201249972 六、發明說明 【發明所屬之技術領域】 本發明係有關爲去除於半導體元件製造步驟中,於乾 蝕刻及/或灰化時所形成之殘渣之藥液,以及使用該藥液 而去除該等殘渣之半導體元件製造方法。特別係關於使用 於Cu/low-k多層配線構造之製造時之殘渣去除液。 【先前技術】 過去,係使用以A1或A1合金等做爲配線材料,Si02 膜爲層間絕緣膜之Al/ Si02多層配線構造之半導體元件 爲中心而進行製作。近年來伴隨半導體元件之微細化爲減 低配線延遲’大多製作以使用低電阻値之配線材料Cu, 與配線間容量小之層間絕緣膜l〇w-k膜(低介電率膜)之Cu /low-k多層配線構造。 於Cu/ low-k多層配線構造,以稱作鑲嵌結構之方法 進行加工。以該加工方法,可於層間絕緣膜基板上進行溝 (槽溝)及洞(導孔)之加工,於該加工部份埋入Cu等配線 材料而形成配線構造。 進而於稱作雙鑲嵌結構之方法中,將配線用之槽溝及 導孔以low-k膜等所形成之層間絕緣膜基板相連而形成, 其後’再埋入Cu等配線材料。於形成雙鑲嵌結構時,有 先形成導孔之後再形成配線用之槽溝之先蝕刻導孔製程, 及以與前述相反順序先形成配線用之槽溝後,再形成導孔 之Trench First製程’及其他的Middle First製程及Dual 201249972201249972 6. Technical Field [Technical Field] The present invention relates to a chemical solution for removing residue formed during dry etching and/or ashing in a semiconductor device manufacturing step, and using the chemical liquid to remove the chemical liquid A method of manufacturing a semiconductor component such as a residue. In particular, it relates to a residue removing liquid used in the production of a Cu/low-k multilayer wiring structure. [Prior Art] In the past, a semiconductor device having an Al/SiO2 multilayer wiring structure in which an SiO 2 film is an interlayer insulating film is used as a wiring material, such as A1 or Al alloy. In recent years, in order to reduce the wiring delay with the miniaturization of the semiconductor element, it is often produced by using a low-resistance 配线 wiring material Cu, and an interlayer insulating film having a small capacity between wirings, a Cu/low-film of a low-dielectric film. k multilayer wiring structure. The Cu/low-k multilayer wiring structure is processed by a method called a damascene structure. According to this processing method, grooves (grooves) and holes (via holes) can be processed on the interlayer insulating film substrate, and a wiring material such as Cu is buried in the processed portion to form a wiring structure. Further, in the method of the double damascene structure, the trenches for the wiring and the via holes are formed by connecting the interlayer insulating film substrates formed by a low-k film or the like, and then a wiring material such as Cu is buried. In the case of forming a dual damascene structure, there is a process of first etching a via hole after forming a via hole and then forming a trench for wiring, and a Trench First process for forming a via hole after forming a trench for wiring in the reverse order described above. 'And other Middle First processes and Dual 201249972
Hard-Mask 等。 例如於先蝕刻導孔製程,係先藉由乾蝕刻於層間絕緣 膜基板上形成導孔後,再埋入埋塡劑並使其平坦化。爲形 成槽溝而進行微影技術之乾蝕刻。其後,自形成槽溝及導 孔之該基板,將廢棄物殘渣及埋塡劑藉由灰化等方法而去 除。 然而,即便歷經該製程,基板上仍殘存著無法完全去 除之廢棄物(以下將其稱作「乾式製程後之殘渣」)。 根據使用乾蝕刻、灰化等製程之乾式製程,會對做爲 配線材料之Cu及做爲層間絕緣膜之low-k膜造成損害。 進而,因製程間之移動等而使該基板暴露於大氣中時,會 使Cu金屬配線的表面形成Cu氧化膜。 於鑲嵌結構之槽溝及導孔中,埋入做爲阻障金屬之 TaN及做爲配線材料之Cu等金屬時,若存在有乾式製程 後之殘渣及Cu氧化膜等時,會成爲半導體元件不良的原 因。因此,一般而言該等殘渣係使用聚合物剝離液而去 除。另外,受到損傷的l〇w-k膜,因於構造上較其原本爲 弱,以藥液等進行蝕刻時,易引起光阻圖案尺寸的改變。 因此,去除該等殘渣時,需要較使用藥液而不使Cu產生 腐蝕,且抑制對l〇w-k膜之蝕刻。 將該等乾式製程後之殘渣及Cu氧化膜,期望以目前 市售之過去的聚合物剝離液及蝕刻液去除時,會產生加工 上的問題。例如,可使用以水稀釋之鹽酸及氟酸去除殘 渣,但因產生許多解離之H+,而使Cu易產生腐蝕。進 -6- 201249972 而,因乾式製程而受損傷的層間絕緣膜(特別爲透氣l〇w-k 層間絕緣膜),被蝕刻的表面或產生變質,或是無法依照 設計之尺寸進行加工。 【發明內容】 因元件構造之細微化及low-k膜種類之不同,乾式製 程也正多樣化的進展。例如,不僅以往光阻光罩所使用的 乾式蝕刻及氧電漿所使用的灰化,硬光罩之乾式蝕刻以及 He/ H2電漿所使用的灰化等,亦使用了乾式製程。在這 些變化中,正尋求不會對Cu及low-k膜造成損害,而可 選擇性的去除乾式製程後之殘渣及Cu氧化膜。 然而,low-k膜多因乾式製程而受到損害,以聚合物 剝離液進行洗淨,鈾刻時易引起光阻圖案尺寸的改變。進 而,半導體元件的洗淨裝置,由批次式至枚葉式不斷變化 中。因此,使用過去剝離液之方法,難以於短時間內去除 強力附著於Cu/ low-k構造之乾式製程後之殘渣。另外, 雖然因未發現由於洗淨所造成Cu合金的腐蝕,但仔細觀 察,大多有產生沿著Cu表面粒界之龜裂。這樣微小的Cu 表面之龜裂,有極大的可能會對元件性能造成不良影響。 進而,於洗淨製程後因處理過之晶圓暴露於大氣中,出現 Cu氧化膜亦爲造成元件不良的原因。 於Cu/ low-k多層配線構造之形成中,使用鹽酸及氟 酸等以往之藥液時,難以抑制Cu之腐蝕與low-k膜之蝕 刻’且不易選擇性地去除乾式製程後殘渣及Cu氧化膜。 201249972 近年來,開發了許多適用於Cu/ low-k多層配線構造 之聚合物剝離液(例如專利文件1〜4)。然而,以該等聚合 物剝離液,難以不對lo w-k膜造成損害,而抑制Cu之腐 蝕,且可於短時間內完全去除乾式製程後之殘渣。進而抑 制Cu表面龜裂更是伴隨著困難。 本發明有鑑於上述狀況,以提供不會對Cu及low-k 膜造成損害,且可抑制Cu表面龜裂,可於短時間內去除 乾式製程後之殘渣之藥液爲目的。另外,以提供使用其之 半導體元件製造方法爲目的。 專利文件1 :特開平1 1 -3 1 6464號公報 專利文件2 :特開2004-94203號公報 專利文件3 :特開2 0 0 5 - 3 4 7 5 8 7號公報 專利文件4 :特開2006- 1 1 297號公報 本發明之發明者,發現藉由使用含有可與Cu形成錯 合物或螯合劑的強酸、聚羧酸鹽及水之爲基本組成之水溶 液,而可不會對Cu及low-k膜造成損害,且可抑制Cu表 面龜裂,於短時間內去除乾式製程後所強力附著之殘渣。 再根據相關知識爲基礎,進而加入檢討,遂完成本發明。 亦即,本發明係提供下述之存在於乾蝕刻及/或灰化 後之半導體基板上殘渣之去除液,及使用該殘渣去除液之 半導體元件製造方法。 第1項·一種殘渣去除液,其係乾蝕刻及/或灰化後 存在於半導體基板之殘渣的去除液,其特徵係含有:可與 Cu形成錯合物或螯合劑的強酸、聚羧酸鹽及水。 -8- 201249972 第2項· 如第1項之殘渣去除液,其中可與Cu形 成錯合物或螯合劑的強酸爲25°C之pKa爲3以下的布氏 酸(Bronsted acid )。 第3項· 如第1或2項的殘渣去除液,其中可與Cu 形成錯合物或螯合劑的強酸爲選自三氟乙酸、氫溴酸、高 氯酸、硫酸、乙二酸 '丙二酸及檸檬酸所成群之至少一 種。 第4項. 如第1〜3項中任一項的殘渣去除液,其 中聚羧酸鹽爲選自乙二酸、丙二酸、丁二酸、戊二酸、己 二酸、蘋果酸、酒石酸、檸檬酸氫銨及檸檬酸所成群之至 少一種的聚羧酸與選自氨、羥基胺、一級、二級及三級 胺、四級銨及聚胺所成群之至少一種的鹼所形成的鹽》 第5項.如第1〜4項中任一項的殘渣去除液,其 中殘渣去除液中可與Cu形成錯合物或螯合劑之強酸的濃 度爲0.1〜5重量%,聚羧酸的濃度爲〇.1〜20重量%。 第6項.如第1〜5項中任一項的殘渣去除液,其 中pH爲4〜6.5。 第7項· 如第1〜5項中任一項的殘渣去除液,其 係尙含有有機化合物。 第8項· 如第7項的殘渣去除液,其中有機化合物 爲選自聚羰基類、羥基酮類、酯類、C3以上之醇類、C3 以上之醛類、聚醚類及颯類所成群中之至少一種。 第9項_ 如第7或8項之殘渣去除液,其中pH爲4 201249972 第1 〇項.如第7〜9項中任一項之殘渣丟除液,其 中殘渣去除液中可與Cu形成錯合物或螯合劑之強酸的濃 度爲0.1〜5重量。/〇,聚羧酸鹽之濃度爲0.1〜20重量%, 有機化合物之濃度爲0.5〜60重量%。 第11項.如第1〜1〇項中任一項之殘渣去除液, 其係尙含有氟化合物。 第12項.如第11項之殘渣去除液,其中氟化合物 爲氟化氫、或氨、羥基胺、一級、二級或三級胺、四級銨 或聚胺的氟化物鹽。 第1 3項.如第1〜1 2項中任一項之殘渣去除液, 其係尙含有Cu之龜裂防止劑及/或Cu之氧化防止劑。 第14項· 一種殘渣去除方法,其係去除乾蝕刻及/ 或灰化後存在於半導體基板之殘渣的方法,其特徵係將乾 蝕刻及/或灰化後之半導體基板與第1〜13項中任一項之 殘渣去除液接觸。 第15項· 如第14項之殘渣去除方法,其中具有作 爲配線材料的銅,具有作爲層間絕緣材料之低介電率膜 (l〇w-k膜)的半導體基板。 第16項· 一種製造方法,其係半導體裝置之製造 方法,其特徵係含有:(1)將具有作爲配線材料的銅,具 有作爲層間絕緣材料之低介電率膜(low-k膜)的半導體基 板進行乾蝕刻及/或灰化的步驟及(2)使上述(1)處理後之半 導體基板與第1〜13項中任一項之殘渣去除液接觸的步 驟。 -10- 201249972 以下詳述本發明。 半導體乾式製程後之殘渣去除液 本發明之殘渣去除液其特徵係含有做爲基本組成之可 與Cu形成錯合物或螯合劑的強酸(以下亦稱作「強酸」)、 聚羧酸鹽及水。進而亦可藉由添加有機化合物、界面活性 劑、氟化物、防止龜裂劑及防止氧化劑等,而可追加更優 異之機能。 本發明之殘渣去除液其對象物係主要爲Cu氧化膜以 及乾式製程後之殘渣。Hard-Mask et al. For example, the via hole etching process is performed by first dry etching a via hole on the interlayer insulating film substrate, and then embedding the buried dopant and planarizing it. Dry etching of lithography is performed to form trenches. Thereafter, the waste residue and the embedding agent are removed by ashing or the like from the substrate on which the grooves and the via holes are formed. However, even after the process, waste which cannot be completely removed remains on the substrate (hereinafter referred to as "residue after dry process"). According to the dry process using dry etching, ashing, etc., Cu which is a wiring material and a low-k film which is an interlayer insulating film are damaged. Further, when the substrate is exposed to the atmosphere due to movement between processes or the like, a Cu oxide film is formed on the surface of the Cu metal wiring. When a TaN which is a barrier metal and a metal such as Cu which is a wiring material are buried in the groove and the via hole of the damascene structure, if there is a residue after the dry process and a Cu oxide film, etc., it becomes a semiconductor element. Bad cause. Therefore, in general, the residues are removed using a polymer stripper. Further, the damaged l〇w-k film is likely to cause a change in the size of the resist pattern when it is etched with a chemical liquid or the like because it is structurally weak. Therefore, when these residues are removed, it is necessary to use a chemical solution instead of causing corrosion of Cu, and to suppress etching of the l〇w-k film. When the residue after the dry process and the Cu oxide film are desirably removed by the conventional polymer stripping liquid and etching liquid which are currently commercially available, there is a problem in processing. For example, hydrochloric acid and hydrofluoric acid diluted with water can be used to remove the residue, but Cu is liable to cause corrosion due to a large amount of dissociated H+. -6- 201249972 However, the interlayer insulating film (especially the gas permeable l〇w-k interlayer insulating film) damaged by the dry process may be deteriorated or may not be processed according to the designed size. SUMMARY OF THE INVENTION Dry processes are also diversifying due to the miniaturization of component structures and the types of low-k films. For example, a dry process is also used not only for the dry etching used in the conventional photoresist mask and the ashing used for the oxygen plasma, the dry etching of the hard mask, and the ashing of the He/H2 plasma. Among these changes, it is sought not to cause damage to the Cu and low-k films, and it is possible to selectively remove the residue after the dry process and the Cu oxide film. However, the low-k film is often damaged by the dry process, and is washed with a polymer stripping solution, which tends to cause a change in the size of the photoresist pattern when uranium is engraved. Further, the cleaning device for the semiconductor element is constantly changing from the batch type to the leaf type. Therefore, it is difficult to remove the residue which is strongly adhered to the dry process of the Cu/low-k structure in a short time by using the method of the past stripping liquid. Further, although corrosion of the Cu alloy due to washing was not observed, it was observed that cracks along the grain boundary of the Cu surface were often observed. Such cracks on the tiny Cu surface have a great potential to adversely affect component performance. Further, since the treated wafer is exposed to the atmosphere after the cleaning process, the Cu oxide film is also a cause of component defects. In the formation of a Cu/low-k multilayer wiring structure, when a conventional chemical solution such as hydrochloric acid or hydrofluoric acid is used, it is difficult to suppress corrosion of Cu and etching of a low-k film, and it is difficult to selectively remove residual residue and Cu after dry process. Oxide film. 201249972 In recent years, many polymer strippers suitable for Cu/low-k multilayer wiring structures have been developed (for example, Patent Documents 1 to 4). However, with such a polymer stripping solution, it is difficult to prevent damage to the lo w-k film, and corrosion of Cu is suppressed, and the residue after the dry process can be completely removed in a short time. Further, it is difficult to suppress cracking of the Cu surface. In view of the above, the present invention has been made to provide a chemical solution which can prevent the Cu and low-k film from being damaged and can suppress cracking of the Cu surface, and can remove the residue after the dry process in a short time. Further, it is intended to provide a method of manufacturing a semiconductor device using the same. Patent Document 1: Japanese Laid-Open Patent Publication No. Hei No. Hei. No. 2004-94203 Patent Document 3: Special Opening 2 0 0 5 - 3 4 7 5 8 7 Patent Document 4: Special Opening In the inventors of the present invention, it has been found that by using an aqueous solution containing a strong acid, a polycarboxylate and water which form a complex or a chelating agent with Cu, it is possible to prevent Cu and The low-k film causes damage and suppresses cracking of the Cu surface, and removes the residue strongly adhered after the dry process in a short time. Based on the relevant knowledge, and then added to the review, the present invention was completed. That is, the present invention provides the following removal liquid for residue on a semiconductor substrate after dry etching and/or ashing, and a method for producing a semiconductor element using the residue removal liquid. Item 1 is a residue removal liquid which is a removal liquid of a residue remaining on a semiconductor substrate after dry etching and/or ashing, and is characterized in that it contains a strong acid or a polycarboxylic acid which forms a complex or a chelating agent with Cu. Salt and water. -8- 201249972 Item 2. The residue removal liquid according to item 1, wherein the strong acid which can form a complex or a chelating agent with Cu is a Bronsted acid having a pKa of 3 or less at 25 °C. Item 3. The residue removal solution according to Item 1 or 2, wherein the strong acid which forms a complex or a chelating agent with Cu is selected from the group consisting of trifluoroacetic acid, hydrobromic acid, perchloric acid, sulfuric acid, and oxalic acid At least one of a group consisting of diacid and citric acid. The residue removal liquid according to any one of items 1 to 3, wherein the polycarboxylate is selected from the group consisting of oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, malic acid, a base of at least one selected from the group consisting of tartaric acid, ammonium hydrogen citrate, and citric acid, and at least one selected from the group consisting of ammonia, hydroxylamine, primary, secondary, and tertiary amines, quaternary ammonium, and polyamine The residue removal liquid according to any one of items 1 to 4, wherein the concentration of the strong acid which forms a complex or a chelating agent with Cu in the residue removal liquid is 0.1 to 5% by weight, The concentration of the polycarboxylic acid is from 0.1 to 20% by weight. The residue removal liquid according to any one of items 1 to 5, wherein the pH is from 4 to 6.5. The residue removal liquid according to any one of items 1 to 5, wherein the system contains an organic compound. Item 8. The residue removal liquid according to Item 7, wherein the organic compound is selected from the group consisting of polycarbonyls, hydroxyketones, esters, alcohols of C3 or higher, aldehydes of C3 or higher, polyethers, and anthraquinones. At least one of the groups. Item 9 is a residue removal liquid according to Item 7 or 8, wherein the pH is 4 201249972. The residue removal liquid according to any one of items 7 to 9, wherein the residue removal liquid is formed with Cu. The concentration of the strong acid of the complex or chelating agent is from 0.1 to 5 parts by weight. The concentration of the polycarboxylate is 0.1 to 20% by weight, and the concentration of the organic compound is 0.5 to 60% by weight. The residue removal liquid according to any one of the items 1 to 1 wherein the hydrazine contains a fluorine compound. Item 12. The residue removal solution of item 11, wherein the fluorine compound is hydrogen fluoride, or a fluoride salt of ammonia, hydroxylamine, primary, secondary or tertiary amine, quaternary ammonium or polyamine. The residue removal liquid according to any one of the items 1 to 2, which contains a crack inhibitor of Cu and/or an oxidation inhibitor of Cu. Item 14: A method for removing a residue, which is a method for removing a residue existing on a semiconductor substrate after dry etching and/or ashing, characterized by dry etching and/or ashing of a semiconductor substrate and items 1 to 13 The residue removal liquid of any of them is in contact. Item 15. The method for removing a residue according to Item 14, which comprises copper as a wiring material and a semiconductor substrate having a low dielectric film (10W-k film) as an interlayer insulating material. Item 16. A method of manufacturing a semiconductor device, comprising: (1) having a low dielectric film (low-k film) as a wiring material and having a low dielectric film (low-k film) as an interlayer insulating material; The step of dry etching and/or ashing the semiconductor substrate and (2) the step of bringing the semiconductor substrate after the above (1) treatment into contact with the residue removing liquid according to any one of items 1 to 13. -10- 201249972 The present invention is described in detail below. Residue removal liquid after semiconductor dry process The residue removal liquid of the present invention is characterized by containing a strong acid (hereinafter also referred to as "strong acid"), a polycarboxylate which is a basic composition and can form a complex or a chelating agent with Cu. water. Further, by adding an organic compound, a surfactant, a fluoride, a crack preventing agent, and an oxidizing agent, it is possible to add a more excellent function. The residue removal liquid of the present invention is mainly a Cu oxide film and a residue after a dry process.
Cu氧化膜可舉出例如於乾蝕刻及/或灰化時所形成 之Cu氧化物,或由於製程間之移動等而暴露於大氣中 時,金屬自然被氧化而形成之Cu自然氧化膜等。其組成 大多含有 CuO、Cu20、Cu(OH)2 等。 乾式製程後之殘渣係使用作導電性金屬的Cu進行成 膜之晶圓中,係由含有Cu/low-k多層配線構造之Cu表 面上之Cu氧化膜,及/或乾蝕刻及/或灰化時所形成之 Cu氧化物之Cu變質物所構成。該殘渣附著於主要形成光 譜圖案之Cu配線上及low-k膜等層間絕緣膜所形成之光 譜圖案之側壁,以及層間絕緣膜基板表面。於Cu上所形 成之殘渣,係由於乾蝕刻及/或灰化,由被氧化及/或被 氟化之Cu氧化物與該Cu之混合物所構成的變質物殘 渣。該殘渣之電阻大,故於Cu氧化物附近形成絕緣層。 附著於以low-k膜等層間絕緣膜所形成之光譜圖案側 -11 - 201249972 壁之殘渣,除Cu變質物之外,以及SiN等絕緣感測膜及 l〇w-k膜,埋塡劑等以乾蝕刻進行濺鍍後者,可能含Si及 有機物。另外,於層間絕緣膜之殘渣,可推測含有無法藉 由進行灰化而完全去除之光阻,加上反射防止膜及埋塡劑 等有機物,以及使用無機光罩而於製程中所得之殘留物, 及於進行乾蝕刻時,自槽溝及導孔的底部而來之若干Si 及Cu變質物。 爲了短時間內除去該等乾蝕刻製程後之殘渣,需要前 述之強酸、聚羧酸鹽及水。藉此減低對low-k膜之損害, 亦可抑制微小的Cu表面龜裂。進而於欲付予防止龜裂效 果時,以使用聚羧酸之氨鹽爲佳。而於不易去除附著於以 low-k膜等層間絕緣膜所形成之光譜圖案側壁之殘渣時, 添加有機化合物(特別爲水溶性有機化合物)及若干氟化合 物可增加去除效果。而爲更附加使Cu表面不產生龜裂之 效果,可添加防止龜裂劑。於去除該等殘渣後,不使Cu 表面上氧化膜增加時,亦可進而添加防止氧化劑。 於本說明書中,層間絕緣膜主要係意指low-k膜(低 介電率膜),亦包含例如含氟之二氧化矽氧化膜(FSG 膜)。層間絕緣膜介質常數一般係大於1,4以下,3以下 爲佳,2.8以下更佳,2.6以下最佳。low-k膜主要係藉由 塗佈或電漿CVD而生成。 low-k膜具體而言有以LKD系列(商品名,JSR公司 製)、1^0系列(商品名,日立化成公司製)、^11(^1&33(商 品名’ Honeywell公司製)、IPS(商品名,觸媒化成公司 -12- 201249972 製)、Z3M(商品名’ Dow Corning公司製)、XLK(商品名, Dow Corning 公司製)、FOx(商品名,Dow Corning 公司 製)、Orion(商品名,Tricon公司製)' NCS(商品名,觸媒 化成公司製)、SiLK(商品名,Dow Corning公司製)等無機 SOG膜(HSG:含氫的矽酸鹽類)、有機SOG膜(MSQ: 含 甲基的矽酸鹽類)、聚芳醚等爲主成分之塗佈膜(有機聚合 物膜)、及 Black Diamond(商品名,Applied Materials公司 製)、Coraru(商品名,Novellus公司製)、Ooraru(商品 名,ASM公司製)所代表的電漿CVD膜等,但並未限定於 這些物質》 光譜圖案可舉出KrF、ArF、F2光譜圖案等,但並未 限定於這些物質。埋塡劑係可使用兼具反射防止膜機能之 有機化合物。 可與Cu形成錯合物或螯合劑的強酸係25°CpKa爲3 以下(2以下更佳’ 〇〜2最佳)的布氏酸,具有形成氫離子 H +與Cu及螯合劑或錯合物之構造(部份),亦具於乾式製 程後去除殘渣之機能。 具體可舉出氯乙酸、二氯乙酸、三氯乙酸、α-氯丁 酸、氯丁酸、Τ-氯丁酸、氟乙酸、二氟乙酸、三氟乙 酸等含鹵素羧酸、氫溴酸、高氯酸、硫酸等無機酸、乙二 酸、丙二酸、酒石酸、檸檬酸等聚羧酸等。其中,以乙二 酸、丙二酸、檸檬酸、三氟乙酸、氫溴酸、高氯酸爲佳, 乙二酸、丙二酸、檸檬酸、三氟乙酸更佳。 殘渣去除液中強酸的濃度,可因應所去除之乾式製程 -13- 201249972 後之殘渣之質及量而適宜地佳以選擇。強酸的濃度一般爲 0 · 1〜1 0重量%,以0.1〜5重量%爲佳,0 · 1〜3重量%更 佳。其濃度愈低,欲不易於去除乾式製程後之殘渣,濃度 愈髙則愈易去除。自費用效果之觀點而言以5重量%以下 爲佳。 聚羧酸鹽可於減低對low-k膜之損害同時,與強酸作 用而防止Cu腐蝕,具有去除含Cu之乾式製程後之殘渣 的效果。特別聚羧酸之胺鹽具有高效之抑制Cu表面龜 裂。 聚羧酸鹽可舉出例如乙二酸、丙二酸、丁二酸、戊二 酸、己二酸、蘋果酸、酒石酸、檸檬酸氫二銨、檸檬酸二 氫銨、檸檬酸等聚羧酸、及銨、羥基胺、一級、二級及三 級胺、四級銨及聚胺等由鹼所形成的鹽。其中可舉出以由 丙二酸、檸檬酸氫二銨、檸檬酸二氫銨、檸檬酸等聚羧 酸、及銨、一級、二級及三級胺、四級銨及聚胺等由鹼所 形成的鹽爲佳。 更具體而言可舉出丙二酸、檸檬酸氫二銨、檸檬酸二 氫銨、檸檬酸等聚羧酸等銨鹽、甲基胺鹽、乙基胺鹽、丙 基胺鹽、丁基胺鹽、二甲基胺鹽、二乙基胺鹽、三甲基胺 鹽、三乙基胺鹽、丙二胺鹽、三乙烯四胺鹽、氫氧化四甲 基銨鹽、膽鹼鹽等。 其中以丙二酸之銨鹽、甲基胺鹽、乙基胺鹽、氫氧化 四甲基銨鹽或膽鹼鹽;檸檬酸氫二銨之甲基胺鹽、乙基胺 鹽、氫氧化四甲基銨鹽或膽鹼鹽;檸檬酸二氫銨之甲基胺 -14- 201249972 鹽、乙基胺鹽、氫氧化四甲基銨鹽或膽鹼鹽;以及之氫氧 化四甲基銨鹽或膽鹼鹽爲最佳。 聚羧酸鹽可以結晶形態而使用,亦可使用與前述之酸 及鹼於水中混合中和後所得之水溶液。殘渣去除液中,聚 羧酸鹽的濃度一般爲0.1〜20重量%,0.5〜10重量%爲 佳,1〜5重量%最佳。 相對於殘渣去除液中所含之聚羧酸鹽,可與Cu形成 錯合物或螯合劑的強酸之莫耳比(強酸/聚羧酸鹽)爲0.3 〜1爲佳,0.35〜0.8更佳。該比値未達0.3時,Cu易產 生腐蝕,超過1時,去除乾式製程後之殘渣的能力會有減 低之傾向。 於本發明之殘渣去除液中,可進而添加有機化合物 (特別爲水溶性有機化合物)。該有機化合物可減低因強酸 而造成的對Cu的腐蝕,及附著於以low-k膜等層間絕緣 膜所形成之光譜圖案側壁之殘渣,及層間絕緣膜基板之表 面殘渣等乾式製程後之後殘渣賦予去除效果。 有機化合物可舉出親水性至水溶性的中性有機化合 物,例如聚羰基類、羥基酮類、酯類、C3以上之醇類、 C3以上之醛類、聚醚類及颯類等爲佳。 聚羰基類可舉出例如2,3-丁二酮、2,4-戊二酮、甲基 乙二醛、乙基丙酮等。以2,3-丁二酮、2,4-戊二酮爲佳。 羥基酮類可舉出例如乙醯乙醇、丙酮醇、二丙酮醇 等》以乙醯乙醇、丙酮醇爲佳。 酯類可舉出乙酸甲酯、乙酸乙酯、丙酸甲酯、丙酸乙 -15- 201249972 酯等單羧酸酯:乙二酸二甲酯、乙二酸二乙酯、丙二酸二 甲酯、丙二酸二乙酯、丁二酸二甲酯等聚羧酸酯;碳酸二 甲酯、碳酸二乙酯等碳酸酯;碳酸丙烯酯、碳酸乙烯酯、 γ-丁酸內酯等環狀酯;乙醯乙酸甲酯、乙醯乙酸乙酯等酮 酸酯;乳酸甲酯、乳酸乙酯、乳酸丁酯等氧基酯;乙二醇 甲醚醋酸酯、乙二醇乙醚醋酸酯、乙二醇單正丁醚醋酸 酯、二乙二醇甲醚醋酸酯、二乙二醇乙醚醋酸酯、二乙二 醇單正丁醚醋酸酯、乙二醇二醋酸酯(乙二醋酸)、丙二醇 甲醚醋酸酯(PGMEA)、丙二醇乙醚醋酸酯等烷氧酯等。可 舉出以碳酸丙烯酯、γ-丁酸內酯、乙二醋酸、PGMEA、乙 醯乙酸甲酯' 乙醯乙酸乙酯、乳酸乙酯等爲佳》 C3以上之醛類可舉出例如異丙醇、1-丁醇、第三丁 醇、異丁醇等長鏈(例如C3〜6)之烷基等具疏水基之醇; 乙二醇二乙二醇、三乙二醇、四乙二醇、聚乙二醇 '丙二 醇、二丙二醇、聚(丙二醇)、甘油、2-胺基-2-乙基-1,3-丙 二醇、2-胺基-2-甲基-1,3-丙二醇、1,2-環己六醇、2,2-二 甲基-1,3-丙二醇、2,5-二甲基-2,5-己六醇、2,3-萘二醇、 1,2-丁 二醇、1,3-丁 二醇、1,4-丁 二醇、2-丁基-1,4-二 醇、2-丁烯-1,4·二醇、1,3-丙二醇、1,2-丙二醇、DL-1,2-己六醇、2,5-己六醇、i,2-苯二酚、2,4-戊二醇、2-甲基-2,4-戊二醇等聚醇;乙二醇甲醚、乙二醇乙醚、乙二醇單 正丁醚、乙二醇苯醚、二乙二醇甲醚、二乙二醇乙醚、二 乙二醇異丁醚、二乙二醇單正丁醚、二乙二醇苄醚、二乙 二醇己醚、二乙二醇苄醚、三乙二醇甲醚、三乙二醇丁 -16- 201249972 醚、三丙二醇甲醚、四乙二醇甲醚、四乙二醇單正十二烷 基醚、七乙二醇單正十二烷基醚、聚乙二醇甲醚等烷基 醇。可舉出以異丙醇、1-丁醇、異丁醇、二乙二醇、二丙 二醇、三乙二醇、四乙二醇等爲佳。 C3以上之醛類可舉出丙醛、丁醛、戊醛等。 聚醚類可舉出例如二甲氧基甲烷、二乙氧基甲烷、二 甲氧基乙烷、二甲氧基丙烷、乙二醇二甲基醚、乙二醇二 甲基乙基醚、乙二醇二乙基醚、乙二醇二正丁基醚、二乙 二醇二甲基醚、二乙二醇甲基乙基醚、二乙二醇二乙基 醚、二乙二醇二正丁基醚、三乙二醇二甲基醚、三乙二醇 乙基甲基醚、三乙二醇二乙基醚、四乙二醇二甲基醚、四 乙二醇二乙基醚、聚乙二醇二甲基醚等。其中以乙二醇二 甲基醚、二乙二醇二甲基醚、二乙二醇二乙基醚、三乙二 醇二甲基醚、四乙二醇二甲基醚等爲佳。 碾類可舉出例如環丁颯、二甲基颯等。 前述之有機化合物中,以2,3-丁二酮、2,4-戊二酮、 乙醯甲基甲醇、碳酸丙烯酯、γ-丁酸內酯、乙二醇二醋酸 酯(乙二醋酸)、丙二醇甲醚醋酸酯(PGMEA)、異丙醇、正 丁醇、異丁醇、二乙二醇、二丙二醇、三乙二醇、四乙二 醇、乙二醇單丁醚、乙二醇甲醚醋酸酯、乙二醇乙醚醋酸 酯、二乙二醇二甲基醚、二乙二醇二乙基醚、三乙二醇二 甲基醚、四乙二醇二甲基醚 '乙醯乙酸甲酯、乙醯乙酸乙 酯、乳酸乙酯爲合適。 殘渣去除液中有機化合物之濃度一般在60重量%以 -17- 201249972 下,0.5〜60重量%爲佳,2〜40重量%更佳,3' %最佳。 可進而於殘渣去除液中,添加氟化合物,並 去除附著於l〇w-k膜等層間絕緣膜所形成之光譜 之殘渣的效果。該殘渣除Cu變質物之外,尙有 緣感測膜及l〇w-k膜,埋塡劑等以乾蝕刻進行濺 有時會含Si及有機物。然而,即便殘渣中含S 物,於Cu氧化物爲主要構成物時,一般不添加 亦可進行去除。於乾式製程中遭受電漿損傷的lc 層間絕緣膜,會因氟化合物而無法容易地進行蝕 法進行如設計尺寸之加工。因此,無法充分去除 及無法確定使否去除殘渣時爲給予更高的去除效 加少量的氟化合物爲佳。 氟化合物可舉出例如氟化氫、或氨、羥基胺 二級或三級胺、四級銨或聚胺等的氟化物鹽。具 氟化氫、氟化銨、一氫二氟化銨、氟化甲基胺、 胺、氟化二乙基胺、氟化三乙烯四胺、氟化四甲 佳。氟化合物可使用1種或2種以上。本發明中 方式係可使用爲例如氟化銨水溶液、稀氟酸(5〇 溶液)。 殘渣去除液中氟化合物之濃度可因應含二氧 l〇w-k膜等層間絕緣膜、及乾式製程中遭受電漿 間絕緣膜之種類,而加以適當地選擇。氟化合物 5重量%以下爲佳,〇. 〇 〇 1〜5重量%更佳,0 · 0 1〜 ^30重量 藉此提高 圖案側壁 SiN等絕 鍍後者, ίί及有機 氟化合物 >w-k膜等 刻,且無 殘渣時, 果,以添 ' —Μ ' 體而言以 氟化乙基 基銨等爲 一個實施 重量%水 化矽膜、 損傷的層 之濃度爲 3重量% -18- 201249972 最佳。 必須抑制層間絕緣膜遭受電漿損傷部份進行蝕刻時, 於殘渣去除液中以不含氟化合物或含少量(1重量%以下) 爲佳。濃度未達0.001重量%時會減低去除殘渣效果。 可進而於本發明之殘渣去除液中添加界面活性劑。界 面活性劑可增加疏水性之層間絕緣膜之濡濕性,且可因應 光譜圖案形狀使藥液均勻分布其上。其種類並未特別限定 於陽離子系、陰離子系、或中性系。殘渣去除液中界面活 性劑之濃度一般以0.00001〜5重量%爲佳,0.0001〜3重 量%更佳。少於0.00001重量%時界面活性劑之效果過 小,較5重量%爲多時並無效果上的變化。 可進而於本發明之殘渣去除液中添加防止龜裂劑》防 止龜裂劑可舉出具非共用電子之氧原子及/或具非共用電 子之氮原子之具有非共用電子的含硫磺化合物,可例示有 選自硫化物、硫醇、硫羧酸類、硫代乙醯胺類、硫脲類、 噻二唑啉類、四唑類、三嗪類、噻唑類、噻吩類、嘧啶 類、嘌呤類、噻唑啉類及四氫唑類所成群之至少1種含硫 磺化合物。具體而言係可例示如下述之化合物。 硫化物可舉出例如硫二甘醇、2,2’ —硫代乙酸、3,3’ 一二硫代丙酸等。 硫醇可舉出例如硫氫基乙酸、硫代蘋果酸、硫代乳 酸、3-硫氫基丙酸、胺苯硫酣、2-硫氫乙醇、3—硫氣 基一 1,2—丙基二醇等。 硫羧酸類可舉出例如硫醇乙酸、3_乙醯硫基-2 -甲 -19- 201249972 基丙酸等。 硫代乙醯胺類可舉出例如硫代乙醯胺等。 硫脲類可舉出例如硫代尿素、二氨基硫脲、脒基硫 脲、亞乙基硫脲、丙二酸基硫脲等。 噻二唑啉類可舉出例如2,5—二硫氫基一 1,3,4—噻二 唑、2 —硫代乙酸一 5—硫氫基—1,3,4_噻二哩、2,5-二 硫代乙酸一1,3,4—噻二唑等。 四唑類可舉出例如1 一甲基一 5 —硫氫基一 1H —四唑 等。 三嗪類可舉出例如2,4,6 —三硫氫基一S—三嗪等。 噻唑類可舉出例如4_唑羧酸、2—氨基唑等》 噻吩類可舉出例如 2,5 -噻吩二羧酸、3—唾吩丙二 酸、2—唾吩羧酸等。 嘧啶類可舉出例如2-硫代巴比妥酸、2 -硫代嘧啶、 硫尿嘧啶、4_胺基—6—羥基一 2-硫氫基嘧啶等。 嘌呤類可舉出例如2,5_二硫代嘌呤、6—硫氫基嘌呤 等。 噻唑啉類可舉出例如2 —胺基-2_噻唑啉、2 -噻唑 啉一 2—硫醇等。 四氫唑類可舉出例如2,4—硫氮烷二酮、2—硫代一 4 —四氫唑、2 —亞胺基—4 一噻唑烷等。 於本發明中,龜裂防止劑可用於補足用,其濃度以例 如0.00001〜3重量%爲佳,0.00005〜1重量%爲更佳。 本發明之殘渣去除液中,進而也可添加防止氧化劑。 -20- 201249972 防氧化劑可舉出例如苯并三唑等。其濃度 〜3重量%爲佳,0.0005〜1重量%更佳。 本發明之殘渣去除液中所含水之比例 去除液中,40〜99.5重量%,以70〜99重 應水以外之成分之搭配量(濃度)而決定。 本發明之去除液pH爲4〜7。未達4 受損的low-k膜表面易產生變質。超過7 蝕。而以pH爲4〜6.5爲佳。pH値可根 因應需要的有機化合物之份量而調整。 例如含有可與Cu形成錯合物或螯合 酸鹽及水之殘渣去除液,強酸之濃度爲0 . 〜3重量%爲佳),聚羧酸鹽之濃度爲〇.1 〜10重量%爲佳)。pH爲4〜6·5(ρΗ爲4' 於聚羧酸鹽之強酸莫耳比爲0.3〜1(0.35〜 另外,含有可與Cu形成錯合物或螯 羧酸鹽,有機化合物及水之殘渣去除液 0.1〜5重量% (0.3〜3重量%爲佳),聚羧酸 〜20重量%(〇.75〜10重量%爲佳)。有機 0.5〜60重量%(2〜40重量%爲佳,3〜30 〜7(PH爲4〜6爲佳)。相對於聚羧酸鹽 0.3 〜1(0.35 〜0.8 爲佳)。The Cu oxide film may, for example, be a Cu oxide formed during dry etching and/or ashing, or a Cu natural oxide film which is naturally oxidized when exposed to the atmosphere due to movement between processes or the like. Most of its composition contains CuO, Cu20, Cu(OH)2 and the like. The residue after the dry process is formed by using Cu as a conductive metal to form a film, which is a Cu oxide film on a Cu surface containing a Cu/low-k multilayer wiring structure, and/or dry etching and/or ash. It is composed of a Cu-deposited material of Cu oxide formed during the formation. This residue adheres to the side wall of the spectrum pattern formed on the Cu wiring mainly forming the optical pattern and the interlayer insulating film such as a low-k film, and the surface of the interlayer insulating film substrate. The residue formed on Cu is a spoiler residue composed of a mixture of oxidized and/or fluorinated Cu oxide and Cu due to dry etching and/or ashing. Since the residue has a large electric resistance, an insulating layer is formed in the vicinity of the Cu oxide. Attached to the residue of the spectral pattern side -11 - 201249972 wall formed by an interlayer insulating film such as a low-k film, in addition to the Cu metamorphic material, and an insulating sensing film such as SiN and a l〇wk film, an embedding agent, etc. Dry etching is used to sputter the latter, which may contain Si and organic matter. Further, it is presumed that the residue of the interlayer insulating film contains a photoresist which cannot be completely removed by ashing, and an organic substance such as an anti-reflection film and an embedding agent, and a residue obtained in the process using an inorganic mask. And some dry Si and Cu metamorphisms from the bottom of the trench and the via hole during dry etching. In order to remove the residue after the dry etching process in a short time, the above-mentioned strong acid, polycarboxylate and water are required. This reduces damage to the low-k film and also suppresses cracking of the minute Cu surface. Further, in order to prevent the cracking effect, it is preferred to use an ammonium salt of a polycarboxylic acid. When it is difficult to remove the residue adhering to the side wall of the spectral pattern formed by the interlayer insulating film such as a low-k film, the addition of an organic compound (particularly a water-soluble organic compound) and a plurality of fluorinated compounds can increase the removal effect. Further, in order to further increase the effect of causing cracks on the Cu surface, a crack preventing agent may be added. After removing the residue, the oxidizing agent may be further added without increasing the oxide film on the surface of Cu. In the present specification, the interlayer insulating film mainly means a low-k film (low dielectric film), and also contains, for example, a fluorine-containing cerium oxide film (FSG film). The dielectric constant of the interlayer insulating film is generally more than 1,4 or less, preferably 3 or less, more preferably 2.8 or less, and most preferably 2.6 or less. The low-k film is mainly formed by coating or plasma CVD. Specifically, the low-k film is available in the LKD series (trade name, manufactured by JSR Corporation), the 1^0 series (product name, manufactured by Hitachi Chemical Co., Ltd.), and the ^11 (^1&33 (product name: manufactured by Honeywell). IPS (trade name, Catalyst Chemicals Corporation-12-201249972), Z3M (trade name 'Dow Corning Co., Ltd.), XLK (trade name, Dow Corning Co., Ltd.), FOx (trade name, Dow Corning Co., Ltd.), Orion (trade name, manufactured by Tricon), inorganic SOG film (HSG: hydrogen-containing silicate), organic SOG film, etc., such as NCS (trade name, manufactured by Catalyst Chemical Co., Ltd.) and SiLK (trade name, manufactured by Dow Corning Co., Ltd.) (MSQ: methyl-containing phthalate), polyarylene ether, and the like as a coating film (organic polymer film) as a main component, and Black Diamond (trade name, manufactured by Applied Materials), Coraru (trade name, Novellus) The company's plasma CVD film, which is represented by Ooraru (trade name, manufactured by ASM), is not limited to these materials. The spectral patterns include KrF, ArF, and F2 spectral patterns, but are not limited to these. Substance. The embedding agent can be used organically with anti-reflection film function. A strong acid which forms a complex or a chelating agent with Cu, has a pKa of 3 or less at 25 ° C (more preferably 2 or less, preferably 〇 2), and forms hydrogen ions H + and Cu and a chelating agent. Or the structure (partial) of the complex compound, also has the function of removing the residue after the dry process. Specific examples thereof include chloroacetic acid, dichloroacetic acid, trichloroacetic acid, α-chlorobutyric acid, chlorobutyric acid, hydrazine-chloro A mineral acid such as a halogenated carboxylic acid, hydrobromic acid, perchloric acid or sulfuric acid such as butyric acid, fluoroacetic acid, difluoroacetic acid or trifluoroacetic acid, or a polycarboxylic acid such as oxalic acid, malonic acid, tartaric acid or citric acid. Among them, oxalic acid, malonic acid, citric acid, trifluoroacetic acid, hydrobromic acid, perchloric acid is preferred, oxalic acid, malonic acid, citric acid, trifluoroacetic acid is preferred. Strong acid in residue removal liquid The concentration can be suitably selected according to the quality and quantity of the residue after the dry process -13 - 201249972. The concentration of strong acid is generally 0 · 1 to 10% by weight, preferably 0.1 to 5% by weight. , 0 · 1 to 3 wt% is better. The lower the concentration, the easier it is to remove the residue after the dry process, the concentration is higher The more easily removed, it is preferably 5% by weight or less from the viewpoint of cost effect. The polycarboxylate can reduce the damage to the low-k film while preventing the corrosion of Cu by reacting with a strong acid, and has a dry process for removing Cu. The effect of the residue afterwards. Particularly, the amine salt of polycarboxylic acid has an effect of suppressing cracking of Cu surface. The polycarboxylate may, for example, be oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, Alkyd, tartaric acid, diammonium hydrogen citrate, ammonium dihydrogen citrate, citric acid and other polycarboxylic acids, and ammonium, hydroxylamine, primary, secondary and tertiary amines, quaternary ammonium and polyamines are formed by alkali Salt. Examples thereof include a polycarboxylic acid such as malonic acid, diammonium hydrogen citrate, ammonium dihydrogen citrate, and citric acid, and an alkali, a primary, a secondary, a tertiary amine, a quaternary ammonium, and a polyamine. The salt formed is preferred. More specifically, an ammonium salt such as malonic acid, diammonium hydrogen citrate, ammonium dihydrogen citrate or polycarboxylic acid such as citric acid, a methylamine salt, an ethylamine salt, a propylamine salt or a butyl group may be mentioned. Amine salt, dimethylamine salt, diethylamine salt, trimethylamine salt, triethylamine salt, propylenediamine salt, triethylenetetramine salt, tetramethylammonium hydroxide salt, choline salt, etc. . Among them, ammonium salt of malonic acid, methylamine salt, ethylamine salt, tetramethylammonium hydroxide or choline salt; methylamine salt of diammonium hydrogen citrate, ethylamine salt, and hydrogen hydroxide Methylammonium or choline salt; methylamine dihydrogen ammonium hydride-14- 201249972 salt, ethylamine salt, tetramethylammonium hydroxide or choline salt; and tetramethylammonium hydroxide Or choline salt is the best. The polycarboxylate may be used in the form of a crystal, or an aqueous solution obtained by mixing and neutralizing the above-mentioned acid and base in water may be used. The concentration of the polycarboxylate in the residue removing liquid is usually 0.1 to 20% by weight, preferably 0.5 to 10% by weight, and most preferably 1 to 5% by weight. It is preferable that the molar ratio of the strong acid which can form a complex or a chelating agent to Cu is 0.3 to 1 with respect to the polycarboxylate contained in the residue removing liquid, and 0.35 to 0.8 is more preferable. . When the ratio is less than 0.3, Cu is prone to corrosion. When it exceeds 1, the ability to remove the residue after the dry process tends to decrease. Further, an organic compound (particularly a water-soluble organic compound) may be further added to the residue removing liquid of the present invention. The organic compound can reduce the corrosion of Cu caused by a strong acid, and the residue adhered to the side wall of the spectral pattern formed by the interlayer insulating film such as a low-k film, and the surface residue of the interlayer insulating film substrate, and the like after the dry process. Gives removal effect. The organic compound may, for example, be a hydrophilic or water-soluble neutral organic compound, such as a polycarbonyl group, a hydroxyketone, an ester, an alcohol having C3 or higher, an aldehyde having a C3 or higher, a polyether or an anthracene. The polycarbonyl group may, for example, be 2,3-butanedione, 2,4-pentanedione, methylglyoxal or ethylacetone. It is preferred to use 2,3-butanedione or 2,4-pentanedione. Examples of the hydroxyketones include ethyl hydrazine ethanol, acetol alcohol, and diacetone alcohol. Ethyl acetate and acetol are preferred. Examples of the esters include methyl acetate, ethyl acetate, methyl propionate, and monocarboxylic acid esters such as ethyl b-15-201249972 ester: dimethyl oxalate, diethyl oxalate, and malonic acid. Polycarboxylates such as methyl ester, diethyl malonate and dimethyl succinate; carbonates such as dimethyl carbonate and diethyl carbonate; propylene carbonate, ethylene carbonate, γ-butyrolactone, etc. Cyclic ester; keto esters such as methyl acetate, ethyl acetate and ethyl acetate; oxyesters such as methyl lactate, ethyl lactate and butyl lactate; ethylene glycol methyl ether acetate, ethylene glycol ethyl ether acetate , ethylene glycol mono-n-butyl ether acetate, diethylene glycol methyl ether acetate, diethylene glycol ethyl ether acetate, diethylene glycol mono-n-butyl ether acetate, ethylene glycol diacetate (ethylene diacetate) An alkoxylate such as propylene glycol methyl ether acetate (PGMEA) or propylene glycol diethyl ether acetate. Examples thereof include propylene carbonate, γ-butyrolactone, ethanediacetic acid, PGMEA, ethyl acetacetate, ethyl acetate, ethyl lactate, etc., and the aldehydes of C3 or higher may, for example, be different. An alcohol having a hydrophobic group such as a long chain (for example, C3 to 6) such as propanol, 1-butanol, tert-butanol or isobutanol; ethylene glycol diethylene glycol, triethylene glycol, tetraethylidene Glycol, polyethylene glycol 'propylene glycol, dipropylene glycol, poly(propylene glycol), glycerin, 2-amino-2-ethyl-1,3-propanediol, 2-amino-2-methyl-1,3- Propylene glycol, 1,2-cyclohexanol, 2,2-dimethyl-1,3-propanediol, 2,5-dimethyl-2,5-hexahexaol, 2,3-naphthalenediol, 1 , 2-butanediol, 1,3-butanediol, 1,4-butanediol, 2-butyl-1,4-diol, 2-butene-1,4·diol, 1,3 -propylene glycol, 1,2-propanediol, DL-1,2-hexanol, 2,5-hexahexaol, i, 2-benzenediol, 2,4-pentanediol, 2-methyl-2, Polyols such as 4-pentanediol; ethylene glycol methyl ether, ethylene glycol ether, ethylene glycol mono-n-butyl ether, ethylene glycol phenyl ether, diethylene glycol methyl ether, diethylene glycol diethyl ether, diethylene glycol Alcohol isobutyl ether, diethylene glycol mono-n-butyl ether, diethylene glycol Alcohol benzyl ether, diethylene glycol hexyl ether, diethylene glycol benzyl ether, triethylene glycol methyl ether, triethylene glycol butyl-16- 201249972 ether, tripropylene glycol methyl ether, tetraethylene glycol methyl ether, tetraethyl An alkyl alcohol such as diol mono-n-dodecyl ether, heptaethylene glycol mono-n-dodecyl ether or polyethylene glycol methyl ether. The isopropyl alcohol, 1-butanol, isobutanol, diethylene glycol, dipropylene glycol, triethylene glycol, tetraethylene glycol or the like is preferred. Examples of the aldehyde of C3 or higher include propionaldehyde, butyraldehyde, valeraldehyde and the like. Examples of the polyether include dimethoxymethane, diethoxymethane, dimethoxyethane, dimethoxypropane, ethylene glycol dimethyl ether, and ethylene glycol dimethyl ethyl ether. Ethylene glycol diethyl ether, ethylene glycol di-n-butyl ether, diethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol diethyl ether, diethylene glycol n-Butyl ether, triethylene glycol dimethyl ether, triethylene glycol ethyl methyl ether, triethylene glycol diethyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether , polyethylene glycol dimethyl ether and the like. Among them, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, and tetraethylene glycol dimethyl ether are preferred. Examples of the mills include, for example, cyclobutyl hydrazine, dimethylhydrazine, and the like. Among the above organic compounds, 2,3-butanedione, 2,4-pentanedione, acetamyl methylmethanol, propylene carbonate, γ-butyrolactone, ethylene glycol diacetate (ethylene diacetate) ), propylene glycol methyl ether acetate (PGMEA), isopropanol, n-butanol, isobutanol, diethylene glycol, dipropylene glycol, triethylene glycol, tetraethylene glycol, ethylene glycol monobutyl ether, ethylene Alcohol methyl ether acetate, ethylene glycol ethyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether 'B Methyl hydrazine acetate, ethyl acetate ethyl acetate, ethyl lactate are suitable. The concentration of the organic compound in the residue removing liquid is generally 60% by weight to -17 to 201249972, preferably 0.5 to 60% by weight, more preferably 2 to 40% by weight, and most preferably 3% by weight. Further, a fluorine compound is added to the residue removing liquid, and the effect of adhering to the residue of the spectrum formed by the interlayer insulating film such as the l〇w-k film can be removed. In addition to the Cu-deteriorated material, the residue has a rim sensing film and a l〇w-k film, and the immersion agent or the like is sputtered by dry etching, and may contain Si and an organic substance. However, even if the S content is contained in the residue, when Cu oxide is the main constituent, it is generally removed without addition. The lc interlayer insulating film which is subjected to plasma damage in the dry process cannot be easily etched by a fluorine compound to be processed as designed. Therefore, it is not possible to sufficiently remove and determine whether or not to remove the residue, and to give a higher removal effect, a small amount of fluorine compound is preferred. The fluorine compound may, for example, be a fluoride salt such as hydrogen fluoride or ammonia, a hydroxylamine secondary or tertiary amine, a quaternary ammonium or a polyamine. It has hydrogen fluoride, ammonium fluoride, ammonium monohydrogen difluoride, methylamine fluoride, amine, diethylamine fluoride, triethylenetetramine fluoride, and tetramethyl fluoride. One type or two or more types of fluorine compounds can be used. In the present invention, for example, an aqueous solution of ammonium fluoride or a dilute hydrofluoric acid (5 Torr solution) can be used. The concentration of the fluorine compound in the residue-removing liquid can be appropriately selected in accordance with the type of the interlayer insulating film such as the dioxin-containing 〇w-k film and the type of the inter-plasma insulating film in the dry process. The fluorine compound is preferably 5% by weight or less, more preferably 1 to 5 % by weight, and 0 0 to 0.10 by weight, thereby increasing the pattern sidewall SiN and the like, the latter, the ίί and the organic fluorine compound > wk film, etc. When the residue is free of residue, the concentration of the hydrated ruthenium film is 3% by weight with fluorinated ethylammonium or the like, and the concentration of the damaged layer is 3% to -18-201249972. good. When it is necessary to suppress the interlayer insulating film from being etched by the plasma damage portion, it is preferable to use no fluorine-containing compound or a small amount (1% by weight or less) in the residue removing liquid. When the concentration is less than 0.001% by weight, the effect of removing the residue is reduced. Further, a surfactant may be added to the residue removing liquid of the present invention. The surfactant enhances the wettability of the hydrophobic interlayer insulating film, and the chemical solution can be uniformly distributed in accordance with the shape of the spectral pattern. The type thereof is not particularly limited to a cationic system, an anionic system, or a neutral system. The concentration of the surfactant in the residue removing liquid is preferably 0.00001 to 5% by weight, more preferably 0.0001 to 3% by weight. When the amount is less than 0.00001% by weight, the effect of the surfactant is too small, and when it is more than 5% by weight, there is no effect change. Further, a crack preventing agent may be added to the residue removing liquid of the present invention. The crack preventing agent may be a sulfur-containing compound having an unrecognized electron atom and/or a nitrogen atom having a non-shared electron, and having a non-shared electron. Examples are selected from the group consisting of sulfides, mercaptans, sulfuric acids, thioacetamides, thioureas, thiadiazolines, tetrazoles, triazines, thiazoles, thiophenes, pyrimidines, anthracenes. At least one sulfur-containing compound in a group of thiazolines and tetrahydroazoles. Specifically, a compound as described below can be exemplified. Examples of the sulfide include thiodiglycol, 2,2'-thioacetic acid, 3,3'-dithiopropionic acid, and the like. Examples of the mercaptan include sulfhydryl acetic acid, thiomalic acid, thiolactic acid, 3-sulfhydrylpropionic acid, methotrexate, 2-thiol ethanol, and 3-sulfur gas-1,4-di-propane. Glycol and the like. Examples of the sulfur carboxylic acid include thiol acetic acid, 3-ethyl sulfonylthio-2 -methyl -19-201249972-based propionic acid, and the like. Examples of the thioacetamides include thioacetamide and the like. The thiourea may, for example, be thiourea, dithiosemicarbazide, thiol thiourea, ethylene thiourea or malonyl thiourea. Examples of the thiadiazolines include 2,5-dithiohydrogen-1,3,4-thiadiazole, 2-thioacetic acid 5-sulfonyl-1,3,4-thiatidine, 2,5-dithioacetic acid-1,3,4-thiadiazole and the like. The tetrazole may, for example, be monomethyl-5-sulfato-1H-tetrazole or the like. The triazines may, for example, be 2,4,6-trisulhydrohydrogen-S-triazine or the like. Examples of the thiazoles include a 4-azole carboxylic acid and a 2-aminoazole. The thiophenes include, for example, 2,5-thiophene dicarboxylic acid, 3-propargylmalonic acid, and 2-paraphenecarboxylic acid. Examples of the pyrimidines include 2-thiobarbituric acid, 2-thiopyrimidine, thiouracil, 4-amino-6-hydroxy-2-thiohydropyrimidine and the like. The oxime may, for example, be 2,5-dithioanthracene or 6-sulfatohydroquinone. The thiazoline may, for example, be 2-amino-2-thiazoline or 2-thiazoline-2-thiol. The tetrahydroazole may, for example, be 2,4-thiazolidinedione, 2-thiotetrahydrotetrazole or 2-imino-4-thiazolidine. In the present invention, the crack preventing agent can be used for supplementation, and the concentration thereof is preferably, for example, 0.00001 to 3% by weight, more preferably 0.00005 to 1% by weight. In the residue removing liquid of the present invention, an oxidizing agent may be further added. -20- 201249972 Antioxidant may, for example, be benzotriazole or the like. The concentration is preferably 3% by weight, more preferably 0.0005 to 1% by weight. The ratio of the water contained in the residue-removing liquid of the present invention is 40 to 99.5% by weight, and is determined by the amount (concentration) of the components other than the water of 70 to 99. The pH of the removal liquid of the present invention is 4 to 7. The surface of the low-k film that has not been damaged by 4 is prone to deterioration. More than 7 eclipses. The pH is preferably from 4 to 6.5. The pH 値 can be adjusted according to the amount of the organic compound required. For example, it contains a residue-removing liquid which can form a complex compound or a chelate acid salt with water, and the concentration of the strong acid is 0. 3 to 3% by weight, and the concentration of the polycarboxylate is 〇.1 to 10% by weight. good). The pH is 4~6·5 (ρΗ is 4'. The strong acid molar ratio of polycarboxylate is 0.3~1 (0.35~ In addition, it can form complex or chelate carboxylate with Cu, organic compound and water The residue removal liquid is 0.1 to 5 wt% (preferably 0.3 to 3 wt%), the polycarboxylic acid is 20 to 20 wt% (preferably 75 to 10 wt%), and the organic 0.5 to 60 wt% (2 to 40 wt% is Good, 3~30~7 (pH is preferably 4~6). Relative to polycarboxylate 0.3~1 (0.35~0.8 is preferred).
Cu氧化物及/或乾式製程後之殘渣之去除 本發明之殘渣去除方法,主要係於鑲 以例如0.0 0 0 0 1 ’係一般於殘渣 量%爲佳,可因 時於乾式製程中 時Cu易於被腐 據強酸與羧酸及 劑之強酸,聚羧 1〜5重量% (〇. 3 〜2 0重量% (〇. 5 - 6爲佳)。相對 〇 . 8爲佳)。 合劑之強酸,聚 ’強酸之濃度爲 :鹽之濃度爲0.5 化合物的濃度爲 更佳)。p Η爲4 t強酸莫耳比爲 嵌結構、雙鑲嵌 -21 - 201249972 結構等構造,及電容器構造之形成製程中,去除乾式製程 (乾蝕刻及/或灰化)後存在於半導體基板之殘渣的方法。具 體而言,係將乾式製程後存在於具有Cu/ low-k多層配線 構造之半導體基板上之殘渣,使用上述之殘渣去除液而去 除。 本發明亦提供半導體裝置之製造方法。該製造方法其 特徵係含有:(1)將具有作爲配線材料的銅具有作爲層間 絕緣材料之低介電率膜(l〇w-k膜)的半導體基板進行乾蝕 刻及/或灰化的步驟,及(2)使上述(1)處理後之半導體基板 與前述之殘渣去除液接觸的步驟。 於基板上形成l〇w-k膜後,可因應需求於low-k膜上 形成 SiN、SiC、TaN膜等絕緣膜屏壁,該 SiN、SiC、 TaN膜亦可與low-k膜一同進行蝕刻。 去除殘渣之處理係使做爲被處理物之半導體基板與殘 渣去除液接觸而進行。與殘渣去除液接觸之方法可根據殘 渣去除液之種類及溫度而適當地加以設定》接觸之方法可 使用例如將卡匣中裝有之大量的被處理物(晶圓)浸漬於放 置藥液之槽中的批次式,自旋轉之被處理物(晶圓)上方加 入藥液而進行洗淨之枚葉式,以及將藥液持續噴灑於被處 理物(晶圓)而進行洗淨之噴灑式等。 殘渣去除液之溫度例如10〜60°C,而以15〜4(TC爲 佳。並未特別限定接觸的時間,可適當地加以選擇,但以 0.5分鐘〜60分鐘爲佳,1分鐘〜40分鐘更佳。 使用批次式時,可因應需求將晶圓浸漬於攪拌下之殘 -22- 201249972 渣去除液。未特別限定攪拌速度,可適當地加以選擇。於 廢棄物不易剝離時,可例如將被處理物浸漬於殘渣去除液 後再以超音波進行洗淨。 本發明之Cu氧化物去除方法可進而於去除Cu氧化 物及/或乾式製程後之殘渣之晶圓,以純水進行洗淨。藉 由該洗淨步驟可沖洗去除殘渣去除液。 使用本發明之除殘渣去除液,進行去除Cu氧化物及 /或乾式製程後之殘渣的半導體基板,可遵循例如Cu配 線等慣用之方法(例如記載於「詳述半導體CMP技術J, 土肥俊郎編著,2001年之方法),進行各種對半導體裝置 (元件)之加工。 本發明之除殘渣去除液,係可抑制對含二氧化矽膜與 l〇w-k膜之蝕刻,且不使Cu產生腐蝕,可於短時間內去 除強力附著之乾式製程後之殘渣及Cu氧化膜。特別可減 低對low-k膜之損害,對於過去的聚合物剝離液所無法解 決之Cu表面上微小的龜裂,具有抑制效果。 【實施方式】 實施例 以下舉實施例更明確地說明本發明。但本發明並非限 定於這些實施例。 爲硏究去除乾式製程後之殘渣與光阻圖案形狀之變 化,使用藉由Via-First製程所形成之具Cu/low-k雙鑲 嵌結構之附有測試圖案晶圓。Cu/ low-k雙鑲嵌結構之 -23- 201249972 l〇w-k膜係藉由電漿CVD所形成之SiOC膜,絕緣膜屏壁 爲SiN膜。因乾式製程後之殘渣爲強力附著而不易去除 者。殘渣大多存在於導孔底部,亦可發現少部份存在於導 孔側壁及l〇w-k基板表面。 將該附有測試圖案晶圓,浸漬於實施例及比較例中所 示之藥液25°C,1〜3分鐘並同時攪拌(約600rpm)之後, 以流動之超純水漂洗,經乾燥後再進行乾式製程後之殘渣 去除處理。 將該殘渣進行處理後,針對12個導孔,以電子顯微 鏡(SEM)觀察乾式製程後之殘渣去除狀態與剖面形狀。進 而,爲判斷Cu表面上是否有形成微小的龜裂,以電子顯 微鏡(SEM)自60個導孔上方進行觀察。可因應需要亦以 S E Μ觀察剖面。 另外,爲硏究使用附有測試圖案晶圓進行評價時所不 易察赀之對Cu及low-k膜之損害,將使該等物質進行成 膜後之原晶圓,浸漬於實施例及比較例之藥液1 〇分鐘之 後,再計算出該等物質之蝕刻速度。針對l〇w-k膜,爲硏 究表面狀態之變化,測定浸漬於藥液前後之接觸角並加以 比較。接觸角變化大時於升溫脫離分析(TDS)時,可得水 的吸附量增加之相關關係。亦即接觸角的變化可反映 low-k膜最表面的變化。接觸角係使用接觸角計進行測 定。 表2所示爲實施例,表4及表6爲比較例。使用該等 藥液試驗結果示於表3,表5及表7。試驗結果之判定基 -24- 201249972 準示於表1。 表1 使用附圖案晶圓所進行之評價 使用原膜所進行之評價 去除殘渣ft tm 導孔圖案形狀評價 Cu Iow-k 膜(SiOC 膜) 導孔 基板 表面 (藥液浸漬時間3分鐘) 腐蝕 蝕刻 表面層變 質 Cu 表面 側壁 Cu 表面 側壁 Cu表面龜裂 (*) 基準 去除殘渣時間 表面狀態 蝕刻(腐蝕) 速度 接觸角 變化 判 定 最佳 A : 1 min以內 A :無侵蝕 A :無龜裂 A : 1 h/min 以下 A : Γ以 下 佳 B : 1-2 min B :無侵蝕 問題 B :淺龜裂3 個以下 B : 1-2 A/ min B : 1-3。 稍有 問題 C : 2-3 min C :產生些 許凹凸乾燥 C:—般龜裂5 個以下 C : 2-3 K/ min C : 3-5° 不佳 D : 3 min以上 D :有侵蝕 D :深龜裂5 個以上 D : 3 K/min 以上 D : 5。以 上 (* ) 「淺龜裂」係指寬度及深度未達l〇nm之龜裂,「深 龜裂」係指寬度及深度超過20nm之龜裂,「一般龜裂J係 指寬度及深度約l〇nm〜約20nm之龜裂》 實施例1〜25 實施例1〜2 1係由強酸與聚羧酸鹽所組成之殘渣去除 液,實施例22〜25係除強酸與聚羧酸鹽之外,加入NH4F 以及有機化合物之殘渣的去除液。 難以僅使用由強酸與聚羧酸鹽所組成之殘渣去除液來 去除Cu表面上之殘渣時,添加有機化合物以及NH4F可 助長去除殘渣效果》於不易去除圖案側壁之殘渣時添加 -25- 201249972 nh4f,不易去除基板表面之殘渣時,添加有機化合物可 增加去除殘渣效果。 表2 η 施 例 水 (SS%) 強酸(重a%) 聚羧酸鹽之組成 nh4f (MS%) 有機化合物 (ΜΑ%) 酸/ 聚羧酸鹽 pH 聚羧酸(重s%) 鹼性化合物 (重量%) 莫耳比 1 97.0 三氟乙酸 1.0 丙二酸 1.5 氨 0.5 0 — 0 0.61 5 2 96.6 三氟乙酸 1.0 丙二酸 1.5 甲基胺 0.9 0 — 0 0.61 5 3 96.2 三氟乙酸 1.0 丙二酸 乙基胺 1.3 0 — 0 0.61 5 4 95.4 三氟乙酸 ].0 丙二酸 1.5 丁基胺 2.1 0 — 0 0.61 5 5 95.4 三氟乙酸 1.0 丙二酸 1.5 二乙基胺 2.1 0 — 0 0.61 5 6 94.9 三氟乙酸 1.0 丙二酸 1.5 氫氧化 四甲基銨 2.6 0 — 0 0.61 5 7 94.0 三氟乙酸 1.0 丙二酸 1.5 磷脂 3.5 0 — 0 0.61 5 8 97.5 三®乙酸 0.5 乙二酸 0.7 氫氧化 四甲基銨 1.3 0 - 0 0.61 4 9 94.6 三氟乙酸 1.0 丁二酸 1.7 氫氧化 四甲基銨 2.6 0 - 0 0,61 5 10 94.4 三氟乙酸 1.0 戊二酸 1.9 氫氧化 四甲基錢 2.6 0 — 0 0.61 5 11 94.4 三氟乙酸 1.0 蘋果酸 1.9 氫氧化 四甲基銨 2.6 0 — 0 0.61 5 12 94.2 三氟乙酸 1.0 酒石酸 2.2 氫氧化 四甲基銨 2.6 0 - 0 0.61 4 13 92.0 三氟乙酸 1.0 檸檬酸 3.0 Μ氧化 四甲基銨 4.0 0 - 0 0.61 5.5 14 97.3 溴化氫 0.7 丙二酸 1.5 氨 0.5 0 — 0 0.61 5 15 97,1 高麵 0.9 丙二酸 1.5 氨 0.5 0 — 0 0.61 5 16 97.1 硫酸 0.9 丙二酸 1.5 氨 0.5 0 — 0 0.61 5 17 99.3 三氟乙酸 0.25 丙二酸 0.4 氨 0.1 0 — 0 0.61 5 18 98.5 三氟乙酸 0.5 丙二酸 0.8 氨 0.2 0 — 0 0.61 5 19 94.0 三氟乙酸 2.0 丙二酸 3.0 氨 1.0 0 — 0 0.61 5 20 97.8 三氟乙酸 1.0 丙二酸 0.9 氨 0.3 0 — 0 Ϊ.00 4 21 95.6 三氟乙酸 1.0 丙二酸 2.6 氨 0.8 0 — 0 0.35 5.5 22 57.0 三氟乙酸 1.0 丙二酸 1.5 氨 0.5 0.01 單乙基醚丙 二醇乙酸酯 40.0 0.61 5 23 91.4 三氟乙酸 1.0 丙二酸 1.5 氨 0.5 0.1 碳酸丙烯酯 5.5 0.61 5 24 95.0 三氟乙酸 1.0 丙二酸 1.5 氨 0.5 1 乳酸乙酯 1 0.61 5 25 91.3 三氟乙酸 1.0 丙二酸 1.5 氨 0.5 5 丙醛 0.75 0.61 5 -26- 201249972 使用實施例1〜25之藥液試驗結果示於表3。 自表3所示之使用附圖案晶圓所進行之評價結果,實 施例1〜2 5之殘渣去除液,係不僅不會使光譜圖案改變, 亦不會於Cu表面上產生微小的龜裂,明顯可之其具優異 之殘渣去除性能。而自使用原晶圓所進行之評價結果,因 Cu及low-k膜之蝕刻速度變小,l〇w-k膜之接觸角亦無變 化,可知其顯示沒有因殘渣去除液而造成之Cu腐蝕及 l〇w-k膜損傷。 於實施例1及21中,使用乙二酸、丙二酸、檸檬酸 來取代三氟乙酸,亦顯示相同效果。 於實施例3〜13、實施例17〜25中,使用乙二酸、 丙二酸、檸檬酸來取代三氟乙酸,亦顯示相同效果。 於實施例1及2中’使用檸檬酸氫二銨鹽、檸檬酸二 氫銨鹽、檸檬酸鹽來取代乙二酸鹽,亦顯示相同效果。 於實施例3〜7、實施例M〜25中,使用檸檬酸氫二 銨鹽、檸檬酸二氫銨鹽、檸檬酸鹽來取代乙二酸鹽,亦顯 不相同效果。 於實施例14〜2S中,將做爲聚羧酸鹽之銨鹽,使用 甲基胺鹽、乙基胺鹽、二乙某胺臨、:^7卩 一乙碁肢加·—乙稀四肢鹽、氫化 四甲基銨鹽、膽驗鹽來取代,亦顯示相同效果。 於貫施例22 φ ’將單乙基醚丙二醇乙酸酯使用乙 醯甲基甲醇、乙二醇二醋酸酯(乙二醋酸)、二乙二醇、三Removal of residue after Cu oxide and/or dry process The method for removing residue according to the present invention is mainly for inlaying, for example, 0.00 0 0 1 ', generally in the amount of residue, preferably in the dry process. It is easy to be rotted with strong acid and strong acid of carboxylic acid and agent, polycarboxylate 1~5 wt% (〇. 3 〜2 0 wt% (〇. 5-6 is better). Relative 〇. 8 is better). The strong acid of the mixture, the concentration of poly' strong acid is: the concentration of the salt is 0.5, and the concentration of the compound is more preferable). p Η is 4 t strong acid molar ratio is a structure of embedded structure, dual damascene-21 - 201249972 structure, and the formation process of the capacitor structure, the residue remaining on the semiconductor substrate after the dry process (dry etching and/or ashing) is removed Methods. Specifically, the residue which is present on the semiconductor substrate having the Cu/low-k multilayer wiring structure after the dry process is removed by using the above residue removal liquid. The present invention also provides a method of fabricating a semiconductor device. The manufacturing method is characterized in that: (1) a step of dry etching and/or ashing a semiconductor substrate having a low dielectric film (lWk film) having copper as a wiring material as an interlayer insulating material, and (2) a step of bringing the semiconductor substrate after the above (1) treatment into contact with the residue removal liquid described above. After the l〇w-k film is formed on the substrate, an insulating film panel such as a SiN, SiC or TaN film can be formed on the low-k film according to the demand, and the SiN, SiC, and TaN films can be etched together with the low-k film. The treatment for removing the residue is carried out by bringing the semiconductor substrate as the object to be treated into contact with the residue removing liquid. The method of contacting the residue removal liquid can be appropriately set according to the kind and temperature of the residue removal liquid. The contact method can be used, for example, by immersing a large amount of the object to be processed (wafer) contained in the cartridge in the liquid medicine. A batch type in a tank, a leaf type in which a chemical liquid is added from above a rotating object (wafer), and a spray which is continuously sprayed on a workpiece (wafer) for washing. And so on. The temperature of the residue removal liquid is, for example, 10 to 60 ° C, and preferably 15 to 4 (TC is preferred. The contact time is not particularly limited, and may be appropriately selected, but preferably 0.5 minutes to 60 minutes, 1 minute to 40 minutes. In the case of the batch type, the wafer can be immersed in the residue under the agitation of the -22-201249972 slag removal liquid according to the demand. The stirring speed is not particularly limited and can be appropriately selected. When the waste is not easily peeled off, For example, the object to be treated is immersed in the residue removing liquid and then washed by ultrasonic waves. The Cu oxide removing method of the present invention can further remove the Cu oxide and/or the wafer after the dry process, and carry out the pure water. The cleaning removal step can be used to remove the residue removal liquid. The semiconductor substrate for removing the Cu oxide and/or the residue after the dry process can be removed by using the residue removal liquid of the present invention, and can be followed by, for example, Cu wiring. (For example, it is described in "Detailed semiconductor CMP technology J, edited by Toshihiko Junji, 2001"), and various semiconductor devices (components) are processed. The residue removal liquid of the present invention can suppress The etching of the cerium oxide-containing film and the 〇wk film is carried out, and the corrosion of the Cu is not caused, and the residue after the dry process and the Cu oxide film can be removed in a short time, and the low-k film can be particularly reduced. The damage has an inhibitory effect on minute cracks on the Cu surface which cannot be solved by the conventional polymer stripping liquid. [Embodiment] EXAMPLES Hereinafter, the present invention will be more specifically described by way of examples, but the present invention is not limited to these examples. In order to investigate the change of the shape of the residue and the resist pattern after the dry process, a test pattern wafer with a Cu/low-k dual damascene structure formed by the Via-First process was used. Cu/ low- k Double damascene structure -23- 201249972 l〇wk film is a SiOC film formed by plasma CVD, and the insulating film screen is SiN film. The residue after dry process is strong and not easy to remove. At the bottom of the via hole, a small amount of the surface of the via hole and the surface of the substrate were also found. The test pattern wafer was immersed in the liquid solution shown in the examples and the comparative examples at 25 ° C, 1 ~3 minutes while stirring After about 600 rpm), it was rinsed with flowing ultrapure water, dried and then subjected to dry process residue removal treatment. After the residue was treated, the dry process was observed by electron microscopy (SEM) for 12 via holes. The residue removal state and the cross-sectional shape. Further, in order to determine whether or not a minute crack is formed on the surface of Cu, an electron microscope (SEM) is used to observe from above 60 via holes. The cross section can also be observed by SE 因 if necessary. In the case of damage to Cu and low-k film which are not easily observed when evaluated with a test pattern wafer, the original wafer after film formation is immersed in the sample of the embodiment and the comparative example. After 1 minute, the etching rate of the substances is calculated. For the l〇w-k film, the contact angles before and after the immersion in the liquid were measured and compared for the change in the surface state. When the contact angle changes greatly, when the temperature rise and fall analysis (TDS) is obtained, the correlation between the adsorption amount of water and the amount of water can be obtained. That is, the change in contact angle reflects the change in the outermost surface of the low-k film. The contact angle is measured using a contact angle meter. Table 2 shows the examples, and Tables 4 and 6 are comparative examples. The test results using these chemical solutions are shown in Table 3, Table 5 and Table 7. The judgment result of the test results -24- 201249972 is shown in Table 1. Table 1 Evaluation using patterned wafers Evaluation using original film Removal of residue ft tm Pattern of via hole pattern Evaluation of Cu Iow-k film (SiOC film) Surface of the via hole substrate (chemical solution immersion time 3 minutes) Corrosion etching Surface layer metamorphic Cu Surface side wall Cu Surface side wall Cu surface cracking (*) Reference removal residue time Surface state etching (corrosion) Speed contact angle change judgment best A: Within 1 min A: No erosion A: No crack A: 1 h/min Below A : Γ The following is good B: 1-2 min B : No erosion problem B : Shallow cracking 3 or less B : 1-2 A/ min B : 1-3. Slightly problem C: 2-3 min C : Produces a little bump dry C: - Cracked 5 or less C : 2-3 K / min C : 3-5 ° Poor D : 3 min or more D : Eroded D : Deep cracking 5 or more D : 3 K/min or more D : 5. The above (*) "shallow crack" refers to cracks whose width and depth are less than 10 nm. "Deep crack" refers to cracks with a width and depth exceeding 20 nm. "General crack J refers to the width and depth. l 〇 nm ~ about 20 nm cracks" Examples 1 ~ 25 Examples 1 ~ 2 1 is a residue removal solution consisting of a strong acid and a polycarboxylate, examples 22 ~ 25 are in addition to strong acid and polycarboxylate In addition, NH4F and a residue of the residue of the organic compound are added. It is difficult to remove the residue on the Cu surface by using only the residue removal liquid composed of a strong acid and a polycarboxylate, and the addition of an organic compound and NH4F can promote the removal of the residue. When it is difficult to remove the residue of the sidewall of the pattern, add -25-201249972 nh4f. When it is not easy to remove the residue on the substrate surface, adding organic compounds can increase the residue removal effect. Table 2 η Example water (SS%) Strong acid (weight a%) Polycarboxylic acid Composition of salt nh4f (MS%) organic compound (ΜΑ%) acid / polycarboxylate pH polycarboxylic acid (weight s%) basic compound (% by weight) molar ratio 1 97.0 trifluoroacetic acid 1.0 malonic acid 1.5 ammonia 0.5 0 — 0 0.61 5 2 96.6 Trifluoroacetic acid 1.0 Malonic acid 1.5 Methylamine 0.9 0 — 0 0.61 5 3 96.2 Trifluoroacetic acid 1.0 Malonic acid ethylamine 1.3 0 — 0 0.61 5 4 95.4 Trifluoroacetic acid].0 Malonic acid 1.5 Butylamine 2.1 0 — 0 0.61 5 5 95.4 Trifluoroacetic acid 1.0 Malonic acid 1.5 Diethylamine 2.1 0 — 0 0.61 5 6 94.9 Trifluoroacetic acid 1.0 Malonic acid 1.5 Tetramethylammonium hydroxide 2.6 0 — 0 0.61 5 7 94.0 Trifluoroacetic acid 1.0 Malonic acid 1.5 Phospholipids 3.5 0 — 0 0.61 5 8 97.5 Tri-acetic acid 0.5 oxalic acid 0.7 Tetramethylammonium hydroxide 1.3 0 - 0 0.61 4 9 94.6 Trifluoroacetic acid 1.0 Succinic acid 1.7 Tetramethylammonium hydroxide 2.6 0 - 0 0 , 61 5 10 94.4 Trifluoroacetic acid 1.0 glutaric acid 1.9 Tetramethylammonium hydroxide 2.6 0 — 0 0.61 5 11 94.4 Trifluoroacetic acid 1.0 Malic acid 1.9 Tetramethylammonium hydroxide 2.6 0 — 0 0.61 5 12 94.2 Trifluoro Acetic acid 1.0 Tartaric acid 2.2 Tetramethylammonium hydroxide 2.6 0 - 0 0.61 4 13 92.0 Trifluoroacetic acid 1.0 Citric acid 3.0 Tetramethylammonium oxide 4.0 0 - 0 0.61 5.5 14 97.3 Hydrogen bromide 0.7 Malonic acid 1.5 Ammonia 0.5 0 — 0 0.61 5 15 97,1 High side 0.9 Malonic acid 1.5 Ammonia 0.5 0 — 0 0.61 5 16 97.1 Sulfuric acid 0.9 Diacid 1.5 Ammonia 0.5 0 — 0 0.61 5 17 99.3 Trifluoroacetic acid 0.25 Malonic acid 0.4 Ammonia 0.1 0 — 0 0.61 5 18 98.5 Trifluoroacetic acid 0.5 Malonic acid 0.8 Ammonia 0.2 0 — 0 0.61 5 19 94.0 Trifluoroacetic acid 2.0 Malonic acid 3.0 Ammonia 1.0 0 — 0 0.61 5 20 97.8 Trifluoroacetic acid 1.0 Malonic acid 0.9 Ammonia 0.3 0 — 0 Ϊ.00 4 21 95.6 Trifluoroacetic acid 1.0 Malonic acid 2.6 Ammonia 0.8 0 — 0 0.35 5.5 22 57.0 Fluoroacetic acid 1.0 Malonic acid 1.5 Ammonia 0.5 0.01 Monoethyl ether propylene glycol acetate 40.0 0.61 5 23 91.4 Trifluoroacetic acid 1.0 Malonic acid 1.5 Ammonia 0.5 0.1 Propylene carbonate 5.5 0.61 5 24 95.0 Trifluoroacetic acid 1.0 Malonic acid 1.5 Ammonia 0.5 1 Ethyl lactate 1 0.61 5 25 91.3 Trifluoroacetic acid 1.0 Malonic acid 1.5 Ammonia 0.5 5 Propionaldehyde 0.75 0.61 5 -26- 201249972 The results of the test using the liquid solutions of Examples 1 to 25 are shown in Table 3. From the results of the evaluation using the patterned wafer shown in Table 3, the residue removal liquids of Examples 1 to 25 not only did not change the spectral pattern, but also did not cause minute cracks on the Cu surface. Obviously, it has excellent residue removal performance. As a result of the evaluation using the original wafer, since the etching speed of the Cu and low-k film becomes small, the contact angle of the l〇wk film does not change, and it is known that there is no Cu corrosion caused by the residue removing liquid and L〇wk membrane damage. In Examples 1 and 21, the use of oxalic acid, malonic acid, and citric acid in place of trifluoroacetic acid also showed the same effect. In Examples 3 to 13 and Examples 17 to 25, oxalic acid, malonic acid, and citric acid were used in place of trifluoroacetic acid, and the same effects were also exhibited. In Examples 1 and 2, the use of diammonium hydrogen citrate, dihydrogen ammonium citrate, and citrate instead of oxalate showed the same effect. In Examples 3 to 7 and Examples M to 25, the use of diammonium hydrogen citrate, dihydrogen ammonium citrate or citrate instead of oxalate was also effective. In Examples 14 to 2S, it will be used as an ammonium salt of a polycarboxylate, using a methylamine salt, an ethylamine salt, a diamine, or a compound. The salt, hydrogenated tetramethylammonium salt, and bile salt were substituted to show the same effect. Example 22 φ ′ monoethyl ether propylene glycol acetate using ethyl hydrazine methyl alcohol, ethylene glycol diacetate (ethylene diacetate), diethylene glycol, three
乙~~醇一甲基酸、乙酿田®K 职乙酸甲酯、乙酸單乙基醚二乙二醇 來取代,亦顯不相同效果。 -27- 201249972 於實施例23〜25中,將單乙基醚丙二醇乙酸酯、碳 酸丙烯酯、乳酸乙酯、丙醛,使用乙醯甲基甲醇、乙二醇 二醋酸酯(乙二醋酸)、二乙二醇、三乙二醇二甲基醚、乙 醯乙酸甲酯、乙酸單乙基醚二乙二醇來取代,亦顯示相同 效果。 於實施例1〜25使濃度增加時,其效果增加,將濃度 減半時亦可充分發揮其效果。 -28- 201249972 表3Substituting B ~ ~ alcohol monomethyl acid, B-field + K methyl acetate, acetic acid monoethyl ether diethylene glycol, also has different effects. -27- 201249972 In Examples 23 to 25, monoethyl ether propylene glycol acetate, propylene carbonate, ethyl lactate, and propionaldehyde were used, and ethyl hydrazine methyl methanol and ethylene glycol diacetate (ethylene diacetate) were used. Substituting diethylene glycol, triethylene glycol dimethyl ether, ethyl acetonitrile acetate, and monoethyl ether diethylene glycol acetate also showed the same effect. When the concentration is increased in Examples 1 to 25, the effect is increased, and when the concentration is halved, the effect can be sufficiently exerted. -28- 201249972 Table 3
實 使用附圖案晶圓所進行之評價 使用原膜所進行之評價 施 去除殘渣性能 導孔圖案形狀評價 Cu low-k 膜(SiOC 膜) 例 導孔底之 導孔 基板 (藥液浸漬時間3分鐘) 腐蝕 蝕刻 表面層變質 Cu表面 側壁 表面 Cu表面 Cu表面龜裂 側壁 蝕刻速度 接觸角變化 1 A A B A B A B A A 2 A A B A A A B A A 3 A A B A A A B A A 4 A A B A A A B A A 5 A A B A B A B A A 6 A A B A B A B A A 7 A A B A B A B A A 8 A A B A B A B A A 9 A A B A B A B A A 10 A A B A B A B A A 11 A A B A B A B A A 12 A A B A B A B A A 13 A A B A B A B A A 14 A A B A B A B A A 15 A A B A B A B A A 16 A A B A B A B A A 17 A A B A A A B A A 18 A A B A A A B A A 19 A A B A B A B A A 20 A A B A A A B A A 21 A A B A A A B A A 22 A A A A B A B A A 23 A A A A B A B A A 24 A A A A B A B A A 25 A A A A B A B A A -29- 201249972 相對於分別示於實施例1、實施例6、實施例7之藥 液,添加做爲防止Cu龜裂劑之lppm之3-硫氫基丙酸 時,表3之Cu表面龜裂評價,由“ B”改善爲“ A” 。以 添加lppm之硫代乳酸、2 -胺基一 2 —噻唑啉、2,4,6_三 硫氫基_s_三嗪,來取代3_硫氫基丙酸時,亦顯示相 同效果。 相對於分別示於實施例1〜7之藥液,分別添加做爲 Cu防止氧化劑之5ppm之苯并三唑時,與未添加時相比, 可防止Cu之氧化。 判斷Cu氧化狀態係將浸漬於藥液後之Cu的原晶 圓,保持於27°C,溼度80%以上之狀態下24小時以上 後,以XPS(光電子分光法)藉由觀察來自CuO之Cu波峰 而進行。 如上所述,藉由添加防止Cu龜裂劑,防止Cu氧化 劑,而可賦予其防止龜裂效果及防止氧化效果。可得知對 其他實施例亦具有相同之效果。 比較例1〜9 比較例1〜9之殘渣去除液成分組成示於表4。並調 整比較例1〜9之殘渣去除液之約pH 2。 -30- 201249972 表4 比較例 水 強酸(重量%) 有機化合物(重量%) NH4F (重量%) (重量%) 1 99.7 三氟乙酸 0.3 — 0.0 0 2 99.8 HBr 0.2 — 0.0 0 3 99.7 HCl〇4 0.3 — 0.0 0 4 97.1 三氟乙酸 0.3 乙二醇 2.6 0.1 5 96.1 三氟乙酸 0.3 二甲基乙醯胺 3.6 0.1 6 94.7 三氯乙酸 0.3 乳酸乙酯 5.0 0.1 7 94.2 三氟乙酸 0.3 碳酸丙烯酯 5.5 0.1 8 94.8 HBr 0.2 乳酸乙酯 5.0 0 9 94.7 HCl〇4 0.3 乳酸乙酯 5.0 0 比較例1〜9均呈現不充分的防止Cu龜裂。於表5之 其他項目中出現評價c以下者’亦顯示其性能不佳。因 此,於表4中所示之藥液均不適用爲殘渣去除液。 具體而言,如比較例1〜3所示之僅含有強酸,會對 Cu產生強烈的腐蝕。如比較例4〜9所示,即便含有強酸 及有機化合物,及因應需求之NH4F,但於未含有聚羧酸 鹽之狀態下’無法抑制Cu表面的龜裂。 -31 - 201249972 表5Evaluation using a patterned wafer. Evaluation using the original film. Removal of residue performance. Pattern of the shape of the via hole. Evaluation of Cu low-k film (SiOC film). Guide hole substrate at the bottom of the via hole (medical solution immersion time: 3 minutes) Corrosion etched surface layer metamorphic Cu surface sidewall surface Cu surface Cu surface crack surface sidewall etching rate contact angle change 1 AABABABAA 2 AABAAABAA 3 AABAAABAA 4 AABAAABAA 5 AABABABAA 6 AABABABAA 7 AABABABAA 8 AABABABAA 9 AABABABAA 10 AABABABAA 11 AABABABAA 12 AABABABAA 13 AABABABAA 14 AABABABAA 15 AABABABAA 16 AABABABAA 17 AABAAABAA 18 AABAAABAA 19 AABABABAA 20 AABAAABAA 21 AABAAABAA 22 AAAABABAA 23 AAAABABAA 24 AAAABABAA 25 AAAABABAA -29- 201249972 Addition to prevent the liquid medicines shown in Example 1, Example 6, and Example 7, respectively. 1-ppm 3-sulfuric acid of Cu cracking agent In the case of propyl propionic acid, the surface crack evaluation of Cu in Table 3 was improved from "B" to "A". The same effect was also obtained when 1 ppm of thiolactic acid, 2-amino-2-thiazoline, 2,4,6-trisulphide_s-triazine was added instead of 3-sulfatopropionic acid. When 5 ppm of benzotriazole as a Cu preventing oxidizing agent was added to each of the chemical solutions shown in Examples 1 to 7, the oxidation of Cu was prevented as compared with the case of not adding. When the Cu oxidation state is determined, the original wafer of Cu immersed in the chemical solution is kept at 27 ° C and the humidity is 80% or more for 24 hours or more, and then the Cu from CuO is observed by XPS (photoelectron spectroscopy). The peak is carried out. As described above, by adding a Cu crack preventing agent and preventing the Cu oxidizing agent, it is possible to provide a crack preventing effect and an oxidation preventing effect. It can be seen that the same effect is obtained for other embodiments. Comparative Examples 1 to 9 The composition of the residue removal liquid of Comparative Examples 1 to 9 is shown in Table 4. The pH of the residue removal liquid of Comparative Examples 1 to 9 was adjusted to about pH 2. -30- 201249972 Table 4 Comparative Example Hydrous acid (% by weight) Organic compound (% by weight) NH4F (% by weight) (% by weight) 1 99.7 Trifluoroacetic acid 0.3 - 0.0 0 2 99.8 HBr 0.2 — 0.0 0 3 99.7 HCl〇4 0.3 — 0.0 0 4 97.1 Trifluoroacetic acid 0.3 Ethylene glycol 2.6 0.1 5 96.1 Trifluoroacetic acid 0.3 Dimethylacetamide 3.6 0.1 6 94.7 Trichloroacetic acid 0.3 Ethyl lactate 5.0 0.1 7 94.2 Trifluoroacetic acid 0.3 Propylene carbonate 5.5 0.1 8 94.8 HBr 0.2 Ethyl lactate 5.0 0 9 94.7 HCl 〇 4 0.3 Ethyl lactate 5.0 0 Comparative Examples 1 to 9 all exhibited insufficient prevention of Cu cracking. Those with the following evaluations in other items in Table 5 also showed poor performance. Therefore, the liquid solutions shown in Table 4 are not suitable as the residue removing liquid. Specifically, as shown in Comparative Examples 1 to 3, only a strong acid was contained, which caused strong corrosion of Cu. As shown in Comparative Examples 4 to 9, even if a strong acid and an organic compound were contained, and NH4F was required, the crack on the Cu surface could not be suppressed in the state where the polycarboxylate was not contained. -31 - 201249972 Table 5
比 較 例 使用附圖案晶圓所進行之評價 使用原膜所進行之評價 去除殘渣性能 導孔圖案形狀評價 (藥液浸漬時間3分鐘) Cu low-k 膜(SiOC 膜) 導孔底 之Cu 表面 導孔 側壁 基板 表面 腐蝕 蝕刻 表面層變質 Cu表面 Cu表面 龜裂 側壁 蝕刻速度 接觸角變化 1 A A C C D A C A C 2 A A C C D A C A C 3 A A c C D A C A c 4 A A A C C A C A B 5 A A A C C A C A B 6 A A A A C A A A B 7 A A A A C A A A B 8 A A A A C A A A B 9 A A A A C A A A B 比較例1 0〜1 7 比較例1 0〜1 7之殘渣去除液成分組成示於表6。 -32- 201249972 表6 比 較 例 水 (重量 %) 強酸 (軍量。/〇) 聚錢酸鹽之組成 ΝΗ,Ρ (重量 %) 有機 化合 物 (重量 %) 酸/聚 羧酸鹽 莫耳比 pH 聚羧酸 (重量%) 鹼性化合物 mm%) 10 99.0 三氟 乙酸 1.0 一 0 — 0 0 — 0 — 2 11 99.3 溴化氫 0.7 一 0 — 0 0 — 0 一 2 12 99.1 高氯酸 0.9 一 0 — 0 0 — 0 _ 2 13 99.1 硫酸 0.9 — 0 一 0 0 — 0 一 2 14 98.2 三氟 乙酸 1.0 丙二酸 0.8 — 0.0 0 — 0 — 2 15 97.7 三氟 乙酸 1.0 乙酸 1.1 氨 0.3 0 — 0 0,61 2 16 98.0 — 0 丙二酸 1.5 氣 0.5 0 — 0 一 7 17 95.9 — 0 乙二酸 1.5 氫氧化 四甲基錢 2.6 0 — 0 一 7 如比較例1 〇〜1 3所示之僅含有強酸時’ Cu表面產生 嚴重的龜裂。如比較例1 4所示含強酸及聚羧酸,及如比 較例15所示含強酸及單羧酸鹽(乙酸銨)時’Cu表面產生 嚴重的龜裂。如比較例16,17僅含有聚羧酸之鹽時,會 對Cu產生激烈的腐蝕。 因此比較例1〇〜17之藥液均不適用爲殘渣去除液。 -33- 201249972 表7Comparative Example Evaluation using a patterned wafer Evaluation using an original film to remove residue performance Lead pattern shape evaluation (chemical immersion time 3 minutes) Cu low-k film (SiOC film) Cu surface guide at the bottom of the via hole Hole sidewall substrate surface corrosion etching surface layer deterioration Cu surface Cu surface crack sidewall etching speed contact angle change 1 AACCDACAC 2 AACCDACAC 3 AA c CDACA c 4 AAACCACAB 5 AAACCACAB 6 AAAACAAAB 7 AAAACAAAB 8 AAAACAAAB 9 AAAACAAAB Comparative Example 1 0~1 7 Compare The composition of the residue removal liquid of Examples 1 0 to 1 7 is shown in Table 6. -32- 201249972 Table 6 Comparative Example Water (% by weight) Strong acid (armor./〇) Composition of polyglycolate Ρ, Ρ (% by weight) Organic compound (% by weight) Acid/polycarboxylate Mobi ratio pH Polycarboxylic acid (% by weight) Basic compound mm%) 10 99.0 Trifluoroacetic acid 1.0 - 0 - 0 0 - 0 - 2 11 99.3 Hydrogen bromide 0.7 - 0 - 0 0 - 0 - 2 12 99.1 Perchloric acid 0.9 0 — 0 0 — 0 _ 2 13 99.1 Sulfuric acid 0.9 — 0 — 0 0 — 0 — 2 14 98.2 Trifluoroacetic acid 1.0 Malonic acid 0.8 — 0.0 0 — 0 — 2 15 97.7 Trifluoroacetic acid 1.0 Acetic acid 1.1 Ammonia 0.3 0 — 0 0,61 2 16 98.0 — 0 Malonic acid 1.5 gas 0.5 0 — 0 —7 17 95.9 — 0 oxalic acid 1.5 tetramethyl oxyhydroxide 2.6 0 — 0 — 7 As shown in Comparative Example 1 〇~1 3 When it contains only strong acid, the surface of Cu has severe cracks. When a strong acid and a polycarboxylic acid were contained as shown in Comparative Example 14 and a strong acid and a monocarboxylic acid salt (ammonium acetate) as shown in Comparative Example 15, the surface of the 'Cu was severely cracked. When Comparative Example 16, 17 contains only a salt of a polycarboxylic acid, it causes intense corrosion of Cu. Therefore, the chemical solutions of Comparative Examples 1 to 17 are not suitable as the residue removing liquid. -33- 201249972 Table 7
比 使用附圖案晶圓所進行之評價 使月 目原膜所進行之評價 較 去除殘渣性能 導孔圖案形狀評價 Cu low-k 膜(SiOC 膜) 例 導孔底 導孔 基板 (藥液浸漬時間3分鐘) 腐蝕 蝕刻 表面層變質 之Cu 表面 側壁 表 面 Cu表面 Cu表面龜裂 側壁 蝕刻速度 接觸角變化 10 A A B D D A D A C 11 A A B D D A D A C 12 A A B D D A D A c 13 A A B D D A D A c 14 A A B C C A C A c 15 A A B D C A D A c 16 C C B D B A D A A 17 C C B C B A D A A 由上述結果,可知於實施例之藥液,係藉由強酸與聚 羧酸鹽之交互作用而可控制對Cu之腐蝕,特別係可抑制 Cu表面龜裂。因而適用爲殘渣去除液。 -34-Compared with the evaluation using the patterned wafer, the evaluation of the Moonlight original film is performed. The Cu low-k film (SiOC film) is used to evaluate the shape of the via hole pattern. Minute) Corrosion etched surface layer metamorphic Cu surface sidewall surface Cu surface Cu surface crack sidewall sidewall etching rate contact angle change 10 AABDDADAC 11 AABDDADAC 12 AABDDADA c 13 AABDDADA c 14 AABCCACA c 15 AABDCADA c 16 CCBDBADAA 17 CCBCBADAA From the above results, we know In the liquid chemical of the embodiment, the corrosion of Cu can be controlled by the interaction of a strong acid and a polycarboxylate, and in particular, cracking of the Cu surface can be suppressed. Therefore, it is suitable as a residue removing liquid. -34-