TW201250330A - Collision-avoidance device and method thereof - Google Patents

Collision-avoidance device and method thereof Download PDF

Info

Publication number
TW201250330A
TW201250330A TW100119266A TW100119266A TW201250330A TW 201250330 A TW201250330 A TW 201250330A TW 100119266 A TW100119266 A TW 100119266A TW 100119266 A TW100119266 A TW 100119266A TW 201250330 A TW201250330 A TW 201250330A
Authority
TW
Taiwan
Prior art keywords
motor
zoom lens
lens barrel
focus
steps
Prior art date
Application number
TW100119266A
Other languages
Chinese (zh)
Other versions
TWI463209B (en
Inventor
Shi-Jen Chen
Ming-Chyi Yang
Jia-Tsun Horng
Original Assignee
Asia Optical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asia Optical Co Inc filed Critical Asia Optical Co Inc
Priority to TW100119266A priority Critical patent/TWI463209B/en
Publication of TW201250330A publication Critical patent/TW201250330A/en
Application granted granted Critical
Publication of TWI463209B publication Critical patent/TWI463209B/en

Links

Landscapes

  • Lens Barrels (AREA)

Abstract

A collision-avoidance device and method thereof is disclosed. The collision-avoidance device and method thereof includes an optical module, a driving module and a moving controller. The optical module has a zoom lens cone and a focus lens. The focus lens is set into the zoom lens cone. The driving module makes the optical module to have a displacement. The driving module has a first motor and a second motor. The first motor drives the zoom lens cone to expand or contract. The second motor adjusts the position of the focus into the zoom lens cone. The moving controller controls the first motor to move together with the second motor. Besides, the speed of the first motor is also directly proportional to the speed of the second motor for avoiding collision between the zoom lens and the focus lens.

Description

201250330 六、發明說明: 【發明所屬之技術領域】 本揭示内容是有關於光學儀器之裝置,且特別是有 關於一種連動光學鏡頭之裝置。 【先前技術】 • 近幾年來行動電話、PDA、數位相機、攝影機等手持 式裝置配備取像模組的趨勢已日益普遍,伴隨著產品對手 持式裝置功能的要求,性能更好及體積更小的市場需求 下,光學取像模組已面臨到更高晝質與小型化的雙重要 求。在使用手持式裝置進行影像拍攝的同時,鏡頭的縮放 及對焦是各個光學取像模組必備的功能。 習知設計分別以不同的馬達驅動縮放鏡筒及對焦鏡 組,使其進行收納及展開的動作,此種作法因縮放鏡筒及 對焦鏡組兩者有各自的驅動馬達及機構,當其中任一馬達 轉速過快或過慢時,便會導致縮放鏡筒及對焦鏡組相互碰 撞,進而有構件損壞的情形發生。 【發明内容】 因此,本揭示内容之一技術態樣在於提供一種鏡頭連 動防撞裝置,以克服上述縮放鏡筒及對焦鏡組在連動的過 程中,因其中任一馬達轉速過快或過慢,而發生相互碰撞 ' 的問題。 依據本技術態樣一實施方式,提出一種鏡頭連動防撞 裝置,其包含一光學模組、一驅動模組及一連動控制器。 201250330 光學模組包含1放鏡筒及-聽餘。對f、鏡組位於縮 放鏡筒内。驅動模組用以驅動光學模組進行位移,其中、 驅動模組包含一第一馬達及一第二馬達。第一馬達用以驅 動縮放鏡筒進行轴向伸縮位移。第二馬達用以調整對 組於縮放鏡筒中的位置。連動控制器用以控制第一馬^及 第二馬達彼此連動,並控制第一馬達之轉速正比於第一 ^ 達之轉速,使縮放鏡筒及對焦鏡組於連動過程中不 碰撞。 相互201250330 VI. Description of the Invention: TECHNICAL FIELD The present disclosure relates to an apparatus for an optical instrument, and more particularly to an apparatus for interlocking an optical lens. [Prior Art] • In recent years, the trend of handheld imaging devices such as mobile phones, PDAs, digital cameras, and cameras has become increasingly common. With the product requirements for handheld devices, performance is better and smaller. Under the market demand, optical imaging modules have faced the dual requirements of higher quality and miniaturization. While using a handheld device for image capture, zooming and focusing of the lens are essential for each optical imaging module. The conventional design drives the zoom lens barrel and the focus lens group to drive and unfold the motion by different motors. This method has its own driving motor and mechanism for both the zoom lens barrel and the focus lens group. When the motor rotates too fast or too slow, the zoom lens barrel and the focus lens group collide with each other, and damage to the components occurs. SUMMARY OF THE INVENTION Therefore, one aspect of the present disclosure is to provide a lens linkage anti-collision device to overcome the above-mentioned zoom lens barrel and the focus lens group in the process of linkage, because any of the motor speeds are too fast or too slow And the problem of colliding with each other'. According to an embodiment of the present invention, a lens linkage anti-collision device is provided, which comprises an optical module, a driving module and a linkage controller. The 201250330 optical module consists of a 1 tube and a listening unit. For f, the mirror is located in the zoom barrel. The driving module is configured to drive the optical module to perform displacement, wherein the driving module comprises a first motor and a second motor. The first motor is used to drive the zoom lens barrel for axial telescopic displacement. The second motor is used to adjust the position of the pair in the zoom lens barrel. The linkage controller is configured to control the first motor and the second motor to interlock with each other, and control the rotation speed of the first motor to be proportional to the first rotation speed, so that the zoom lens barrel and the focus lens group do not collide during the interlocking process. mutual

更進一步的說,在本技術態樣其他實施方式中,第一 馬達之轉速與第二馬達之轉速可成直線正比關係。再者T 此直線正比關係的斜率可為0.793。另外,筮 » 1弗一馬達驅動縮 放鏡筒之步數範圍可由-876步至110步。第二馬達驅動對 焦鏡組之步數範圍可由-727步至512步。 依據本技術態樣另-實施方式,提出一種鏡頭連動防 撞裝置,其包含一縮放鏡筒、一對焦鏡組、一第一馬達、 一第二馬達及一連動控制器,對焦鏡組位於縮放鏡筒内, 第一馬達與縮放鏡筒連接,並驅動縮放鏡筒進行軸向伸縮 位移,第一馬達與對焦鏡組連接,並調整該對焦鏡組於縮 放鏡筒中的位置。其中,連動控制器用以控制第一馬達及 第二馬達彼此連動,並控制第一馬達之轉速正比於第二馬 達之轉速,使縮放鏡筒及對焦鏡組於連動過程中不會相互 碰撞。 更進一步的說,在本技術態樣其他實施方式中,第一 馬達之轉速與第二馬叙轉速可成直線正比_。此外, 前述直線正比關係的斜率可為0.793。 201250330 本揭示内容之另一技術態樣在於提供一種鏡頭連動防 撞方法,以克服上述縮放鏡筒及對焦鏡組在連動的過程 中’因其中任一馬達轉速過快或過慢,而發生相互碰撞的 問題。 依據本技術態樣一實施方式,提出一種鏡頭連動防撞 方法,至少包含下列步驟:選定一第一馬達以驅動—縮放 . 鏡筒進行軸向伸縮位移。選定一第二馬達以調整—對焦鏡 組於縮放鏡筒中的位置。計算縮放鏡筒追撞對焦鏡組日^二 第一馬達及第·一馬達兩者轉速的一第一斜率值。計算對焦 鏡組追撞縮放鏡筒時,第一馬達及第二馬達兩者轉速的二 第二斜率值。利用一連動控制器來控制第一馬達及第二馬 達,使兩者轉速的斜率值位於第一斜率值及第二斜率值之 間。 更進一步的說,在本技術態樣其他實施方式中,可再 包含下述步驟:控制第一馬達驅動縮放鏡筒之步數範圍為 -876步至11〇步,且控制第二馬達驅動對焦鏡組之步數範 圍為-727步至512步,進而使第一馬達及第二馬達兩者轉 速的斜率為0.793。 藉此,上述諸實施方式利用連動控制器以斜率連動的 方式,確保縮放鏡同及對焦鏡組在連動的過程中伴持一定 間隙,而不會有兩者碰撞的情形發生。 【實施方式】 第1圖繪示本揭示内容一實施方式之鏡頭連動防撞裝 置的功能方塊圖。如第1圖所示,鏡頭連動防撞裝置1〇〇 201250330 包含一光學模組110、一驅動模組120及一連動控制器 130。連動控制器130控制藉由斜率連動的方式,控制驅動 模組120,以避免光學模組110内部構件碰撞損壞的情形。 光學模組110包含一縮放鏡筒111及一對焦鏡組112。 對焦鏡組112位於縮放鏡筒111内,使用者可改變對焦鏡 組112於縮放鏡筒111内的位置,來改變焦距並達到對一 物體聚焦的功效。 驅動模組120用以驅動光學模組110進行位移,其中, 驅動模組120包含一第一馬達121及一第二馬達122。第 一馬達121用以驅動縮放鏡筒111進行軸向伸縮位移。第 二馬達122用以調整對焦鏡組112於縮放鏡筒111中的位 置。 連動控制器130用以控制第一馬達121及第二馬達122 彼此連動,並控制第一馬達121之轉速正比於第二馬達122 之轉速,在本實施方式中,第一馬達121及第二馬達122 的轉速成直線正比關係。如此一來,縮放鏡筒111及對焦 鏡組112於連動過程中,由於連動控制器130會隨著時間 對第一馬達121及第二馬達122的轉速進行調整,因此不 會有縮放鏡筒111及對焦鏡組112相互碰撞的情形發生。 至於連動控制器130如何對第一馬達121及第二馬達 122的轉速進行調整,這個部份的細部内容將於後續鏡頭 連動防撞方法300中作說明。 第2圖繪示本揭示内容一實施方式之鏡頭連動防撞裝 置的功能方塊圖。如第2圖所示,鏡頭連動防撞裝置200 包含一縮放鏡筒210、一對焦鏡組220、一第一馬達230、 201250330 一第二馬達240及一連動控制器250。連動控制器250控 制藉由斜率連動的方式,控制第一馬達230及第二馬達 240’進而避免縮放鏡筒210與對焦鏡組220發生碰撞損壞 的情形。 對焦鏡組220位於縮放鏡筒210内,第一馬達230與 縮放鏡筒210連接,並驅動縮放鏡筒21 〇進行軸向伸縮位 移’第二馬達240與對焦鏡組220連接,並調整該對焦鏡 組220於縮放鏡筒210中的位置。 連動控制器250用以控制第一馬達230及第二馬達240 彼此連動’並控制第一馬達230之轉速正比於第二馬達240 之轉速’在本實施方式中’第一馬達230及第二馬達240 的轉速成直線正比關係。如此一來,縮放鏡筒210及對焦 鏡組220於連動過程中’由於連動控制器250會隨著時間 對第一馬達230及第二馬達240的轉速進行調整,因此不 會有縮放鏡筒210及對焦鏡組220相互碰撞的情形發生。 至於連動控制器250如何對第一馬達230及第二馬達 240的轉速進行調整,這個部份的細部内容同樣將於後續 鏡頭連動防撞方法300中作說明。 第3圖繪示本揭示内容另一實施方式之鏡頭連動防撞 方法的步驟流程圖。如第3圖所示,本實施方式之鏡頭連 動防撞方法300,至少包含下列步驟:首先,如步驟31〇 所示’選定一第一馬達以驅動一縮放鏡筒進行軸向伸縮位 移。再者,如步驟320所示,選定一第二馬達以調整一對 焦鏡組於縮放鏡筒中的位置。然後,如步驟330所示,計 算縮放鏡筒追撞對焦鏡組時’第一馬達及第二馬達兩者轉 201250330 速的一第一斜率值。接下來,如步驟340所示,計算對焦 鏡組追撞縮放鏡筒時,第一馬達及第二馬達兩者轉速的一 第二斜率值。最後,如步驟350所示,利用一連動控制器 來控制第一馬達及第二馬達,使兩者轉速的斜率值位於第 一斜率值及第二斜率值之間。 簡而言之,連動控制器會隨著時間分別監控第一馬達 及第二馬達,隨時計算兩者轉速的斜率值,並依據算出的 斜率值落點來分別控制第一馬達及第二馬達的轉速。具體 來說,可將第一馬達及第二馬達驅動縮放鏡筒及對焦鏡組 由收納至展開的過程,分成以下三個情況:第一,當第一 馬達及第二馬達兩者轉速的斜率值大於第一斜率值時,代 表驅動縮放鏡筒的第一馬達轉速過快,此時,連動控制器 會控制第二馬達提升至最高速轉動,以避免縮放鏡筒及對 焦鏡組相互碰撞;第二,當第一馬達及第二馬達兩者轉速 的斜率值位於第一斜率值及第二斜率值之間時,則保持目 前連動狀態中第一馬達及第二馬達的轉速;第三,當第一 馬達及第二馬達兩者轉速的斜率值小於第二斜率值時,代 表驅動對焦鏡組的第二馬達轉速過快,此時,連動控制器 會控制第二馬達暫時停止,待第一馬達驅動縮放鏡筒使第 一馬達及第二馬達兩者轉速的斜率值介於第一斜率值及第 二斜率值時,再啟動第二馬達使對焦鏡組繼續進行位移。 另一方面,第一馬達及第二馬達驅動縮放鏡筒及對焦 鏡組由展開至收納的過程,連動控制器控制的方法則與上 述判斷條件相反,在此不予贅述。 以下將揭露本揭示内容之一實施例,藉此說明本揭示 201250330 内容上述實施方式之鏡頭連動防撞方法,確實具有所需要 的物理特性。應瞭解到,在以下敘述中,已經在上述實施 方式中提到的要件將不再重複贅述,僅就需進一步界定者 加以補充。 表一是本揭示内容一實施例的位移步數表。在此由表 一的左至右分別列出當中各字詞所代表之具體意義:pos 為縮放鏡筒的計算步數;+A為縮放鏡筒的控制步數; inf-stopper為遠端攝影機構的停止點;inf-limit為遠端攝影 機構作動的極限值;inf-position為對焦鏡組作動領域的中 心步數;建議曲線為規晝對焦鏡組的移動步數;near-limit 為近端攝影機構作動的極限值;near-stopper為近端攝影機 構的停止點。 NO zoom-pas AF棚領域 FOCUS 里動獅ϋ lable P〇S +A uxistoppei inf-limit Inf-Rasitinii 锂謀袖锘 jiBu-limit neu-stoppez 可觔範固 中心肪 1 LimitCNeax) -1447+A -1337 -662 -727 -727 -727 -727 -750 -66 -716 里觔 2 S •1315+A 4205 -&S2 •727 -72? -727 -727 -750 -716 里觔 3 S-l -12Q5+A -1095 -643 -eaa -TO -727 -727 -750 -107 里觔 4 S-2 -1096fA -986 -446 -492 •610 -72? -727 -750 -3M -59Β 獅 5 S-3 -986fA -876 -2S0 -295 -511 -727 -727 -750 -500 -500 里ϊϋ 6 S-4 -877+A -767 -53 -99 413 -589 -727 -750 -4Q2 逋iJ) 7 S-5 -767+A -65? 143 98 -315 452 •727 -750 -893 -304 連觔 8 S-6 -65&fA -546 339 7¼ •217 314 -727 -750 -1DB9 -206 連觔 9 S-7 -54&fA -438 536 490 •119 -176 -727 -750 •12Β6 -107 逋觔 11 S-8 43frfA -328 686 640 22 -39 -596 -618 •13Μ 34 翻H 12 s-g -329fA -219 779 174 99 -431 -454 -12» 1&S 連ii) 13 S-10 -219tA -109 9Ώ 917 325 237 -267 -290 -1253 337 連觔 14 HP -1KHA 0 1129 1060 474 374 -113 -136 -1265 497 連ii) 15 ZP1 A no 1129 1060 512 512 -113 -136 1 表一 第4圖繪示本揭示内容一實施例的斜率關係圖。以表 一中縮放鏡筒步數範圍由-876步至110步,及對焦鏡組步 數範圍由-727步至512步為例,可繪製出如第3圖所示的 斜率關係圖,接著,進一步計算其斜率為0.793。在本實施 方式中,對焦鏡組是以步進馬達驅動,而縮放鏡筒是以直 流馬達驅動,以下將分述兩者計算步數的方式及其差異。 201250330 首先,對焦鏡組的步數以每步9度的1 -2相方式驅動,所 謂的1步即1-2相驅動一個位相變化稱之;此步進馬達步 數回饋檢知方式是以FW内部送出步數作為計算。另一方 面,縮放鏡筒的步數是以直流馬達驅動時,帶動遮光葉片 旋轉,讓編碼器計數PI快速遮通光時,快迷變換的H/L波 形作為步數回饋檢知使用,PI波形以一個週期的正/負緣觸 發共算2步一直累算。 第5圖纟會示第4圖中縮放鏡筒及對焦鏡組的_係推移 圖。如第5圖所示,縮放鏡筒(3G、5G)為連動機構,只要 驅動直流馬達,縮放鏡筒(3G、5G)會照著鏡頭上固定的溝 槽軌道連動’而對焦鏡組(4G)是靠另外的步進馬達來驅動 控制,所以縮放鏡筒及對焦鏡組的控制機構是獨立分開 的,又對焦鏡組炎在縮放鏡筒中間’於驅動的同時,需要 隨時監測縮放鏡筒及對焦鏡組兩者的速度,以避免對焦鏡 組(4G)及縮放鏡筒(3G、5G)相互碰撞的情形發生。此外, 於驅動焦鏡組及縮放鏡筒的過程中,當對焦鏡組驅動過 快’或縮放鏡筒驅動過慢時,都會發生縮放鏡筒(3(}、5g) 追撞對焦鏡組(4G)的情形;反之,當對焦鏡組驅動過慢, 或縮放鏡肖驅動過快時’則會發生對焦鏡組(4g)追撞縮放 鏡筒(3G、5G)的情形。基於上述原因,本實施例需要不斷 計算並監控縮放鏡筒及對焦鏡組於驅動過程中的斜率。 以第5圖縮放鏡筒(3G、5G)的設計值來說,計算出對 焦鏡組(4G)於驅動時的驅動曲線及兩者連動的基準斜率 其中,前述連動基準斜率的關係式如下: 縮放鏡筒的目標步數-縮放鏡筒,起動击私 组的§標步數-對焦^ 201250330 連動基準斜率= 接著,開始驅動後,為了避免作動的過程中發生碰撞 本實施例以下述關係式進行即時監控: ’ 縮_0筒的目標步數-縮放鏡筒 丁 '、 對焦鏡組的目標步數-對焦鏡組的目前步數 以下將詳細說明本實施例於連動過程中,維持連動斜 率不碰撞的方法。以驅動縮放鏡筒由展開至收納的過程為 例來說明:1.先制訂上下限斜率:本實施例以基準斜率的 +-10%作為上下限。2.大於上限斜率時的處理方式:此時代 表縮放鏡筒比較慢’先停止對焦鏡組的動作或加大驅動縮 敌鏡筒的電壓來加速,以避免對焦鏡組追撞縮放鏡筒的情 况發生。3.低於下限斜率時的處理方式:此時代表縮放鏡 筒較快,可對對焦鏡組加速或降低縮放鏡筒的驅動電壓來 減速,以避免縮放鏡筒追撞對焦鏡組的情況發生。4.驅動 端放鏡筒由收納至展開的過程··其碰撞的情形與前述狀況 相反,因此將上述的計算方式相反處理即可。 其中,本實施例中SOHP的範圍為收納狀態到開機狀 態的相關機構位置’因為縮放鏡筒(3G、5G)共用驅動源’ 且為同步驅動,故3G(inf-limit)與5G(near-limit)間的區塊 為對焦鏡組(4G)可活動的範圍,對焦鏡組(4〇)開機時需於 此區間作動且不可與縮放鏡筒(3G、5G)碰撞。因4G(對焦 鏡組)作動領域中心步數非單純且單一斜率的線段,故採用 建議曲線的單一斜率(如第4圖所示)做驅動方式,以利控 12 201250330 制方式簡化且達防止碰撞效果。 由上述實施方式可知,應用本揭示内容之鏡頭連動防 撞裝置及其方法,連動控制器以斜率連動的方式來確保縮 放鏡筒及對焦鏡組在連動的過程中保持一定間隙,且連動 控制器隨時監控計算第一馬達及第二馬達兩者轉速的斜率 值,防止其中任一馬達轉速過快或過慢,如此一來,便可 有效避免縮放鏡筒及對焦鏡組相互碰撞的情形發生。 雖然本揭示内容已以諸實施方式揭露如上,然其並非 用以限定本揭示内容,任何熟習此技藝者,在不脫離本揭 示内容之精神和範圍内,當可作各種之更動與潤飾,因此 本揭示内容之保護範圍當視後附之申請專利範圍所界定者 為準。 【圖式簡單說明】 第1圖繪示本揭示内容一實施方式之鏡頭連動防撞裝 置的功能方塊圖。 第2圖繪示本揭示内容另一實施方式之鏡頭連動防撞 裝置的功能方塊圖。 第3圖繪示本揭示内容又一實施方式之鏡頭連動防撞 方法的步驟流程圖。 第4圖繪示本揭示内容一實施例的斜率關係圖。 第5圖繪示第4圖中縮放鏡筒及對焦鏡組的關係推移 圖。 【主要元件符號說明】 13 201250330 100 :鏡頭連動防撞裝置 111 :縮放鏡筒 120 :驅動模組 122 :第二馬達 200 :鏡頭連動防撞裝置 220·•對焦鏡組 240 :第二馬達 300 :鏡頭連動防撞方法 110 :光學模組 112 :對焦鏡組 121 :第一馬達 130 :連動控制器 210 :縮放鏡筒 230 :第一馬達 250 :連動控制器 310-350 :步驟 14Furthermore, in other embodiments of the present technical aspect, the rotational speed of the first motor and the rotational speed of the second motor may be in a straight line proportional relationship. Furthermore, the slope of the straight-line relationship of T can be 0.793. In addition, the range of steps for the 筮»1 motor-driven zoom lens can range from -876 steps to 110 steps. The number of steps of the second motor-driven focusing lens group can range from -727 steps to 512 steps. According to another embodiment of the present invention, a lens linkage anti-collision device is provided, which comprises a zoom lens barrel, a focusing lens group, a first motor, a second motor and a linkage controller, and the focusing mirror group is located in the zooming In the lens barrel, the first motor is coupled to the zoom lens barrel, and drives the zoom lens barrel to perform axial expansion and displacement. The first motor is coupled to the focus lens group and adjusts the position of the focus lens group in the zoom lens barrel. The linkage controller is configured to control the first motor and the second motor to interlock with each other, and control the rotation speed of the first motor to be proportional to the rotation speed of the second motor, so that the zoom lens barrel and the focus lens group do not collide with each other during the interlocking process. Furthermore, in other embodiments of the present technical aspect, the rotational speed of the first motor may be linearly proportional to the second rotational speed. Further, the slope of the aforementioned straight line proportional relationship may be 0.793. 201250330 Another technical aspect of the present disclosure is to provide a lens linkage anti-collision method for overcoming the above-mentioned zoom lens barrel and the focus lens group in the process of interlocking, because each of the motor speeds is too fast or too slow, mutual mutual occurrence occurs. The problem of collision. According to an embodiment of the present invention, a lens interlocking collision avoidance method is provided, comprising at least the following steps: selecting a first motor to drive-zoom. The lens barrel performs axial expansion and contraction. A second motor is selected to adjust the position of the focus group in the zoom lens barrel. Calculate the zoom lens barrel tracking focus group day ^ 2 a first slope value of the first motor and the first motor. The second and second slope values of the rotational speeds of the first motor and the second motor when the focusing mirror group collides with the zoom lens barrel are calculated. The first motor and the second motor are controlled by a linkage controller such that the slope values of the two rotational speeds are between the first slope value and the second slope value. Further, in other embodiments of the technical aspect, the method further includes the steps of: controlling the first motor to drive the zoom lens barrel to the range of -876 steps to 11 steps, and controlling the second motor to drive the focus. The number of steps of the mirror group ranges from -727 steps to 512 steps, so that the slope of the rotational speed of both the first motor and the second motor is 0.793. Thereby, the above embodiments use the linkage controller to ensure that the zoom mirror and the focus mirror group are accompanied by a certain gap during the interlocking process without the collision of the two. [Embodiment] FIG. 1 is a functional block diagram of a lens interlocking anti-collision device according to an embodiment of the present disclosure. As shown in FIG. 1, the lens linkage anti-collision device 1 201250330 includes an optical module 110, a driving module 120 and a linkage controller 130. The linkage controller 130 controls the driving module 120 to control the collision of the internal components of the optical module 110 by means of a slope linkage. The optical module 110 includes a zoom lens barrel 111 and a focus lens group 112. The focus lens group 112 is located in the zoom lens barrel 111, and the user can change the position of the focus lens group 112 in the zoom lens barrel 111 to change the focal length and achieve the effect of focusing on an object. The driving module 120 is configured to drive the optical module 110 to be displaced. The driving module 120 includes a first motor 121 and a second motor 122. The first motor 121 is used to drive the zoom lens barrel 111 to perform axial expansion and contraction. The second motor 122 is used to adjust the position of the focus lens group 112 in the zoom lens barrel 111. The linkage controller 130 is configured to control the first motor 121 and the second motor 122 to interlock with each other, and control the rotation speed of the first motor 121 to be proportional to the rotation speed of the second motor 122. In the present embodiment, the first motor 121 and the second motor The speed of 122 is proportional to the linear relationship. In this way, during the interlocking process of the zoom lens barrel 111 and the focus lens group 112, since the linkage controller 130 adjusts the rotation speeds of the first motor 121 and the second motor 122 with time, there is no zoom lens barrel 111. And the situation in which the focus lens group 112 collides with each other. As to how the linkage controller 130 adjusts the rotational speeds of the first motor 121 and the second motor 122, the details of this portion will be described in the subsequent lens linkage anti-collision method 300. FIG. 2 is a functional block diagram of a lens interlocking anti-collision device according to an embodiment of the present disclosure. As shown in FIG. 2, the lens linkage anti-collision device 200 includes a zoom lens barrel 210, a focus lens group 220, a first motor 230, a 201250330 second motor 240, and a linkage controller 250. The linkage controller 250 controls the first motor 230 and the second motor 240' to control the collision of the zoom lens barrel 210 with the focus lens group 220 by means of a slope linkage. The focusing lens group 220 is located in the zoom lens barrel 210, and the first motor 230 is connected to the zoom lens barrel 210, and drives the zoom lens barrel 21 to perform axial expansion and contraction displacement. The second motor 240 is connected to the focusing lens group 220, and the focus is adjusted. The mirror set 220 is in a position to zoom in the lens barrel 210. The linkage controller 250 is configured to control the first motor 230 and the second motor 240 to interlock with each other and control the rotation speed of the first motor 230 to be proportional to the rotation speed of the second motor 240. In the present embodiment, the first motor 230 and the second motor The speed of 240 is proportional to the linear relationship. In this way, the zoom lens barrel 210 and the focus lens group 220 are in the process of interlocking. Since the linkage controller 250 adjusts the rotational speeds of the first motor 230 and the second motor 240 over time, there is no zoom lens barrel 210. And the case where the focusing mirror group 220 collides with each other. As for how the linkage controller 250 adjusts the rotational speeds of the first motor 230 and the second motor 240, the details of this portion will also be described in the subsequent lens linkage anti-collision method 300. FIG. 3 is a flow chart showing the steps of the lens interlocking collision avoidance method according to another embodiment of the present disclosure. As shown in Fig. 3, the lens interlocking collision avoidance method 300 of the present embodiment includes at least the following steps: First, a first motor is selected as shown in step 31A to drive a zoom lens barrel for axial telescopic displacement. Further, as shown in step 320, a second motor is selected to adjust the position of the pair of focal lengths in the zoom barrel. Then, as shown in step 330, a first slope value of both the first motor and the second motor is converted to the 201250330 speed when the zoom lens barrel is chased by the focus lens group. Next, as shown in step 340, a second slope value of the rotational speeds of both the first motor and the second motor when the focusing lens group collides with the zoom lens barrel is calculated. Finally, as shown in step 350, the first motor and the second motor are controlled by a linkage controller such that the slope values of the two rotational speeds are between the first slope value and the second slope value. In short, the linkage controller monitors the first motor and the second motor separately with time, calculates the slope value of the two rotation speeds at any time, and controls the first motor and the second motor respectively according to the calculated slope value drop point. Rotating speed. Specifically, the first motor and the second motor can drive the zoom lens barrel and the focus lens group from the storage to the deployment process, and are divided into the following three cases: First, when the slopes of the first motor and the second motor are rotated When the value is greater than the first slope value, the first motor that drives the zoom lens barrel rotates too fast. At this time, the linkage controller controls the second motor to rise to the highest speed to avoid colliding the zoom lens barrel and the focus lens group; Secondly, when the slope values of the rotational speeds of the first motor and the second motor are between the first slope value and the second slope value, the rotational speeds of the first motor and the second motor in the current interlocking state are maintained; When the slope value of the rotational speeds of the first motor and the second motor is less than the second slope value, the second motor that drives the focus lens group rotates too fast. At this time, the linkage controller controls the second motor to temporarily stop. When the motor drives the zoom lens barrel so that the slope values of the rotational speeds of the first motor and the second motor are between the first slope value and the second slope value, the second motor is activated to continue to shift the focus group. On the other hand, the first motor and the second motor drive the zoom lens barrel and the focus lens group from the development to the storage process, and the method of controlling the interlocking controller is opposite to the above-described determination condition, and will not be described herein. An embodiment of the present disclosure will be disclosed hereinafter to explain the lens interlocking collision avoidance method of the above embodiment in the present disclosure 201250330, which does have the required physical characteristics. It should be understood that in the following description, the elements that have been mentioned in the above embodiments will not be described again, and only need to be further defined to supplement them. Table 1 is a table of displacement steps in an embodiment of the present disclosure. Here, the specific meanings of each word are listed from left to right of Table 1: pos is the number of calculation steps of the zoom lens barrel; +A is the number of control steps of the zoom lens barrel; inf-stopper is the far end photography The stop point of the mechanism; inf-limit is the limit value of the action of the remote camera; inf-position is the number of steps in the field of focus of the focus group; the recommended curve is the number of steps of the focus group; the near-limit is near The limit value of the action of the end camera; the near-stopper is the stop point of the near-end camera. NO zoom-pas AF shed field FOCUS lion ϋ lable P〇S +A uxistoppei inf-limit Inf-Rasitinii Li 谋 锘 Bu Bu Bu Bu Bu Bu neu neu neu neu Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit -662 -727 -727 -727 -727 -750 -66 -716 rib 2 S •1315+A 4205 -&S2 •727 -72? -727 -727 -750 -716 rib 3 Sl -12Q5+A -1095 -643 -eaa -TO -727 -727 -750 -107 rib 4 S-2 -1096fA -986 -446 -492 •610 -72? -727 -750 -3M -59Β lion 5 S-3 -986fA -876 -2S0 -295 -511 -727 -727 -750 -500 -500 ϊϋ 6 S-4 -877+A -767 -53 -99 413 -589 -727 -750 -4Q2 逋iJ) 7 S-5 -767+A -65? 143 98 -315 452 •727 -750 -893 -304 Connecting bars 8 S-6 -65&fA -546 339 71⁄4 •217 314 -727 -750 -1DB9 -206 Connecting bars 9 S- 7 -54&fA -438 536 490 •119 -176 -727 -750 •12Β6 -107 Tendon 11 S-8 43frfA -328 686 640 22 -39 -596 -618 •13Μ 34 Turn H 12 sg -329fA -219 779 174 99 -431 -454 -12» 1&S ii) 13 S-10 -219tA -109 9Ώ 917 325 237 -267 -290 -1253 337 Connecting rib 14 HP -1KHA 0 1129 1060 474 374 -113 -136 -1265 497 Even ii) 15 ZP1 A no 1129 1060 512 512 -113 -136 1 Table 1 FIG. 4 is a diagram showing the slope relationship of an embodiment of the present disclosure. The scale of the zoom lens barrel in Table 1 ranges from -876 steps to 110 steps, and the step range of the focus mirror group ranges from -727 steps to 512 steps. The slope relationship diagram shown in Figure 3 can be drawn, and then Further calculated the slope to be 0.793. In the present embodiment, the focus lens group is driven by a stepping motor, and the zoom lens barrel is driven by a DC motor. The manner in which the number of steps is calculated and the difference therebetween will be described below. 201250330 First, the number of steps of the focusing mirror group is driven by a 1-2 phase method of 9 degrees per step. The so-called 1 step, that is, 1-2 phase driving is called a phase change; this stepping motor step feedback detection method is The number of steps sent internally by the FW is calculated. On the other hand, when the number of steps of the zoom lens barrel is driven by the DC motor, the light-shielding blade is rotated to allow the encoder to count the PI to quickly block the light, and the H/L waveform of the fast change is used as the step feedback detection, PI The waveform is triggered by a positive/negative edge of one cycle and is counted up to 2 steps. Figure 5 shows the _-series diagram of the zoom lens barrel and the focus lens group in Figure 4. As shown in Figure 5, the zoom lens barrel (3G, 5G) is a linkage mechanism. As long as the DC motor is driven, the zoom lens barrel (3G, 5G) will be linked to the fixed groove track on the lens' and the focus lens group (4G) ) It is driven by another stepping motor, so the control mechanism of the zoom lens barrel and the focus lens group are separated separately, and the focus lens group is in the middle of the zoom lens barrel. At the same time, the zoom lens barrel needs to be monitored at any time. And the speed of both the focus lens group to avoid the collision of the focus lens group (4G) and the zoom lens barrel (3G, 5G). In addition, during the process of driving the focal lens group and zooming the lens barrel, when the focusing lens group is driven too fast or the zoom lens barrel is driven too slowly, the zoom lens barrel (3 (}, 5g) tracking focus lens group will occur ( In the case of 4G); conversely, when the focus group is driven too slowly, or when the zoom mirror is driven too fast, the focus lens group (4g) will collide with the zoom lens barrel (3G, 5G). For the above reasons, In this embodiment, it is necessary to continuously calculate and monitor the slope of the zoom lens barrel and the focus lens group during driving. To calculate the design value of the zoom lens barrel (3G, 5G) in FIG. 5, calculate the focus mirror group (4G) for driving. The driving curve of the time and the reference slope of the linkage between the two, wherein the relationship between the slopes of the linked reference is as follows: Scale the number of steps of the lens barrel - zoom the lens barrel, start the snippet group § the number of steps - focus ^ 201250330 linkage reference slope = Then, after starting the drive, in order to avoid collision during the operation, the present embodiment performs real-time monitoring in the following relationship: 'the number of target steps of the shrink tube_the zoom lens barrel', the target number of steps of the focus mirror group- The current number of steps in the focus group will be detailed below. The method for maintaining the interlocking slope without colliding during the interlocking process in the embodiment is described in detail. The process of driving the zoom lens barrel from expansion to storage is taken as an example to illustrate: 1. Firstly formulate the upper and lower limit slopes: the present embodiment uses the reference slope + -10% as the upper and lower limits. 2. Processing method when the upper limit slope is greater than: The zoom lens is relatively slow at this time. 'First stop the focus group or increase the voltage of the drive lens to accelerate to avoid the focus lens. The group chasing the zoom lens tube occurs. 3. The processing mode below the lower limit slope: This means that the zoom lens barrel is faster, and the focus lens group can be accelerated or reduced by the zoom lens driving voltage to decelerate to avoid scaling. The case where the lens barrel collides with the focus lens group occurs. 4. The process of storing the lens barrel from the storage end to the unfolding process is the reverse of the above situation, and therefore the above calculation method may be reversely processed. In the example, the range of SOHP is the relevant mechanism position from the storage state to the power-on state. Because the zoom lens barrel (3G, 5G) shares the drive source and is synchronously driven, 3G (inf-limit) and 5G (near-limit) The block is the movable range of the focusing mirror group (4G), and the focusing mirror group (4〇) needs to be activated in this interval when it is turned on and cannot collide with the zooming lens barrel (3G, 5G). Because of the 4G (focusing lens group) active field center The number of steps is not a simple and single-slope line segment, so the single slope of the proposed curve (as shown in Figure 4) is used as the driving method to simplify the control method and achieve the collision prevention effect. The above embodiment shows that the application The lens linkage anti-collision device and the method thereof of the disclosure, the linkage controller ensures the gap between the zoom lens barrel and the focus lens group during the interlocking process by the slope linkage, and the linkage controller monitors and calculates the first motor at any time and The slope value of the rotation speed of the second motor prevents the rotation speed of any of the motors from being too fast or too slow, so that the situation that the zoom lens barrel and the focus mirror group collide with each other can be effectively avoided. The present disclosure has been disclosed in the above embodiments, and is not intended to limit the scope of the disclosure, and thus, various modifications and refinements may be made without departing from the spirit and scope of the disclosure. The scope of the disclosure is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a functional block diagram of a lens interlocking anti-collision device according to an embodiment of the present disclosure. FIG. 2 is a functional block diagram of a lens linkage anti-collision device according to another embodiment of the present disclosure. FIG. 3 is a flow chart showing the steps of the lens interlocking collision avoidance method according to still another embodiment of the present disclosure. FIG. 4 is a diagram showing a slope relationship of an embodiment of the present disclosure. Fig. 5 is a view showing the relationship between the zoom lens barrel and the focus lens group in Fig. 4. [Main component symbol description] 13 201250330 100 : Lens interlocking anti-collision device 111 : Zoom lens barrel 120 : Drive module 122 : Second motor 200 : Lens interlocking anti-collision device 220 · Focus lens group 240 : Second motor 300 : Lens linkage anti-collision method 110: optical module 112: focusing lens group 121: first motor 130: linkage controller 210: zoom lens barrel 230: first motor 250: linkage controller 310-350: step 14

Claims (1)

201250330 七、申請專利範圍: 1. 一種鏡頭連動防撞裝置,包含: 一光學模組,包含: 一縮放鏡筒;以及 一對焦鏡組,位於該縮放鏡筒内; 一驅動模組,用以驅動該光學模組進行位移,該驅動 - 模組包含: 一第一馬達,用以驅動該縮放鏡筒進行軸向伸縮位 移;以及 一第二馬達,用以調整該對焦鏡組於該縮放鏡筒中 的位置;以及 一連動控制器,用以控制該第一馬達及該第二馬達彼 此連動,並控制該第一馬達之轉速正比於該第二馬達之轉 速,使該縮放鏡筒及該對焦鏡組於連動過程中不會相互碰 撞。 2. 如請求項1所述之鏡頭連動防撞裝置,其中該第一 馬達之轉速與該第二馬達之轉速成直線正比關係。 3. 如請求項2所述之鏡頭連動防撞裝置,其中該直線 正比關係的斜率為0.793。 4. 如請求項1所述之鏡頭連動防撞裝置,其中該第一 馬達驅動該縮放鏡筒之步數範圍為-876步至110步。 15 201250330 5.如請求項1所述之鏡頭連動防撞裝置,其中該第二 馬達驅動該對焦鏡組之步數範圍為_727步至512步。 6. —種鏡頭連動防撞裝置,包含: 一縮放鏡筒、一對焦鏡組、一第一馬達、一第二馬達 及一連動控制器,該對焦鏡組位於該縮放鏡筒内,該第一 馬達與該縮放鏡筒連接,並驅動該縮放鏡筒進行軸向伸縮 位移’該第二馬達與該對焦鏡組連接,並調整該對焦鏡組 於遠縮放鏡筒中的位置; 一馬 不會 其中,该連動控制器係用以控制該第一馬達及該第二 馬達彼此連動’並控制該第一馬達之轉速正比於該第 ’使該縮放鏡筒及該對焦鏡組於連動過程中 8.如請求項7 正比關係的斜率為 所述之鏡頭連動防撞裝置,其中該直線 0.793 〇 種鏡碩連動防撞方法,包含: 3^^ —馬達以驅動一縮放鏡筒進行軸向伸縮位 選定—筮_ . 〜馬達以調整一對焦鏡組於該縮放鏡筒中的 16 201250330 馬達及該 計算該縮放鏡筒追撞該對焦鏡組時,該第 第二馬達兩者轉速的一第一斜率值; =該對线組追撞該縮放鏡筒時,該第—馬達及該 第一馬達兩者轉速的一第二斜率值;以及 利用-連動控制器來控制該第一馬達及該第二馬達, 使兩者轉速的斜率值餅該第—斜率值及該第 間。 丁 10.如請求項9所述之鏡頭連動防撞方法,更包含: 控制該第-馬達驅動該縮放鏡筒之步數範圍為·876步 至110步,且控制該第二馬達驅動該對焦鏡組之步數範圍 為-727步至512步,進而使該第一馬達及該第二馬達 轉速的斜率為0.793。 17201250330 VII. Patent application scope: 1. A lens linkage anti-collision device comprising: an optical module comprising: a zoom lens barrel; and a focusing lens group located in the zoom lens barrel; a driving module for Driving the optical module to perform displacement, the driving module includes: a first motor for driving the zoom lens barrel for axial telescopic displacement; and a second motor for adjusting the focusing mirror group to the zoom lens a position in the cylinder; and a linkage controller for controlling the first motor and the second motor to interlock with each other, and controlling the rotation speed of the first motor to be proportional to the rotation speed of the second motor, so that the zoom lens barrel and the focus The mirror groups do not collide with each other during the interlocking process. 2. The lens linkage anti-collision device of claim 1, wherein the rotational speed of the first motor is linearly proportional to the rotational speed of the second motor. 3. The lens linkage anti-collision device of claim 2, wherein the slope of the straight-line relationship is 0.793. 4. The lens linkage anti-collision device of claim 1, wherein the step of driving the zoom lens barrel by the first motor ranges from -876 steps to 110 steps. The lens linkage anti-collision device of claim 1, wherein the second motor drives the focus lens group in the range of steps _727 to 512. 6. A lens linkage anti-collision device, comprising: a zoom lens barrel, a focusing lens group, a first motor, a second motor and a linkage controller, wherein the focusing lens group is located in the zoom lens barrel, the first a motor is coupled to the zoom lens barrel and drives the zoom lens barrel for axial telescopic displacement. The second motor is coupled to the focus lens group and adjusts the position of the focus lens group in the far-magnifying lens barrel; Wherein, the linkage controller is configured to control the first motor and the second motor to interlock with each other and control the rotation speed of the first motor to be proportional to the first portion to cause the zoom lens barrel and the focus lens group to be in a linkage process. The slope of the proportional relationship of the request item 7 is the lens interlocking anti-collision device, wherein the straight line 0.793 〇 硕 硕 硕 硕 , , , , , , , , 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Selecting - 筮 _ . ~ motor to adjust a focus lens group in the zoom lens barrel 16 201250330 motor and the calculation of the zoom lens barrel to chase the focus lens group, the second motor has a first slant Rate value; = a second slope value of the rotational speed of the first motor and the first motor when the pair of wires collides with the zoom lens barrel; and controlling the first motor and the first by using a linkage controller The two motors, the slope value of the two speeds, the first-slope value and the first interval. The lens linkage anti-collision method of claim 9, further comprising: controlling the number of steps of driving the zoom lens barrel by the first motor to be 876 steps to 110 steps, and controlling the second motor to drive the focus The number of steps of the mirror group ranges from -727 steps to 512 steps, so that the slope of the first motor and the second motor speed is 0.793. 17
TW100119266A 2011-06-01 2011-06-01 Collision-avoidance device and method thereof TWI463209B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100119266A TWI463209B (en) 2011-06-01 2011-06-01 Collision-avoidance device and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100119266A TWI463209B (en) 2011-06-01 2011-06-01 Collision-avoidance device and method thereof

Publications (2)

Publication Number Publication Date
TW201250330A true TW201250330A (en) 2012-12-16
TWI463209B TWI463209B (en) 2014-12-01

Family

ID=48139246

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100119266A TWI463209B (en) 2011-06-01 2011-06-01 Collision-avoidance device and method thereof

Country Status (1)

Country Link
TW (1) TWI463209B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI767066B (en) * 2018-09-28 2022-06-11 揚明光學股份有限公司 Lens device and method for fabricating the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4914227B2 (en) * 2007-01-16 2012-04-11 キヤノン株式会社 Optical device
TWI319097B (en) * 2007-01-19 2010-01-01 Ind Tech Res Inst Optical focusing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI767066B (en) * 2018-09-28 2022-06-11 揚明光學股份有限公司 Lens device and method for fabricating the same

Also Published As

Publication number Publication date
TWI463209B (en) 2014-12-01

Similar Documents

Publication Publication Date Title
US7777968B2 (en) Photographing lens driving control apparatus
US20150002725A1 (en) Image pickup apparatus and imaging method that perform focus action following zoom action
JP2008026712A (en) Imaging apparatus with a plurality of optical systems
US20060238882A1 (en) Imaging apparatus and driving method of its imaging optical system
JP2015011112A5 (en)
JP2008107556A (en) Stepping motor drive device, lens drive device and camera
JP5471120B2 (en) Photography lens drive control device and imaging device
US8654452B2 (en) Image pickup apparatus that drives plural lens units using motors different from each other and drive control method of lens
JP5010177B2 (en) Photography lens drive control device and imaging device
TW201250330A (en) Collision-avoidance device and method thereof
JP2007148075A (en) Lens driving device and lens driving method
US20130113986A1 (en) Lens Driving Device and Lens Driving Method Thereof
JP5574729B2 (en) LENS CONTROL DEVICE, ITS CONTROL METHOD, AND PROGRAM
JP4355972B2 (en) Imaging device
JP6581472B2 (en) Lens apparatus and imaging apparatus having the same
JP3216285B2 (en) Optical equipment
JP2013057751A (en) Lens unit, imaging device, control method, and computer program
JP5923870B2 (en) Optical system drive control device and camera equipped with the same
JP5020565B2 (en) Photography lens drive control device and imaging device
JP2017090724A (en) Optical device, imaging apparatus, control method, and program
JP2007058203A (en) Imaging apparatus including a plurality of optical systems
JP5574634B2 (en) Imaging apparatus and control method thereof
JP2006065033A (en) Optical equipment
JP2009086680A (en) Imaging apparatus
JP2006243204A (en) Lens drive device, imaging apparatus, lens drive method and recording medium on which this method is recorded

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees