TW201250294A - Wafer level lens module, wafer level multi-lenses light-sensitive module and manufacturing method thereof - Google Patents

Wafer level lens module, wafer level multi-lenses light-sensitive module and manufacturing method thereof Download PDF

Info

Publication number
TW201250294A
TW201250294A TW100120421A TW100120421A TW201250294A TW 201250294 A TW201250294 A TW 201250294A TW 100120421 A TW100120421 A TW 100120421A TW 100120421 A TW100120421 A TW 100120421A TW 201250294 A TW201250294 A TW 201250294A
Authority
TW
Taiwan
Prior art keywords
lens
focal length
lenses
module
wafer level
Prior art date
Application number
TW100120421A
Other languages
Chinese (zh)
Other versions
TWI444666B (en
Inventor
Wei-Zong Zuo
Original Assignee
Himax Tech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Himax Tech Ltd filed Critical Himax Tech Ltd
Priority to TW100120421A priority Critical patent/TWI444666B/en
Publication of TW201250294A publication Critical patent/TW201250294A/en
Application granted granted Critical
Publication of TWI444666B publication Critical patent/TWI444666B/en

Links

Landscapes

  • Lens Barrels (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

A wafer level lens module including a transparent substrate, at least a first lens and at least a second lens is provided. The first lens disposed on a surface of the transparent substrate has a first focusing distance. The second lens disposed on the surface of the substrate has a second focusing distance, wherein the second lens is adjacent to the corresponding first lens, and the first focusing distance and the second focusing distance are different. A wafer level multi-lenses light-sensitive module having the wafer level lens module and a manufacturing method thereof are also provided.

Description

201250294 六、發明說明: 【發明所屬之技術領域】 本發明是有關於-種透鏡模、组、感光模組及其製作方 法,且特別是有關於-種晶圓級透鏡模組、晶圓級多鏡頭 感光模組及其製作方法。 、 【先前技術】 隨著電子產品的模組微型化與低價化之趨勢,晶圓級 模組(Wafer Level Module,WLM )技術之出現備受關注。 晶圓級模組的技術主要是可將電子產品利d級的製造 技術,而將電子產品的體積微型化並降低成本。其中,晶 圓級模組的技術也可叹應用於製作鏡難組上,而使得 鏡頭模組在體積上雜傳統的_馳得以獲得縮減,進 而可應用在電子裝置(如筆記型電腦、手機等)的相機模 組上。 -般單鏡頭模組的行車記錄器僅能拍攝高廣角範圍, 難以記錄料事故時的前方車牌_。_,㈣行車紀 錄器配置有雙鏡頭功能,其中—鏡頭為廣鏡頭角,而另一 鏡頭則為長:#、長之鏡頭,以增力。拍攝車牌功能,但是行車 ^錄器所使用之雙鏡頭通常是使用-般手機的鏡頭’因此 體積上仍無法有效地降低,何況當採雙鏡頭之設計時,其 體積更疋倍增而無法有效地被縮小。 【發明内容】 201250294 積較種㈣級透鏡模組及其製作方法,其體 低的㈣成本與較制單製作步驟。 + 、提供—種晶81級多鏡頭感光模組的製作方 '法,其裝設有上述的晶圓級透鏡模組,而同 樣地具有上述優點。 、發明的一實施例提出一種晶圓級透鏡模組的製作 方法。首先’提供-透光基板。接著,於透光基板的一表 面上形成多個具有一第一焦距的第一透鏡。之後,於透光 基板的表面上形成多個具有一第二焦距的第二透鏡,且這 些第二透鏡分別與對應的這些第一透鏡彼此相鄰,其中第 一焦距與第二焦距不同。接著,切割透光基板,以形成至 少一透鏡模組’其中透鏡模組具有這些第一透鏡至少其一 與這些第二透鏡至少其一。 在本發明之一實施例中,晶圓級透鏡模組的製作方法 更包括覆蓋一遮光間隙層於透光基板的表面上,其中遮光 間隙層具有多個開口,且這些開口分別暴露出這些第一透 鏡與這些第二透鏡。 本發明的另一實施例提出一種晶圓級透鏡模組,其包 括一透光基板、至少一第一透鏡以及至少一第二透鏡。第 一透鏡配置於透光基板的一表面上,且第一透鏡具有一第 一焦距。第二透鏡配置於透光基板的表面上並具有一第二 焦距,其中第二透鏡分別與對應的第一透鏡彼此相鄰,且 第一焦距與第二焦距不同。 在本發明之一實施例中,晶圓級透鏡模組更包括一遮 201250294 光間隙層,配置於透光基板的表面上,其中遮光間隙層具 有多個開口,且這些開口分別暴露出至少一第一透鏡與至 少一第二透鏡。 本發明的再一實施例提出一種晶圓級多鏡頭感光模 組的製作方法。首先’提供一透光基板。接著,於透光基 板的一表面上形成多個具有一第一焦距的第一透鏡。然 後’於透光基板的表面上形成多個具有一第二焦距的第二 透鏡’且這些苐^一透叙分別與對應的這些第一透鏡彼此相 鄰’其中第一焦距與第二焦距不同。接著,切割透光基板, 以形成至少一透鏡模組,其中透鏡模組具有這些第一透鏡 至少其一與這些第二透鏡至少其一。之後,提供一具有多 個感光元件的感測基板’並將感測基板與透鏡模組連接, 以形成一多鏡頭感光模組’其中這些感光元件各自對應這 些第一透鏡至少其一與這些第二透鏡至少其一。 本發明的又一實施例提出一種晶圓級多鏡頭感光模 組,其包括一感測基板與一晶圓級透鏡模組。感測基板具 有多個感光元件,其中這些感光元件設置於感測基板的一 表面上。晶圓級透鏡模組配置於感測基板的表面上並與感 測基板連接,晶圓級透鏡模組包括一透光基板、至少一第 一透鏡以及至少一第二透鏡。第一透鏡配置於透光基板的 一表面上,且至少一第一透鏡具有一第一焦距。第二透鏡 配置於透光基板的表面上並具有一第二焦距,其中至少一 第二透鏡分別與對應的至少一第一透鏡彼此相鄰,且第一 焦距與第二焦距不同。另外,這些感光元件各自對應這些201250294 VI. Description of the Invention: [Technical Field] The present invention relates to a lens mold, a group, a photosensitive module and a manufacturing method thereof, and particularly relates to a wafer level lens module and a wafer level Multi-lens sensor module and its manufacturing method. [Prior Art] With the trend of miniaturization and low price of electronic products, the emergence of Wafer Level Module (WLM) technology has attracted much attention. The technology of the wafer level module is mainly to make the electronic product a d-level manufacturing technology, and to miniaturize the electronic product and reduce the cost. Among them, the technology of the wafer level module can also be applied to the production of the mirror difficult group, so that the lens module can be reduced in the traditional volume of the lens module, and thus can be applied to electronic devices (such as notebook computers, mobile phones). Etc.) on the camera module. The driving recorder of the single-lens module can only shoot a wide wide-angle range, and it is difficult to record the front license plate when the accident occurs. _, (4) The vehicle recorder is equipped with a dual lens function, in which the lens is a wide lens angle and the other lens is a long: #, long lens to increase the force. Shooting the license plate function, but the dual lens used in the driving recorder is usually a lens that uses a general-purpose mobile phone. Therefore, the volume cannot be effectively reduced. Moreover, when the design of the dual lens is adopted, the volume is more complicated and cannot be effectively Being shrunk. SUMMARY OF THE INVENTION 201250294 Accumulated (four)-level lens module and its manufacturing method, its low (four) cost and comparative production steps. +, providing - the production of the crystal 81-level multi-lens photosensitive module 'method, which is equipped with the above wafer level lens module, and has the same advantages. An embodiment of the invention provides a method of fabricating a wafer level lens module. First, a - transparent substrate is provided. Next, a plurality of first lenses having a first focal length are formed on a surface of the light-transmitting substrate. Thereafter, a plurality of second lenses having a second focal length are formed on the surface of the light transmissive substrate, and the second lenses are respectively adjacent to the corresponding first lenses, wherein the first focal length is different from the second focal length. Next, the light transmissive substrate is cut to form at least one lens module' wherein the lens module has at least one of the first lenses and at least one of the second lenses. In an embodiment of the present invention, the method for fabricating a wafer level lens module further includes covering a light-shielding gap layer on a surface of the light-transmitting substrate, wherein the light-shielding gap layer has a plurality of openings, and the openings respectively expose the first A lens and these second lenses. Another embodiment of the present invention provides a wafer level lens module including a light transmissive substrate, at least one first lens, and at least one second lens. The first lens is disposed on a surface of the light transmissive substrate, and the first lens has a first focal length. The second lens is disposed on the surface of the light transmissive substrate and has a second focal length, wherein the second lens and the corresponding first lens are respectively adjacent to each other, and the first focal length is different from the second focal length. In one embodiment of the present invention, the wafer level lens module further includes a masking layer of 20150294 disposed on the surface of the light transmissive substrate, wherein the light shielding gap layer has a plurality of openings, and the openings respectively expose at least one a first lens and at least one second lens. Still another embodiment of the present invention provides a method of fabricating a wafer level multi-lens photosensitive module. First, a transparent substrate is provided. Next, a plurality of first lenses having a first focal length are formed on a surface of the light-transmitting substrate. Then, a plurality of second lenses having a second focal length are formed on the surface of the light-transmitting substrate and the respective first lenses are adjacent to each other, wherein the first focal length is different from the second focal length . Then, the transparent substrate is cut to form at least one lens module, wherein the lens module has at least one of the first lenses and at least one of the second lenses. Thereafter, a sensing substrate having a plurality of photosensitive elements is provided, and the sensing substrate is coupled to the lens module to form a multi-lens photosensitive module, wherein each of the photosensitive elements corresponds to at least one of the first lenses At least one of the two lenses. Yet another embodiment of the present invention provides a wafer level multi-lens photosensitive module comprising a sensing substrate and a wafer level lens module. The sensing substrate has a plurality of photosensitive elements, wherein the photosensitive elements are disposed on a surface of the sensing substrate. The wafer level lens module is disposed on the surface of the sensing substrate and connected to the sensing substrate. The wafer level lens module comprises a light transmissive substrate, at least one first lens and at least one second lens. The first lens is disposed on a surface of the light transmissive substrate, and the at least one first lens has a first focal length. The second lens is disposed on the surface of the transparent substrate and has a second focal length, wherein the at least one second lens and the corresponding at least one first lens are respectively adjacent to each other, and the first focal length is different from the second focal length. In addition, these photosensitive elements each correspond to these

S 5 201250294 第一透鏡至少其一與這些第二透鏡至少其一。 在本發明之一實施例中,上述的晶圓級透鏡模組或晶 圓級多鏡頭感光模組更包括至少一第三透鏡,配置於透光 基板的表面上並具有一第三焦距,其中至少一第三透鏡與 對應的至少一第一透鏡及至少一第二透鏡彼此相鄰,且第 一焦距、第二焦距與第三焦距彼此不同。在本發明之一實 施例中’上述的晶圓級透鏡模組或晶圓級多鏡頭感光模組 更包括一遮光間隙層,配置於透光基板的表面上,其中遮 光間隙層具有多個開口 ’且這些開口分別暴露出至少一第 一透鏡、至少一第二透鏡與至少一第三透鏡。 基於上述’在本發明的上述實施例中’由於晶圓級透 鏡模組與多鏡頭感光模組是以利用晶圓級的製造技術進行 製作,因此晶圓級透鏡模組與多鏡頭感光模組之整體尺寸 將會大幅地被縮小。再者,由於具有不同焦距的透鏡係先 形成同一透光基板上再進行切割而成,因此可一次地形成 晶圓級透鏡模組,而無須分別切割不同焦距的透鏡後再將 這些透鏡進行組立。因此,採用上述製作方式將可有效地 而將晶圓級透鏡模組與多鏡頭感光模組的體積微型化並 時降低成本與步驟。 為讓本發明之上述特徵和優點能更明顯易懂,下文特 舉貫施例,並配合所附圖式作詳細說明如下。 【實施方式】 圖1A〜圖4A繪示本發明一實施例之晶圓級透鏡模組 ⑧ 6 201250294 的製作流程俯視圖,而圖1B〜圖4B分別對應於圖1A〜 圖4A之AA’線所繪示之晶圓級透鏡模組的製作流程剖示 圖。請同時參考圖1A與圖1B,首先,提供一透光基板 110 ’其中透光基板11〇具有一表面Si。在本實施例中, 透光基板110可以是一玻璃基板或是一透光塑膠基板,其 中本貫施例係以玻璃基板作為舉例說明,於其他實施例 中,透光基板110亦可以採用其他適當的透光材質。 接著’於透光基板110的表面S1上形成多個具有一 第一焦距的第一透鏡122,如圖2A與圖2B所示。在本 只加例中,形成第一透鏡122的方式可以是使用壓模製程 將一透光材料(未標示)點滴於透光基板11()的表面S1 上,並以模具下壓後曝光照射硬化’以形成如圖2a與圖 2B所示之第一透鏡122。另外,第一透鏡122可以是採 用如圖2B繪示的凸透鏡,其中此凸透鏡的凸面為背向透 光基板110的方向。然而’在其他未繪示的實施例中,第 一透鏡122也可採用凹透鏡的設計,此部分依使用者的需 求與設計而定。特別需要說明的是,第一透鏡122的第一 焦距可藉由控制每一滴於透光基板11〇上之透光材料的 液量來決定,或者是可透過控制第一透鏡122所形成的表 面曲率來決定。 之後’請繼續參考圖2A與圖2B,於透光基板110的 表面S1上形成多個具有一第二焦距的第二透鏡124,且 這些第二透鏡124分別與對應的這些第一透鏡122彼此相 鄰’其中第一焦距與第二焦距不同。在本實施例中,形成 201250294 第二透鏡124的方式可以採用前述形成第-透鏡122的方 法,需要特別注意的是,由於第二透鏡124的焦距與第一 透鏡上22的焦距不@,因此在形成第二透鏡124時,便需 控制每-滴於透光基板11G上之透光材料的液量會不同 於形成每一第一透鏡122所需之液量,或者也可透過將第 二透鏡124之表面曲率形成不同於第一透鏡122之表面曲 率0 值得一提的是,本實施例雖是以液滴透光材料於透光 基板110上的方式來形成具有不同焦距之第一透鏡122 與第二透鏡124,於其他實施例中,形成第一透鏡122與 第二透鏡124亦可採用其他可能的實施方式。舉例來說, 當透光基板110若採用透光塑膠材質時,則形成第一透鏡 122與第二透鏡124可採用模版沖壓或壓印的方式,如此 一來,透光基板110、第一透鏡122與第二透鏡124為一 體成型。 另外,為了提高第一透鏡122與第二透鏡124的成像 品質,以避免外在其他雜散光線進入第一透鏡122與第二 透鏡124内,因此,本實施例之晶圓級透鏡模組的製作方 法更可包括覆蓋一遮光間隙層132於透光基板110的表面 S1上,其中遮光間隙層132具有多個開口 132a,且這些開 口 132a分別暴露出這些第一透鏡122與這些第二透鏡 124,如圖3A與圖3B所示。在本實施例中,遮光間隙層 132的厚度H1需視第一透鏡122以及第二透鏡124所需的 焦距以及使用者的設計需求而定,其中遮光間隙層132之 S ⑧ 201250294 厚度HI需大於第一透鏡122及第二透鏡124之厚度,如 圖3A與圖3B所示。另外,遮光間隙層132的材質可選用 不易透光的材質,如:黑色膠f,如此,大部分的雜散光 ,可被遮擋,即影像光的雜訊便可獲得降低,從而可提高 第一透鏡122與第二透鏡124本身成像的訊雜比 (signal-t〇-n〇ise ratio, SNR)。 一接著,切割透光基板110,以形成如圖4A與圖4B所 緣不晶圓級透鏡模組100a,其中晶圓級透鏡模組驗 具有這些第一透鏡122至少其一與這些第二透鏡124至少 其…在本實施例中’切割透光基板11〇可以是沿如圖 ^與圖3B麟示之切割線L1進行切割,特別的是,本 只施例是以第-透鏡122與第二透鏡124兩兩為一袓進行 =作為舉舰明,但於其他實_巾,使用者亦可以是 ,數個第一透鏡122與複數個第二透鏡124作為-植,此 =份視乎使时的需賴設計喊,上述料舉例說明。 此便大致完成一種晶圓級透鏡模組的製作步驟。 =,本實施例亦提供—種晶圓級多鏡頭感光模組的 =方法’如圖5A〜圖5C所繪示。請分別參考圖从與 ’百先’提供一前述的晶圓級透鏡模組_鱼一且 152 ' 154 _1]基板14G ’其中本實施例 係=-透鏡m與第二透鏡124形成於透光基板ιι〇的 :表面S1、S2上作為舉例說明,但不限於此,其亦可為 的:示的實施形態。另外,晶圓級透鏡模組論 、面S2遇可以設置有另—遮光間隙層134,其中遮光間S 5 201250294 at least one of the first lenses and at least one of the second lenses. In one embodiment of the present invention, the wafer level lens module or the wafer level multi-lens photosensitive module further includes at least one third lens disposed on the surface of the light transmissive substrate and having a third focal length, wherein The at least one third lens and the corresponding at least one first lens and the at least one second lens are adjacent to each other, and the first focal length, the second focal length and the third focal length are different from each other. In one embodiment of the present invention, the wafer level lens module or the wafer level multi-lens photosensitive module further includes a light shielding gap layer disposed on the surface of the light transmissive substrate, wherein the light shielding gap layer has a plurality of openings And the openings respectively expose at least one first lens, at least one second lens and at least one third lens. Based on the above-mentioned 'in the above embodiment of the present invention', since the wafer level lens module and the multi-lens photosensitive module are fabricated by using wafer level manufacturing technology, the wafer level lens module and the multi-lens photosensitive module are used. The overall size will be greatly reduced. Furthermore, since lenses having different focal lengths are first formed on the same transparent substrate and then cut, the wafer level lens module can be formed at one time without separately cutting the lenses of different focal lengths and then arranging the lenses. . Therefore, the above fabrication method can effectively miniaturize the volume of the wafer level lens module and the multi-lens photosensitive module and reduce costs and steps. The above features and advantages of the present invention will become more apparent from the following description. 1A to 4A are plan views showing a manufacturing process of a wafer level lens module 8 6 201250294 according to an embodiment of the present invention, and FIGS. 1B to 4B respectively correspond to the AA' line of FIG. 1A to FIG. 4A. A cross-sectional view showing the fabrication process of the wafer level lens module. Referring to FIG. 1A and FIG. 1B simultaneously, firstly, a transparent substrate 110' is provided in which the transparent substrate 11A has a surface Si. In this embodiment, the transparent substrate 110 can be a glass substrate or a transparent plastic substrate. The present embodiment is exemplified by a glass substrate. In other embodiments, the transparent substrate 110 can also be used in other embodiments. Appropriate light transmission material. Then, a plurality of first lenses 122 having a first focal length are formed on the surface S1 of the light-transmitting substrate 110, as shown in Figs. 2A and 2B. In the present invention, the first lens 122 may be formed by using a stamping process to drop a light-transmitting material (not labeled) on the surface S1 of the light-transmitting substrate 11 (), and pressing the mold to expose the light. Hardened 'to form the first lens 122 as shown in Figures 2a and 2B. In addition, the first lens 122 may be a convex lens as shown in FIG. 2B, wherein the convex surface of the convex lens is a direction facing away from the light transmissive substrate 110. However, in other embodiments not shown, the first lens 122 can also be designed with a concave lens depending on the needs and design of the user. It should be noted that the first focal length of the first lens 122 can be determined by controlling the amount of liquid per drop of the light transmissive material on the transparent substrate 11 or by controlling the surface formed by the first lens 122. Curvature to decide. Then, referring to FIG. 2A and FIG. 2B, a plurality of second lenses 124 having a second focal length are formed on the surface S1 of the transparent substrate 110, and the second lenses 124 and the corresponding first lenses 122 are respectively associated with each other. Adjacent 'where the first focal length is different from the second focal length. In the embodiment, the method of forming the second lens 124 of the 201250294 may adopt the foregoing method of forming the first lens 122. It is particularly noted that since the focal length of the second lens 124 and the focal length of the first lens 22 are not @, When the second lens 124 is formed, it is necessary to control the amount of liquid per the light-transmitting material on the transparent substrate 11G to be different from the amount of liquid required to form each of the first lenses 122, or The surface curvature of the lens 124 is different from the surface curvature of the first lens 122. It is worth mentioning that, in this embodiment, the first lens having different focal lengths is formed by using the liquid droplet transparent material on the transparent substrate 110. 122 and the second lens 124. In other embodiments, the first lens 122 and the second lens 124 may be formed in other possible embodiments. For example, when the transparent substrate 110 is made of a transparent plastic material, the first lens 122 and the second lens 124 can be formed by stamping or embossing, so that the transparent substrate 110 and the first lens are formed. 122 is integrally formed with the second lens 124. In addition, in order to improve the imaging quality of the first lens 122 and the second lens 124 to prevent external stray light from entering the first lens 122 and the second lens 124, the wafer level lens module of the embodiment is The manufacturing method may further include covering a light-shielding gap layer 132 on the surface S1 of the transparent substrate 110, wherein the light-shielding gap layer 132 has a plurality of openings 132a, and the openings 132a respectively expose the first lens 122 and the second lenses 124. , as shown in Figures 3A and 3B. In the present embodiment, the thickness H1 of the light-shielding gap layer 132 depends on the focal length required by the first lens 122 and the second lens 124 and the design requirements of the user, wherein the thickness HI of the S 8 201250294 of the light-shielding gap layer 132 is greater than The thickness of the first lens 122 and the second lens 124 is as shown in FIGS. 3A and 3B. In addition, the material of the light-shielding gap layer 132 may be made of a material that is not easy to transmit light, such as black glue f. Thus, most of the stray light can be blocked, that is, the noise of the image light can be reduced, thereby improving the first The signal-t〇-n〇ise ratio (SNR) of the lens 122 and the second lens 124 itself is imaged. Then, the transparent substrate 110 is cut to form a wafer-level lens module 100a as shown in FIGS. 4A and 4B, wherein the wafer-level lens module has at least one of the first lenses 122 and the second lens. 124 at least... In the present embodiment, the 'cutting transparent substrate 11' may be cut along the cutting line L1 shown in FIG. 3 and FIG. 3B. In particular, the first embodiment is the first lens 122 and the first The two lenses 124 are performed one by one for the same as the one, but in other cases, the user may also have a plurality of first lenses 122 and a plurality of second lenses 124 as the implants. The design of the time is called by the design. This substantially completes the fabrication steps of a wafer level lens module. =, this embodiment also provides a method for the wafer level multi-lens photosensitive module = as shown in Figs. 5A to 5C. Please refer to the figure to provide a wafer-level lens module _ fish one and 152 ' 154 _1] substrate 14G from 'Bai Xian', wherein the present embodiment is - lens m and second lens 124 are formed in the light transmission The surface of the substrate: S1, S2 is exemplified, but is not limited thereto, and may be the embodiment shown. In addition, the wafer level lens module and the surface S2 may be provided with another light-shielding gap layer 134, wherein the light-shielding room

S 9 201250294 隙層134具有複數個開口 134a ’以暴露出位於表面S2上 的第一透鏡122與第二透鏡124。在本實施例中,遮光間 隙層134除了可具有前述遮光間隙層132所述之功效外, 其亦可作為後續晶圓級透鏡模組1 〇〇a與感測基板14〇進行 連接與支撐之用。 之後’將感測基板140與前述的透鏡模組1〇〇a連接, 如此則可形成一如圖5C所繪示之多鏡頭感光模組1〇〇b, 其中感光元件152、154各自對應第一透鏡122與第二透鏡 124,如圖5C所示。在本實施例中,感光元件152、154 可以是一互補金屬氧化物半導體(complemen&y metal oxide semiconductor,CMOS)感測器或一電荷耦合元件 (charge coupied devices,CCDs)。具體而言,由於第一透鏡 122與第二透鏡124各自具有不同焦距,因此多鏡頭感光 模組100b便可具有雙鏡頭之拍攝或攝像功能。舉例而言, 感光元件152搭配第一透鏡122時,則可感測廣角之影7象, 而另一搭配第二透鏡124所使用的感光元件154則可感測 近物之影像。也就是說,若本實施例之多鏡頭感光模組 1 〇 〇b應用於行車紀錄器時,便可同時拍攝兩種行車紀錄晝 面,一種晝面為車前方之整體狀況,如··車前方之車況; 而另一晝面則可為車前細部狀況,如:拍攝車牌功能。 另外’由於本實施例之多鏡頭感光模組1〇〇b是以利 用晶圓級的製造技術進行製作,因此多鏡頭感光模組1_ 之整體尺寸將會大幅地被縮小。再者,由於第一透鏡122 與第二透鏡124係先形成透光基板上再進行切割而成,因 201250294 此可一次地形成晶圓級透鏡模組100a,而無須分別切割第 .透鏡與第二透鏡後再進行組立。@此,制上述製作方 式將可有效地而將晶圓級透鏡模組1〇〇a與多鏡頭感光模 組100b的體積微型化並同時降低成本與步驟。 、值得一提的是,遮光間隙層134的厚度112需搭配第 、透叙‘122與第二透鏡124之整體焦距,如此才可使第一 透鏡122與第二透鏡124可分別順利成像於感光元件 152 、 154 。 “士圖6A〜圖6D為本發明另一實施例之晶圓級多鏡頭感 光模’、且的製作流程局部剖示圖。請參考圖6a,首先可於前 述的透光基板110的表面S卜S2上分別形成一第一透鏡 222、一第二透鏡224與一第三透鏡226。在本實施例中, 形成第一透鏡222、第二透鏡224與第三透鏡220的方式 可參考前述形成第一透鏡222與第二透鏡224的製作方 法,在此不再贅述。特別的是,本實施例之第一透鏡222、 第二透鏡224與第三透鏡226分別具有不同的第一焦距、 第二焦距與第三焦距。 … 類似地,為了提向弟一透鏡222、第二透鏡224與第 三透鏡226的成像品質,以避免外在其他雜散光線進入第 一透鏡222、第二透鏡224與第三透鏡226内,因此,本 實施例之晶圓級透鏡模組的製作方法更可包括分別覆蓋遮 光間隙層232、234於透光基板11〇的表面S1、幻上,其 中遮光間隙層232、234各自具有多個開口 232a、234a, 且這些開口 232a、234a分別暴露出第一透鏡I)〕與第二透 11 201250294 鏡124’如圖6B所繪示。在本實施例中’遮光間隙層232、 234的厚度H1需視第一透鏡222、第二透鏡224與第三透 鏡226所需的焦距以及使用者的設計需求而定,其中遮光 間隙層232、234之厚度H1需大於第一透鏡222、第二透 鏡224與第三透鏡226之厚度,如圖6B所示。另外,遮 光間隙層232、234的材質主要是選用不易透光的材質, 如:黑色膠質,如此’大部分的雜散光便可被遮擋,即影 像光的雜訊便可獲得降低,從而可提高第一透鏡222、第 二透鏡224與第三透鏡226本身成像的訊雜比 (signal-to-noise ratio, SNR)。 接著’切割透光基板110,以形成如圖6C所繪示之 晶圓級透鏡模組200a ’其中晶圓級透鏡模組2〇〇a具有第 一透鏡222、第二透鏡224與第三透鏡226。在本實施例中, 切割透光基板110亦可沿前述的切割線進行切割,不 同的是,本實施例是以第一透鏡222、第二透鏡224與第 二透鏡226三個為一組進行切割作為舉例說明,但於其他 實施例中,使用者亦可以是複數個第一透鏡222、複數個 第二透鏡224與複數個第三透鏡226作為一組,此部份視 乎使用者的需求與設計而定,上述僅為舉例說明。至此便 大致完成一種晶圓級透鏡模組200a的製作步驟。 之後’將前述的透鏡模組200a連接至具有複數個感 光元件252、254、256的一感測基板240上,如此則可形 成一如圖6D所繪示之多鏡頭感光模組2〇〇b,其中感光^ 件252、254、256各自對應第一透鏡222、第二透鏡224 12 201250294 與弟二透鏡226 ’如圖6D所示。在本實施例中,由於第一 透鏡222、第二透鏡224與第三透鏡226各自具有不同焦 距,因此多鏡頭感光模組200b便可具有三鏡頭之拍攝或攝 像功能。也就是說,若本實施例之多鏡頭感光模組2〇〇b 應用於行車紀錄器時,便可同時拍攝三種行車紀錄晝面, 一種晝面為車前方之廣角影像,如:拍攝範圍與角度最大 之車況;一種為車前方之中段距離之影像晝面,如:車前 之單一車況;而另一晝面則可為車前細部狀況,如:拍攝 前方車牌功能。 類似地’由於本實施例之多鏡頭感光模組2〇〇b是以 利用晶圓級的製造技術進行製作,因此多鏡頭感光模組 200b之整體尺寸將會大幅地被縮小。再者,由於第一透鏡 222、第二透鏡224與第三透鏡226係先形成透光基板110 上再進行切割而成,因此可一次地形成晶圓級透鏡模組 200a,而無須分別切割第一透鏡222、第二透鏡224與第 二透鏡226後再進行組立。因此,採用上述製作方式將可 有效地而將晶圓級透鏡模組2〇〇a與多鏡頭感光模組2〇〇b 的體積微型化並同時降低成本與步驟。 ,得一提的是,遮光間隙層234的厚度H2需搭配第 一透鏡222、第二透鏡224與第三透鏡226之整體焦距, 如此才可使第-透鏡222、第二透鏡224與第三透鏡226 可为別順利成像於感光元件252、254、256。此外,本實 施例是以遮糾隙層134、234直接地接觸感測基板刚、 240為舉例說明,如圖5C與圖6D所示,但不限於此。於 £ 13 201250294 製程實務上’感測基板140、240與遮光間隙層134、234 亦可設置有一覆蓋玻璃’以避免及保護透鏡122、124、 222、224、226與感測基板140、240上的感測元件152、 154、252、254、256 碰撞到。 表?;上所述’在本發明的上述實施例中’由於晶圓級透 鏡模組與多鏡頭感光模組是以利用晶圓級的製造技術進行 製作,因此晶圓級透鏡模組與多鏡頭感光模組之整體尺寸 將會大幅地被縮小。再者,由於具有不同焦距的透鏡係先 形成同一透光基板上再進行切割而成,因此可一次地形成 晶圓級透鏡模組,而無須分別切割不同焦距的透鏡後再將 這些透鏡進行組立。因此,採用上述製作方式將可有效地 而將晶圓級透鏡模組與多鏡頭感光模組的體積微型化並同 時降低成本與步驟。 雖然本發明已以實施例揭露如上,然其並非用以限定 本發明,任何所屬技術領域中具有通常知識者,在不脫離 本發明之精神和範圍内,當可作些許之更動與潤飾,故本 發明之保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 圖1A〜圖4A繪示本發明一實施例之晶圓級透鏡模組 的製作流程俯視圖。 一圖1B〜圖4B分別對應於圖1A〜圖4八之八八,線所繪 示之晶圓級透鏡模組的製作流程剖示圖。 圖5A〜圖5C繪示本發明一實施例之晶圓級多鏡頭感 201250294 光模組的製作流程剖示圖。 圖6A〜圖6D為本發明另一實施例之晶圓級多鏡頭感 光模組的製作流程局部剖示圖。 【主要元件符號說明】 100a、200a:晶圓級透鏡模組 100b、200b多鏡頭感光模組 110 :透光基板 122、222 :第一透鏡 124、224 :第二透鏡 132、134、232、234 :遮光間隙層 132a、134a、232a、234a :開口 140、240 :感測基板 152、154、252、254、256 :感光元件 226 :第三透鏡 SI、S2 :表面 HI、H2 :厚度 L1 :切割線 15The S 9 201250294 gap layer 134 has a plurality of openings 134a' to expose the first lens 122 and the second lens 124 on the surface S2. In the embodiment, the light-shielding gap layer 134 can be connected and supported as the subsequent wafer-level lens module 1 〇〇a and the sensing substrate 14 除了 in addition to the above-mentioned functions of the light-shielding gap layer 132. use. Then, the sensing substrate 140 is connected to the lens module 1A, so that a multi-lens photosensitive module 1b can be formed as shown in FIG. 5C, wherein the photosensitive elements 152 and 154 respectively correspond to the first A lens 122 and a second lens 124 are shown in Figure 5C. In this embodiment, the photosensitive elements 152, 154 may be a Complement Men & y metal oxide semiconductor (CMOS) sensor or a charge coupled device (CCDs). Specifically, since the first lens 122 and the second lens 124 each have different focal lengths, the multi-lens photosensitive module 100b can have a dual lens shooting or imaging function. For example, when the photosensitive element 152 is combined with the first lens 122, the wide-angle image 7 can be sensed, and the other photosensitive element 154 used with the second lens 124 can sense the image of the near object. That is to say, if the multi-lens photosensitive module 1 〇〇b of the embodiment is applied to the driving recorder, two driving records can be simultaneously photographed, and a kneading surface is the overall condition of the front of the vehicle, such as a car. The front of the car; the other side of the car can be the details of the front of the car, such as: shooting license plate function. Further, since the multi-lens photosensitive module 1b of the present embodiment is fabricated using wafer level manufacturing technology, the overall size of the multi-lens photosensitive module 1_ will be greatly reduced. Furthermore, since the first lens 122 and the second lens 124 are formed on the light-transmissive substrate and then cut, the wafer-level lens module 100a can be formed at one time by the 201250294, without separately cutting the lens and the first lens. After the two lenses are assembled. @本, The above fabrication method will effectively miniaturize the volume of the wafer level lens module 1A and the multi-lens photosensitive module 100b while reducing costs and steps. It is worth mentioning that the thickness 112 of the light-shielding gap layer 134 needs to match the overall focal length of the first and second lenses 124, so that the first lens 122 and the second lens 124 can be smoothly imaged respectively. Elements 152, 154. FIG. 6A to FIG. 6D are partial cross-sectional views showing a fabrication process of a wafer-level multi-lens photosensitive mode according to another embodiment of the present invention. Referring to FIG. 6a, firstly, the surface S of the transparent substrate 110 may be used. A first lens 222, a second lens 224 and a third lens 226 are respectively formed on the S2. In this embodiment, the manner of forming the first lens 222, the second lens 224 and the third lens 220 can be formed by referring to the foregoing. The first lens 222 and the second lens 226 of the present embodiment have different first focal lengths, respectively. The second focal length and the third focal length. Similarly, in order to improve the imaging quality of the second lens 222, the second lens 224 and the third lens 226, other external stray light is prevented from entering the first lens 222 and the second lens 224. In the third lens 226, the method for fabricating the wafer level lens module of the present embodiment may further include covering the surface of the light-shielding gap layer 232, 234 on the surface S1 of the transparent substrate 11 , respectively, wherein the light-shielding gap layer 232, 234 each have multiple openings Ports 232a, 234a, and these openings 232a, 234a respectively expose the first lens I) and the second through 11 201250294 mirror 124' as shown in Fig. 6B. In the present embodiment, the thickness of the light-shielding gap layers 232, 234 H1 depends on the focal length required by the first lens 222, the second lens 224 and the third lens 226, and the design requirements of the user, wherein the thickness H1 of the light-shielding gap layers 232, 234 needs to be larger than the first lens 222 and the second lens. The thickness of the 224 and the third lens 226 is as shown in Fig. 6B. In addition, the material of the light-shielding gap layer 232, 234 is mainly made of a material that is not easy to transmit light, such as black gelatin, so that most of the stray light can be blocked. That is, the noise of the image light can be reduced, so that the signal-to-noise ratio (SNR) of the first lens 222, the second lens 224, and the third lens 226 itself can be improved. The light substrate 110 is formed to form a wafer level lens module 200a as shown in FIG. 6C. The wafer level lens module 2A has a first lens 222, a second lens 224 and a third lens 226. In an embodiment, cutting the transparent substrate 110 may also be along the foregoing The cutting line is cut. The difference is that the first lens 222, the second lens 224 and the second lens 226 are cut as a group. However, in other embodiments, the user can also The plurality of first lenses 222, the plurality of second lenses 224, and the plurality of third lenses 226 are grouped according to the needs and design of the user, and the above is merely an example. The fabrication steps of the wafer level lens module 200a. Then, the lens module 200a is connected to a sensing substrate 240 having a plurality of photosensitive elements 252, 254, and 256, so that a multi-lens photosensitive module 2b can be formed as shown in FIG. 6D. The photosensitive members 252, 254, 256 respectively correspond to the first lens 222, the second lens 224 12 201250294 and the second lens 226' as shown in FIG. 6D. In this embodiment, since the first lens 222, the second lens 224, and the third lens 226 each have different focal lengths, the multi-lens photosensitive module 200b can have a three-lens shooting or imaging function. In other words, if the multi-lens photosensitive module 2〇〇b of the embodiment is applied to the driving recorder, three types of driving records can be simultaneously photographed, and a wide-angle image of the front side of the vehicle, such as the shooting range and The angle of the car is the most angled; one is the image of the middle of the car in front of the distance, such as: a single car in front of the car; the other side can be the front of the car, such as: shooting the front license plate function. Similarly, since the multi-lens photosensitive module 2〇〇b of the present embodiment is fabricated using wafer level manufacturing techniques, the overall size of the multi-lens photosensitive module 200b will be greatly reduced. Furthermore, since the first lens 222, the second lens 224, and the third lens 226 are formed by first forming the transparent substrate 110, the wafer level lens module 200a can be formed at one time without separately cutting the first lens 222. A lens 222, a second lens 224, and a second lens 226 are then assembled. Therefore, the above fabrication method can effectively miniaturize the volume of the wafer level lens module 2A and the multi-lens sensor module 2B, while reducing costs and steps. It should be noted that the thickness H2 of the light-shielding gap layer 234 needs to match the overall focal length of the first lens 222, the second lens 224 and the third lens 226, so that the first lens 222, the second lens 224 and the third lens can be made. The lens 226 can be smoothly imaged on the photosensitive elements 252, 254, 256. In addition, in this embodiment, the masking layer 134, 234 is directly contacted with the sensing substrate, 240 as an example, as shown in FIG. 5C and FIG. 6D, but is not limited thereto. The processing substrate 140, 240 and the light-shielding gap layers 134, 234 may also be provided with a cover glass to avoid and protect the lenses 122, 124, 222, 224, 226 and the sensing substrates 140, 240. The sensing elements 152, 154, 252, 254, 256 collide. In the above embodiment of the present invention, since the wafer level lens module and the multi-lens photosensitive module are fabricated by using wafer level manufacturing technology, the wafer level lens module is more The overall size of the lens sensor module will be greatly reduced. Furthermore, since lenses having different focal lengths are first formed on the same transparent substrate and then cut, the wafer level lens module can be formed at one time without separately cutting the lenses of different focal lengths and then arranging the lenses. . Therefore, the above fabrication method can effectively miniaturize the volume of the wafer level lens module and the multi-lens photosensitive module while reducing costs and steps. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A to FIG. 4A are plan views showing a manufacturing process of a wafer level lens module according to an embodiment of the present invention. 1B to 4B respectively correspond to the manufacturing flow cross-sectional view of the wafer level lens module shown in Fig. 1A to Fig. 8-8. 5A-5C are cross-sectional views showing a manufacturing process of a wafer-level multi-lens 201250294 optical module according to an embodiment of the invention. 6A to 6D are partial cross-sectional views showing a manufacturing process of a wafer level multi-lens light sensing module according to another embodiment of the present invention. [Main component symbol description] 100a, 200a: wafer level lens module 100b, 200b multi-lens photosensitive module 110: transparent substrate 122, 222: first lens 124, 224: second lens 132, 134, 232, 234 : light-shielding gap layers 132a, 134a, 232a, 234a: openings 140, 240: sensing substrates 152, 154, 252, 254, 256: photosensitive element 226: third lens SI, S2: surface HI, H2: thickness L1: cutting Line 15

Claims (1)

201250294 七、申請專利範圍: I 一種晶圓級透鏡模組的製作方法,包括: 提供一透光基板; 於該透光基板的一表面上形成多個具有一第一焦距 的第一透鏡; 於該透光基板的該表面上形成多個具有一第二焦距 的第二透鏡,且該些第二透鏡分別與對應的該些第一透鏡 彼此相鄰’其中該第一焦距與該第二焦距不同;以及 切割該透光基板,以形成至少一透鏡模組,其中該透 鏡模組具有該些第一透鏡至少其一與該些第二透鏡至少 其一。 2·如申請專利範圍第1項所述之晶圓級透鏡模組的 製作方法,更包括: 覆蓋一遮光間隙層於該透光基板的該表面上,其中該 遮光間隙層具有多個開口,且該些開口分別暴露出該此 一透鏡與該些第二透鏡。 3·如申請專利範圍第1項所述之晶圓級 製作方法,m 續鏡模組的 於該透光基板的該表面上形成多個具有〜+ 的第三透鏡,且該些第三透鏡分別與對應的讀此1二焦距 及該些第二透鏡彼此相鄰,其中該第一焦矩二ς第一透鏡 與該第三焦距彼此不同。 λ第〜焦距 4.如申請專利範圍第3項所述之晶圓級 製作方法,更包括: 遂鏡模組的 16 201250294 覆蓋一遮光間隙層於該透光基板的該表面上,其中該 遮光間隙層具有多個開口,且該些開口分別暴露出該些第 一透鏡、該些第二透鏡與該些第三透鏡。 5· 一種晶圓級透鏡模組,包括: 一透光基板; 至少一第一透鏡,配置於該透光基板的一表面上,且 該至少一第一透鏡具有一第一焦距;以及 至少一第二透鏡’配置於該透光基板的該表面上並具 有一第二焦距’其中該至少一第二透鏡分別與對應的該至 少一第一透鏡彼此相鄰,且該第一焦距與該第二焦距不 同。 6. 如申請專利範圍第5項所述之晶圓級透鏡模組, 更包括: 一遮光間隙層,配置於該透光基板的該表面上,其中 該遮光間隙層具有多個開口,且該些開口分別暴露出該至 少一第一透鏡與該至少一第二透鏡。 7. 如申請專利範圍第5項所述之晶圓級透鏡模組, 更包括: 至少一第三透鏡’配置於該透光基板的該表面上並具 有一第三焦距’其中該至少一第三透鏡與對應的該至少一 第一透鏡及該至少—第二透鏡彼此相鄰,且該第一焦距、 該第二焦距與該第三焦距彼此不同。 8. 如申請專利範圍第7項所述之晶圓級透鏡模組, 更包括: S 17 201250294 一遮光間隙層’配置於該透光基板的該表面上,其中 該遮光間隙層具有多個開口,且該些開口分別暴露出^至 少一第一透鏡、該至少一第二透鏡與該至少—第三透# 9. 一種晶圓級多鏡頭感光模組的製作方法,包括· 提供一透光基板; 於該透光基板的一表面上形成多個具有—第—焦距 的第一透鏡; 於該透光基板的該表面上形成多個具有一第二焦距 的第一透鏡’且該些第二透鏡分別與對應的該些第一透於 彼此相鄰’其中該第一焦距與該第二焦距不同; 兄 切割該透光基板,以形成至少一透鏡模組,其中該 鏡模組具有該些第一透鏡至少其一與該些第二透铲、 其一; 、兄 提供一具有多個感光元件的感測基板並將該感測基 板與該透鏡模組連接,以形成一多鏡頭感光模組,其中^ 些感光元件各自對應該些第一透鏡至少其—與該^二 透鏡至少其一。 —— 10. —種晶圓級多鏡頭感光模組,包括: 一感測基板,具有多個感光元件,其中該些感光元件 設置於該感測基板的一表面上; 一晶圓級透鏡模組’配置於該感測基板的該表面上並 與感測基板連接,該晶圓級透鏡模組包括: 一透光基板; 至少一第一透鏡,配置於該透光基板的一表面201250294 VII. Patent application scope: I A method for fabricating a wafer level lens module, comprising: providing a transparent substrate; forming a plurality of first lenses having a first focal length on a surface of the transparent substrate; a plurality of second lenses having a second focal length are formed on the surface of the transparent substrate, and the second lenses are adjacent to the corresponding first lenses respectively, wherein the first focal length and the second focal length And dicing the light-transmissive substrate to form at least one lens module, wherein the lens module has at least one of the first lenses and at least one of the second lenses. The method for fabricating a wafer level lens module according to claim 1, further comprising: covering a light shielding gap layer on the surface of the light transmissive substrate, wherein the light shielding gap layer has a plurality of openings, And the openings respectively expose the lens and the second lenses. 3. The wafer level manufacturing method according to claim 1, wherein the m-continuation module forms a plurality of third lenses having 〜+ on the surface of the transparent substrate, and the third lenses And reading the first two focal lengths and the second lenses are adjacent to each other, wherein the first focal length and the third focal length are different from each other. Λ-to-focal length 4. The wafer-level manufacturing method according to claim 3, further comprising: a mirror module 16 201250294 covering a light-shielding gap layer on the surface of the light-transmitting substrate, wherein the shading The gap layer has a plurality of openings, and the openings respectively expose the first lenses, the second lenses, and the third lenses. A wafer level lens module, comprising: a light transmissive substrate; at least one first lens disposed on a surface of the light transmissive substrate, wherein the at least one first lens has a first focal length; and at least one The second lens ′ is disposed on the surface of the transparent substrate and has a second focal length ′ wherein the at least one second lens and the corresponding at least one first lens are adjacent to each other, and the first focal length and the first The two focal lengths are different. 6. The wafer level lens module of claim 5, further comprising: a light shielding gap layer disposed on the surface of the light transmissive substrate, wherein the light shielding gap layer has a plurality of openings, and the The openings respectively expose the at least one first lens and the at least one second lens. 7. The wafer level lens module of claim 5, further comprising: at least one third lens disposed on the surface of the light transmissive substrate and having a third focal length 'where the at least one The three lenses and the corresponding at least one first lens and the at least second lens are adjacent to each other, and the first focal length, the second focal length and the third focal length are different from each other. 8. The wafer level lens module of claim 7, further comprising: S 17 201250294 a light shielding gap layer disposed on the surface of the light transmissive substrate, wherein the light shielding gap layer has a plurality of openings And the openings respectively expose at least one first lens, the at least one second lens, and the at least one third lens. The manufacturing method of the wafer level multi-lens photosensitive module comprises: providing a light transmission Forming a plurality of first lenses having a first focal length on a surface of the transparent substrate; forming a plurality of first lenses having a second focal length on the surface of the transparent substrate; and the plurality of The two lenses are respectively adjacent to the corresponding first throughs, wherein the first focal length is different from the second focal length; the brother cuts the transparent substrate to form at least one lens module, wherein the mirror module has the At least one of the first lenses and the second shovel, one of the brothers, provides a sensing substrate having a plurality of photosensitive elements and connects the sensing substrate to the lens module to form a multi-lens sensing Module, where ^ The photosensitive elements each correspond to at least one of the first lenses and at least one of the two lenses. 1-10. A wafer level multi-lens photosensitive module, comprising: a sensing substrate having a plurality of photosensitive elements, wherein the photosensitive elements are disposed on a surface of the sensing substrate; a wafer level lens mold The group is disposed on the surface of the sensing substrate and connected to the sensing substrate, the wafer level lens module includes: a transparent substrate; at least one first lens disposed on a surface of the transparent substrate 18 201250294 上,且該至少一第一透鏡具有一第一焦距;以及 至少一第二透鏡,配置於該透光基板的該表面上 並具有一第二焦距,其中該至少一第二透鏡分別與對 應的該至少一第一透鏡彼此相鄰,且該第一焦距與該 第二焦距不同, 其中該些感光元件各自對應該些第一透鏡至少 其一與該些第二透鏡至少其一。 11. 如申請專利範圍第10項所述之晶圓級多鏡頭感光 模組,更包括: 一遮光間隙層,配置於該透光基板的該表面上,其中 該遮光間隙層具有多個開口,且該些開口分別暴露出該至 少一第一透鏡與該至少一第二透鏡。 12. 如申請專利範圍第10項所述之晶圓級多鏡頭感光 模組,更包括: 至少一第三透鏡,配置於該透光基板的該表面上並具 有一第三焦距,其中該至少一第三透鏡與對應的該至少一 第一透鏡及該至少一第二透鏡彼此相鄰,且該第一焦距、 該第二焦距與該第三焦距彼此不同。 13. 如申請專利範圍第12項所述之晶圓級多鏡頭感光 模組,更包括: 一遮光間隙層,配置於該透光基板的該表面上,其中 該遮光間隙層具有多個開口,且該些開口分別暴露出該至 少一第一透鏡、該至少一第二透鏡與該至少一第三透鏡。 1918 201250294, and the at least one first lens has a first focal length; and at least one second lens is disposed on the surface of the transparent substrate and has a second focal length, wherein the at least one second lens respectively The at least one first lens is adjacent to each other, and the first focal length is different from the second focal length, wherein the photosensitive elements respectively correspond to at least one of the first lenses and at least one of the second lenses. 11. The wafer level multi-lens photosensitive module of claim 10, further comprising: a light-shielding gap layer disposed on the surface of the light-transmitting substrate, wherein the light-shielding gap layer has a plurality of openings, And the openings respectively expose the at least one first lens and the at least one second lens. 12. The wafer level multi-lens photosensitive module of claim 10, further comprising: at least one third lens disposed on the surface of the transparent substrate and having a third focal length, wherein the at least A third lens and the corresponding at least one first lens and the at least one second lens are adjacent to each other, and the first focal length, the second focal length and the third focal length are different from each other. 13. The wafer level multi-lens photosensitive module of claim 12, further comprising: a light-shielding gap layer disposed on the surface of the light-transmitting substrate, wherein the light-shielding gap layer has a plurality of openings, And the openings respectively expose the at least one first lens, the at least one second lens and the at least one third lens. 19
TW100120421A 2011-06-10 2011-06-10 Wafer level lens module, wafer level multi-lenses light-sensitive module and manufacturing method thereof TWI444666B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100120421A TWI444666B (en) 2011-06-10 2011-06-10 Wafer level lens module, wafer level multi-lenses light-sensitive module and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100120421A TWI444666B (en) 2011-06-10 2011-06-10 Wafer level lens module, wafer level multi-lenses light-sensitive module and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201250294A true TW201250294A (en) 2012-12-16
TWI444666B TWI444666B (en) 2014-07-11

Family

ID=48139239

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100120421A TWI444666B (en) 2011-06-10 2011-06-10 Wafer level lens module, wafer level multi-lenses light-sensitive module and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI444666B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI493220B (en) * 2013-05-08 2015-07-21 Omnivision Tech Inc Five-aspheric-surface wafer-level lens systems and lens systems having wide viewing angle
CN111106139A (en) * 2019-11-22 2020-05-05 深圳阜时科技有限公司 Optical integrated device
CN111106138A (en) * 2019-11-22 2020-05-05 深圳阜时科技有限公司 Optical sensing device and electronic apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI493220B (en) * 2013-05-08 2015-07-21 Omnivision Tech Inc Five-aspheric-surface wafer-level lens systems and lens systems having wide viewing angle
CN111106139A (en) * 2019-11-22 2020-05-05 深圳阜时科技有限公司 Optical integrated device
CN111106138A (en) * 2019-11-22 2020-05-05 深圳阜时科技有限公司 Optical sensing device and electronic apparatus

Also Published As

Publication number Publication date
TWI444666B (en) 2014-07-11

Similar Documents

Publication Publication Date Title
US8837060B2 (en) Image capture lens module and wafer level packaged image capture devices
EP2390702A1 (en) Camera module and fabrication method thereof
US8837057B2 (en) Optical unit, method of producing the same, and image pickup apparatus
JP2011128355A (en) Imaging lens, camera module using imaging lens, manufacturing method of imaging lens, and manufacturing method of camera module
JP2007108614A (en) Photographic optical system, photographic lens unit, and camera
JP2010224540A (en) Small image capturing lens
US7894143B2 (en) Image capture lens
US7876511B2 (en) Subminiature imaging optical system
TW201250294A (en) Wafer level lens module, wafer level multi-lenses light-sensitive module and manufacturing method thereof
EP1487020A2 (en) Image sensor and manufacturing method of image sensor
JP2004140426A (en) Solid-state imaging apparatus
JP2020027287A (en) Lens module
US11994736B2 (en) Imaging lens assembly, image capturing device and electronic device
WO2010143458A1 (en) Image pickup lens and image pickup device
WO2012124443A1 (en) Antireflection tape, wafer-level lens, and imaging device
US20110150449A1 (en) Optical zoom system
TW201518777A (en) Lens array, lens array stack, and method for fabrication thereof
TW201235725A (en) Lens assembly
TWI418871B (en) Lens module and fabrication method thereof
TWI362562B (en) Aperture and method
TWI421612B (en) Optical zoom system
JP2005250089A (en) Imaging lens and manufacturing method of the lens
CN102854549B (en) Wafer-level lens module and wafer-level multi-lens photo-sensing module and manufacturing method thereof
JP5436890B2 (en) Lens unit, lens module, camera module, and electronic device
JP2008211758A (en) Imaging module, manufacturing method of lens for image sensor, and camera