (en) Drive laser delivery systems for EUV light source
TWI541614B (en) Systems and methods for cooling an optic
KR102290475B1 (en) Catalytic conversion of an optical amplifier gas medium
US20220350181A1 (en) Optical modulator
JP2022532840A (en) Extreme UV light source protection system
US12028958B2 (en) High-brightness laser produced plasma source and method of generation and collection radiation
US20210364928A1 (en) Tin trap device, extreme ultraviolet light generation apparatus, and electronic device manufacturing method
WO2023041306A1 (en) Apparatus and method for actively heating a substrate in an euv light source