201251096 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種太陽能玻璃,特別是一種且喜 及徑具邊緣隔絕的太 陽能玻璃。 【先前技術】 日前因石油能源被大量開採,並使用在工業及發電等用途之 上,近年已漸漸有資源殆盡之虞,且碳排放量過高已造成環境^ 染更使臭氧層被破壞,導致全球氣候溫度逐年上升,而地球= 也將面臨危機’故如何顧綠能以節能減紅成為現代產物設計 之主要方向。在各㈣代能源之中,太陽能發電則漸成為^歡 迎之其中一種能源選項。 為增加效率,一般用於發電之太陽能模組,皆必須設置於室 外然而至外經常有水蒸氣、高溫等不利於太陽能模組之氣候性 因素,因此須以背板提供保護。 一般之背板為了取得良好之水蒸氣阻絕性,因此須於基材上 蒸者Si〇2(二氧化石夕)或A1A(三氧化二紹)等化合物,然而此一作 林僅^格昂纽效果*佳。此外,為了轉長日销之耐候性、 電氣'邑緣n及機械強度,需要貼合各種㈣之糖型膜片,因此 亦會增加材料、加工等費用。 【發明内容】 雲於以上的問題,本發明係提出一種太陽能玻璃的製造方 201251096 法。此方法包括:提供—第—基板;形成_光電轉換層於該第一 基板上;形成一第一凹陷區域於光電轉換層的一外緣,第一凹陷 區域具有第-深度;形成—第二凹陷區域於第—凹陷區域的内 緣,第二凹陷區域具有第二深度,其中第二深度大於第一深度; 形成-保護層於光電轉換層上;形成—第二基板於保護層上。 此外,太陽能玻璃包括第一基板、光電轉換層、保護層與第 二基板。 光電轉換層位於第一基板上,其中光電轉換層具有第一四陷 區域與第二凹陷區域,第一凹陷區域於光電轉換層的一外緣,第 一凹區域位於第一凹陷區域的一内緣。第一凹陷區域具有一第 一深度,第二凹陷區域具有一第二深度,第二深度大於第一深度。 保護層位於光電轉換層。第二基板位於保護層上。 在本發明一實施例中,第一凹陷區域具有一第一寬度,第二 凹陷區域具有-第m寬度與第二寬度的比值介於no·% 至1:0.3之間。 藉由第一凹陷區域與第二凹陷區域所設置的相對位置,可加 強邊緣隔絕的能力。太陽能玻璃的防水能力可進一步的提升,以 減低外界水氣對於太陽能玻璃的影響。 【實施方式】 以下在實施方式中係進-料細說日月本發明之詳細特徵以及 優點,細容足以使任何熟習_技藝者了解本發明之技術内容 並據以實施,且根據本說明書所揭露之内容、申請專利範圍及圖 201251096 式’任何熟習相關技藝者可輕易地理解本發明相關之目的及優點。 請參照『第u圖』至『第1F圖』,『第1A圖』至『第if圖』 係為本發明之太陽能玻璃的製造方法。 請參照『第1A圖』,在步驟S101中,係提供一第一基板1〇。 .第-基板1G係為-透明基板’比如說可為但不限於玻璃基板或是 透明樹酯。第一基板可稱為前玻璃。 請參照『第1B圖』’在步驟S103中,係形成一光電轉換層 20於第一基板10。光電轉換層20用以接收一光能並轉換一光能 為一電能。光電轉換層20的材料可以是但不限定為非晶矽 (Amorphus Silicon,a_Si)、微晶矽(Micr〇crystalline SiUc〇n ’ pc-Si)、多晶矽、碲化锡(CdTe)、有機材料或上述材料堆疊之 多層結構。此外,光電轉換層20可以是具有P型半導體層、 N型半導體層及本質層的pin半導體堆疊結構,或是不具有本 質層的PN半導體堆疊結構。 光電轉換層20的形成方式可以透過化學氣相沉積法 (Chemical Vapor Deposition, CVD)所實現’其例如是射頻電漿輔 助化學氣相沉積法(Radio Frequency Plasma Enhanced Chemical Vapor Deposition,RF PECVD)、超高頻電漿辅助化學氣相沉積法 (Very High Frequency Plasma Enhanced Chemical Vapor Deposition,VHF PECVD)或者是微波電漿輔助化學氣相沉積法 (Microwave Plasma Enhanced Chemical Vapor Deposition » MW PECVD)。 201251096 在此步驟中,亦可包括在光電轉換層2〇的上下兩側各形成 電極層。電極層材料可以是透明導電氧化物(Transparent Conductive Oxide,TCO) ’而此透明導電氧化物可以是但不限 定為氧化鋅(ZnO)或是其他透明導電材質。形成電極層方法的 可為但不限於電子束蒸發法、物理氣相沉積法或濺射沉積法。 請參照『第1C圖』’在步驟sl〇5中,形成一第一凹陷區域 31於光電轉換層的一外緣。也就是說,第一凹陷區域31由俯視圖 來看係成”口”字型,第一凹陷區域31圍繞光電轉換層。第一凹陷 區域31具有第一深度D卜第一深度D1定義為『第1B圖』中光 電轉換層20的上方的平面位置至『第1C圖』中第一凹陷區域 31底端的位置。 在步驟S107中’請參照『第1D圖』,形成一第二凹陷區域 32於第一凹陷區域31的一内緣。内緣係相對於外緣,位於不同之 兩側。内緣係較靠近光電轉換層20的中心點。第二凹陷區域& 具有-第二深度D2。第二深度定義為『第1B圖』巾光電轉 換層20的上方的平面位置至『第1D圖』中第二凹陷區域力底 端的位置。其中’第二深度D2大於第一深度" 在此實施例中,第一凹陷區域31與第二凹陷區域32係以噴 砂法的方式形成。喷砂法係噴嘴對光電轉換層喷灑高硬度的 物體,比如說金剛砂,以移除部分的光電轉換層。因為噴嘴會轉 動角度來回喷灑,因此第一四陷區域31與第二凹陷區域幻1叫 面上會呈拋物線型。此拋物線的開口係朝向喷嘴所位於的方向。° 201251096 32以外,第二陷:二形成第一凹陷區域31與第二凹陷區域 方式形成。當利用雷㈣^第Γ祕域&亦可f射切割的 32會成矩形。也就是說,/陷區域31與第二凹陷區域 形狀並不以抛物線型為限。與第二__32的 在本發明-實施例中,在形成第一凹陷區⑽的步驟中,传 以-噴嘴以第—肢噴砂於光電轉換層的 =域轉驟中’係以喷嘴以一第二角度進行喷砂。上 、又所解的方向’係偏向光電觀層的外緣,而第二角产 所對準的方向,係偏向光電轉換層2〇的内緣。並且,為了使第: 凹陷區域32的第二深度D2大於與第一凹陷區域31的第—深度 因此以第—歧喷灑所花咖會大於第—肢喷灑所花的時 間此外’為了使位於甲間的光電轉換層2〇不至於被侵钱,當以 第二角度時喷猶,係可彻—碰_。频板可設置於第— 凹陷區域内緣的上方。 請參照『第1E圖』,在步驟中,形成—保護層於光電轉 換層上。保護層係為絕緣材質,同時亦可以為防水之材質。在一 實施例令,保護層所使用的材質聚乙烤縮丁卿咖咖崎如, PVB) 〇PVB可被加熱後,溶化成液態後填到第—凹陷區域與第二 凹陷區域之_。 此外,在一實施例t,保護層可摻入二氧化鈦。摻入二氧化 鈦的保護層可反射光線,使反射的光線再被光電轉換層所吸收。 201251096 請參照『第IF圖』’在步驟Sill中,形成一第二基板5〇於 保護層上。第二基板50係為一透明基板,比如說可為但不限於破 璃基板或是透明樹醋。弟二基板50可稱為後玻璃。 請參照『第2A圖』,『第2A圖』係為本發明之太陽能玻璃之 剖面圖。此太陽能玻璃即為由在步驟S101至步驟S109所製造。 太陽能玻璃包括第一基板10、光電轉換層2〇、保護層4〇與 弟二基板50。 光電轉換層20位於第一基板1〇上。光電轉換層2〇具有第一 凹陷區域31與第二凹陷區域32。 第一凹陷區域31具有一第一寬度W1,第一寬度W1的定義 為第-凹陷區域31外緣至内緣之間的距離。第二凹陷區域幻具 有一第二寬度W2 ’第二寬度W2的絲為第二凹陷區域%外緣 至内緣之間的距離。第一寬度W1與第二寬度Μ的比值介於 1··0.95至1:0.3之間。此外,第一寬度介於12毫米至η毫米之間。 請參照『第2B圖』,『第2B圖』係為本發明之太陽能玻璃之 俯視圖。 於此圖中’光電轉換層20係位於中央,且第二凹陷區域& 圍繞於光電轉換層2G,第—凹陷區域31則圍繞第二凹陷區域32。 也就是說,第二凹陷區域32位於第一凹陷區域Μ的内緣,並且 :'乂層40覆蓋於第一凹陷區域31與第二凹陷區域μ時,保護 層4〇的防魏力可触-㈣提高。 雖然本發明赠述之實施例揭露如上,财並_以限定本 201251096 發明。細離她之频销 所附之申請專利範圍。 之保瘦範園μ參考 【圖式簡單說明】 第圖』1帛1F圖』係為本發明之太陽能玻璃的製造 方法; 第~A圖』係為本發明之太陽能玻璃之剖面圖;以及 第2B圖』係為本發明之太陽能玻璃之俯視圖。 【主要元件符號說明】 10 第一基板 20 光電轉換層 31 第一凹陷區域 32 第—凹陷區域 40 保護層 50 第二基板 D1 第一深度 D2 第二深度 W1 第一寬度 W2 第二寬度201251096 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a solar glass, and more particularly to a solar glass which is insulated from the edge of the track. [Prior Art] Recently, due to the large-scale exploitation of petroleum energy and its use in industrial and power generation applications, resources have been exhausted in recent years, and excessive carbon emissions have caused environmental damage to destroy the ozone layer. As a result, the global climate temperature is rising year by year, and the earth = will also face a crisis. So how to consider green energy to save energy and reduce redness has become the main direction of modern product design. Among the energy sources of the (fourth) generation, solar power generation has gradually become one of the energy options. In order to increase efficiency, solar modules generally used for power generation must be installed outside the room. However, there are often climatic factors that are not conducive to solar modules, such as water vapor and high temperature, so they must be protected by the backboard. In general, in order to obtain good water vapor resistance, the backing plate must be steamed on the substrate, such as Si〇2 (earth dioxide dioxide) or A1A (Al2O3). However, this is only for the forest. The effect is good*. In addition, in order to change the weather resistance of the Japanese yen, the electrical edge, and the mechanical strength, it is necessary to fit various (4) sugar-type diaphragms, which will increase the cost of materials and processing. SUMMARY OF THE INVENTION In view of the above problems, the present invention proposes a method for manufacturing solar glass 201251096. The method includes: providing a first substrate; forming a photoelectric conversion layer on the first substrate; forming a first recessed region on an outer edge of the photoelectric conversion layer, the first recessed region having a first depth; forming a second The recessed region is at an inner edge of the first recessed region, the second recessed region has a second depth, wherein the second depth is greater than the first depth; forming a protective layer on the photoelectric conversion layer; forming a second substrate on the protective layer. Further, the solar glass includes a first substrate, a photoelectric conversion layer, a protective layer, and a second substrate. The photoelectric conversion layer is disposed on the first substrate, wherein the photoelectric conversion layer has a first four recessed region and a second recessed region, the first recessed region is on an outer edge of the photoelectric conversion layer, and the first recessed region is located in a first recessed region edge. The first recessed region has a first depth, and the second recessed region has a second depth, the second depth being greater than the first depth. The protective layer is located on the photoelectric conversion layer. The second substrate is on the protective layer. In an embodiment of the invention, the first recessed region has a first width, and the second recessed region has a ratio of -mth width to second width between no.% and 1:0.3. The ability to isolate the edges can be enhanced by the relative positions of the first recessed regions and the second recessed regions. The waterproof ability of solar glass can be further improved to reduce the influence of external moisture on solar glass. [Embodiment] Hereinafter, the detailed features and advantages of the present invention will be described in detail in the embodiments, and are sufficient to enable any skilled person to understand the technical contents of the present invention and implement it according to the present specification. The disclosure of the contents, the scope of the patent application, and the figures of the present invention can be easily understood by those skilled in the art. Please refer to the "figure u" to "figure 1F", and the "1A" to "if" are the manufacturing methods of the solar glass of the present invention. Referring to FIG. 1A, in step S101, a first substrate 1 is provided. The first substrate 1G is a transparent substrate. For example, it may be, but not limited to, a glass substrate or a transparent resin. The first substrate may be referred to as a front glass. Referring to "Fig. 1B", in step S103, a photoelectric conversion layer 20 is formed on the first substrate 10. The photoelectric conversion layer 20 is configured to receive a light energy and convert a light energy into a power. The material of the photoelectric conversion layer 20 may be, but not limited to, amorphous germanium (Amorphus Silicon, a_Si), microcrystalline germanium (Micr® crystalline SiUc〇n 'pc-Si), polycrystalline germanium, antimony telluride (CdTe), organic materials or The multilayer structure of the above materials is stacked. Further, the photoelectric conversion layer 20 may be a pin semiconductor stacked structure having a P-type semiconductor layer, an N-type semiconductor layer, and an intrinsic layer, or a PN semiconductor stacked structure having no intrinsic layer. The photoelectric conversion layer 20 can be formed by chemical vapor deposition (CVD), which is, for example, Radio Frequency Plasma Enhanced Chemical Vapor Deposition (RF PECVD), super High Frequency Plasma Enhanced Chemical Vapor Deposition (VHF PECVD) or Microwave Plasma Enhanced Chemical Vapor Deposition (MW PECVD). 201251096 In this step, an electrode layer may be formed on each of the upper and lower sides of the photoelectric conversion layer 2A. The electrode layer material may be a Transparent Conductive Oxide (TCO)', and the transparent conductive oxide may be, but not limited to, zinc oxide (ZnO) or other transparent conductive material. The method of forming the electrode layer may be, but not limited to, electron beam evaporation, physical vapor deposition, or sputtering deposition. Referring to Fig. 1C, in step sl5, a first recessed region 31 is formed on an outer edge of the photoelectric conversion layer. That is, the first recessed region 31 is formed into a "mouth" shape as viewed from a plan view, and the first recessed region 31 surrounds the photoelectric conversion layer. The first recessed region 31 has a first depth D. The first depth D1 is defined as a position from a plane position above the photoelectric conversion layer 20 in "Fig. 1B" to a bottom end of the first recessed region 31 in "1C". In step S107, please refer to "1D" to form a second recessed region 32 on an inner edge of the first recessed region 31. The inner edge is on the opposite side of the outer edge. The inner edge is closer to the center point of the photoelectric conversion layer 20. The second recessed area & has a second depth D2. The second depth is defined as the position of the plane position above the "photoelectric conversion layer 20" of the "1B" to the bottom end of the second recessed area in the "1D". Wherein the second depth D2 is greater than the first depth " In this embodiment, the first recessed area 31 and the second recessed area 32 are formed by sandblasting. The blasting nozzle sprays a high-hardness object such as silicon carbide on the photoelectric conversion layer to remove a portion of the photoelectric conversion layer. Since the nozzle is sprayed back and forth at the rotation angle, the first four trapezoidal regions 31 and the second recessed region are parabolically shaped. The opening of this parabola is oriented in the direction in which the nozzle is located. In addition to 201251096 32, the second depression: two forms the first recessed region 31 and the second recessed region. When using Ray (4) ^ Di Γ secret domain & can also f-cut 32 will become a rectangle. That is, the shape of the / recessed area 31 and the second recessed area is not limited to the parabolic type. In the present invention-embodiment with the second __32, in the step of forming the first recessed region (10), the nozzle is sprayed with the first limb in the field of the photoelectric conversion layer. The second angle is sandblasted. The direction of the upper and lower directions is biased toward the outer edge of the photo-electric layer, and the direction in which the second-angle product is aligned is biased toward the inner edge of the photoelectric conversion layer 2〇. Moreover, in order to make the second depth D2 of the first recessed area 32 larger than the first depth of the first recessed area 31, the gynecological spray will be greater than the time spent by the first limb spray. The photoelectric conversion layer 2 located in the middle of the room is not invaded by the money. When it is sprayed at the second angle, it can be thoroughly-touched. The frequency plate can be disposed above the inner edge of the first recessed area. Refer to Figure 1E. In the step, a protective layer is formed on the photoelectric conversion layer. The protective layer is made of insulating material and can also be made of waterproof material. In an embodiment, the material used in the protective layer is condensed, and the PVB) 〇PVB can be heated, dissolved into a liquid state, and filled into the first recessed region and the second recessed region. Further, in an embodiment t, the protective layer may incorporate titanium dioxide. The protective layer doped with titanium dioxide reflects light so that the reflected light is absorbed by the photoelectric conversion layer. 201251096 Please refer to the "IF drawing". In step Sill, a second substrate 5 is formed on the protective layer. The second substrate 50 is a transparent substrate, such as, but not limited to, a glass substrate or a transparent tree vinegar. The second substrate 50 can be referred to as a rear glass. Please refer to "2A" and "2A" as a cross-sectional view of the solar glass of the present invention. This solar glass is manufactured by the steps S101 to S109. The solar glass includes a first substrate 10, a photoelectric conversion layer 2, a protective layer 4, and a second substrate 50. The photoelectric conversion layer 20 is located on the first substrate 1A. The photoelectric conversion layer 2 has a first recessed region 31 and a second recessed region 32. The first recessed area 31 has a first width W1 defined as the distance from the outer edge to the inner edge of the first recessed area 31. The second recessed area phantom has a second width W2' and the second width W2 is the distance between the outer edge of the second recessed area and the inner edge. The ratio of the first width W1 to the second width Μ is between 1··0.95 and 1:0.3. Furthermore, the first width is between 12 mm and η mm. Please refer to "2B" and "2B" as a top view of the solar glass of the present invention. In the figure, the photoelectric conversion layer 20 is located at the center, and the second recessed region & surrounds the photoelectric conversion layer 2G, and the first recessed region 31 surrounds the second recessed region 32. That is, the second recessed region 32 is located at the inner edge of the first recessed region ,, and: when the 乂 layer 40 covers the first recessed region 31 and the second recessed region μ, the protective layer 4 〇 is resistant to the force - (four) improve. Although the embodiment of the present invention is disclosed above, the invention is limited to the 201251096 invention. The scope of the patent application attached to her frequent sales is fine. The reference to the "Simplified Explanation of the Drawings" is shown in the figure "1帛1F" is the manufacturing method of the solar glass of the present invention; the "A" is the sectional view of the solar glass of the present invention; 2B is a top view of the solar glass of the present invention. [Main component symbol description] 10 First substrate 20 Photoelectric conversion layer 31 First recessed region 32 First recessed region 40 Protective layer 50 Second substrate D1 First depth D2 Second depth W1 First width W2 Second width