TW201251352A - Method for interference reduction in a radio communication system, first radio access network node, second radio access network node and mobile station thereof - Google Patents

Method for interference reduction in a radio communication system, first radio access network node, second radio access network node and mobile station thereof Download PDF

Info

Publication number
TW201251352A
TW201251352A TW101114779A TW101114779A TW201251352A TW 201251352 A TW201251352 A TW 201251352A TW 101114779 A TW101114779 A TW 101114779A TW 101114779 A TW101114779 A TW 101114779A TW 201251352 A TW201251352 A TW 201251352A
Authority
TW
Taiwan
Prior art keywords
mobile station
radio access
cooperative
radio
channel
Prior art date
Application number
TW101114779A
Other languages
Chinese (zh)
Inventor
Thorsten Wild
Original Assignee
Alcatel Lucent
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Lucent filed Critical Alcatel Lucent
Publication of TW201251352A publication Critical patent/TW201251352A/en

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

The invention relates to a method for interference reduction in a radio communication system (RCS). The radio communication system (RCS) comprises a first cooperating transmission antenna system (CTA1) provided by at least two antenna arrays (AA1, AA2) and a second cooperating transmission antenna system (CTA2) provided by at least two further antenna arrays (AA3, AA4). The method comprises the steps of transmitting from the first cooperating transmission antenna system (CTA1) first radio frequency signals by a first coordinated multipoint transmission (CMT1) to a first mobile station (MS1), and adapting at the second cooperating transmission antenna system (CTA2) at least one transmit weight for a second coordinated multipoint transmission (CMT2) with second radio frequency signals (RFS2) from the second cooperating transmission antenna system (CTA2) to a second mobile station (MS2) based on a channel state of an interference channel (IC) of the second radio frequency signals between the second cooperating transmission antenna system (CTA2) and the first mobile station (MS1) providing interference to the first radio frequency signals. The invention further relates to a first radio access network node (RA-NN1), to a second radio access network node (RA-NN2) and to a mobile station (MS1, MS2) for use in the radio communication system (RCS).

Description

201251352 六、發明說明: 【發明所屬之技術領域】 本發明係關於無線通信,且更特定言(但非限於)關於無 線電通信系統中之干擾減少。 【先前技術】 當前的蜂巢式行動通信系統(如3GPP LTE系統(lte=長期 演進))依賴於ΜΙΜΟ天線技術⑽M〇=多輸入多輸出)以達 成高頻譜效率。此外’通常應用一頻率重新使用以充分使 用可用的稀有系統頻寬。此導致貫穿小區之可達成的使用 者速率之-強烈不平衡。此外,小區間干擾變成蜂巢式系 統效能之主要限制。如CoMP(c〇Mp=協調式多點)之技術 處理此問題。在CoMP中,屬於一相同的基地台或屬於一 不同的基地台且涵蓋表示為下文中之一小區之一特定涵蓋 區(諸如一無線電小區或一無線電扇區)之若干分佈式天線 陣列經分群以形成一延伸型涵蓋區之一所謂的合作叢集。 該合作叢集允許自定位於不同小區中之分佈式天線陣列至 一行動台之一同時的下行鏈路傳輸或允許在該等天線陣列 處針對在自該行動台之一上行鏈路方向上傳輸之射頻信號 之—同時的上行鏈路接收。 延伸型涵蓋區包括叢集之所有小區之涵蓋區。此允許在 整個合作叢集(其亦稱作網路ΜΙΜΟ)上形成分佈式ΜΙΜΟ系 統。 由叢集之小區之間的合作,可減輕小區邊緣問題,諸 如叢集之小區之間的小區間干擾。 Ϊ 63458.doc 201251352 針對下行鏈路網路MIMO之傳統提議之線性預編碼途徑 引起一整個合作叢集之一聯合權重計算。運用傳輸器處之 理想頻道狀態資訊,此可能允許完全抑制叢集内之小區間 干擾。 然而,在合作叢集之邊緣處,所提及之演算法並非設計 來考量對屬於鄰近叢集之使用者之干擾。 【發明内容】 執仃自一合作叢集至一行動台之一協調式多點傳輪之方 式招致射頻信號之間的干擾且進一步影響一無線電通信系 統中之一總資料速率。 因此,本發明之一目的係減少射頻信號之間的干擾及增 大無線電通信系統中之總資料速率。 該目的可藉由一種在一無線電通信系統中減少干擾之方 法而達成。S亥無線電通信系統包括由至少兩個天線陣列所 提供之一第一合作傳輸天線系統及由至少兩個進一步天線 陣列所提供之-第二合作傳輸天線系統。該方法包括下列 步驟:藉由-第-協調式多點傳輸自該第一合作傳輸天線 系統將第一射頻信號傳輸至一第一行動台;及基於在該第 二合作傳輸天線系統與該第一行動台之間對該等第一射頻 信號提供干擾之第二射頻信號之一干擾頻道之—頻道狀 態’調適該第二合作傳輸天線系統處之至少一傳輸權重以 用於該等第二射頻信號自該第二合作傳輸天線系統至一第 二行動台之-第二協調式多點傳輸β該第一合作傳輸天線 系統及該第二合作傳輸天線系統亦可稱為第—協調式傳輸 163458.doc -6- 201251352 天線系統及第二協調式傳輸天線系統。 =的::步藉由一種第一無線電存取網路節點、藉由 一種第-‘.,、線電存取網路節點及藉由—種供在無線電通产 系統中使用之行動台而達成。 ° 根據本發明之該方法提供一益處:不僅減少對自一合作 傳輸天線系統傳輸至一特定合作叢集 號之干擾,且可減少對自一進+ 。之射頻信 至定位… 作傳輸天線系統傳輸 至進—步鄰近合作叢集與該特定合作叢集之間的 厂處之進一步行動台之進_步射頻信 時負責該等合作叢集之無線電存取網路節點可獨立執行;; 對待自4合作傳輸天㈣ 所傳輸之射頻信號之排程決策。 作傳輸天線系統 總供一"益處:增大無線電通信系統中之- 至—位於人,此仙為歸因於干擾減少亦可減少重新傳輸 率,位於“乍叢集之間的邊界區處之行動台之需要及概 的歸因於干擾減少’一鍵路調適可潛在地選擇較高 編碼方案’從而進—步增大系統中之資料速率。 -較佳實施例’調適步驟可進—步基於用於第 點=傳輪之至少-無線電存取資源參數。此提供一優 W從長期看,使第二協調式多點傳輸適於無線電存 ιί(-Γ葡如應用於第一協調式多點傳輸達一較長時間之 重=二範圍)。此允許考量用於調適至少-傳輸權 〜叢集間干擾之至少一無線電存取資源。 163458.doc 201251352 此可例如藉由以下步驟而完成·在第二 統處監測在一特宏4S 一 α乍傳輸天線系 天線系心: 内射頻信號自第-合作傳輸 穴深糸.4之-傳輸及按使得在該第二 主要使用另一頻率子 輪天線系統處201251352 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to wireless communications, and more particularly, but not exclusively, to interference reduction in radio communication systems. [Prior Art] Current cellular mobile communication systems (e.g., 3GPP LTE systems (lte = Long Term Evolution)) rely on ΜΙΜΟ antenna technology (10) M 〇 = multiple input multiple output to achieve high spectral efficiency. In addition, a frequency reuse is typically applied to make full use of the available rare system bandwidth. This results in a strong imbalance in the achievable user rate throughout the cell. In addition, inter-cell interference becomes a major limitation of the performance of the cellular system. Techniques such as CoMP (c〇Mp=coordinated multipoint) deal with this problem. In CoMP, a number of distributed antenna arrays belonging to a same base station or belonging to a different base station and encompassing a specific coverage area (such as a radio cell or a radio sector) represented as one of the following cells are grouped To form a so-called cooperative cluster of one of the extended coverage areas. The cooperative cluster allows simultaneous downlink transmissions from one of the distributed antenna arrays located in different cells to one of the mobile stations or allowed to be transmitted at the antenna array for uplink in one of the mobile stations RF signal - simultaneous uplink reception. The extended coverage area includes the coverage areas of all cells of the cluster. This allows a distributed system to be formed across the entire collaborative cluster (which is also known as the network port). The cooperation between the cells of the cluster can alleviate cell edge problems, such as inter-cell interference between clustered cells. Ϊ 63458.doc 201251352 The traditional proposed linear precoding approach for downlink network MIMO results in a joint weight calculation for one of the entire cooperative clusters. Using the ideal channel state information at the transmitter, this may allow for complete suppression of inter-cell interference within the cluster. However, at the edge of the cooperative cluster, the algorithms mentioned are not designed to account for interference with users belonging to adjacent clusters. SUMMARY OF THE INVENTION The method of coordinating a multi-point transmission from a cooperative cluster to a mobile station incurs interference between radio frequency signals and further affects a total data rate in a radio communication system. Accordingly, it is an object of the present invention to reduce interference between radio frequency signals and to increase the overall data rate in a radio communication system. This object can be achieved by a method of reducing interference in a radio communication system. The S-Hai radio communication system includes a first cooperative transmission antenna system provided by at least two antenna arrays and a second cooperative transmission antenna system provided by at least two further antenna arrays. The method includes the steps of: transmitting, by the first coordinated transmission antenna system, the first radio frequency signal to a first mobile station by using a -coordinated multi-point transmission; and based on the second cooperative transmission antenna system and the Adapting a channel-channel state of one of the second radio frequency signals providing interference to the first radio frequency signal between the mobile stations to adapt at least one transmission weight at the second cooperative transmission antenna system for the second radio frequency Signal from the second cooperative transmission antenna system to a second mobile station - second coordinated multi-point transmission β, the first cooperative transmission antenna system and the second cooperative transmission antenna system may also be referred to as a first coordinated transmission 163458 .doc -6- 201251352 Antenna system and second coordinated transmission antenna system. =:: by means of a first radio access network node, by a type-'., a line access network node and by means of a mobile station for use in a radio system Achieved. The method according to the present invention provides a benefit of not only reducing interference to transmission from a cooperative transmission antenna system to a particular cooperative cluster number, but also reducing the self-input +. RF signal-to-location... The transmission antenna system is transmitted to the further mobile station between the adjacent cooperative cluster and the specific cooperation cluster. The radio access network is responsible for the cooperative cluster. The nodes can be executed independently;; the scheduling decision of the RF signals transmitted from the 4 cooperative transmission days (4). As a transmission antenna system, there is always a benefit: increase the number of radio communication systems - to - people, this is due to the reduction of interference can also reduce the retransmission rate, located at the boundary between the 乍 clusters The need and generalization of the mobile station is attributed to the reduction of interference 'one-way adaptation can potentially select a higher coding scheme' to further increase the data rate in the system. - Preferred embodiment 'Adjustment step can be advanced Based on at least the radio access resource parameter for the first point=passing wheel. This provides an excellent W for long-term viewing, making the second coordinated multi-point transmission suitable for radio storage. Multipoint transmission for a longer period of time = two ranges.) This allows for consideration of at least one radio access resource for adapting at least - transmission rights to inter-cluster interference. 163458.doc 201251352 This can be done, for example, by the following steps: · Monitoring the antenna core of a special macro 4S-α乍 transmission antenna system at the second system: the internal radio frequency signal is transmitted from the first-cooperative transmission hole 糸.4, and the second frequency is used in the second main frequency. Sub-wheel antenna system

料子㈣之-方式調適該第二合作錄妥 線系統處之傳輸。此外,此 n ,J ^ έ …需自該第一合作傳輸 .·泉系統之一網路節點將至 > …、踝電存取資源參數之一 各不用k娩發送至該第二合作 得翰天線系統之一網路節 點。 一步較佳實施例中,第一合作傳輸天線系統指派 «作叢集且第二合作傳輸天線系統指派至一第二 “乍叢集’並且該方法進—步包括下列步驟:由該第—合 作叢集判疋至少-無線電存取資源參數;及例如經由一回 連接自-亥第合作叢集將該至少一無線電存取資源參數 之資訊傳輸至該第二合作叢集。此提供_優點:從短期 看’使第二協調式多點傳輪適於無線電存取資源參數(諸 如當前應用於第一協調式多點傳輸之一時槽、一頻率副載 波區塊或一展頻碼)。藉此’該第二合作傳輸天線系統從 長期看不僅能夠調適至第二行動台之其傳輸以減少朝向定 位於鄰近合作叢集中之第一行動台之干擾,且從短期看能 夠在連續時槽中將無線電存取資源變化地指派至第一行動 台。此增大該第二合作傳輸天線系統處之靈活性以在當前 非用於排程S玄第一行動台之其他時槽或其他頻率範圍中減 少朝向定位於鄰近合作叢集中之進一步行動台之干擾。 此外,第—合作叢集之一合作帛收天線系統處之一複雜 163458,doc 201251352 度可減小且錯誤地偵測第— 在頻域之一概率可消除。 作叢隼= 實施例中,第-合作叢集及第-八 作叢集暫時同步且在該第 弟~'合 前,該第一合作叢隼僂。作叢集處執行該調適步驟 訊達-預定義之少—無線電存取資源參數之資 Γ應用於第一協調式多點傳輸之無線電存取資源參1 ,亍地調適第二協調式多點傳輸。藉此,產生對=數 心號之任何干擾功率之概率可提前減小。 頻 ,曰·ι丨Γ代實施例中’該方法進一步包括在第二合作叢隼 處$測頻道狀態之步驟。在-進-步替代實施例中,該: 法進一步包括下列步驟: 基於下仃鏈路訓練/導頻符號或 下订鍵路資料符號例如藉由估計第二合作傳輸天線系統盘 仃動台之間的-下行鍵路無線電頻道而在第一行動台處量 /。頻道狀態之資讯,自該第一行動台將該頻道狀態之資 讯傳輸至第一合作叢集;及自該第一合作叢集將該頻道狀 態之資訊傳輸至第二合作叢集。該第一替代例允許當合作 傳輸天線系統將下行鏈路射頻信號之一下行鏈路頻率範圍 應用於至订動台之下行鏈路時及當將與下行鍵路頻率範圍 刀開的上㈣路射頻信號之—上行鏈路頻率範圍應用於自 订動台至合作傳輸天線系統之上行鏈路時,將該方法例如 應用至-FDD案例(觸=分頻多工)。該第二替代例允許當The method of material (4) is adapted to the transmission of the second cooperative recording line system. In addition, the n, J ^ έ ... need to be transmitted from the first cooperative transmission. One of the network nodes to the > ..., one of the parameters of the power access resource is sent to the second cooperation. One of the network nodes of the Han antenna system. In a preferred embodiment, the first cooperative transmission antenna system assigns «being a cluster and the second cooperative transmission antenna system is assigned to a second "cluster cluster" and the method further comprises the steps of: judging by the first cooperative cluster疋 at least - a radio access resource parameter; and transmitting the information of the at least one radio access resource parameter to the second cooperative cluster, for example, via a back-to-the-half cooperative cluster. This provides _ advantage: The second coordinated multi-point transport is adapted to radio access resource parameters (such as currently applied to one of the first coordinated multi-point transmission time slot, a frequency sub-carrier block or a spread spectrum code). In the long run, the cooperative transmission antenna system can not only adapt to its transmission to the second mobile station to reduce interference towards the first mobile station located in the adjacent cooperative cluster, and can access the radio access resources in the continuous time slot in the short term. Varyingly assigned to the first mobile station. This increases the flexibility at the second cooperative transmission antenna system to other time slots that are not currently used for scheduling the S-first mobile station Or other frequency ranges reduce interference towards further mobile stations located in adjacent cooperative clusters. In addition, one of the first-cooperative clusters cooperates with one of the antenna systems at the complex 163458, doc 201251352 degrees can be reduced and erroneously detected First—the probability can be eliminated in one of the frequency domains. In the embodiment, the first-cooperative cluster and the octa-cluster cluster are temporarily synchronized and before the first brother~', the first cooperative cluster. The cluster performs the adaptation step - the pre-defined little - the radio access resource parameter is applied to the radio access resource of the first coordinated multi-point transmission, and the second coordinated multi-point transmission is adapted. Thus, the probability of generating any interference power for the =number of hearts can be reduced in advance. In the embodiment of the frequency, the method further includes the step of measuring the channel state at the second cooperative cluster. In an alternative embodiment, the method further comprises the steps of: based on the squat link training/pilot symbols or the subscription key data symbols, for example by estimating the second cooperative transmission antenna system between the disk turrets of - a downlink key radio channel and information on the channel status at the first mobile station, the information of the channel status is transmitted from the first mobile station to the first cooperative cluster; and from the first cooperation cluster The information of the channel status is transmitted to the second cooperative cluster. The first alternative allows when the cooperative transmission antenna system applies one downlink frequency range of the downlink radio signal to the downlink of the subscriber station and when When the uplink frequency range of the uplink (four) RF signal with the downlink key frequency range is applied to the uplink of the custom mobile station to the cooperative transmission antenna system, the method is applied, for example, to the -FDD case (touch = Frequency division multiplexing). This second alternative allows

一相同的頻率範圍應用於下行鏈路及上行鏈路且執行一 RF 鏈(RF=射頻)之一校準以產生上行鏈路·下行鏈路互反性(諸 如在2005年澳大利亞雪梨(Sydney,Australia) ISSPA,05之 163458.doc 201251352 Μ· Guillaud,D. Slock及 R. Knopp「A praetical Meth〇d f〇rAn identical frequency range is applied to the downlink and uplink and performs an RF chain (RF = RF) calibration to generate uplink and downlink reciprocity (such as Sydney, Australia (Sydney, Australia). ISSPA,05 163458.doc 201251352 Μ· Guillaud, D. Slock and R. Knopp “A praetical Meth〇df〇r

Wireless Channel Reciprocity Exploitation Through Relative Calibration」t所述)時將該方法應用於一 TDD案例(TDD= 分時多工)》 根據較佳實施例,該方法進一步包括下列步驟··比較 干擾頻道之頻道狀態與至少兩個預定義之頻道狀態;及選 擇具有對量測之頻道狀態之—最佳匹配之至少兩個預定義 頻道狀L之者,且其中該頻道狀態之資訊包括針對具 有Θ最佳匹之至少兩個預定義之頻道狀態之該者之一識 別。此較佳實施例允許減少頻道狀態資訊經由第-行動台 與第-合作叢集或第二合作叢集之—網路節點之間的一無 線電鍵路之—發信號或減少頻道狀II資til經由第-合作叢 集與第二合作叢集之間的網路節點之間的一回程鏈路之發 :進-步較佳實施例中,頻道狀態之資訊包括用於干擾 =之至少兩個空間參數(諸如-絕對值與一相位值之一 二:Γ道向量或一頻道矩陣)之資訊。此提供以下優 頻、首之^了合作傳輸天線系統與第—行動台之間的干擾 傳衿天線系係數及減小主要用於此干擾頻道之在第二合作 專輸天線系統處之輻射功率。 在-甚至進一步較佳 列步驟:在第一杆叙“去可進一步包括下 F . 動"1處估計第一合作叢隼之一第一涵蓋 Q内之該第一行動 m ^ 與該第-幻七· ° 位點’且其中若在該第-涵蓋區 、 帛之一第二涵蓋區之間的一邊緣處識別該 163458.doc 201251352 第一行動台之位點,則由該第一行動台量測該干擾頻道之 頻道狀態》例如可由一GPS接收器判定該第一涵蓋區與該 第二涵蓋區之間的邊緣處之一絕對位點,且其中該第一行 動台包括該GPS接收器。或者,僅可從自關於第—合作叢 集及第二合作叢集之小區之交遞量測所獲得的接收之信號 強度而估計該第-涵蓋區與該第二涵蓋區之間的邊緣處之 位點。 此提供以下益處:在第一行動台處執行量測步驟,且僅 限於該第-行動台位於第一涵蓋區與第二涵蓋區之間的邊 緣處之&限區中,才在第二合作傳輸天線系統處應用調 適步驟。藉此,當存在該第—行動台接近該邊緣之一需要 時,僅第一協調式多點傳輸受影響。 較佳地’識別包括下列子步驟:比較自第一合作叢集所 接收之第-平均信號功率位準與自第二合作叢集所接收之 第二平均信號功率位準’且若該等第一平均信號功率位準 與該等第二平均信號功率位準之一差達到一臨限值,則估 5十5亥邊緣處之第一 ^干勤二夕Α φϊ· , 仃動口之位點。此提供將對第二協調式 多點傳輸之-效果進一步限於以下情況之優點:其中第一 行動台接近該邊緣’及其中來自第二射頻信號之干擾達到 或超過一特定臨限值。 在另一實施例中’該方法包括下列步驟:自第二合作叢 集將-請求傳輸至第一合作叢集以請求在第一行動台處傳 輸上行鏈路探測信號(諸如上行鍵路導頻);自該第一合作 叢集將該請求轉遞至該第一行動台;自該第一行動台傳輸 I63458.doc 201251352 該等上行㈣探測信號;及在該第二合作叢集處量測經由 干擾頻道所接收之上行键路探測信號。此提供以下益處·· 能夠直接在第二合作叢集之第二組合式接收天線系統處量 測該干擾頻道之一頻道狀態而無需自該第一行動台將頻道 狀態資訊用信號發送至該第一合作叢集及自該第一合作叢 集將頻道狀態資訊傳輪至該第二合作叢集。此實施例係 FDD案例所要的,且除量測該干擾頻道之頻道狀態外亦可 針對TDD案例在一下行鏈路方向上使用此實施例。 【實施方式】 本發明之實施例將在下文詳細描述中變得顯而易見,且 將藉由憑藉非限制性闡釋所給定之隨附圖式而予以闡釋。 圖1展示包括一無線電存取網路Ran之一無線電通信系 統RCS。為了簡便未展示無線電通信系統RCS之核心網路 及無線電通信系統RCS至進一步無線電通信系統、至網際 網路或至固定線路之通信系統之連接。 無線電通信系統RCS可為例如使用〇FDM(〇FDM=正交分 頻多工)之一 3GPP LTE無線電通信網路。在進一步替代例 中’無線電通信系統RCS可為例如一 3GPP UMTS/HSPA無 線電通信網路(UMTS =全球行動電信系統,HSPA=高速封 包存取)、基於例如IEEE 802.16d標準(IEEE=電機電子工程 師協會)之一 WiMAX無線電通信網路(WiMAX=全球互通微 波存取)或基於例如1丑££ 802.11@標準之一\\^八1^(\¥1八化 無線區域網路)。 無線電存取網路RAN包括一第一無線電存取網路節點 163458.doc 201251352 -JNJNl、一第二無線電存取網路節點ra_nn2及一回程鏈 路BL(諸如第一無線電存取網路節點ra_nni與第二無線電 存取網路節點rA_NN2之間的m軸纜線或一定 向的無線電鏈路)。回程鏈路BL可為例如如在3GPP LTE或 演進型3GPP LTE中使用之一 χ2介面。 術浯「無線電存取網路節點」可認為同義於及/或稱作 基地〇收發器、基地台、節點B、增強型節點B、存取 點等,且可描述經由無線電通信系統Rcs與一或多個行動 台之間的一無線電鏈路而提供連接性之無線電存取設備。 為了簡便未展示進一步無線電存取網路節點及該等無線 電存取網路卽點之間的進一步回程鏈路。 第一無線電存取網路節點RA_NN丨包括一第一天線陣列 AA1及一第二天線陣列ΑΑ2β第一天線陣列及第二天 線陣列AA2經組態以提供—第—合作傳輸天線系統, 用於第射頻k號自第一合作傳輸天線系統CTA1至一第 一行動台MSI之一同時的第一協調式多點傳輸cMT1。 第二無線電存取網路節點RA_NN2包括一第三天線陣列 AA3及一第四天線陣列AA4。第三天線陣列aa3及第四天 線陣列AA4經組態以提供一第二合作傳輸天線系統CTA2, 用於第一射頻k號自第二合作傳輸天線系統至一第 二行動台MS2之-同時的第二協調式多點傳輸。體。 第一天線陣列AA1、第二天線陣列AA2、第三天線陣列 AA3及第四天線陣列AA4可為例如如在圖丨中所展示之一天 線桿之頂部上之被動天線陣列(無一功率放大器)。或者, 163458.doc -13- 201251352 第一天線陣列AA1、第二天線陣列AA2、第三天線陣列 AA3及第四天線陣列AA4可為無線電遙控頭,其等具有一 或多個功率放大器級且經由使用CpRI介面協定⑴叹卜通 =公用無線電介面)之光纜而連接至第一無線電存取網路 節點RA-NN1及第二無線電存取網路節點ra_nn2。 在進一步替代例中,第一無線電存取網路節點RA_Nm 及第二無線電存取網路節點RA_NN2可包括一單個天線陣 列或兩個以上天料m線電㈣㈣節點僅包括一 單個天線陣列,則該等無線電存取網路節點之至少兩者經 組態以提供—合作傳輸天線系統,且較佳該等無線電存取 網路節點之至少兩者之-者任命為—主控器且其他無線電 存取網路節齡命為㈣ϋ。該^时出㈣決策,協 調合作叢㈣之㈣❹點傳輸且打行料資料及相關 聯之控制資訊轉遞至該等從屬器。該等從屬器接收該下行 鍵路資料且執行用於提供針對訂行鏈路資料之合作 重傳輸之決策。 乃ΑΑ1提供針對 八深I平 热琢黾小區Cell-AA] 之涵蓋範圍1此,第二天線陣列AA2、第三天線陣列 AA3及第四天線陣列AA4提供針對一第二無線電小區⑽ 二2、第三無線電小區⑶“幻及第四無線電小區⑽ =範圍。術語「無線電小區」可認為同義 稱作無線電小區、小區、無線電扇區、扇區等。 =一無線電小區CelI仙及第:無線電小區⑽ 派至-第—合作叢㈣,且第三無線電小區⑽·切及第 163458.doc 201251352 四無線電小區Ce丨1-AA4指派至一第二合作叢集C2。 在進一步替代例中,三個或三個以上無線電小區指派至 第一合作叢集C1及第二合作叢集C2。 第一行動台MSI可定位於由第一無線電小區ce丨丨_ΑΑΐ及 第一無線電小區Cell-A A2之涵蓋區之一聚合所提供之第一 5作叢集C1之一總涵蓋區内,且可由第一合作叢隼ci之 第一無線電小區Cell-AAl及第二無線電小區ceii_AA2伺 服。 更具體言之,第一行動台MSI可定位於第一無線電小區 Cell-AAl及第二無線電小區CeU_AA2之涵蓋區之一重疊區 内且在第一合作叢集C1之總涵蓋區與由第三無線電小區 Cell-AA3及第四無線電小區Cell-AA4之涵蓋區之一聚合所 提供之第二合作叢集C2之一總涵蓋區之間的一邊緣處。 第二行動台MS2可定位於第二合作叢集C2之總涵蓋區 内,且更具體言之,第二行動台MS2可定位於第三無線電 小區Cell-AA3及第四無線電小區Cell_AA4之涵蓋區之一重 叠區内。 第一行動台MSI可包括一單個天線或具有兩個或兩個以 上天線元件之一天線陣列。第二行動台MS2可包括一單個 天線或具有兩個或兩個以上天線元件之一天線陣列。 術語「行動台」可認為同義於且可在後文中偶爾稱作一 行動單元、行動台、行動使用者、存取終端機、使用者設 備、用戶、使用者、遠端台等。行動台Ms可為例如一蜂 巢式電話、一攜帶式電腦、一口袋式電腦、一手持型電 163458.doc -15- 201251352 腦、一個人數位助理或一車載行動裝置β 為了簡便未在圓1中展示進一步行動台。 當第二無線電存取網路節點RA-NN2藉由第二協調式多 點傳輸CMT2而將第二射頻信號傳輸至第二行動台Ls2 時,亦可經由第二合作傳輸天線系統CTA2與第—行動二 MSI之間的一干擾頻道1(:而在第一行動台Msi處接收第二 射頻信號。 — 當第一無線電存取網路節點RA-NN1藉由第一協調式多 點傳輸CMT1而將第一射頻信號傳輸至第一行動台msi 時,該等第一射頻信號可受第二射頻信號干擾且可因此使 第一射頻信號在第一行動台MSI處之一接收品質劣化。 為了減少此干擾效果’第二無線電存取網路節點 RA-NN2能夠針對第二協調式多點傳輸cmT2調適第二合作 傳輸天線系統CTA2之天線陣列AA3、AA4之一者或兩者處 之一或若干個傳輸權重。藉此,信號功率在朝向第一行動 台MSI之方向上之一輕射可減小。同時,第二射頻信號在 第二行動台MS2處之一接收品質應維持或至少僅稍微降 低。 術語「傳輸權重」可認為同義於且可在後文中偶爾稱作 · 一天線權重、波束成形權重、預編碼器、預編碼權重、傳 _ 輸預編碼器等〇 調適可基於干擾頻道1C之-頻道狀態。較佳地,該調適 亦可考量第一協調式多點傳輸CMT1之一或若干個無線電 存取資源參數,諸如:在UMTS/WCDMA(WCDMA=寬頻分 163458.doc 16- 201251352 碼多重存取)或諸如·TTI(TTI=傳輸時間間隔)之一時槽之情 況下’無線電存取資源參數為展頻碼;在Tdd之情況下且 諸如應用在LTE/〇FDMA(OFDMA=正交分頻多重存取)中, 無線電存取資源參數為時槽(諸如一子訊框或一組子訊 框);或在FDD之情況下且諸如應用在lte/〇fDMa中,無 線電存取資源參數為一副載波範圍及一時槽。將根據圖2 給定關於該調適之更多細節。 參考圖2 ’展示根據若干替代實施例之一方法MET 1之一 流程圖。用於執行方法MET1之步驟之數目並不是關鍵 的’且如熟習此項技術者可瞭解步驟之數目及步驟之次序 可在不背離本發明之範疇之情況下改變。且該等步驟之一 些可同時執行,例如步驟M1/11&M1/13&/或步驟M1/12& M1/14。 關於在圖1中所展示之網路節點展示方法mET i。 在一第一步驟M1/1中,第一無線電存取網路節點 RA-NN1可經由第一合作傳輸天線系統CTA1藉由第一協調 式多點傳輸CMT1而例如按諸如在3GPP LTE中應用之若干 連續PRB(PRB=實體資源區塊)將第一射頻信號RFS丨(其等 包括第一線性預編碼之資料)傳輸至第一行動台MS 1。在一 3GPP LTE之情況下,用於第一行動台MS1之第一射頻信號 RFS1按一 ΤΤΙ(ΤΤΙ=傳輸時間間隔)及具有12個相鄰的 OFDM副載波之一群組且〗5 kHz之一副載波間隔之一頻率 子範圍分配給各PRB。1 ms之一時間長度之TTI為10 ms之 一時間長度之一無線電訊框之部分。丨8〇 kHz之頻率子範 圍為例如5 MHz之一分配之頻寬之部分。Prb之無線電訊 163458.doc •17· 201251352 框内之一時間位置及PRB之分配之頻寬内之一頻率位點可 針對至第一行動台MSI之第一協調式多點傳輸CMT1而在 連續無線電訊框中改變。在3GPP LTE之情況下,prb為用 於第一協調式多點傳輸CMT】之所謂的無線電存取資源參 數。藉由針對第一協調式多點傳輸CMT1使用其他傳輸技 術’無線電存取資源參數之特徵可在於一單個參數,諸 如:在UMTS中應用之一展頻碼、一時槽(例如若一完全分 配之頻寬永久地用於第一行動台)及/或一副載波範圍(例如 若一無線電訊框之所有TTI永久地用於第一行動台)。可藉 由一子訊框號碼及一副載波群組號碼而識別無線電訊框内 及分配之頻寬内之PRB之所有可用位置。 第一射頻信號RFS1可載送例如自網際網路(諸如 Youtube.com)中之一視訊伺服器下載至第一行動台MS丨之 一視訊之IP封包(IP=網際網路協定)。為了簡便未在圖 展不自第一行動台MS 1至第一無線電存取網路節點 RA-NN1之上行鍵路無線電信號。 在-第二步驟m/2中且按相同的時間間⑮,第二無線電 存取網路節點R A · N N 2可經由第二合作傳輸天線系統c τ A 2 藉由第二協調式多點.傳輸CMT2而按若干連續pRB將第二 射頻信號RFS2(其等包括第二線性預編碼之資料)傳輸至第 二行動台MS2。 第二射頻信號RFS2可載送你丨如白 執达例如自一呼叫方至第二行動 台MS2之-替呼叫(VoIP=Ip語音)之Ip封包…簡便未 在圖2中展示自第二行動台㈣至第二無線電存取網路節 163458.doc -18- 201251352The method is applied to a TDD case (TDD=time division multiplexing) according to a preferred embodiment, and the method further comprises the following steps: comparing the channel status of the interference channel And at least two predefined channel states; and selecting at least two predefined channel shapes L having the best match to the measured channel state, and wherein the information of the channel state includes One of the at least two predefined channel states is identified. The preferred embodiment allows for the reduction of channel state information via the first mobile station and the first cooperative cluster or the second cooperative cluster - a radio link between the network nodes - to signal or reduce channel-like tiling - a backhaul link between the network nodes between the cooperative cluster and the second cooperative cluster: In a preferred embodiment, the channel status information includes at least two spatial parameters for interference = (such as - Information about one of two absolute values and one phase value: a ramp vector or a channel matrix. This provides the following superior frequency, the first interference transmission antenna system coefficient between the cooperative transmission antenna system and the first mobile station, and the reduction of the radiation power at the second cooperative transmission antenna system mainly used for the interference channel. . In-and even further preferred steps: in the first shot, "going to further include the next F." is estimated to be one of the first cooperative clusters, the first one covering the first action in the Q and the first - 幻七·° locus' and wherein if the 163458.doc 201251352 first mobile station is identified at an edge between the first-covered area and one of the second covered areas, then the first The mobile station measures the channel status of the interference channel, for example, a GPS receiver determines an absolute location at an edge between the first coverage area and the second coverage area, and wherein the first mobile station includes the GPS Receiver. Alternatively, the edge between the first coverage area and the second coverage area may be estimated only from the received signal strength obtained from the handover measurements of the cells of the first cooperation cluster and the second cooperation cluster. This provides the following benefits: the measurement step is performed at the first mobile station and is limited to the & restricted area at the edge between the first coverage area and the second coverage area. Applying the adaptation step at the second cooperative transmission antenna system Thereby, only the first coordinated multi-point transmission is affected when there is a need for the first mobile station to approach one of the edges. Preferably, the 'identification includes the following sub-steps: comparing the first received from the first cooperative cluster - an average signal power level and a second average signal power level received from the second cooperative cluster and if the first average signal power level and one of the second average signal power levels reach a difference The limit value is estimated to be the first place on the edge of the 5th 5th edge. The location of the second coordinated multi-point transmission is further limited to the following cases. Wherein the first mobile station is near the edge 'and the interference from the second radio frequency signal reaches or exceeds a certain threshold. In another embodiment' the method comprises the steps of: transmitting from the second cooperative cluster - request Up to a first cooperative cluster to request transmission of an uplink sounding signal (such as an uplink key pilot) at the first mobile station; forwarding the request from the first cooperative cluster to the first mobile station; from the first Mobile platform I63458.doc 201251352 the uplink (four) sounding signals; and measuring the uplink keyway signal received via the interference channel at the second cooperative cluster. This provides the following benefits: · can directly in the second combination of the second cooperative cluster Measuring, by the receiving antenna system, a channel state of the interfering channel without signaling the channel state information from the first mobile station to the first cooperative cluster and routing the channel state information from the first cooperative cluster to the The second cooperation cluster. This embodiment is required by the FDD case, and in addition to measuring the channel state of the interference channel, this embodiment can also be used in a downlink direction for the TDD case. [Embodiment] Implementation of the present invention The examples will be apparent from the following detailed description, and will be explained by the accompanying drawings by way of non-limiting illustration. Figure 1 shows a radio communication system RCS comprising a radio access network Ran. For the sake of simplicity, the core network of the radio communication system RCS and the connection of the radio communication system RCS to further radio communication systems, to the internet or to fixed line communication systems are not shown. The radio communication system RCS can be, for example, a 3GPP LTE radio communication network using 〇FDM (〇FDM = Orthogonal Frequency Division Multiplexing). In a further alternative, the 'radio communication system RCS can be, for example, a 3GPP UMTS/HSPA radio communication network (UMTS = Global Mobile Telecommunications System, HSPA = High Speed Packet Access), based on, for example, the IEEE 802.16d standard (IEEE = Electrical and Electronic Engineer) Association) One of the WiMAX radio communication networks (WiMAX = Global Interoperability for Microwave Access) or based on one of the ugly 802.11@ standards, \\^八1^(\¥1八化无线地区网络). The radio access network RAN comprises a first radio access network node 163458.doc 201251352 -JNJNl, a second radio access network node ra_nn2 and a backhaul link BL (such as the first radio access network node ra_nni An m-axis cable or a fixed radio link between the second radio access network node rA_NN2). The backhaul link BL can be, for example, one of the interfaces used in 3GPP LTE or Evolved 3GPP LTE. The "radio access network node" may be considered synonymous and/or referred to as a base transceiver, a base station, a Node B, an enhanced Node B, an access point, etc., and may be described via a radio communication system Rcs and a A radio access device that provides connectivity by a radio link between multiple mobile stations. Further backhaul links between further radio access network nodes and those radio access network sites are not shown for simplicity. The first radio access network node RA_NN includes a first antenna array AA1 and a second antenna array ΑΑ2β, the first antenna array and the second antenna array AA2 are configured to provide a first-cooperative transmission antenna system And a first coordinated multi-point transmission cMT1 for the first radio frequency k from the first cooperative transmission antenna system CTA1 to one of the first mobile stations MSI. The second radio access network node RA_NN2 includes a third antenna array AA3 and a fourth antenna array AA4. The third antenna array aa3 and the fourth antenna array AA4 are configured to provide a second cooperative transmission antenna system CTA2 for the first radio frequency k number from the second cooperative transmission antenna system to a second mobile station MS2 - simultaneous The second coordinated multipoint transmission. body. The first antenna array AA1, the second antenna array AA2, the third antenna array AA3, and the fourth antenna array AA4 may be, for example, a passive antenna array on top of one of the antenna poles as shown in FIG. Amplifier). Alternatively, 163458.doc -13- 201251352 The first antenna array AA1, the second antenna array AA2, the third antenna array AA3, and the fourth antenna array AA4 may be radio remote heads, etc., having one or more power amplifier stages And connected to the first radio access network node RA-NN1 and the second radio access network node ra_nn2 via a fiber optic cable using the CpRI interface protocol (1) sputum = public radio interface). In a further alternative, the first radio access network node RA_Nm and the second radio access network node RA_NN2 may comprise a single antenna array or more than two antennas. The four (four) (four) nodes comprise only a single antenna array. At least two of the radio access network nodes are configured to provide a cooperative transmission antenna system, and preferably at least two of the radio access network nodes are designated as - a master and other radios The age of the access network is (four) ϋ. The decision is made (4), and the (4) transmission of the cooperation bundle (4) is transmitted and the information and related control information are transmitted to the slaves. The slaves receive the downlink data and perform a decision to provide cooperative retransmission for the subscription link data. ΑΑ1 provides coverage for the eight-deep I-hot cell Cell-AA]. The second antenna array AA2, the third antenna array AA3, and the fourth antenna array AA4 are provided for a second radio cell (10). Third Radio Cell (3) "Fantasy and Fourth Radio Cell (10) = Range. The term "radio cell" may be considered synonymous as a radio cell, cell, radio sector, sector, and the like. = a radio cell CelI Xian and the: radio cell (10) assigned to - the first cooperation cluster (four), and the third radio cell (10) · cut and 163458.doc 201251352 four radio cells Ce 丨 1-AA4 assigned to a second cooperative cluster C2. In a further alternative, three or more radio cells are assigned to the first cooperative cluster C1 and the second cooperative cluster C2. The first mobile station MSI may be located in a total coverage area of one of the first five clusters C1 provided by the aggregation of the first radio cell ce丨丨_ΑΑΐ and one of the coverage areas of the first radio cell Cell-A A2, and The first radio cell Cell-AAl and the second radio cell ceii_AA2 may be served by the first cooperative cipher ci. More specifically, the first mobile station MSI may be located in an overlapping area of one of the coverage areas of the first radio cell Cell-AAl and the second radio cell CeU_AA2 and in the total coverage area of the first cooperative cluster C1 and by the third radio One of the coverage areas of the cell Ce-AA3 and the fourth radio cell Cell-AA4 is aggregated at one edge between the total coverage areas of the second cooperation cluster C2. The second mobile station MS2 may be located within the total coverage area of the second cooperative cluster C2, and more specifically, the second mobile station MS2 may be located in the coverage areas of the third radio cell Cell-AA3 and the fourth radio cell Cell_AA4. An overlapping area. The first mobile station MSI may comprise a single antenna or an antenna array having one or more of two or more antenna elements. The second mobile station MS2 may comprise a single antenna or an antenna array having one or two or more antenna elements. The term "mobile station" is considered synonymous and may be hereinafter occasionally referred to as a mobile unit, mobile station, mobile user, access terminal, user equipment, user, user, remote station, and the like. The mobile station Ms can be, for example, a cellular phone, a portable computer, a pocket computer, a handheld computer 163458.doc -15- 201251352 brain, a number of assistants or a car mobile device β for simplicity not in the circle 1 Showcase further action stations. When the second radio access network node RA-NN2 transmits the second radio frequency signal to the second mobile station Ls2 by using the second coordinated multi-point transmission CMT2, the second cooperative transmission antenna system CTA2 and the first Interfering channel 1 between action two MSIs (: while receiving the second radio frequency signal at the first mobile station Msi. - when the first radio access network node RA-NN1 is transmitted by the first coordinated multi-point transmission CMT1 When the first radio frequency signal is transmitted to the first mobile station msi, the first radio frequency signals may be interfered by the second radio frequency signal and may thus cause the first radio frequency signal to receive quality degradation at one of the first mobile stations MSI. The interference effect 'the second radio access network node RA-NN2 is capable of adapting one or both of the antenna arrays AA3, AA4 of the second cooperative transmission antenna system CTA2 or both for the second coordinated multi-point transmission cmT2 Transmission weights, whereby the signal power can be reduced in one of the directions toward the first mobile station MSI. Meanwhile, the reception quality of the second radio frequency signal at the second mobile station MS2 should be maintained or at least only slightly Lower. The term "transmission weight" can be considered synonymous and can be occasionally referred to hereinafter as an antenna weight, beamforming weight, precoder, precoding weight, transmission _ precoder, etc. 〇 adaptation can be based on interference channel 1C - Channel state. Preferably, the adaptation may also consider one or several radio access resource parameters of the first coordinated multi-point transmission CMT1, such as: UMTS/WCDMA (WCDMA = wide frequency sub-163458.doc 16- 201251352 code multiple In the case of access or a slot such as one of TTI (TTI = Transmission Time Interval), the 'radio access resource parameter is a spreading code; in the case of Tdd and such as an application in LTE/〇FDMA (OFDMA = orthogonal division) In the frequency multiple access, the radio access resource parameter is a time slot (such as a subframe or a group of subframes); or in the case of FDD and such as in lte/〇fDMa, radio access resource parameters A subcarrier range and a time slot. More details regarding this adaptation will be given in accordance with Figure 2. Referring to Figure 2 'shows a flow diagram of a method MET 1 according to one of several alternative embodiments. Steps for performing method MET1 Number and It is not critical, and the order of the number of steps and the order of the steps can be changed without departing from the scope of the invention, and some of the steps can be performed simultaneously, for example, steps M1/11 & M1 /13&/or step M1/12& M1/14. Regarding the network node presentation method mET i shown in Fig. 1. In a first step M1/1, the first radio access network node RA- NN1 may transmit the first radio frequency signal RFS by means of the first coordinated transmission antenna system CTA1 by the first coordinated multi-point transmission CMT1, for example, according to several consecutive PRBs (PRB = physical resource blocks) such as those used in 3GPP LTE ( The data including the first linear precoding is transmitted to the first mobile station MS 1. In the case of a 3GPP LTE, the first radio frequency signal RFS1 for the first mobile station MS1 is one ΤΤΙ (ΤΤΙ = transmission time interval) and has one group of 12 adjacent OFDM subcarriers and is 5 kHz. One frequency subrange of one subcarrier interval is allocated to each PRB. The TTI of one of the lengths of 1 ms is part of the radio frame of one of the lengths of 10 ms. The frequency subrange of 丨8〇 kHz is part of the bandwidth allocated by one of, for example, 5 MHz. Prb's Telecommunications 163458.doc •17· 201251352 One of the time positions in the box and one of the frequencies within the allocated bandwidth of the PRB may be consecutive for the first coordinated multi-point transmission CMT1 to the first mobile station MSI The radio frame changes. In the case of 3GPP LTE, prb is a so-called radio access resource parameter for the first coordinated multi-point transmission CMT. By using other transmission techniques for the first coordinated multi-point transmission CMT1, the characteristics of the radio access resource parameters may be in a single parameter, such as: applying one of the spreading codes in the UMTS, a time slot (eg, if a fully allocated The bandwidth is permanently used for the first mobile station) and/or a subcarrier range (eg, if all TTIs of a radio frame are permanently used for the first mobile station). All available locations of the PRBs within the radio frame and the allocated bandwidth can be identified by a sub-frame number and a sub-carrier group number. The first radio frequency signal RFS1 can carry, for example, an IP packet (IP = Internet Protocol) downloaded from a video server of the Internet (such as Youtube.com) to the first mobile station MS. For the sake of simplicity, the uplink signal radio signals from the first mobile station MS 1 to the first radio access network node RA-NN1 are not shown. In a second step m/2 and at the same time 15, the second radio access network node RA NN 2 may be via the second cooperative transmission antenna system c τ A 2 by means of a second coordinated multipoint. The CMT2 is transmitted and the second radio frequency signal RFS2 (which includes the second linear precoding data) is transmitted to the second mobile station MS2 by a number of consecutive pRBs. The second RF signal RFS2 can carry you, for example, Ip packets from a caller to the second mobile station MS2 for the call (VoIP = Ip voice)... Simple is not shown in Figure 2 from the second action Taiwan (four) to the second radio access network section 163458.doc -18- 201251352

點RA-NN2之上行鏈路無線電信號Q 第一行動台MSI最初可在下一步驟M1/3處僅接收第—射 頻信號RFS 1,此係因為第一行動台MS 1可定位於第一合作 叢集ci之總涵蓋區之一中心中且因此第二射頻信號 在第一行動台MSI之起始位點處係非常衰弱的。 接著,第一行動台MSI可朝向第一合作叢集C1#第二合 作叢集C2之總涵蓋區之間的邊緣移動。 在一下一步驟Ml/4處,第一行動台MSI可接收第一射頻 信號RFS 1,且此外隨著相當大的功率遞增亦接收第二射頻 信號RFS2»第二射頻信號RFS2之接收係第一行動台Msi 已變為來自鄰近第二合作叢集C2之干擾信號之一受害者之 一指示。 在一進一步選用步驟M1/5中,第一行動台MSI較佳可估 计第一合作叢集C1之一涵蓋區内之第一行動台MS1之一位 點,且其中可藉由以一特定接收功率範圍内之接收功率所 觀察到之一組無線電小區之一總涵蓋區而給定該位點。此 一估計可例如藉由比較自第一合作叢集C12第一無線電小 區Cell-AAl及第二無線電小區CeU_AA2所接收之第—導頻 及第二導頻之第二平均功率位準丨與自鄰近第二合 作叢集C2之第三無線電小區CeU_AA3及第四無線電小區 Cell-AA4所接收之第三導頻及第四導頻之第二平均功率位 準而完成。取決於第一平均接收之信號功率位準 與第二平均接收之信號功率位準M5TL2之間的一 差’第一行動台MSI可估量第一行動台MSI是否定位於第 163458.doc •19· 201251352 一合作叢集ci之總涵蓋範圍内遠離第一合作叢集ci及第 二合作叢集C2之總涵蓋區之邊緣,或第—行動台廳定位 為接近第一合作叢集C1及第二合作叢集〇之總涵蓋區之 邊緣。若第一平均接收之信號功率值準义及奸幻與第二平 均接收之信號功率位準之間的—差達到一預定義 之臨限值(諸如該差低於6 dB): ARSPIA- ARSPL2<6dB (】) 則第一行動台MS 1可例如判定接近第—合作叢集c丨及第二 合作叢集C 2之總涵羞區之邊緣之第一行動台μ S 1之位點。 在一下一步驟Μ1/6中,第一行動台MS1藉由判定干擾頻 道1C之空間參數而量測干擾頻道ic之頻道狀態。 根據圖3,第一行動台MSI及第二行動台MS2可包括一收 發器MS-TR。收發器MS-TR可包括一組合器CB,組合器 CB用於組合自第一行動台MSI或第二行動台MS 2之一天線 陣列之天線元件所接收之第一射頻信號RFS 1或第二射頻信 號。收發器MS-TR可進一步包括一頻道估計器處理單元 CE,頻道估計器處理單元CE用於估計用於第一協調式多 點傳輸CMT1或第二協調式多點傳輸CMT2之一實際傳輸頻 道H_real之頻道係數H_est。 收發器MS-TR可進一步包括一量化處理單元QU,量化 處理單元QU用於將估計之頻道係數H_est量化成量化頻道 狀態資訊H_qt。估計之頻道係數H_est可應用至組合器CB 以恢復接收之第一射頻信號RFS 1或第二射頻信號RFS2内 163458.doc • 20· 201251352 /亍鏈路發^號及/或下行鍵路使用者資料。 件線陣列AA3及第四天線陣㈣包括2個天線元 …―订動台购包括一單個天線,則頻道估計器^可 判疋例如表示自第三天線陣列AA3及第四天線陣列AA4至 f 一订動台MS1之―第—頻道向量H道、 j 2 2i % h 1 ΑΑ4-1'1 “4-2,1之絕對值及相位之4個複值ΜΙΜΟ 頻道係數: vmeas = (-如Λ44_ι,ι,λ一weaj紹 21)⑺ • 〇 可執行量測同步頻道及/或在例如散佈於一下行鏈路共 用頻道(諸如LTE中之- DSCH(DL_SCH=下行鏈路共用頻 道))内之時間及頻率之導頻。 在替代例中,若在第一行動台MS}處接收之第一射頻 k號主要受自第三天線陣列AA3所傳輸之第二射頻信號 RFS2干擾,則第一行動台刪判定自第三天線陣列a幻至 第一行動台MSI之一第一頻道向量之wMIM〇頻道係數。 在一進一步替代例中,若第三天線陣列aa3及第四天線 陣列AA4包括2個天、線元件且第一行動台MS1亦包括具有兩 個天線元件之一天線陣列,則第一行動台MS1判定干擾頻 道1C之一第一頻道矩陣之8個ΜΙΜΟ頻道係數。 杈佳地,僅限於已在第一合作叢集〇1與第二合作叢集 C2之總涵蓋區之間的邊緣處識別第一行動台MS1之位點, 第一行動台MS 1量測干擾頻道IC之頻道狀態。 在一進一步選用步驟M1/7中,量化處理單元〇1;可比較 163458.doc -21 - 201251352 例如判定之頻道向量vmeas與藉由以下方程式所給定之預定 義之頻道向量之一集之兩個或兩個以上預定義之頻道 向量vdef j : 构祕丨,W,A-鮮丨)足耐秘_如)(3)。 可使用向量量化技術,對於將頻道表為元素之預定義向 置或預定義矩陣產生一碼薄。例示性地,可使用諸如定義 用於3GPP TS36.2U版本10中之閉迴路線性預編碼之碼 薄。藉此’可在第一無線電存取網路節點rA_nn丨及第二 無線電存取網路節點RA-NN2處以及在第一行動台MS 1及 第二行動台MS2處應用一基於碼薄之預編碼。 判定之頻道向量與預定義之頻道向量Vdefj之間的比 較可例如藉由使用以下方程式計算一最小化歐幾裏德距離 而執行: diffj =J|vdei,J-vmm|2 = lXj-h_measAA, 2>1)2 (4) _ ’ 或者,可藉由如在2007年7月1日至5日《M〇bile andUplink radio signal Q of point RA-NN2 The first mobile station MSI may initially receive only the first radio frequency signal RFS 1 at the next step M1/3 because the first mobile station MS 1 can be located in the first cooperative cluster The center of one of the total coverage areas of ci and therefore the second radio frequency signal is very weak at the start of the first mobile station MSI. Next, the first mobile station MSI can move toward the edge between the total coverage areas of the first cooperative cluster C1# second cooperation cluster C2. At the next step M1/4, the first mobile station MSI can receive the first radio frequency signal RFS 1, and further receives the second radio frequency signal RFS2»the second radio frequency signal RFS2 with the receiving system first with a considerable power increase. The mobile station Msi has become an indication of one of the victims from one of the interference signals adjacent to the second cooperative cluster C2. In a further selection step M1/5, the first mobile station MSI preferably estimates one of the first mobile stations MS1 in one of the first cooperative clusters C1, and wherein the specific mobile station can be at a specific receiving power A total coverage area of one of a group of radio cells is observed for the received power within the range given for that location. The estimate may be, for example, by comparing the first average power level of the first pilot and the second pilot received from the first cooperative cluster C12, the first radio cell Cell-AAl and the second radio cell CeU_AA2, and the self-adjacent The third cooperative cell C2, the third radio cell CeU_AA3, and the fourth radio cell Cell-AA4 receive the third pilot and the fourth pilot second average power level. Depending on a difference between the first average received signal power level and the second average received signal power level M5TL2, the first mobile station MSI can estimate whether the first mobile station MSI is located at 163458.doc • 19· 201251352 The total coverage of a cooperative cluster ci is far from the edge of the total coverage area of the first cooperation cluster ci and the second cooperation cluster C2, or the first-action hall is positioned close to the first cooperation cluster C1 and the second cooperation cluster. The edge of the total coverage area. If the difference between the signal power value of the first average received signal and the signal power level of the second average received signal reaches a predefined threshold (such as the difference is less than 6 dB): ARSPIA- ARSPL2< 6dB (]) The first mobile station MS 1 may, for example, determine a location of the first mobile station μ S 1 that is close to the edge of the total muting area of the first cooperative cluster c丨 and the second cooperative cluster C 2 . In the next step Μ 1/6, the first mobile station MS1 measures the channel state of the interference channel ic by determining the spatial parameter of the interference channel 1C. According to Fig. 3, the first mobile station MSI and the second mobile station MS2 may comprise a transceiver MS-TR. The transceiver MS-TR may comprise a combiner CB for combining the first radio frequency signal RFS 1 or the second received by the antenna element of the antenna array of the first mobile station MSI or the second mobile station MS 2 RF signal. The transceiver MS-TR may further comprise a channel estimator processing unit CE for estimating an actual transmission channel H_real for one of the first coordinated multi-point transmission CMT1 or the second coordinated multi-point transmission CMT2 Channel coefficient H_est. The transceiver MS-TR may further comprise a quantization processing unit QU for quantizing the estimated channel coefficients H_est into quantized channel state information H_qt. The estimated channel coefficient H_est can be applied to the combiner CB to recover the received first RF signal RFS 1 or the second RF signal RFS2 within 163458.doc • 20· 201251352 /亍 link issue number and/or downlink user data. The line array AA3 and the fourth antenna array (4) include 2 antenna elements... - the subscription station includes a single antenna, and the channel estimator can be determined, for example, from the third antenna array AA3 and the fourth antenna array AA4 to f The first channel of the ordering station MS1, H channel, j 2 2i % h 1 ΑΑ4-1'1 "4-2, the absolute value of the 1 and the four complex values of the phase ΜΙΜΟ Channel coefficient: vmeas = (- Λ44_ι,ι,λ一weaj绍 21)(7) • 〇 can measure the synchronization channel and/or, for example, in a downlink shared channel (such as LTE - DSCH (DL_SCH = Downlink Shared Channel)) The pilot of the time and frequency. In the alternative, if the first radio frequency k received at the first mobile station MS} is mainly interfered by the second radio frequency signal RFS2 transmitted by the third antenna array AA3, the first The mobile station deletes the wMIM〇 channel coefficient from the third antenna array a to one of the first channel vectors of the first mobile station MSI. In a further alternative, if the third antenna array aa3 and the fourth antenna array AA4 include 2 Sky and line components and the first mobile station MS1 also includes one of two antenna elements In the line array, the first mobile station MS1 determines 8 channel coefficients of the first channel matrix of one of the interference channels 1C. Preferably, only the total coverage area of the first cooperation cluster 〇1 and the second cooperation cluster C2 is limited. The location of the first mobile station MS1 is identified at the edge between the first mobile station MS1, and the channel state of the interference channel IC is measured. In a further optional step M1/7, the quantization processing unit 〇1; comparable 163458. Doc -21 - 201251352 For example, the determined channel vector vmeas and two or more predefined channel vectors vdef j of one of the predefined channel vectors given by the following equation: Constructive, W, A-Fresh (7). Vector quantization techniques can be used to generate a codebook for a predefined orientation or pre-defined matrix that has a channel table as an element. Illustratively, such as defined for 3GPP TS36. Closed-loop linear precoding codebook in 2U Release 10, whereby 'at the first radio access network node rA_nn丨 and the second radio access network node RA-NN2 and at the first mobile station MS 1 And application at the second mobile station MS2 Precoding based on codebook. The comparison between the determined channel vector and the predefined channel vector Vdefj can be performed, for example, by calculating a minimum Euclidean distance using the following equation: diffj = J|vdei, J-vmm| 2 = lXj-h_measAA, 2>1)2 (4) _ ' Alternatively, as by July 1st to 5th, 2007, M〇bile and

Wireless Communications Summit,2007. 16th 1ST》第乂卷 第 x 號第 1-5 頁之 Qiang Li; Georghiades,C N rprec〇der Quantization for MIMO-OFDM Systems over FrequencyWireless Communications Summit, 2007. 16th 1ST, Vol. x No. x 1-5 Qiang Li; Georghiades, C N rprec〇der Quantization for MIMO-OFDM Systems over Frequency

SeleCtWe Channels」中之章節「Chordai distance quantization」中所述之方程式4而計算一最小弦距離該 文獻以引用的方式併入本文中。 I63458.doc -22, 201251352 在進一步替代例中,一向量量化技術可基於諸如在2007 年 7月 1 日至 5 日《Mobile and Wireless Communications Summit, 2007. 16th 1ST》第 x卷第 1-5 頁之 Qiang Li; Georghiades,C.N.「PrecoderQuantizationforMIMO-OFDM Systems over Frequency Selective Channels」中之 章節「Minimum Mean Squared Error Quantization」及 「Vector Quantization」中所述之一最小均方誤差量化或 一向量量化’該等文獻亦以引用的方式併入本文中。 在一下一選用步驟M1/8中,量化處理單元qu可藉由使 用例如以下方程式而選擇具有對干擾頻道1C之量測之頻道 狀態之一最佳匹配之預定義之頻道狀態之一者: v_bestmatch = argmin difft (5) 步驟Ml/7及Ml/8之一替代途徑可基於《Pr〇ceedings 〇f the IEEE VTC spring 2010》中之 τ. Wild「A rake-finger based efficient channel state information feedback compression scheme」而完成,其以引用的方式併入本文 中。在此,完成移除頻域相關之冗餘之時域頻道脈衝回應 之主要分接頭之一純量量化。此外,回饋分成短期元素及 長期元素。兩種效果導致所要之回饋速率之一強烈壓縮。 在一進一步步驟M1/9中,第一行動台MS1按一向量值格 式或一矩陣值格式將干擾頻道1(:之頻道狀態資訊cSI_MS j 傳輸至第一無線電存取網路節點RA_Nm。在進行此傳輸 中,第-行動台MS1可傳輸例如頻道向量%乂4娜細 I63458.doc •23· 201251352 頻道係數;^3ί、;^ -,丨 々4~丨,1、心4 2,1。頻道壯能咨 訊CSI-MS1可傳輸至笛^ 7貝逼狀態資 号铷主第—天線陣列ΑΑι或 ΛΑ2 ;或在第一合作叢 一天線陣列 最集C1處之一合作多點接收之 下,頻道狀態資訊CSI-MS1 ϋ $ 輸第一天線陣列AA!及 第一天線陣列ΑΑ2兩者。頻道 貝道狀態之資訊亦可摇兔 CDI(CDI =頻道方向資訊)。 在一替代例中,第一行動a Μς ㈣。咖可將-指^項傳輸至第 -無線電存取網路“ RA_NN1,則以項作為提供對干 擾頻道^量測之頻道狀態之—最佳匹配^選用步驟 M"8所選擇之預定義之頻道狀態之量化頻道狀態資訊 H_qt。該指示項可例如與3Gpp LTE中之一贿⑽卜預編 碼矩陣指示項)相似。 預定義之頻道向量或預定義之頻道矩陣之使用及關於預 定義之頻道向量或預定義之頻道轉之資訊藉由頻道狀態 資訊CSI-MS1之一發信號為一所謂的明確回饋。 或者,可使用預定義之預編碼向量且可藉由頻道狀態資 訊CSI-MS1而用信號發送關於預編碼向量之資訊。此為一 所謂的隱含回饋。藉此,基於一特定度量(例如,最大化 系統中之一輸送量)而識別一預編碼向量。第二無線電存 取網路節點RA-NN2在接收頻道狀態資訊CSI_MS1時可將 隱含回饋轉換成一明確回饋以估計干擾頻道1(:之頻道狀 態0 或者’針對方法MET1可使用描述頻道狀態之任何其他 方式(例如,基於類比回饋:不應用量化但是用信號發送 t63458.doc -24· 201251352 連續的複值係數)。 較佳地,第一行動台MSI將第二合作叢集C2之一或若干 個小區ID(ID=指示項)進一步傳輸至第一無線電存取網路 節點RA-NN1。若第三無線電小區CeU_AA3對第一行動台 MSI提供比第四無線電小區CeU_AA4多得多的干擾(例如, 第一行動台MSI處接收之干擾功率之差高於一預定義之臨 限值)’則一單個小區ID及一單個頻道狀態資訊可經傳輸 例如用於第三無線電小區Cen_AA3。若第三無線電小區 Cell-AA3及第四無線電小區CeU-AA4對第一行動台Msi提 供一相似干擾(例如,第一行動台MS1處接收之干擾功率之 差低於該預定義之臨限值),則可傳輸該兩個無線電小區 之兩個小區ID。 在下步驟Μ1 /10中,在第一無線電存取網路節點 RA-NN1處接收頻道狀態資訊CSI-MS1。 在一進一步步驟M1/11中,第一無線電存取網路節點 RA-NN1識別自第—行動台MS1接收之一鄰近合作叢集及 控制該鄰近合作叢集之一主控無線電存取網路節點之頻道 狀態資訊CSI-MS1。 在第—替代例中’第一無線電存取網路節點ra-NNI 了藉由比較當前自第一行動台Ms i所報告之第一無線電小 區Cell-AAl及第二無線電小區ceU_AA2之平均接收之信號 功率與先前自第-行動台MS 1所報告之第一無線電小區 1及第一無線電小區Cell-AA2之平均接收之信號功 率而估计例如第一行動台MS 1朝向帛三合作叢集C2之一移 I63458.doc -25- 201251352 動方向。藉由比較第一行動台MSI之移動方向與儲存鄰近 無線電存取網路節點之一數位地理地圖及一查找表第一 無線電存取網路節點RA_NN1將第二無線電存取網路節點 RA-NN2識別為負責鄰近合作叢集C2之主控器。 在一第二替代例中’第一無線電存取網路節點rA_nni 可簡單使用關於頻道狀態資訊且自第一行動台MS1所報告 之小區ID,以藉由使用查找表而將第二無線電存取網路節 點RA-NN2識別為主控器。 在一第三替代例中’第一無線電存取網路節點RA-NN1 可藉由使用自第一行動台MS 1所傳輸且在第一天線陣列 A A1及第二天線陣列AA2所接收之上行鏈路信號執行三角 量測而估計第一行動台MS 1之一位點,且可藉由使用查找 表而將第二無線電存取網路節點RA-NN2識別為主控器。 在一第四替代例中,可基於MS之交遞量測而偵測一鄰 近關係。可藉由如在《Bell Labs Technical Journal 15(3), 63-84(2010)》之D. Aziz、A· Ambrosy、L. Ho、L. Ewe、 M. Gruber、H. Bakker「Autonomous Neighbor Relation Detection and Handover Optimization in LTE」及 《International Workshop on Self-Organizing Networks IWSON VTC2011-Spring Budapest》之 C. Mueller、L. Ewe、H. Bakker「Evaluation of the Automatic Neighbor Relation Function in a Dense Urban Scenario」中所述之方 法而增進用於增進自發的鄰近關係之兩個參考。 在一下一步驟Μ1 /12中,第一無線電存取網路節點RA- 163458.doc -26- 201251352 NN1之排程器判定用於第—射頻信號RFS1至第一行動台 MSI之一下一傳輸之一或多個無線電存取資源參數。該一 或多個無線電存取資源參數可為例如諸如在3GPP LTE中 應用之分配至第-行動台顧之-或若干個PRB。較佳 地,第-無線電存取網路節點ra_nni自該排程器榻取該 一或多欠個無線電存取資源參數之資訊,該—或多個無線電 子取;貝源參數用於該資訊至第二無線電存取網路節點RA- 觀之-傳輸。該資訊可為例如分配至第一行動台觀之 PRB之對應的索引。 較佳地,例如藉由使第一無線電存取網路節點RA-NN1 及第二無線電存取網路節點RA-NN2之時脈適於自第一無 2電存取網路節點RA_NN1之一第一 Gps接收器(Gps =全球 定位系統)或自一第一GTS接收器(GTS =全球傳輸服務)以 及自第二無線電存取網路節點RA_NN2之一第二接收 器或第一GTS接收器所獲得之時間信號或者藉由使用 IEEE 1 588精確時間協定(視需要結合準確的本端振盪器, 例如基於铷)而使第一無線電存取網路節點ra_nn 1及第二 無線電存取網路節點RA_NN2暫時同步以及藉此使第一合 作叢集C1及第二合作叢集C2暫時同步。 在—進一步步驟M1/13中(見圖3),第二行動台MS2可基 方、在第一行動台MS2處接收之第二射頻信號尺^^2藉由使用 頻道估汁盗處理單元CE而估計第二協調式多點傳輸cMT2 之第二ΜΙΜΟ頻道係數。 在一下一步驟Μ1/14中,第二行動台MS2可藉由使用量 163458.doc •27- 201251352 化處理單元QU(見上文之步驟1^1/8)而量化第二MIM〇頻道 係數。 在一進一步步驟Ml/15+,第二行動台MS2可將頻道狀 態資訊CSI-MS2較佳作為量化頻道狀態資訊傳輸至第二無 線電存取網路節點RA七N2。 在進一步步驟M1/16中,第一無線電存取網路節點 RA-NN1將干擾頻道1(:之頻道狀態資訊CSi_msi傳輸或轉 遞至第二無線電存取網路節點RA-NN2。 較佳地’第一無線電存取網路節點rA_nn1將一或多個 無線電存取資源參數之資訊RAR_INF〇進一步傳輸至第二 無線電存取網路節點RA_NN2。更佳地,一或多個無線電 存取資源參數之資訊RAr_jNF〇進一步包括用於下一第一 協調式多點傳輸CMT1之一時間戳記。 在執行至第一行動台MS1之下一第一協調式多點傳輸 CMT1刖第一無線電存取網路節點RA-NN1可將一或多個 無線電存取資源參數之f訊傳輸至第三無線電存取網路節 點RA-NN2達一預定義時間週期。 例如可藉由以下方程式而計算預定義之時間週期 TP predefined · ^predefined a TTBL + + ⑹ 其中 心、.·生由回程鏈路BL自第一無線電存取網路節點 RA-NN1至第二無線電存㈣路節點ra•順之—平均傳輪 時間。 别 I63458.doc -28- 201251352 cr™ ··用於執行針對第二無線電存取網路節點 RA-NN2處之第二協調式多點傳輸cmt2之一傳輸權重計算 之一平均處理時間。 W·在回程料肌上麥塞之情況下或在第二無線電存 . 取網路節點RA_NN2處處理延遲之情況下之防護時間。 • 在替代例中,方程式(6)可不包括防護時間被加數。 在一進一步步驟Μ1Π7中,在第二無線電存取網路節點 RA-NN2處接收干擾頻道1(:之頻道狀態之資訊及較佳一或 多個無線電存取資源參數之資訊。 在一下一步驟M1/18中,第二無線電存取網路節點 RA-NN2之一收發器NN-TR之一預編碼器p(見圖2)基於自 第一行動台MS2所接收之頻道狀態資訊csi-MS2且基於自 第一無線電存取網路節點RA-NN1所接收之干擾頻道1(:之 頻道狀態資訊CSI-MS1而調適針對至第二行動台MS2之一 下一第二協調式多點傳輸CMT2待應用於第二合作傳輸天 線系統CTA2處之一或若干個傳輸權重。該調適可藉由使 用例如以下方程式在預編器P處計算用於至第二行動台 MS2之下一第二協調式多點傳輸CMT2之第三天線陣列 AA3及第四天線陣列AA4之天線元件之傳輸權重WmS2而完 • 成:Calculating a minimum chord distance is described in Equation 4 of the section "Chordai distance quantization" in SeleCtWe Channels, which is incorporated herein by reference. I63458.doc -22, 201251352 In a further alternative, a vector quantization technique can be based, for example, on July 1-5, 2007, Mobile and Wireless Communications Summit, 2007. 16th 1ST, Vol. x 1-5 Qiang Li; Georghiades, CN "Precoder Quantization for MIMO-OFDM Systems over Frequency Selective Channels", "Minimum Mean Squared Error Quantization" and "Vector Quantization", one of the minimum mean square error quantization or a vector quantization It is also incorporated herein by reference. In the next selection step M1/8, the quantization processing unit qu can select one of the predefined channel states having the best match to one of the measured channel states of the interfering channel 1C by using, for example, the following equation: v_bestmatch = Argmin difft (5) One of the alternative ways of Ml/7 and Ml/8 can be based on τ. Wild "A rake-finger based efficient channel state information feedback compression scheme" in "Pr〇ceedings 〇f the IEEE VTC spring 2010" And completed, which is incorporated herein by reference. Here, one of the primary taps of the primary tap that removes the frequency domain dependent redundant time domain channel impulse response is completed. In addition, feedback is divided into short-term elements and long-term elements. Both effects result in a strong compression of one of the desired feedback rates. In a further step M1/9, the first mobile station MS1 transmits the interference channel 1 (the channel state information cSI_MS j to the first radio access network node RA_Nm in a vector value format or a matrix value format. In this transmission, the first mobile station MS1 can transmit, for example, a channel vector % 乂 娜 I I63458.doc • 23· 201251352 channel coefficient; ^3ί, ;^ -, 丨々4~丨, 1, and heart 4 2,1. The channel strength information CSI-MS1 can be transmitted to the flute ^ 7 逼 状态 资 第 第 天线 天线 天线 天线 天线 天线 天线 天线 天线 天线 天线 天线 天线 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The channel status information CSI-MS1 ϋ $ converts both the first antenna array AA! and the first antenna array ΑΑ 2. The channel status information can also be shaken by the rabbit CDI (CDI = channel direction information). In an alternative , the first action a Μς (four). The coffee can transfer the - finger to the first radio access network "RA_NN1, then use the item as the channel state to provide the interference channel ^ measurement - the best match ^ select the step M " 8 selected channel state information of the predefined channel state H_qt. The indicator may be similar, for example, to one of the 3Gpp LTE bribe (10) precoding matrix indicators. The use of predefined channel vectors or predefined channel matrices and information about predefined channel vectors or predefined channel transitions by channel status information One of the CSI-MS1 signals a so-called explicit feedback. Alternatively, a predefined precoding vector can be used and the information about the precoding vector can be signaled by the channel state information CSI-MS1. This is a so-called hidden With feedback, a precoding vector is identified based on a particular metric (eg, maximizing one of the throughputs in the system). The second radio access network node RA-NN2 may be hidden when receiving channel state information CSI_MS1 The feedback-containing feedback is converted to a definite feedback to estimate interference channel 1 (: channel state 0 or 'any other way to describe the channel state for method MET1 (eg, based on analog feedback: no quantization is applied but signaled t63458.doc -24 · 201251352 continuous complex value coefficient). Preferably, the first mobile station MSI will one or several of the second cooperative cluster C2 The cell ID (ID = indicator) is further transmitted to the first radio access network node RA-NN1. If the third radio cell CeU_AA3 provides much more interference to the first mobile station MSI than the fourth radio cell CeU_AA4 (eg The difference between the interference powers received at the MSI of the first mobile station is higher than a predefined threshold. Then a single cell ID and a single channel state information may be transmitted, for example, for the third radio cell Cen_AA3. The cell Cell-AA3 and the fourth radio cell CeU-AA4 provide a similar interference to the first mobile station Msi (for example, the difference between the interference power received at the first mobile station MS1 is lower than the predefined threshold), then the transmission can be transmitted. Two cell IDs of the two radio cells. In the next step Μ1 /10, the channel state information CSI-MS1 is received at the first radio access network node RA-NN1. In a further step M1/11, the first radio access network node RA-NN1 identifies one of the neighboring cooperative clusters received from the first mobile station MS1 and controls one of the master cooperative radio access network nodes of the neighboring cooperative cluster. Channel status information CSI-MS1. In the first alternative, the first radio access network node ra-NNI receives the average of the first radio cell Cell-AAl and the second radio cell cEU_AA2 reported by the first mobile station Ms i. The signal power is estimated from, for example, the average received signal power of the first radio cell 1 and the first radio cell Cell-AA2 reported by the first mobile station MS 1 , for example, one of the first mobile station MS 1 facing the third cooperation cluster C2 Move I63458.doc -25- 201251352 Direction. The second radio access network node RA-NN2 is obtained by comparing the moving direction of the first mobile station MSI with a digital geographic map storing one of the neighboring radio access network nodes and a look-up table first radio access network node RA_NN1 It is identified as the master responsible for the adjacent cooperative cluster C2. In a second alternative, the first radio access network node rA_nni can simply use the cell ID reported with respect to the channel status information and from the first mobile station MS1 to access the second radio access by using a lookup table. The network node RA-NN2 is identified as the master. In a third alternative, the first radio access network node RA-NN1 can be received by using the first mobile station MS 1 and received by the first antenna array A A1 and the second antenna array AA2. The uplink signal performs a triangulation to estimate a location of the first mobile station MS1, and the second radio access network node RA-NN2 can be identified as a master by using a lookup table. In a fourth alternative, a neighbor relationship can be detected based on the MS's handover measurement. D. Aziz, A. Ambrosy, L. Ho, L. Ewe, M. Gruber, H. Bakker "Autonomous Neighbor Relation", as in "Bell Labs Technical Journal 15(3), 63-84 (2010)" Detection and Handover Optimization in LTE" and "International Workshop on Self-Organizing Networks IWSON VTC2011-Spring Budapest" by C. Mueller, L. Ewe, H. Bakker "Evaluation of the Automatic Neighbor Relation Function in a Dense Urban Scenario" The described method enhances two references for enhancing spontaneous proximity. In the next step Μ1 /12, the scheduler of the first radio access network node RA-163458.doc -26- 201251352 NN1 determines the next transmission of the first radio frequency signal RFS1 to the first mobile station MSI. One or more radio access resource parameters. The one or more radio access resource parameters may be, for example, an allocation to a mobile station, or a number of PRBs, such as applied in 3GPP LTE. Preferably, the first radio access network node ra_nni takes the information of the one or more owing radio access resource parameters from the scheduler, the one or more wireless electronic devices; the source parameter is used for the information To the second radio access network node RA-view-transmission. The information may be, for example, an index assigned to the corresponding PRB of the first mobile station. Preferably, for example, by adapting the clocks of the first radio access network node RA-NN1 and the second radio access network node RA-NN2 to one of the first no-electrical access network nodes RA_NN1 First Gps Receiver (Gps = Global Positioning System) or from a first GTS Receiver (GTS = Global Transport Service) and from a second Receiver or First GTS Receiver of the second Radio Access Network Node RA_NN2 The obtained time signal or the first radio access network node ra_nn 1 and the second radio access network by using an IEEE 1 588 precise time protocol (as needed in conjunction with an accurate local oscillator, such as 铷 based) The node RA_NN2 is temporarily synchronized and thereby temporarily synchronizes the first cooperative cluster C1 and the second cooperative cluster C2. In a further step M1/13 (see FIG. 3), the second mobile station MS2 can base the second RF signal scale received at the first mobile station MS2 by using the channel estimation treatment unit CE The second coordinated channel multi-point transmission cMT2 is estimated to be the second channel coefficient. In the next step Μ 1/14, the second mobile station MS2 can quantize the second MIM 〇 channel coefficient by using the processing unit QU (see step 1^1/8 above) using the amount 163458.doc • 27- 201251352 (see step 1^1/8 above). . In a further step M1/15+, the second mobile station MS2 can preferably transmit the channel status information CSI-MS2 as quantized channel status information to the second radio access network node RA VII N2. In a further step M1/16, the first radio access network node RA-NN1 transmits or forwards the channel state information CSi_msi of the interfering channel 1 (to: the second radio access network node RA-NN2. Preferably The first radio access network node rA_nn1 further transmits one or more radio access resource parameter information RAR_INF〇 to the second radio access network node RA_NN2. More preferably, one or more radio access resource parameters The information RAr_jNF〇 further includes a time stamp for the next first coordinated multi-point transmission CMT 1. After performing a first coordinated multi-point transmission CMT1 刖 first radio access network to the first mobile station MS1 The node RA-NN1 may transmit one or more radio access resource parameters to the third radio access network node RA-NN2 for a predefined time period. For example, the predefined time period may be calculated by the following equation: TP predefined · ^predefined a TTBL + + (6) Its center, .. by the backhaul link BL from the first radio access network node RA-NN1 to the second radio storage (four) way node ra - smooth - average pass No. I63458.doc -28- 201251352 crTM · is used to perform an average processing time for one of the transmission weight calculations for the second coordinated multipoint transmission cmt2 at the second radio access network node RA-NN2. W. The guard time in the case of a jam on the return muscle or in the case of a second radio save. Take the delay at the network node RA_NN2. • In the alternative, equation (6) may not include the guard time added. In a further step Μ1Π7, information on the interference channel 1 (the channel state of the channel and the preferred one or more radio access resource parameters) is received at the second radio access network node RA-NN2. In one step M1/18, one of the transceivers NN-TR of one of the second radio access network nodes RA-NN2, the precoder p (see FIG. 2), is based on the channel state information csi received from the first mobile station MS2. - MS2 and adapted to one of the second coordinated multi-point transmissions to one of the second mobile stations MS2 based on the interference channel 1 (: channel state information CSI-MS1 received from the first radio access network node RA-NN1) CMT2 to be applied to the second cooperative transmission antenna One or several transmission weights at the CTA 2. The adaptation may be calculated at the pre-program P using a third antenna for a second coordinated multi-point transmission CMT 2 below the second mobile station MS 2 using, for example, the following equation The transmission weights of the antenna elements of the array AA3 and the fourth antenna array AA4 are completed by WmS2.

WMS2 =argraax WMSJ _PMS2_ A/cr J + i j 滞 + Ip,繼 (7) 其中 按每MS之傳輸權重WMS2表示具有對應於各自合作叢集 I63458.doc • 29· 201251352 之天線元件數目之列數目之一複值行向量。傳輸權重~的2 可按副載波或副載波集或多個存取資源而改變,或可針對 整個頻率頻帶計算傳輸權重wMSS。傳輸權重Wmsz亦將隨 著時間改變。 :第二行動台MS2之收發器ms_tr之組 合器CB之一輸入處之有用的信號功率, HS,MS2 ·第二合作傳輸天線系統CTA2與第二行動台“Μ 之間的頻道向量或頻道矩陣;例如可藉由自第二行動台 MS2對第二合作叢集〇2報告第二頻道狀態資訊csi_ms2(見 圖2中之M1/16)而提供HS,MS2, W : —矩陣或向量之2範數, 从:第二行動台MS2處之接收天線數目, % .在第二行動台MS2處量測到之來自額外的干擾叢集 之雜訊功率及干擾功率。應注意,假使存在不同行動台之 不2同的Θ之間觀察到之一高度不平衡,則在此建議將所有 ^新正規化至-相同值(例如’統-性)且重新按比例調 整每行動台之頻道係數,使得—對應的SNR值(SNR=信號 雜訊比)保持不變更。 fekWMS2l :對表示定位於合作叢集C2内且由 口作叢集C2伺服並基於_相同多重存取資源(諸如一相同 PRB)之所有其他行動台之集友'㈣造成之干擾功率之求 和 , 内WMS2 = argraax WMSJ _PMS2_ A / cr J + ij lag + Ip, following (7) where the transmission weight per MS WMS2 represents one of the number of columns with the number of antenna elements corresponding to the respective cooperative cluster I63458.doc • 29· 201251352 Complex value row vector. The transmission weight ~2 may be changed by subcarrier or subcarrier set or multiple access resources, or the transmission weight wMSS may be calculated for the entire frequency band. The transmission weight Wmsz will also change over time. : useful signal power at the input of one of the combiner CBs of the transceiver of the second mobile station MS2, MS, MS2, channel vector or channel matrix between the second cooperative transmission antenna system CTA2 and the second mobile station "" For example, the HS, MS2, W: - matrix or vector can be provided by reporting the second channel state information csi_ms2 (see M1/16 in FIG. 2) from the second cooperation station MS2 to the second cooperation cluster 〇2. Number, from: number of receiving antennas at the second mobile station MS2, %. The noise power and interference power from the additional interference clusters measured at the second mobile station MS2. It should be noted that if there are different mobile stations If one of the heights is not balanced, then it is recommended to normalize all the new values to the same value (for example, 'conformity') and rescale the channel coefficients of each mobile station so that - The corresponding SNR value (SNR=signal-to-noise ratio) remains unchanged. fekWMS2l: all other representations that are located within the cooperative cluster C2 and are clustered by the port C2 and based on the same multiple access resources (such as an identical PRB) The interference caused by the Friends of the Action Desk (4) The sum of the rates, within

Hs’k .第—合作傳輸天線系統CTA2與定位於合作叢集C2 且由合作叢集C2伺服之其他行動台之一者之間的頻道向 163458.doc 201251352 量或頻道矩陣;例如’可藉由自其他行動台之該者對第二 合作叢集C2報告頻道狀態資訊而提供HS k。 化@2= j|%VwMS2|| :對定位於鄰近合作叢集山中之第一 行動台MSI造成之干擾功率、對定位於鄰近合作叢集 Cl(未在圖1中展示)中之進_步行動台造成之進一步干擾 功率及對定位於皆包含在使用者集Γ中之進一步鄰近合作 叢集(亦未在圖1中展示)中之甚至進一步行動台造成之甚至 進一步干擾功率之求和,Hs'k. The channel between the cooperative-transmitted antenna system CTA2 and one of the other mobile stations located in the cooperative cluster C2 and cooperating with the C2 servo is 163458.doc 201251352 or the channel matrix; for example, The other mobile station provides HS k for reporting channel status information to the second cooperative cluster C2. @2= j|%VwMS2|| : The interference power caused by the MSI located in the first mobile station adjacent to the cooperative cluster, and the _walking motion located in the adjacent cooperative cluster Cl (not shown in Figure 1) The further interference power caused by the station and the summation of even further interference power caused by even further mobile stations located in further neighboring cooperative clusters (also not shown in Figure 1) included in the user set,

Hs,v :例如’第二合作傳輸天線系統cta2與定位於第一 合作叢集ci内且由第一合作叢集C1伺服之第一行動台MS1 之間的頻道向量或頻道矩陣;例如,可藉由經由第一無線 電存取網路節點RA-NN1自第一行動台MSI對第二合作叢 集C2之第二無線電存取網路節點ra-NN2報告第一頻道狀 態 h &fl C SI - M S1 而提供 H s v。 方程式(7)遵從如由 2007年5月《Wireless Communications, IEEE Transactions on Wireless Communications》第 6卷第 5 號第 1711-1721 頁 M. Sadek 等人「A Leakage-based precoding scheme for downlink multi-user MMO channels」 所討論之一基於漏洩之預編碼之原理。漏洩感知預編碼方 案最佳化傳輸一組權重WMS2以最大化一 SLNR(SLNR=信號 漏沒加雜訊比)。方程式(7)可作為如在多使用者mim〇案 例之剛好在上文列舉之文獻中完成之封閉形式之解決方案 中之一般性固有值問題來求解。 傳輸權重WMS2較佳重複計算用於一 prb或若干PRB。藉 163458.doc -31- 201251352 此,例如按一以下方式考量待應用於下一第一協調式多點 傳輸CMT1之-或多個無線電存取f源參數之資訊r緣 INFO 〇 或多個無線電存取資源參數之資訊RAR_INF〇告訴第 二無線電存取網路節點RA_NN2具有15 kHz 〇FDM副載波 間隔及自2U0.00肘1^至2110.18 MHz之一第一頻率範圍之 12個〇FM副載波之— PRB將按—定義之子訊框索引應用於 至第一行動台MSI之下一第一協調式多點傳輸cMTl。 若第二合作叢集C2將應用於至第二行動台MS2之下一第 二協調式多點傳輸CMT2達相同時間週期且相同PRB具有 自21 1〇_〇〇 MHz至21 10.18 MHz之相同頻率範圍,則第二益 線電存取網路節點RA_NN2將應用方程式(7)以計算傳輸權 重 WmS2。 若第二合作叢集C2將應用於至第二行動台MS2之下一第 二協調式多點傳輸CMT2達一時間週期同時將不發生至第 一行動台MSI之第一協調式多點傳輸CMT1&/或_PRB具 有一不同頻率範圍(諸如自2110.36 MHz至2110.54 MHz), 則第二無線電存取網路節點ra_Nn2將應用例如不具有 分.泌2 = term之以下方程式(8): WMS2 = argmax-- (8) wMfii ^ση + ,AiS2 〇 如熟習此項技術者可瞭解,若一個以上行動台定位於第 一合作叢集C1與第二合作叢集C2之間的邊緣處且第二合 作叢集C 2基於兩個或兩個以上干擾頻道之頻道狀態而調適 I63458.doc -32- 201251352 之兩個或兩個以上協調式多點傳Hs,v: for example, a channel vector or a channel matrix between the second cooperative transmission antenna system cta2 and the first mobile station MS1 located in the first cooperative cluster ci and served by the first cooperative cluster C1; for example, Reporting the first channel state h & fl C SI - M S1 from the first mobile station node RA-NN1 to the second radio access network node ra-NN2 of the second cooperative cluster C2 via the first mobile access network node RA-NN1 And provide H sv. Equation (7) is followed by M. Sadek et al., "A Leakage-based precoding scheme for downlink multi-user MMO", May 2007, Wireless Communications, IEEE Transactions on Wireless Communications, Vol. 6, No. 5, pp. 1711-1721. One of the channels discussed is based on the principle of leak precoding. The leak-aware precoding scheme optimizes the transmission of a set of weights WMS2 to maximize a SLNR (SLNR = signal leakage plus noise ratio). Equation (7) can be solved as a general intrinsic value problem in a closed-form solution that is completed in the literature cited above in the multi-user mim case. The transmission weight WMS2 is preferably repeated for a prb or a number of PRBs. By 163458.doc -31- 201251352, for example, the information to be applied to the next first coordinated multi-point transmission CMT1 or the plurality of radio access f source parameters is considered in the following manner: r INFO 多个 or multiple radios The access resource parameter information RAR_INF〇 tells the second radio access network node RA_NN2 to have a 15 kHz 〇FDM subcarrier spacing and 12 〇FM subcarriers from a first frequency range of 2U0.00 elbow 1^ to 2110.18 MHz - PRB applies the sub-frame index defined by - to a first coordinated multi-point transmission cMT1 under the first mobile station MSI. If the second cooperative cluster C2 is to be applied to the second coordinated multi-point transmission CMT2 under the second mobile station MS2 for the same time period and the same PRB has the same frequency range from 21 1 〇 〇〇 MHz to 21 10.18 MHz Then, the second benefit line access network node RA_NN2 will apply equation (7) to calculate the transmission weight WmS2. If the second cooperative cluster C2 is to be applied to the second coordinated multi-point transmission CMT2 to the second mobile station MS2 for a time period and will not occur to the first coordinated multi-point transmission CMT1& / or _PRB has a different frequency range (such as from 2110.36 MHz to 2115.54 MHz), then the second radio access network node ra_Nn2 will apply the following equation (8) without, for example, 2 = term: WMS2 = argmax -- (8) wMfii ^ση + , AiS2 As can be understood by those skilled in the art, if more than one mobile station is located at the edge between the first cooperative cluster C1 and the second cooperative cluster C2 and the second cooperative cluster C 2 Adapting two or more coordinated multi-point transmissions of I63458.doc -32- 201251352 based on the channel status of two or more interfering channels

至兩個或兩個以上行動台之兩個或 輸,則可執行具有額外的方法步驟 例如,可用在一相同頻率範圍中進行下行鏈路傳輸及上 行鏈路傳輸之3GPP LTE TDD無線電存取技術操作無線電 通信系統RCS。 在一進一步步驟M2/1中,第一行動台MS1可藉由量測導 頻及判定例如用於潛在地伺服第一行動台MS 1之進一步無 線電小區與用於潛在地執行自第一合作叢集c丨至第二合作 叢集C2之一交遞之合作叢集之進一步小區之SINr值 (SINR=信號干擾加雜訊比)而搜尋進一步無線電小區,諸 如第一無線電小區Cell-AAl及第二無線電小區Cell-AA2之 一鄰域中之第三無線電小區Cell-AA3及第四無線電小區 Cell-AA4。 在一下一步驟M2/2中,第一行動台MS 1可將一報告 REPORT中之第三無線電小區CelI-AA3及第四無線電小區 Cell-AA4之SINR值及小區識別符傳輸至第一無線電存取網 路節點RA-NN1。較佳地,報告REPORT可進一步包括第三 無線電小區Cell-A A3及第四無線電小區Cell-AA4之接收功 163458.doc -33- 201251352 率位準之資訊。 在一下一步驟M2/3中,第一無線電存取網路節點RA_ NN1接收報告REPORT。 在一進一步步驟M2/4中,第一無線電存取網路節點RA_ NN1藉由比較例如接收之SINR值與一 SINR臨限值及/或比 較接收之接收功率位準與一接收功率臨限值而分析報告 REPORT之資訊。 在一下一步驟M2/5中,例如若第三無線電小區cell_AA3 之接收之SINR值已達臨限值,則第一無線電存取 網路節點RA-NN1可將一指示IND傳輸至第二無線電存取 網路節點RA-NN2。指示IND可包括由第一合作叢集(^所 伺服之MSI係在第二合作叢集C2之鄰域中之資訊。此外, 指示IND指示第二無線電存取網路節點Ra_NN2能夠量測 可能自第一行動台MS1傳輸之一上行鏈路導頻序列。該資 訊可包括例如諸如在3GPP LTE中使用之一導頻序列號(例 如’由一基本序列及循環移位及(若需要)序列跳躍參數形 成較佳地,該資訊可進一步包括第一行動台MS1之一行 動台識別號碼。 在—進一步步驟M2/6中,第二無線電存取網路節點 RA-NN2接收指示IND。第二無線電存取網路節點RA_NN2 對才a示IND之接收可為第一行動台MS 1係在第一合作叢集 C1與第二合作叢集C2之間的叢集邊緣處之一提示。To two or two or more mobile stations, 3GPP LTE TDD radio access technology with additional method steps such as downlink transmission and uplink transmission in the same frequency range may be performed. Operate the radio communication system RCS. In a further step M2/1, the first mobile station MS1 can measure the pilot and determine, for example, to further servo the first mobile station MS 1 for further radio cells and for potentially performing the first cooperation cluster Searching for a further radio cell, such as the first radio cell Cell-AAl and the second radio cell, to the SINr value of the further cell of the cooperative cluster handed over by one of the second cooperative clusters C2 (SINR = signal interference plus noise ratio) The third radio cell Cell-AA3 and the fourth radio cell Cell-AA4 in one of the cells of Cell-AA2. In the next step M2/2, the first mobile station MS 1 may transmit the SINR value and the cell identifier of the third radio cell CelI-AA3 and the fourth radio cell Cell-AA4 in a report REPORT to the first radio storage. Take the network node RA-NN1. Preferably, the report REPORT may further include information of the received power of the third radio cell Cell-A A3 and the fourth radio cell Cell-AA4 163458.doc -33 - 201251352. In the next step M2/3, the first radio access network node RA_NN1 receives the report REPORT. In a further step M2/4, the first radio access network node RA_NN1 compares, for example, the received SINR value with a SINR threshold and/or compares the received received power level with a received power threshold. And analyze the report REPORT information. In the next step M2/5, for example, if the received SINR value of the third radio cell cell_AA3 has reached the threshold value, the first radio access network node RA-NN1 may transmit an indication IND to the second radio storage. Take the network node RA-NN2. The indication IND may include information from the first cooperative cluster (the MSI served by the first cooperation cluster C2). In addition, the indication IND indicates that the second radio access network node Ra_NN2 can measure from the first The mobile station MS1 transmits one of the uplink pilot sequences. The information may include, for example, one of the pilot sequence numbers used in 3GPP LTE (eg, 'formed by a basic sequence and cyclic shift and (if needed) sequence hopping parameters) Preferably, the information may further comprise a mobile station identification number of the first mobile station MS1. In a further step M2/6, the second radio access network node RA-NN2 receives the indication IND. The second radio access The network node RA_NN2 indicates that the reception of the IND may be a prompt for the first mobile station MS 1 to be at one of the cluster edges between the first cooperative cluster C1 and the second cooperative cluster C2.

第二無線電存取網路節點RA-NN2可判定需要第二合作 傳輸天線系統CTA2與第一行動台MS1之間的干擾頻道IC 163458.doc • 34- 201251352 之一估計以減小第二射頻信號尺!^2在自第二合作傳輸天線 系統CTA2朝向第一行動台ms 1之方向上之功率位準。 在一第一替代例中,若在一第一預定義之時間間隔内自 第行動台MS 1自動發送第一行動台MS 1之上行鏈路導頻 序列或若自第一無線電存取網路節點RA_NN 1請求該上行 鏈路導頻序列,則第二無線電存取網路節點ra_NN2可聆 聽該上行鏈路導頻序列且可量測該上行鏈路導頻序列。 在一第二替代例中,若第二無線電存取網路節點 RA-NN2不可在一第二預定義之時間間隔内接收上行鏈路 導頻序列,則在一下一步驟M2/7中第二無線電存取網路節 點RA-NN2可將包括行動台識別號碼之一請求REQl發送至 第一無線電存取網路節點RA-NN1 ,以請求在第一行動台 MSI處傳輸上行鏈路探測導頻。請求reqi可進一步包括 發送上行鏈路探測導頻之一時間戳記。 在進一步步驟M2/8中,在第一無線電存取網路節點 RA-NN1處接收請求REq。 在一下一步驟M2/9中,若可允許自第一行動台MS1傳輸 行鍵路探測k號,則第一無線電存取網路節點rA_nni 可驗也且可判定在第—行動台MS 1應傳輸上行鍵路探測導 頻之時間週期(在根據接收之時間a記之—時間或在由第 一無線電存取網路節點RA-NN1所判定之一不同時間)是否 允許該傳輸。 進步步驟M2/10中,第一無線電存取網路節點 RA NNl傳輸用於傳輸上行鏈路㈣導頻之-請求REQ2或 I63458.doc -35- 201251352 將自第二無線電存取網路節點RA-NN2所接收之請求REQl 轉遞至第一行動台MS 1。請求REQ1、REQ2可包括發送上 行鏈路探測導頻之一時間戳記。 在一下一步驟M2/11中,第一行動台MS1接收請求 REQl、REQ2。 在一進一步步驟M2/12中,第一行動台MS1較佳在對應 於接收之時間戳記之一時間傳輸上行鏈路探測導頻USP。 在一下一步驟M2/13中,第二無線電存取網路節點 RA-NN2接收及量測上行鏈路探測導頻usp。第二無線電 存取網路節點RA-NN2藉由與在方法MET 1期間由第一行動 台MS 1所執行之步驟Μ1 /6相似地判定干擾頻道IC之空間參 數而量測干擾頻道1C之頻道狀態。 在一下一步驟M2/14而非步驟M1/16中,第一無線電存 取網路節點RA-NN1將一或多個無線電存取資源參數之資 sKRAR-INFO傳輸至第二無線電存取網路節點RA_NN2。更 佳地’一或多個無線電存取資源參數之資訊進一步包括用 於下一第一協調式多點傳輸CMT1之一時間戳記。 在一進一步步驟M2/15中,第二無線電存取網路節點 RA-NN2接收一或多個無線電存取資源參數之資訊 RAR-INF0。 參考圖5,一無線電存取網路節點RA_NN(諸如第一無線 電存取網路節點RA-NN1及第二無線電存取網路節點 RA-NN2)可包括-第一無線電遙控頭刪—騰^、一第二無 線電遙控頭NN-RRH2、一第一收發器NN_TR1、一第二收 163458.doc • 36 * 201251352 發器NN-TR2、一第三收發器NN-TR3、一外部埠PORT、 一 CPU(CPU=中央處理單元)NN-CPU及一電腦可讀取媒體 NN-MEM。CPU NN-CPU預見用於執行一電腦可讀取程式 NN-PROG。第一無線電遙控頭NN-RRH1藉由一第一饋電 纜線FC1而連接至第一收發器NN-TR1,且第二無線電遙控 頭NN-RRH2藉由一第二饋電纜線FC2而連接至第二收發器 NN-TR2。第一無線電遙控頭NN-RRH1可包括用於一第一 無線電小區之一無線涵蓋區之一第一天線元件NN-RRH1-AE1 及一第二天線元件NN-RRH1-AE2。第二無線電遙控頭 NN-RRH2可包括用於一第二無線電小區之一無線涵蓋區之 一第一天線元件NN-RRH2-AE1及一第二天線元件 NN-RRH2-AE2。在進一步替代例中,第一無線電遙控頭 NN-RRH1及第二無線電遙控頭NN-RRH2可包括四個或八 個天線元件。 在甚至進一步替代例中,無線電存取網路節點RA-NN可 包括一單個無線電遙控頭或兩個以上無線電遙控頭。 第一無線電遙控頭RRH1及第二無線電遙控頭RRH2指派 至提供針對一專用合作叢集之涵蓋範圍之一組合式傳輸天 線系統CTA。在一替代例中,第一無線電遙控頭RRH1及 第二無線電遙控頭RRH2可指派至不同的組合式傳輸天線 系統及不同的合作叢集。 第一收發器NN-TR1及第一無線電遙控頭NN-RRH1將下 行鏈路射頻信號(諸如下行鏈路發信號資料及下行鏈路使 用者資料)傳輸至行動台。該下行鏈路發信號資料可為例 163458.doc -37- 201251352 如用於傳輸上行鏈路探測導頻之請求β 在一反向方向上’第一收發器NN-TR1及第一無線電遙 控頭NN-RRH1自行動台接收上行鏈路射頻信號(諸如上行 键路發信號資料及上行鏈路使用者資料)。該上行鏈路發 信號資料可為例如頻道狀態資訊CSI-MS1、CSI-MS2或上 行鏈路探測導頻UPS。 第三收發器NN-TR3連接至外部埠port。使用外部埠 PORT以經由回程鏈路8[將無線電存取網路節點RA_NN連 接至一進一步無線電存取網路節點RA-NN(見圖1)。 使用第三收發器NN-TR3以將頻道狀態資訊CSI_MS1、 CSI-MS2及/或一或多個無線電存取資源參數之資訊 RAR-INFO傳輸至進一步無線電存取網路節點。可進一步 使用第二收發器NN-TR3以將用於請求自一行動台傳輸上 行鍵路探測導頻之請求傳輸至進一步無線電存取網路節 點》 在一反向方向上,使用第三收發器NNTR3以接收頻道 狀態資訊CSI-MS1、CSI-MS2及/或-或多個無線電存取資 源參數之資訊RAR-INF0。可進一步使用第三收發器 NN TR3以接收用於請求自一行動台傳輸上行鍵路探測導. 頻之請求。 電腦可讀取媒體NN_MEM預見用於儲存電腦可讀取程式 NN PR〇G且較佳用於儲存預定義之頻道狀態及無線電存 取網路節點為鄰近合作叢集之主控器之一查找表。 電腦可讀取程式NN-PR0G預見用於執行將.由無線電存 163458.doc •38· 201251352 取網路節點RA-NN實行之方法MET 1及MET2之步鄉。 特定言之,電腦可讀取程式ΝΝ-PROG可將無線電存取 網路節點RA-NN之第一無線電遙控頭RRm及第二無線電 遙控頭RRH2指派至合作傳輸天線系統CTA ,且可基於在 合作傳輸天線系統C T A與一進一步行動台之間對進一步射 頻信號提供干擾之一干擾頻道之一頻道狀態而調適合作傳 輸天線系統CTA處之至少一傳輸權重以用於射頻信號自合 作傳輸天線系統CT A至定位於專用叢集中之一行動台之一 協調式多點傳輸,由定位於一鄰近合作叢集中且由該鄰近 合作叢集伺服之進一步行動台接收進一步射頻信號。 參考圖6, 一行動台MS(諸如第一行動台MS1及第二行動 台MS2)包括一天線系統MS_AS、一收發器ms_tr '一 CPU(CPU=中央處理單元)MS-CPU及一電腦可讀取媒體 MLMEM。CPU MS-CPU預見用於執行一電腦可讀取程式 MS-PROG。 天線系統MS-AS包括一第一天線元件MS_AE1及一第二 天線το件MS-AE2。或者,天線系統MS_AS可包括一天線 元件或兩個以上天線元件。 天線系統MS-AS及收發器MS_TR接收下行鏈路射頻信 號,諸如下行鏈路發信號資料及下行鏈路使用者資料。該 下行鏈路發信號資料可為例如用於傳輸上行鏈路探測導頻 之請求REQ1、REQ2。 在一反向方向上,天線系統MS_AS及收發sMS_TR傳輸 上打鏈路射頻信號,諸如上行鏈路發信號資料及上行鏈路 163458.doc .39- 201251352 使用者資料。該上行鏈路發信號資料可為例如頻道狀態資 S孔CSI-MS1、CSI-MS2或上行鏈路探測導頻USP。 電腦可讀取媒體MS-MEM預見用於儲存電腦可讀取程式 MS-PROG。電腦可讀取程式MS_PR〇G預見用於執行將由 行動台MS實行之方法MET1及MET2之步驟。 特定言之,電腦可讀取程式MS-PROG可估計用射頻信 號伺服行動台MS之一合作傳輸天線系統之一涵蓋區内之 行動台MS之一位點,且若在該涵蓋區與由至少兩個進一 步天線陣列所提供之一進一步合作傳輸天線系統之一進一 步涵蓋區之間的一邊緣處識別行動台MS之該位點,則可 量測行動台MS與該進一步合作傳輸天線系統之間的進一 步射頻信號之一干擾頻道之一頻道狀態。 【圖式簡單說明】 圖1示意地展示具有兩個無線電存取網路節點及兩個行 動台之一無線電通信網路之一方塊圖。 圖2示意地展示根據一第一實施例之一方法之一流程 圖。 圖3示意地展示一無線電存取網路節點之一收發器及一 行動台之一收發器之一方塊圖。 圖4示意地展示根據一第二實施例之一方法之一流程 圖。 圖5示意地展示根據本發明之實施例之一無線電存取網 路節點之一方塊圖。 圖6示意地展示根據本發明之實施例之一行動台之一方 163458.doc •40- 201251352 塊圖。 【主要元件符號說明】 AA1 第一天線陣列 AA2 第二天線陣列 AA3 第三天線陣列 AA4 第四天線陣列 BL 回程鏈路 C1 第一合作叢集 C2 第二合作叢集 CB 組合器 CE 頻道估計器處理單元 Cell-AAl 第一無線電小區 Cell-AA2 第二無線電小區 Cell-AA3 第三無線電小區 Cell-AA4 第四無線電小區 CMT1 第一協調式多點傳輸 CMT2 第二協調式多點傳輸 CSI-MS1 干擾頻道1C之頻道狀態資訊 CSI-MS2 頻道狀態資訊 CTA 組合式/合作傳輸天線系統 CTA1 第一合作傳輸天線系統 CTA2 第二合作傳輸天線系統 FC1 第一饋電纜線 FC2 第二饋電纜線 163458.doc •41 · 201251352 H_est 頻道係數 H_qt 量化頻道狀態資訊 H_real 實際傳輸頻道 IC 干擾頻道 IND 指示 MS 行動台 MSI 第一行動台 MS2 第二行動台 MS-AE1 第一天線元件 MS-AE2 第二天線元件 MS-AS 天線系統 MS-CPU 中央處理單元 MS-MEM 電腦可讀取媒體 MS-PROG電腦可讀取程式 MS-TR 收發器 NN-CPU 中央處理單元 NN-MEM 電腦可讀取媒體 NN-PROG電腦可讀取程式 NN-RRH1第一無線電遙控頭 NN-RRH2 第二無線電遙控頭 NN-RRH1-AE1第一天線元件 NN-RRH1-AE2第二天線元件 NN-RRH2-AE1第一天線元件 NN-RRH2-AE2第二天線元件 163458.doc •42· 201251352 NN-TR 收發器 NN-TR1 第一收發器 NN-TR2 第二收發器 NN-TR3 第三收發器 P 預編碼器 PORT 外部埠 PRB 實體資源區塊 QU 量化處理單元 RAN 無線電存取網路 RA-NN 無線電存取網路節點 RA-NN1 第一無線電存取網路節點 RA-NN2 第二無線電存取網路節點 RAR-INFO無線電存取資源參數之資訊 RCS 無線電通信系統 REPORT 報告 REQ1 請求 RFS1 第一射頻信號 RFS2 第二射頻信號 TTI 傳輸時間間隔 USP 上行鏈路探測導頻 163458.doc -43-The second radio access network node RA-NN2 may determine that one of the interference channel IC 163458.doc • 34- 201251352 between the second cooperative transmission antenna system CTA2 and the first mobile station MS1 is required to reduce the second radio frequency signal The power level in the direction from the second cooperative transmission antenna system CTA2 toward the first mobile station ms1. In a first alternative, the uplink pilot sequence of the first mobile station MS 1 or the first radio access network node is automatically transmitted from the mobile station MS 1 during a first predefined time interval. RA_NN 1 requests the uplink pilot sequence, and the second radio access network node ra_NN2 can listen to the uplink pilot sequence and can measure the uplink pilot sequence. In a second alternative, if the second radio access network node RA-NN2 is not capable of receiving an uplink pilot sequence within a second predefined time interval, then the second radio in a next step M2/7 The access network node RA-NN2 may send a request REQ1 including one of the mobile station identification numbers to the first radio access network node RA-NN1 to request transmission of the uplink sounding pilot at the first mobile station MSI. Requesting reqi may further include transmitting a timestamp of one of the uplink sounding pilots. In a further step M2/8, the request REq is received at the first radio access network node RA-NN1. In the next step M2/9, if it is allowed to transmit the line key detection k number from the first mobile station MS1, the first radio access network node rA_nni can be verified and can be determined that the first mobile station MS 1 should The time period during which the uplink key detection pilot is transmitted (at a time according to the time of reception a - time or at a different time determined by the first radio access network node RA-NN1) allows the transmission. In the progression step M2/10, the first radio access network node RA NN1 transmits a request for transmitting the uplink (four) pilot - request REQ2 or I63458.doc -35 - 201251352 will be from the second radio access network node RA The request REQ1 received by the -NN2 is forwarded to the first mobile station MS 1. Requesting REQ1, REQ2 may include transmitting a timestamp of one of the uplink sounding pilots. In the next step M2/11, the first mobile station MS1 receives the requests REQ1, REQ2. In a further step M2/12, the first mobile station MS1 preferably transmits the uplink sounding pilot USP at a time corresponding to one of the received time stamps. In the next step M2/13, the second radio access network node RA-NN2 receives and measures the uplink sounding pilot usp. The second radio access network node RA-NN2 measures the channel of the interfering channel 1C by determining the spatial parameter of the interfering channel IC similarly to the step Μ1/6 performed by the first mobile station MS1 during the method MET1 status. In the next step M2/14 instead of step M1/16, the first radio access network node RA-NN1 transmits one or more radio access resource parameter sKRAR-INFO to the second radio access network. Node RA_NN2. Preferably, the information of the one or more radio access resource parameters further includes a time stamp for one of the next first coordinated multi-point transmission CMT1. In a further step M2/15, the second radio access network node RA-NN2 receives information RAR-INF0 of one or more radio access resource parameters. Referring to FIG. 5, a radio access network node RA_NN (such as the first radio access network node RA-NN1 and the second radio access network node RA-NN2) may include - a first radio remote control header - a second radio remote control head NN-RRH2, a first transceiver NN_TR1, a second receiving 163458.doc • 36 * 201251352 transmitter NN-TR2, a third transceiver NN-TR3, an external port PORT, a CPU (CPU = central processing unit) NN-CPU and a computer readable medium NN-MEM. The CPU NN-CPU is foreseen to execute a computer readable program NN-PROG. The first radio remote control head NN-RRH1 is connected to the first transceiver NN-TR1 by a first feed cable FC1, and the second radio remote control head NN-RRH2 is connected to the second by a second feed cable FC2 Two transceivers NN-TR2. The first radio remote head NN-RRH1 may include a first antenna element NN-RRH1-AE1 and a second antenna element NN-RRH1-AE2 for one of the wireless coverage areas of a first radio cell. The second radio remote control head NN-RRH2 may include a first antenna element NN-RRH2-AE1 and a second antenna element NN-RRH2-AE2 for one of the wireless coverage areas of a second radio cell. In a further alternative, the first radio remote head NN-RRH1 and the second radio remote head NN-RRH2 may comprise four or eight antenna elements. In an even further alternative, the radio access network node RA-NN may comprise a single radio remote head or more than two radio remote heads. The first radio remote head RRH1 and the second radio remote head RRH2 are assigned to provide a combined transmission antenna system CTA for coverage of a dedicated cooperative cluster. In an alternative, the first radio remote head RRH1 and the second radio remote head RRH2 can be assigned to different combined transmit antenna systems and different cooperative clusters. The first transceiver NN-TR1 and the first radio remote head NN-RRH1 transmit downlink radio frequency signals, such as downlink signaling data and downlink user data, to the mobile station. The downlink signaling data may be, for example, 163458.doc -37-201251352, such as a request for transmitting an uplink sounding pilot, β in a reverse direction, a first transceiver NN-TR1 and a first radio remote control head. The NN-RRH1 receives uplink RF signals (such as uplink signaling data and uplink user data) from the mobile station. The uplink signaling material can be, for example, channel state information CSI-MS1, CSI-MS2 or uplink sounding pilot UPS. The third transceiver NN-TR3 is connected to the external port. The external PORT PORT is used to connect the radio access network node RA_NN to a further radio access network node RA-NN (see Fig. 1) via the backhaul link 8. The third transceiver NN-TR3 is used to transmit the channel status information CSI_MS1, CSI-MS2 and/or one or more radio access resource parameter information RAR-INFO to the further radio access network node. The second transceiver NN-TR3 may be further used to transmit a request for requesting transmission of an uplink probe probe from a mobile station to a further radio access network node. In a reverse direction, a third transceiver is used. The NNTR3 receives the information RAR-INF0 of the channel status information CSI-MS1, CSI-MS2 and/or - or a plurality of radio access resource parameters. The third transceiver NN TR3 can be further used to receive a request for requesting transmission of an uplink key detection pilot from a mobile station. The computer readable medium NN_MEM foresees a lookup table for storing a computer readable program NN PR〇G and preferably for storing a predefined channel state and a radio access network node for the master of the adjacent cooperative cluster. The computer readable program NN-PR0G foresees the method MET 1 and MET2 which are implemented by the radio node 163458.doc •38· 201251352 to take the network node RA-NN. In particular, the computer readable program PRO-PROG can assign the first radio remote head RRm and the second radio remote head RRH2 of the radio access network node RA-NN to the cooperative transmission antenna system CTA, and can be based on cooperation Between the transmission antenna system CTA and a further mobile station providing interference to one of the interference channels, one of the interfering channel channel states, adapted to be at least one transmission weight at the transmission antenna system CTA for use in the radio frequency signal self-coupling transmission antenna system CT A To coordinated multi-point transmissions located in one of the mobile stations in the dedicated cluster, further radio signals are received by further mobile stations located in a neighboring cooperative cluster and by the adjacent cooperative cluster servos. Referring to FIG. 6, a mobile station MS (such as the first mobile station MS1 and the second mobile station MS2) includes an antenna system MS_AS, a transceiver ms_tr 'a CPU (CPU = central processing unit) MS-CPU, and a computer readable Take the media MLMEM. The CPU MS-CPU is foreseen to execute a computer readable program MS-PROG. The antenna system MS-AS comprises a first antenna element MS_AE1 and a second antenna τ means MS-AE2. Alternatively, the antenna system MS_AS may comprise an antenna element or more than two antenna elements. The antenna system MS-AS and the transceiver MS_TR receive downlink radio frequency signals, such as downlink signaling data and downlink user data. The downlink signaling material can be, for example, the request REQ1, REQ2 for transmitting the uplink sounding pilot. In a reverse direction, the antenna system MS_AS and the transceiving sMS_TR transmit uplink RF signals, such as uplink signaling data and uplink 163458.doc.39-201251352 user data. The uplink signaling material can be, for example, a channel state S-hole CSI-MS1, CSI-MS2 or an uplink sounding pilot USP. The computer readable medium MS-MEM is foreseen to store the computer readable program MS-PROG. The computer readable program MS_PR〇G foresees the steps for performing the methods MET1 and MET2 to be carried out by the mobile station MS. Specifically, the computer readable program MS-PROG can estimate one of the mobile station MSs in one of the cooperative transmission antenna systems of one of the RF signal servo stations MS, and if at least in the coverage area One of the further cooperative antenna systems provided by the two further antenna arrays further covers the location of the mobile station MS at an edge between the zones, and between the mobile station MS and the further cooperative transmission antenna system One of the further RF signals interferes with one of the channel states of the channel. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a block diagram showing one of a radio communication network having two radio access network nodes and one of two mobile stations. Fig. 2 schematically shows a flow chart of a method according to a first embodiment. Figure 3 is a block diagram showing one of a transceiver of a radio access network node and a transceiver of a mobile station. Fig. 4 schematically shows a flow chart of a method according to a second embodiment. Figure 5 is a block diagram showing one of the radio access network nodes in accordance with an embodiment of the present invention. Figure 6 is a block diagram showing one of the mobile stations 163458.doc • 40- 201251352 in accordance with an embodiment of the present invention. [Main component symbol description] AA1 first antenna array AA2 second antenna array AA3 third antenna array AA4 fourth antenna array BL backhaul link C1 first cooperative cluster C2 second cooperative cluster CB combiner CE channel estimator processing Unit Cell-AAl First Radio Cell Cell-AA2 Second Radio Cell Cell-AA3 Third Radio Cell Cell-AA4 Fourth Radio Cell CMT1 First Coordinated Multicast CMT2 Second Coordinated Multicast CSI-MS1 Interference Channel 1C channel status information CSI-MS2 channel status information CTA combined/cooperative transmission antenna system CTA1 first cooperative transmission antenna system CTA2 second cooperative transmission antenna system FC1 first feeding cable FC2 second feeding cable 163458.doc •41 · 201251352 H_est Channel coefficient H_qt Quantization channel status information H_real Actual transmission channel IC Interference channel IND Indicates MS mobile station MSI First mobile station MS2 Second mobile station MS-AE1 First antenna element MS-AE2 Second antenna element MS- AS Antenna System MS-CPU Central Processing Unit MS-MEM Computer Readable Media MS-PROG Brain readable program MS-TR transceiver NN-CPU central processing unit NN-MEM computer readable media NN-PROG computer readable program NN-RRH1 first radio remote control head NN-RRH2 second radio remote control head NN- RRH1-AE1 first antenna element NN-RRH1-AE2 second antenna element NN-RRH2-AE1 first antenna element NN-RRH2-AE2 second antenna element 163458.doc •42· 201251352 NN-TR transceiver NN-TR1 first transceiver NN-TR2 second transceiver NN-TR3 third transceiver P precoder PORT external 埠 PRB physical resource block QU quantization processing unit RAN radio access network RA-NN radio access network Road node RA-NN1 First radio access network node RA-NN2 Second radio access network node RAR-INFO Radio access resource parameter information RCS Radio communication system REPORT Report REQ1 Request RFS1 First RF signal RFS2 Second RF signal TTI transmission time interval USP uplink detection pilot 163458.doc -43-

Claims (1)

201251352 七、申請專利範圍: 1 _ 一種在一無線電通信系統(RCS)中減少干擾之方法 (ΜΕΊΊ ' MET2),該無線電通信系統(rcs)包括由至少兩 個天線陣列(AA1、AA2)所提供之—第—合作傳輸天線 . ,系統(CTA1)及由至少兩個進一步天、線陣列(AA3、AA4) 所提供之一第二合作傳輸天線系統(CTA2),該第一合作 傳輸天線系統(CTA1)指派至一第一合作叢集(C1),該第 二合作傳輸天線系統(CTA2)指派至一第二合作叢集 (C2) ’該方法(MET1、MET2)包括下列步驟: 藉由一第一協調式多點傳輸(CMT1)自該第一合作傳輸 天線系統(CTA1)將第一射頻信號(RFS1)傳輸(M1/1)至一 第一行動台(MSI),及 由該第一合作叢集(C1)判定(Ml/12)至少一無線電存取 資源參數,該至少一無線電存取資源參數用於第一射頻 4吕號(RFS1)至該第一行動台(MSI)之一進一步第一協調 式多點傳輸(CMT1), 其中該方法(MET1、MET2)進一步包括下列步驟: 自該第一合作叢集(C1)將該至少一無線電存取資源參 • 數之資訊(RAR-INFO)傳輸(Ml/16、M2/12)至該第二合作 . 叢集(C2),及 基於在該第二合作傳輸天線系統(CTA2)與該第一行動 台(MSI)之間對該等第一射頻信號(RFSi)提供干擾之第 二射頻信號(RFS2)之一干擾頻道(1C)之一頻道狀態,針 對該至少一無線電存取資源參數調適(M1/18)該第二合作 163458.doc 201251352 傳輸天線系統(CTA2)處之至少一傳輸權重以用於該等第 二射頻信號(RFS2)自該第二合作傳輸天線系統((:1^2)至 一第二行動台(MS2)之一第二協調式多點傳輸(CMT2), 且若該第二合作叢集(C2)將在如判定用於該進一步第_ 協調式多點傳輸(CMT1)之一相同時間週期及一相同頻率 範圍内應用於至該第二行動台(MS2)之該第二協調式多 點傳輸(CMT2),則應用該調適步驟(Μΐ/ι8)β 2.如請求項1之方法(MET1、MET2),其中:在⑽乃/號⑽八 (全球行動電信系統/寬頻分碼多重存取)之情況下該至少 一無線電存取資源參數為一展頻碼;在TDD(分時多工) 之情況下該至少一無線電存取資源參數為一時槽、一子 訊框或一組子訊框;或在FDD(分頻多工)之情況下該至 少一無線電存取資源參數為一副載波範圍及一時槽。 3.201251352 VII. Patent application scope: 1 _ A method for reducing interference in a radio communication system (RCS), the radio communication system (rcs) including provided by at least two antenna arrays (AA1, AA2) a first cooperative transmission antenna system (CTA1) and a second cooperative transmission antenna system (CTA2) provided by at least two further antennas (A3, AA4), the first cooperative transmission antenna system ( CTA1) assigned to a first cooperative cluster (C1), the second cooperative transmission antenna system (CTA2) assigned to a second cooperative cluster (C2) 'The method (MET1, MET2) comprises the following steps: Coordinated Multipoint Transmission (CMT1) transmits (M1/1) the first radio frequency signal (RFS1) to a first mobile station (MSI) from the first cooperative transmission antenna system (CTA1), and the first cooperative cluster (C1) determining (M1/12) at least one radio access resource parameter, the at least one radio access resource parameter being used for one of the first radio frequency 4 (RFS1) to the first mobile station (MSI) Coordinated Multipoint Transmission (CMT1), The method (MET1, MET2) further comprises the steps of: transmitting at least one radio access resource parameter information (RAR-INFO) from the first cooperative cluster (C1) (Ml/16, M2/12) To the second cooperation. Cluster (C2), and based on the second interference between the second cooperative transmission antenna system (CTA2) and the first mobile station (MSI) to provide interference to the first radio frequency signal (RFSi) One of the radio frequency signals (RFS2) interferes with one of the channel states of the channel (1C), and adapts to the at least one radio access resource parameter (M1/18) at least one of the second cooperation 163458.doc 201251352 transmission antenna system (CTA2) Transmitting weights for the second radio frequency signal (RFS2) from the second cooperative transmission antenna system ((:1^2) to one of the second mobile station (MS2), second coordinated multi-point transmission (CMT2) And if the second cooperative cluster (C2) is to be applied to the second mobile station (MS2) in the same time period as determined for the further _ coordinated multi-point transmission (CMT1) and a same frequency range The second coordinated multi-point transmission (CMT2), the adaptation step is applied (Μΐ/ι8) β 2. The method of claim 1 (MET1, MET2), wherein: at least one radio in the case of (10) is / (10) VIII (Global Mobile Telecommunication System / Broadband Code Division Multiple Access) The access resource parameter is a spread spectrum code; in the case of TDD (time division multiplexing), the at least one radio access resource parameter is a time slot, a subframe or a group of subframes; or in FDD (frequency division) In the case of multiplex, the at least one radio access resource parameter is a subcarrier range and a time slot. 3. MET2),其中該第一合作叢集 如請求項1之方法(MET1 且其中在該第二 該第一合作叢集 (C1)及該第二合作叢集(C2)暫時同步, 合作叢集(C2)處執行該調適步驟前, (C1)傳輸該至少一無線電存取資源參數之該資 (RAR-INFO)達一預定義之時間。 如請求項1之方法(MET1、MET2),其+ )升ts玄方法(MET1 MET2)進一步包括下列步驟: 在該第-行動綱處或在該第二合作叢集㈣處 量測(M丨/6、M2/丨0)該干擾頻道(IC)之該頻道狀離, 若在該第-行動台(MS1)處量測該頻道狀態:則自該 163458.doc 201251352 第一行動台(MSI)將該頻道狀態之資訊(CSI-MS1)傳輸 (M1/9)至該第一合作叢集(C1),及 若在該第一合作叢集(C1)處接收該資訊,則自該第一 合作叢集(C1)將該頻道狀態之該資訊(CSI-MS1)傳輸 (M1/16)至該第二合作叢集(C2)。 5.如請求項4之方法(MET1),其中該方法(MET1)進一步包 括下列步驟: 比較(M1/7)該干擾頻道(1C)之該頻道狀態與至少兩個 預定義之頻道狀態,及 選擇(M1/8)具有對該量測之頻道狀態之一最佳匹配之 該至少兩個預定義之頻道狀態之一者,且其中該頻道狀 態之該資訊(CSI-MS1)包括針對具有該最佳匹配之該至 少兩個預定義之頻道狀態之該者之一識別。 6_如請求項5之方法(MET1),其中該頻道狀態之該資訊 (CSI-MS1)進一步包括該第二合作叢集(C2)之至少一小區 ID以藉由使用一查找表而將一無線電存取網路節點 (RA-NN2)識別為該第二合作叢集(C2)之一主控器。 7. 如請求項5之方法(MET1),其中該頻道狀態之該資訊 (CSI-MS 1)包括用於該干擾頻道之至少兩個空間參數之 資訊。 8. 如請求項7之方法(MET1),其中該至少兩個空間參數係 一絕對值與一相位值之一組合、一頻道向量或一頻道矩 陣。 9. 如請求項5之方法(MET1) ’其中該方法一步包 163458.doc 201251352 括下列步驟:在該第一行動台(MSI)處估計(M1/5)該第 〇 作叢集(C1)之一第一涵蓋區(Cell-AAl、Cell-AA2) 内之§亥第—行動台(MSI)之一位點,且其中若在該第一 涵蓋區(Cell-AAi、Cell_AA2)與該第二合作叢集(C2)之 一第二涵蓋區(Cell-AA3、CeU_AA4)之間的一邊緣處識 別該第一行動台(MSI)之該位點,則由該第一行動台 (MSI)量測該干擾頻道(IC)之該頻道狀態。 10. 如請求項9之方法(MET1),其中該識別包括比較自該第 一合作叢集(C1)所接收之第一平均信號功率位準與自該 第二合作叢集(C2)所接收之第二平均信號功率位準,且 若該等第一平均信號功率位準與該等第二平均信號功率 位準之間的一差達到一臨限值’則假定該第一行動台 (MSI)之該位點在該邊緣處。 11. 如請求項9之方法(MET2),其中該方法(MET2)包括下列 步驟: 自該第二合作叢集(C2)將一請求傳輸(M2/4)至該第一 合作叢集(C1)以請求在該第一行動台(msi)處傳輸上行 鏈路探測信號, 自該第一合作叢集(C1)將該請求轉遞(M2/7)至該第一 行動台(MSI), 自該第一行動台(MS 1)傳輸(M2/9)上行鏈路探測信 號,及 在該第二合作叢集(C2)處量測(M2/10)經由該干擾頻道 (1C)所接收之該等上行鏈路探測信號。 163458.doc 201251352 12· —種供在一無線電通信系統(R(:S)中使用之第一無線電 存取網路節點(RA_NN、ra-nni),該第一無線電存取網 路節點(RA-NN、RA-NN1)包括: 用於將§亥第一無線電存取網路節點(RA-NN、RA-NN1) 指派至由至少兩個天線陣列(NN-RRH1、NN-RRH2、 AA1、AA2)所提供之一合作傳輸天線系統(nn_CTa、 CTA1)之構件(NN-PROG、NN-CPU), 用於藉由一協調式多點傳輸(CMT〇而將射頻信號 (RFS1)傳輸至該行動台(MSI)之構件(NN-TR1、 NN-RRH1、NN-TR2、NN-RRH2),及用於判定待應用於 該等射頻信號(RFS1)至該行動台(MSI)之一進一步協調 式多點傳輸(CMT1)之至少一無線電存取資源參數之構件 (NN-PROG、NN-CPU), 其中該第一無線電存取網路節點(RA-NN、RA-NN 1)進 一步包括用於將該至少一無線電存取資源參數之資訊 (RAR-INFO)傳輸至一進一步無線電存取網路節點 (RA-NN1)之構件(NN-TR3、PORT),該進一步無線電存 取網路卽點(RA-NN 1)指派至由至少兩個進一步天線陣列 (AA3、AA4)所提供之一進一步合作傳輸天線系統 (CTA2)。 13. —種供在一無線電通信系統(RcS)中使用之第二無線電 存取網路節點(RA-NN、RA-NN2),該第二無線電存取網 路節點(RA-NN、RA-NN2)包括: 用於將6玄第一無線電存取網路節點(rA-NN、RA-NN2) 163458.doc 201251352 指派至由至少兩個天線陣列(NN-RRHl、NN-RRH2、 AA3、AA4)所提供之一合作傳輸天線系統(NN-CTA、 CTA2)之構件(NN-PROG、NN-CPU),及 用於藉由一協調式多點傳輸(CMT2)自該合作傳輸天線 系統(NN-CTA、CTA2)將射頻信號(RFS2)傳輸至一行動 台(MS2)之構件(NN-TR1 、NN-RRHl 、NN-TR2、 NN-RRH2), 其中該第二無線電存取網路節點(RA-NN、RA-NN2)進 一步包括: 用於自由至少兩個進一步天線陣列(AA1、AA2)所提 供之一進一步合作傳輸天線系統(CTA1)接收至少一無線 電存取資源參數之資訊(RAR-INFO)之構件(NN-TR3、 PORT),該至少一無線電存取資源參數用於進一步射頻 信號(RFS1)至一進一步行動台(MSI)之一進一步協調式 多點傳輸(CMT1);及用於基於在該合作傳輸天線系統 (NN-CTA ' CTA2)與該進一步行動台(MSI)之間對該等進 一步射頻信號(RFS1)提供干擾之該等射頻信號(RFS2)之 一干擾頻道(1C)之一頻道狀態而針對該至少一無線電存 取資源參數調適該合作傳輸天線系統(NN-CTA、CTA2) 之至少一傳輸權重以用於自該合作傳輸天線系統(NN-CTA、CTA2)至該行動台(MS2)之一進一步協調式多點傳 輸(CMT2)之構件(NN-PROG、NN-CPU),藉由該進一步 協調式多點傳輸(CMT1)而在該進一步行動台(MSI)處自 該進一步合作傳輸天線系統(CTA1)接收該等進一步射頻 I63458.doc 201251352 信號(RFSl) ’且若該第二合作叢集(C2)將在如判定 該進一步第一協調式多點傳輸(CMT1)i 一相同時間週= 及〆相同頻率範圍内應用於至該第二行動台(MS2)之Ϊ 第 > 協調式多點傳輸(CMT2),則調適該至少一傳輸權 • 重。 163458.docMET2), wherein the first cooperative cluster is as in the method of claim 1 (MET1 and wherein the second first cooperative cluster (C1) and the second cooperative cluster (C2) are temporarily synchronized, and the cooperative cluster (C2) is executed Before the adapting step, (C1) transmitting the resource (RAR-INFO) of the at least one radio access resource parameter for a predefined time. As in the method of claim 1 (MET1, MET2), the +) ts ts method (MET1 MET2) further comprising the steps of: measuring (v丨/6, M2/丨0) the channel of the interfering channel (IC) at the first-acting program or at the second cooperative cluster (four), If the channel status is measured at the first mobile station (MS1): the channel status information (CSI-MS1) is transmitted (M1/9) from the 163458.doc 201251352 first mobile station (MSI) to the a first cooperative cluster (C1), and if the information is received at the first cooperative cluster (C1), the information (CSI-MS1) of the channel status is transmitted from the first cooperative cluster (C1) (M1/ 16) to the second cooperative cluster (C2). 5. The method of claim 4 (MET1), wherein the method (MET1) further comprises the steps of: comparing (M1/7) the channel state of the interfering channel (1C) with at least two predefined channel states, and selecting (M1/8) having one of the at least two predefined channel states that best match one of the measured channel states, and wherein the information of the channel state (CSI-MS1) includes for the best One of the matched ones of the at least two predefined channel states is identified. 6_ The method of claim 5 (MET1), wherein the information of the channel status (CSI-MS1) further comprises at least one cell ID of the second cooperative cluster (C2) to use a lookup table to connect a radio The access network node (RA-NN2) is identified as one of the second cooperative clusters (C2). 7. The method of claim 5 (MET1), wherein the information of the channel status (CSI-MS 1) includes information for at least two spatial parameters of the interfering channel. 8. The method of claim 7 (MET1), wherein the at least two spatial parameters are an absolute value combined with one of the phase values, a channel vector or a channel matrix. 9. The method of claim 5 (MET1) 'where the method step package 163458.doc 201251352 comprises the following steps: estimating (M1/5) the first cluster (C1) at the first mobile station (MSI) One of the first coverage areas (Cell-AAl, Cell-AA2), one of the §Hai-Mobile Station (MSI), and wherein in the first coverage area (Cell-AAi, Cell_AA2) and the second Identifying the location of the first mobile station (MSI) at an edge between one of the second coverage areas (Cell-AA3, CeU_AA4) of the cooperative cluster (C2) is measured by the first mobile station (MSI) The channel status of the interfering channel (IC). 10. The method of claim 9 (MET1), wherein the identifying comprises comparing a first average signal power level received from the first cooperative cluster (C1) with a first received from the second cooperative cluster (C2) Two average signal power levels, and if the difference between the first average signal power level and the second average signal power level reaches a threshold, then the first mobile station (MSI) is assumed This site is at this edge. 11. The method of claim 9 (MET2), wherein the method (MET2) comprises the step of: transmitting a request (M2/4) from the second cooperative cluster (C2) to the first cooperative cluster (C1) Requesting to transmit an uplink sounding signal at the first mobile station (msi), transferring the request (M2/7) from the first cooperative cluster (C1) to the first mobile station (MSI), from the first A mobile station (MS 1) transmits (M2/9) uplink sounding signals, and measures (M2/10) at the second cooperative cluster (C2) to receive the uplinks via the interference channel (1C) Link detection signal. 163458.doc 201251352 12. A first radio access network node (RA_NN, ra-nni) for use in a radio communication system (R(:S), the first radio access network node (RA) -NN, RA-NN1) includes: for assigning the first radio access network node (RA-NN, RA-NN1) to at least two antenna arrays (NN-RRH1, NN-RRH2, AA1) AA2) A component (NN-PROG, NN-CPU) of a cooperative transmission antenna system (nn_CTa, CTA1) provided for transmitting a radio frequency signal (RFS1) to the coordinated multipoint transmission (CMT) The components of the mobile station (MSI) (NN-TR1, NN-RRH1, NN-TR2, NN-RRH2), and further coordination for determining the one to be applied to the radio frequency signal (RFS1) to the mobile station (MSI) a component of at least one radio access resource parameter (NN-PROG, NN-CPU) of the multi-point transmission (CMT1), wherein the first radio access network node (RA-NN, RA-NN 1) further includes Transmitting the information of at least one radio access resource parameter (RAR-INFO) to a component of a further radio access network node (RA-NN1) (NN-TR3, PORT), the further radio access network defect (RA-NN 1) is assigned to one of the further cooperative transmission antenna systems (CTA2) provided by at least two further antenna arrays (AA3, AA4). a second radio access network node (RA-NN, RA-NN2) used in a radio communication system (RcS), the second radio access network node (RA-NN, RA-NN2) comprising: Assigning a 6-first radio access network node (rA-NN, RA-NN2) 163458.doc 201251352 to one of the at least two antenna arrays (NN-RRH1, NN-RRH2, AA3, AA4) The components of the cooperative transmission antenna system (NN-CTA, CTA2) (NN-PROG, NN-CPU), and the cooperative transmission antenna system (NN-CTA, CTA2) by a coordinated multipoint transmission (CMT2) Transmitting a radio frequency signal (RFS2) to a component of a mobile station (MS2) (NN-TR1, NN-RRH1, NN-TR2, NN-RRH2), wherein the second radio access network node (RA-NN, RA) -NN2) further comprising: one of the further cooperative transmission antenna systems provided for freely providing at least two further antenna arrays (AA1, AA2) CTA1) A component (NN-TR3, PORT) that receives information (RAR-INFO) of at least one radio access resource parameter, the at least one radio access resource parameter being used for further radio frequency signal (RFS1) to a further mobile station (MSI) a further coordinated multi-point transmission (CMT1); and for providing the further radio frequency signal (RFS1) based on the cooperative transmission antenna system (NN-CTA 'CTA2) and the further mobile station (MSI) Adapting one of the radio frequency signals (RFS2) to one of the channel states of the interference channel (1C) and adapting at least one transmission weight of the cooperative transmission antenna system (NN-CTA, CTA2) for the at least one radio access resource parameter to be used From the cooperative transmission antenna system (NN-CTA, CTA2) to one of the mobile stations (MS2), a component of further coordinated multi-point transmission (CMT2) (NN-PROG, NN-CPU), by which further coordination Multipoint transmission (CMT1) and receiving the further radio frequency I63458.doc 201251352 signal (RFS1) from the further cooperative transmission antenna system (CTA1) at the further mobile station (MSI) and if the second cooperative cluster (C2) Will be judged The further coordinated first multipoint transmission (CMT1) i is applied to the second mobile station (MS2) in the same frequency range and the same frequency range in the same time period &> coordinated multi-point transmission (CMT2), Then adapt the at least one transmission weight. 163458.doc
TW101114779A 2011-05-13 2012-04-25 Method for interference reduction in a radio communication system, first radio access network node, second radio access network node and mobile station thereof TW201251352A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11030558 2011-05-13

Publications (1)

Publication Number Publication Date
TW201251352A true TW201251352A (en) 2012-12-16

Family

ID=48139450

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101114779A TW201251352A (en) 2011-05-13 2012-04-25 Method for interference reduction in a radio communication system, first radio access network node, second radio access network node and mobile station thereof

Country Status (1)

Country Link
TW (1) TW201251352A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016054801A1 (en) * 2014-10-10 2016-04-14 Empire Technology Development Llc Antenna array on moving nodes
CN106464467A (en) * 2014-05-07 2017-02-22 高通股份有限公司 Non-orthogonal multiple access and interference cancellation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106464467A (en) * 2014-05-07 2017-02-22 高通股份有限公司 Non-orthogonal multiple access and interference cancellation
WO2016054801A1 (en) * 2014-10-10 2016-04-14 Empire Technology Development Llc Antenna array on moving nodes

Similar Documents

Publication Publication Date Title
JP6641512B2 (en) Method implemented in an apparatus to achieve pre-encoded interpolation
KR102054183B1 (en) Power Control for Uplink Transmissions
TWI756605B (en) System and methods for coping with doppler effects in distributed-input distributed-output wireless systems
US9071997B2 (en) Methods and systems for adaptive channel estimation/prediction filter design
CN110233652B (en) Method and apparatus for reporting channel state information in wireless communication system
KR101502805B1 (en) Mimo-based multiple base station collaborative communication method and apparatus
Kela et al. Borderless mobility in 5G outdoor ultra-dense networks
KR101727016B1 (en) System and method for aligning interference in uplink
US9173130B2 (en) Channel status information feedback method and apparatus in multi-node system
EP2898720A1 (en) Systems and methods for interference alignment in wi-fi
AU2021316062B2 (en) Localization and auto-calibration in a wireless network
US9722712B2 (en) Interference management for a distributed spatial network
WO2013102485A1 (en) Power control in a wireless communication system for uplink transmissions with coordinated reception
US10771125B2 (en) First communication device and methods performed thereby for transmitting radio signals using beamforming to a second communication device
EP2989844A1 (en) Method and network node for link adaptation in a wireless communications network
WO2022009151A1 (en) Shared csi-rs for partial-reciprocity based csi feedback
KR101410603B1 (en) System and method for supporting multi-user antenna beamforming in a cellular network
CN112805931A (en) Techniques for selecting MIMO transmission formats
EP2523360A1 (en) Method for interference reduction in a radio communication system, first radio access network node, second radio access network node and mobile station thereof
Interdonato et al. Utility-based downlink pilot assignment in cell-free massive MIMO
JP6806076B2 (en) Wireless devices, controls and wireless communication systems
TW201251352A (en) Method for interference reduction in a radio communication system, first radio access network node, second radio access network node and mobile station thereof
Song et al. Enabling affordable implicit channel feedback for internet of things
KR20130125058A (en) Method and apparatus for channel information feedback
CN114584996B (en) Interference optimization method based on service, network equipment and storage medium