201249090 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種驅動電路,特別關於—種具能量回 收的驅動電路。 〃 【先前技術】 按’如圖1A所示,其為習知一種壓電裝置ζι的驅動 電路la示意圖。於一驅動週期時,開關Q2導通,直流訊 號dc所提供的電流n會經由電阻R卜壓電裝置a及開 關Q2而形成一驅動迴路,以驅動壓電裝置ζι動作。然而, 於驅動電路1a中,當開關Q2導通時即會有電流12存在, 因此,不管壓電裝置21動作與否,電流12都會流經電阻 R2及開關Q2,因此,將造成驅動電路1 &不必要的電量損 耗。 、 為了改善驅動電路la的缺點,另一驅動電路lb被提 出。如圖1B所示,其為習知壓電裝置Z2的另一種驅動電 路lb不意圖。於一驅動週期時,開關丁丨、丁4導通,直流 汛號DC所提供的電流13會經由開關丁丨、壓電裝置及 開關T4形成一驅動迴路,以驅動壓電裝置Z2動作。於另 驅動週期時,開關T2、T3導通,直流訊號DC所提供 的電流14會經由開關T2、壓電裝置Z2及開關丁3形成另 一驅動迴路,以驅動壓電裝置Ζ2動作。 然而’上述的驅動電路la、lb中,皆只對壓電裝置 ΖΙ Z2之壓電元件提供驅動能量,並透過壓電元件將電能 201249090 轉換為機械能,使壓電元件產生形變以達成驅動之目的。 但是,驅動電路la、lb卻都忽略了,當停止供應驅動能量 予壓電裝置Zl、Z2時,壓電元件由形變狀態回復至初始 狀態之正壓電效應(direct piezoelectric effect,機械能轉 為電能)的特性。換言之,習知之驅動電路la、lb只利用 壓電元件之逆壓電效應(inverse piezoelectric effect,電能 轉為機械能),卻忽略了壓電元件由形變狀態回復至初始 狀態之壓電效應,即忽略了壓電元件由形變狀態回復至初 始狀態所產生的電能。當然,驅動電路la、lb也無法將壓 電效應中,壓電元件所產生的電量回收再利用,以達到省 電的目的。 因此,如何提供一種驅動電路及具能量回收的驅動方 法,可具有能量回收的優點,並具有省電的效果,已成為 重要課題之一。 【發明内容】 有鑑於上述課題,本發明之目的為提供一種可具有能 量回收的優點,並具有省電效果之驅動電路及具能量回收 的驅動方法。 為達上述目的,依據本發明之一種驅動電路係驅動一 壓電裝置,並包括一驅動單元以及一控制單元。驅動單元 係與壓電裝置電性連接,並具有一儲能元件。控制單元係 與驅動單元電性連接,並控制驅動單元,以使壓電裝置發 出之一電量儲存至儲能元件,並以使電量回流並驅動壓電 201249090 裝置。 在本發明之—音 貫妩例中,壓電裝置具有 進而驅動慶電裳丄動心虎以使壓電元件產生形變, 在本發明之—音Hi; Μ 復至初始狀態時:輸元件變形後且形狀恢 動單元更具有—第:二二本發明之-實施例中驅 端分別藉由第—門關:裳第-開關,儲能元件之第一 4關及第一開關電性連接壓電裝置。 本發明之-實施例中,控制單元導通第一開關及第 回”上 ’以使電量儲存至儲能元件,並使電量 回Λ丨L亚驅動壓電裝置。 旦 在本發明之—實施例中,壓電元件具有—第—電 端:二電性連接端,驅動訊號係輸入第-電性連接 第—電性連接端,以驅動壓電裝置。 山在本發明之一實施例中,第一開關及第二開關之第一 端係分別電性連接壓電裝置之第-電性連接端及第二電 性連接端。 一 ★在本發明之一實施例中,儲能元件之第一端係電性連 開關及第一開關之第二端,儲能元件之第二端係雷 性接地。 ’' 在本發明之一實施例中,驅動單元更具有一第三開 關、一第四開關、一第五開關及一第六開關,—直流訊號 係分別輪入第三開關及第四開關之第一端,第三開關及第 201249090 四開關之第二端係分別 接端及第二電料接端。置之€-電性連 f本發明之—實施例t,第五關及第 知係分別電性連接第三_及第四開關之第二端 裝置之第-電性連接端及第二電 = 六開關之第二端係分別接地。 ^第五開關及第 及第之—實施例中,控制單元同時導通第三開關 M使直流訊號經由第三開關輸入壓電妒置的 第一電性連接端,且_裝置的第二電 、$ 開關接地。 牧挪丄由第六 及第月之―實!例中,控制單元同時導通第四開關 一、以使直仙·汛唬經由第四開關輪入壓電裝 第二電性連接端,且壓電裝置 乂 、 開關接地。 的第电性連接端經由第五 及第ί=明之一實施例中,控制單元同時導通第-開關 及第/、開關,以使電量儲存至儲能元件。 在树日把—實_巾,控.元㈣導通第二開關 及第五開關,以使電量回流並驅動壓電裝置。 在本發明之-實施例中,控制單元同時導通第二開關 及第五開關,以使電量儲存至儲能元件。 々士本發明之一實施例中’控制單元同時導通第一開關 及弟/、開關,以使電量回流並驅動壓電裳置。 為達上述目的,依據本發明之一種具能量回收的驅動 方法,係應用於-驅動電路並用以驅動—壓電裝置動作, 201249090 驅動電路具有—第一開關、一第二開關、一第三開關、一 第四開關、一第五開關、一第六開關及一儲能元件,驅動 方法包括以下的步驟:藉由導通第三開關及第六開關,以 驅動壓电裝置動作;藉由導通第-開關及第六開關,以使 壓電裝置發出之—電量儲存至儲能s件;以及藉由導通第 一開關及第五開關,以使儲能元件儲存之電量回流並驅動 壓電裝置。 〇在本發明之一實施例中,壓電裝置具有一壓電元件, 驅動電路係輸出—驅動訊號以使壓電元件產生形變,進而 驅動壓電裝置動作。 ^在本發明之—實施例中,㈣電元件變形後且形狀恢 设至初始狀態時,壓電裝置輸出電量。 二pit明之—實施例中,控制單元導通第—開關及第 ::並驅之一,以使電量儲存至儲能元件,並使電量 "IL並驅動摩電裝置。 開關及第六 在本發明之一實施例中,當同時導通第一 開關時’電量儲存至儲能元件。 同時導通第二開關及第五 在本發明之一實施例中,當 開關,電量回流並驅動壓電裝置 二開關及第 開關及第六 以下步驟: 在本發明之-實施射,當同同時導通第 五開關時’電量儲存至儲能元件。 ⑽在本發明之-實施射,當㈣導通第— 開關’電量回流並驅動壓電裝置。 在本發明之—實施例t,職方法更包括 201249090 藉由導通第四開關及第五開關,以驅動壓電裝置動作。 —在本發明之一實施例中,驅動方法更包括以下步驟: 藉由導通第二開關及第五開關,以使壓電裝置發出之電量 儲存至儲能元件。 —纟本發明之-實施例中,,驅動方法更包括卩下步驟: •错由導通第-開關及第六開關,以使儲能元件儲存之電量 回流並驅動壓電裝置。 ?(上所述,因依據本發明之一種驅動電路及具能量回 ^驅動方法係驅動—壓電裝置,且控制單元係控制驅動 2π以使壓電裝置所發出之—電量儲存至驅動單元之儲 :%件内。另外,控制單元並可㈣驅動單元,以使該電 -量回流並驅動壓電裝置。藉此,可透過本發明之驅動電路 及具f量回收的驅動方法將壓電裝置之壓電效應所產生 之電讀存至儲能元件,並可將儲能元件内儲存的電量於 下—驅動週期時輸出,以驅動壓電裝置。因此,本發明之 驅動電路及具能量回收的驅動方法具有能量回收的優 2亚具有電夏之節省以達到省電的效果。另外,在本發 2之-實施例中,與f知相較,本發明之_電路及具能 里回收的驅動方法更可提升壓電式微泵浦輸出之流量。 【實施方式】 ’ §兒明依本發明較佳實施例之一 元件將以相同的參照符號加以說 以下將參照相關圖式 種驅動電路,其中相同的 明。 201249090 請同時參照圖2及圖3所示,其中,圖2為本發明較 佳實施例之—種驅動電路2的功能方塊示意圖,而圖3係 為圖2之驅動單元21的電路示意圖。 驅動電路2係包括一驅動單元21以及一控制單元 22。其中,驅動電路2係用以驅動一壓電裝置3,而壓電 裝置3係可為可攜式或固定式的裝置,於此,係以可攜式 L電式被果浦為例,然並不以此為限。另外,壓電穿置 3右為壓電式微泵浦,則可適用於微量(毫升或微升)及 需精準流量控制之液體或氣體的輸送,而且並不限制使用 於輸运何種液體或氣體,只要輸送之液體或氣體不含與壓 電式U泵浦本身材質產生化學反應或具侵蝕性之成分即 :_此外,壓電式微泵浦可使用於但不限制只使用於一藥 劑輸配之用’其亦可應用於微量藥劑之混合調配之用。、 。動單元21係與壓電裝置3電性連接。壓電裝置3 係具有至少一壓電元件31。於此,係以一壓電元件Μ為 其中’壓電it件31係、可產生逆壓電效應(由電能轉 心成機械迠)及正壓電效應(由機械能轉換成電能)。而 ^電元件3]係、包含壓電材料,㈣材料例如可為錯鈦酸 鉛(Lead Zirconate Titanate,PZT)。 驅動電路2係輸出-驅動訊號仍以使壓電元件產 ㊁形變’進而驅動壓電農置3動作。換言之,如圖4A或 4B所不’在本實施例中,壓電裝置3係具有一本體32, 而壓電元件31係設置於本體32。本體32可具有至少一腔 至R ’而壓電元件31係對應設置於腔室R之上。另外, 201249090 磨電裝置3更具有-致動膜片33,致動膜片%係覆蓋腔 室R之頂部,而壓電元件31係設置於致動膜月%之上。 於此,致動膜片33係位於壓電元件31與腔室r之間。其 中,致動膜片33係為具有高楊氏係數之薄型玻璃,益可 ,完全接受壓電元件之逆壓電效應,並可產生足夠_ 力,使對應的腔室R產生形變,藉以提升壓電裝置3之背 壓。另外’歷電7G件31係藉由一具導電性且具黏性之材 料(例如為導電銀膠)緊密黏合於致動膜片33上。 如圖4A所示,壓電元件31因驅動訊號〇3的電壓加 載而產生形變,並使致動膜片33連動而向上彎曲。或者 _如圖4B所示,當驅動訊號Ds之電壓反向時,壓電元件 31因驅動訊號08的電壓加載而產生形變,並使致動膜片 33連動而向下彎曲。因此,壓電元件31因驅動訊號 的驅動而產生形變時,可連動致動膜片33產生形變,進 而可連動本體32之腔室R的容積產生變化形變。如此, 即可藉由驅動訊號DS驅動壓電裝置3 (於此,壓電裝置3 係為壓電式微泵浦)’以使流體透過壓電裝置3穩定地輸 出。 不論是圖4A或圖4B的態樣,驅動訊號1)8對壓電元 件31產生逆壓電效應,使壓電元件31產生形變。但當驅 動訊號DS去除時,壓電元件31將由圖4A或圖4B的變 形狀態回復去初始平坦狀態時,由壓電效應可知,壓電元 件31將可發出一電量e。 睛再參照圖2所示,控制單元22係與驅動單元21電 201249090 接。其中’驅動單元21係具有_儲能元件c。於此, $'月匕凡件C為-電谷。控制單元22可控制驅動單元2卜 以使,電裝置3發出之電量_存至儲能元件C。另外, 控制單元22並可控制驅動單元21 壓電製置3。 U回流並驅動 明再參照圖3所示,以進—步說明本發明之驅動電路 2旦係广何回收壓電裝置3所發出之電量£及如何利用該電 里E驅動壓電裝置3〇 動早兀21更具有一第一開關S1及一第二開關s2, 能το件C之第一端〇1係分別藉由第一開關Μ及第二 開關S2電性連接壓電裝置3。其中,儲能元件C之第一端 ^係電性連接第—開關S1之第二端su及第二開關Μ 端S22 ’而儲能元件C之第二端C2係電性接地。 =夕卜’控制單元22係可控制第一開關S1與第二開關幻 導通或截止。其中,控制單元22係導㈣―開關S1及第 =開關=的其中之―’以使電量E儲存至健能元件C, 並使電量E回流並驅動壓電裝置3。 、壓電元件31具有一第一電性連接端311及一第二電 性連接端312,而驅動訊號DS係輪入第-電性連接端犯 及第-電性連接端312,以驅動壓電裝置3。再者,第一 開關si及第二開關S2之第—端川、奶係分別電性連 接壓電裝置3之第一電性連接端311及第二電性連接端 312 〇 開關S3、一第四開關 驅動單元21更可具有一第三 a 12 201249090 S4、一第五開關S5及一第 ΒιΙ ^ λ ^ 弟/、開關S6。一直流訊號DC係 分別輸入第三開關S3及篦阳Ρθ M。 你一 及第四開關S4之第一端S3卜S41。 另卜,第二開關;§3及第四開關ς4 冲間關S4之第二端S32、S42係 为別電性連接壓電裝置3之笛 _ ± ^ 垆直之第一電性連接端311及第二電 性連接端312。第五開關S5 叹弟,、開關S6之第一端S51、 S 61係分別電性連接第二開 女乐—開關S3及第四開關S4之第二端 S32、S42及壓電装晋3_ lt 、 置3之第一電性連接端311及第二電性 連接端312,而第五問關R # 乐開關S5及第六開關S6之第二端S52、 S62係分別接地。 以下’請同時照圖3及圖5,以說明本發明之驅動單 元21驅動壓電裝置3、回收壓電裝置3所發出之電量£及 使用電量E驅動壓電裝置3之方法。其中,圖5為本發明 之驅動電路2的驅動方法流程圖。 本發明之驅動方法係包括步驟P01至步驟P〇3。 步驟P〇1係為:於-第-驅動週期時,藉由導通第三 開關S3及第六開關S6,以驅動壓電裝置3動作。於此, 控制單元22係同時導通第三開關S3及第六開關S6,以使 直流訊號D C經由第三開關s 3輸入壓電裝置3的第一電性 j接端3U ’且壓電裝置3的第二電性連接端312經由第 六開關S6接地。換言之,控制單元22係同時導通第三開 關S3及第六開關S6,以使直流訊號D(:所提供的電流i5 "I /’il、、二開關S3、壓電元件31及開關§6 ,以驅動壓電裝置 3而使壓電元件31產生形變。 步驟P02係為:藉由導通第一開關S1及第六開關S6, 13 201249090 以使壓電裝置3發出之電量E儲存至儲能元件C。於此, 控制單元22係同時導通第一開關S1及第六開關S6,以使 塵電裝置3因壓電效應(piezoeiectric effect,機械能轉變 為電能)所產生之電量E可儲存至儲能元件C。 接著’步驟P03係為:於一第二驅動週期時,藉由導 通第二開關S2及第五開關S5,以使儲能元件C儲存之電 量E回流並驅動壓電裝置3。於此,控制單元22係同時導 通第二開關S2及第五開關S5,以使第一驅動週期儲存於 儲能元件C之電量E回流,並用以驅動壓電裝置3。由於 儲存於儲能元件C之電量E係為壓電裝置3正電壓效應所 產生之電量,電量E不足以於第二驅動週期時完全驅動壓 電裝置3動作。 另外,請同時照圖3及圖6所示。本發明之驅動方法 更可包括步驟P04:藉由導通第四開關S4及第五開關%, 以驅動壓電襞置3動作。於此,控制單元22係同時導通 第四開關S4及第五開關S5,以使直流訊號〇(:經由第四 開關S 4輸入壓電裝置3的第二電性連接端3丨2,且壓電裝 置3的第一性連接端311經由第五開關S5接地。換言之, 控制單元22同時導通第四開關S4及第五開關s5,以使直 流訊號DC所提供的電流16可流經開關以、壓電元件31 及開關S5,以,驅動屢電裝£ 3動作,以補充步射之電 量E驅動壓電裝置3不足的部分。 再者,驅動方法更可包括步驟P〇5 :藉由導通第二開 關S2及第五開關S5,以使壓電裝置3發出之電量E儲存 14 201249090 至儲能元件C。於此,控制單元22係同時導通第二開關 S2及第五開關S5,以使壓電裝置3因步驟驅動後之 正電壓效應所產生之電量E可儲存至儲能元件c。 接著,驅動方法更可包括步驟P06:藉由導通第一開 關S1及第六開關S6,以使儲能元件c儲存之電量E回节 並驅動壓電裝置3。於此,控制單元2 2係同時導通第一 $ 關si及第六開關S6,以使步驟p〇5儲存於儲能元件c之 電量E回流並用以驅動壓電裝置3。 。…於步驟p。6後,可再重覆步驟P01至步驟P06,控制 早兀22即可於每一驅動週期中控制驅動單元21之第三開 ,S3至第六開關S6導通與截止,使得直流訊號π ^ 症電裝置3 :以驅動壓電裝置3作動。另外,控制單元Μ 導通第—開關S1及第六開關S6或第二開關S2 發出之二? S5 ’以回收壓電元件31回復至初始狀態時所 X出之。此外,控制單元22更可同時導通第 S2及第五開關S5 乂弟開關S1及第六開關S0,以將上 一驅動週期回收 甲工 < %里E回流並驅動壓電裝置3。 改9 由貝驗'^明,應用本發明具能量回收的驅動電 及:_方法驅動—壓電式微系浦作動時,由於先將 此二c儲存之電量E回流以驅動壓電式微泵浦,因 此,於下_驅動 m ^ 』甲,直流訊號dc所提供的電流驅動 &电衣罝3動作睹,叮 增加。換+ 、。使麼電式微粟浦輸配之流體的流量 雷i之應用同—電壓準位的直流訊號DC驅動壓 冤式祕泵浦時,鱼習 〃白5相較’本發明之具能量回收的驅動 201249090 Γ2及其驅動方法更可有效提升麗電式微泵浦輸配之流 置0201249090 VI. Description of the Invention: [Technical Field] The present invention relates to a driving circuit, and more particularly to a driving circuit with energy recovery. 〃 [Prior Art] As shown in FIG. 1A, it is a schematic diagram of a driving circuit la of a conventional piezoelectric device. During a driving cycle, the switch Q2 is turned on, and the current n supplied by the DC signal dc forms a driving circuit via the resistor R, the piezoelectric device a and the switch Q2, to drive the piezoelectric device to operate. However, in the driving circuit 1a, when the switch Q2 is turned on, there is a current 12, so that regardless of whether the piezoelectric device 21 operates or not, the current 12 flows through the resistor R2 and the switch Q2, thus causing the driving circuit 1 & Unnecessary power loss. In order to improve the disadvantage of the drive circuit 1a, another drive circuit lb is proposed. As shown in Fig. 1B, it is not intended to be another driving circuit lb of the conventional piezoelectric device Z2. During a driving cycle, the switches D and D are turned on, and the current 13 supplied by the DC signal DC forms a driving circuit via the switch, the piezoelectric device and the switch T4 to drive the piezoelectric device Z2 to operate. During the other driving cycle, the switches T2 and T3 are turned on, and the current 14 provided by the DC signal DC forms another driving circuit via the switch T2, the piezoelectric device Z2, and the switch 3 to drive the piezoelectric device Ζ2 to operate. However, in the above-mentioned driving circuits la, lb, only the piezoelectric element of the piezoelectric device ΖΙ Z2 is supplied with driving energy, and the piezoelectric element is used to convert the electric energy 201249090 into mechanical energy, so that the piezoelectric element is deformed to achieve driving. purpose. However, the drive circuits la and lb are neglected. When the supply of the drive energy to the piezoelectric devices Z1 and Z2 is stopped, the piezoelectric element is returned from the deformed state to the initial piezoelectric effect (direct piezoelectric effect). Characteristics of electrical energy). In other words, the conventional driving circuit la, lb only utilizes the inverse piezoelectric effect of the piezoelectric element, but ignores the piezoelectric effect that the piezoelectric element returns from the deformed state to the initial state, that is, The electric energy generated by the piezoelectric element returning to the initial state from the deformed state is ignored. Of course, the driving circuits la and lb cannot recover the power generated by the piezoelectric elements in the piezoelectric effect, thereby achieving the purpose of power saving. Therefore, how to provide a driving circuit and a driving method with energy recovery, which has the advantages of energy recovery and power saving effect, has become one of important topics. SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a driving circuit capable of energy recovery, a power saving effect, and a driving method with energy recovery. To achieve the above object, a driving circuit according to the present invention drives a piezoelectric device and includes a driving unit and a control unit. The driving unit is electrically connected to the piezoelectric device and has an energy storage component. The control unit is electrically connected to the driving unit and controls the driving unit to cause the piezoelectric device to generate a quantity of electricity to be stored to the energy storage element, and to cause the power to flow back and drive the piezoelectric 201249090 device. In the example of the present invention, the piezoelectric device has a driving device for driving the piezoelectric element to deform the piezoelectric element. In the present invention, the sound is restored to the initial state: after the transmission element is deformed And the shape recovery unit further has the following: - the second embodiment of the invention - the drive end is respectively driven by the first door: the first switch, the first 4 switch of the energy storage component and the first switch electrical connection pressure Electrical device. In the embodiment of the present invention, the control unit turns on the first switch and the first "on" to store the power to the energy storage element, and returns the power to the L sub-drive piezoelectric device. In the present invention - the embodiment The piezoelectric element has a first-electrode end: a two-electrode connection end, and the driving signal is input to the first electrical connection to the first electrical connection end to drive the piezoelectric device. In an embodiment of the invention, The first ends of the first switch and the second switch are respectively electrically connected to the first electrical connection end and the second electrical connection end of the piezoelectric device. In one embodiment of the present invention, the energy storage component is One end is electrically connected to the switch and the second end of the first switch, and the second end of the energy storage element is grounded by lightning. In an embodiment of the invention, the driving unit further has a third switch, a first a four-switch, a fifth switch and a sixth switch, wherein the DC signal is respectively inserted into the first end of the third switch and the fourth switch, and the third switch and the second end of the fourth switch of the 201249090 are respectively connected and connected Two electric material terminals. The electric current is connected to the present invention. t, the fifth switch and the first system are respectively electrically connected to the third and fourth switches of the second end device of the first electrical connection end and the second electrical = six switch second end are grounded respectively. In the switch and the first and second embodiments, the control unit simultaneously turns on the third switch M to input the DC signal to the first electrical connection end of the piezoelectric device via the third switch, and the second electrical, $ switch ground of the device In the sixth and the first month of the "real" example, the control unit simultaneously turns on the fourth switch one, so that the direct switch is inserted into the piezoelectric second electrical connection via the fourth switch wheel, and The first electrical connection of the piezoelectric device 乂, the switch is grounded. In the fifth embodiment, the control unit simultaneously turns on the first switch and the /, switch to store the power to the energy storage element. The tree-day-to-the-sense-control-element (four) turns on the second switch and the fifth switch to cause the power to flow back and drive the piezoelectric device. In the embodiment of the invention, the control unit simultaneously turns on the second switch and the fifth Switch to store the electricity to the energy storage component. Gentleman In the example, the control unit simultaneously turns on the first switch and the second switch, so that the power is recirculated and drives the piezoelectric skirt. To achieve the above object, a driving method with energy recovery according to the present invention is applied to the driving circuit. And used to drive the piezoelectric device action, the 201249090 drive circuit has a first switch, a second switch, a third switch, a fourth switch, a fifth switch, a sixth switch and an energy storage component, and the driving method The method includes the following steps: driving the piezoelectric device by turning on the third switch and the sixth switch; and turning on the first switch and the sixth switch, so that the piezoelectric device emits electricity to the energy storage device; And turning on and driving the piezoelectric device by turning on the first switch and the fifth switch. In an embodiment of the invention, the piezoelectric device has a piezoelectric element, and the driving circuit is output. - Driving the signal to cause the piezoelectric element to deform, thereby driving the piezoelectric device to operate. In the embodiment of the present invention, (4) the piezoelectric device outputs electric power when the electric component is deformed and the shape is restored to the initial state. In the embodiment, the control unit turns on one of the first switch and the :: drive to store the power to the energy storage component and to drive the battery to drive the motor. Switch and Sixth In one embodiment of the invention, the charge is stored to the energy storage element when the first switch is turned on at the same time. Simultaneously turning on the second switch and the fifth in an embodiment of the present invention, when the switch, the electric quantity reflows and drives the piezoelectric device, the second switch and the second switch, and the sixth step: in the present invention, the same is performed simultaneously At the fifth switch, the amount of electricity is stored to the energy storage component. (10) In the present invention, the radiation is applied, and when the (four) conduction is turned on, the electric current is reflowed and the piezoelectric device is driven. In the embodiment of the present invention, the method further includes 201249090 to drive the piezoelectric device to operate by turning on the fourth switch and the fifth switch. In an embodiment of the invention, the driving method further comprises the step of: storing the amount of electricity emitted by the piezoelectric device to the energy storage element by turning on the second switch and the fifth switch. - In the embodiment of the present invention, the driving method further comprises the step of: slamming the first switch and the sixth switch to cause the stored energy of the energy storage element to reflow and drive the piezoelectric device. According to the present invention, a driving circuit and an energy recovery driving method are used to drive the piezoelectric device, and the control unit controls the driving of 2π to cause the electric power generated by the piezoelectric device to be stored in the driving unit. In addition, the control unit can (4) drive the unit to cause the electric quantity to reflow and drive the piezoelectric device. Thereby, the piezoelectric circuit can be driven by the driving circuit of the invention and the driving method with f amount recovery The electrical reading generated by the piezoelectric effect of the device is stored in the energy storage component, and the electric energy stored in the energy storage component can be outputted during the lower-drive cycle to drive the piezoelectric device. Therefore, the driving circuit and the energy of the present invention The recovery driving method has the advantage of energy recovery, and has the effect of saving electricity to save power. In addition, in the embodiment of the present invention, in comparison with the f, the circuit and the device of the present invention The recovery driving method can further increase the flow rate of the piezoelectric micro-pump output. [Embodiment] One of the components of the preferred embodiment of the present invention will be referred to by the same reference symbols. Please refer to FIG. 2 and FIG. 3 at the same time. FIG. 2 is a functional block diagram of a driving circuit 2 according to a preferred embodiment of the present invention, and FIG. 3 is a driving diagram of FIG. The circuit diagram of the unit 21. The driving circuit 2 includes a driving unit 21 and a control unit 22. The driving circuit 2 is used to drive a piezoelectric device 3, and the piezoelectric device 3 can be portable or fixed. The device is hereby exemplified by the portable L electric type, but not limited thereto. In addition, the piezoelectric through 3 is a piezoelectric micropump, which can be applied to a trace amount (ml). Or microliters) and the transport of liquids or gases requiring precise flow control, and does not limit which liquids or gases are used for transport, as long as the liquid or gas delivered does not chemically react with the material of the piezoelectric U pump itself. Or an aggressive component: _ In addition, the piezoelectric micropump can be used for, but not limited to, only one drug delivery. It can also be used for the mixing and dispensing of micropharmaceuticals. It is electrically connected to the piezoelectric device 3. Piezoelectric The device 3 has at least one piezoelectric element 31. Here, a piezoelectric element is used as the 'piezoelectric element 31, which can generate an inverse piezoelectric effect (converted from electrical energy into a mechanical mean) and a positive piezoelectric The effect (converted from mechanical energy into electrical energy), and the electrical component 3] contains piezoelectric material, and the material (4) can be, for example, Lead Zirconate Titanate (PZT). The drive circuit 2 is output-driven signal still The piezoelectric element is deformed and the piezoelectric implant 3 is driven. In other words, as shown in FIG. 4A or 4B, in the present embodiment, the piezoelectric device 3 has a body 32, and the piezoelectric element 31 is provided. The body 32 can have at least one cavity to R' and the piezoelectric element 31 is correspondingly disposed above the chamber R. In addition, the 201249090 grinding device 3 further has an actuating diaphragm 33, and the diaphragm is actuated. The top of the chamber R is covered, and the piezoelectric element 31 is placed over the month of the actuation film. Here, the actuating diaphragm 33 is located between the piezoelectric element 31 and the chamber r. Wherein, the actuating diaphragm 33 is a thin glass with a high Young's modulus, which can fully accept the inverse piezoelectric effect of the piezoelectric element, and can generate sufficient _ force to deform the corresponding chamber R, thereby improving The back pressure of the piezoelectric device 3. In addition, the 7G piece 31 is closely adhered to the actuating film 33 by a conductive and viscous material such as a conductive silver paste. As shown in Fig. 4A, the piezoelectric element 31 is deformed by the voltage application of the drive signal 〇3, and the actuating diaphragm 33 is interlocked to be bent upward. Or, as shown in Fig. 4B, when the voltage of the driving signal Ds is reversed, the piezoelectric element 31 is deformed by the voltage loading of the driving signal 08, and the actuating diaphragm 33 is interlocked to be bent downward. Therefore, when the piezoelectric element 31 is deformed by the driving of the driving signal, the actuating diaphragm 33 can be deformed, and the volume of the chamber R of the body 32 can be deformed. Thus, the piezoelectric device 3 (here, the piezoelectric device 3 is piezoelectric micropump) can be driven by the driving signal DS to stably discharge the fluid through the piezoelectric device 3. Regardless of the aspect of Fig. 4A or Fig. 4B, the driving signal 1) 8 produces an inverse piezoelectric effect on the piezoelectric element 31, causing the piezoelectric element 31 to be deformed. However, when the driving signal DS is removed, when the piezoelectric element 31 is returned to the initial flat state by the deformed state of Fig. 4A or Fig. 4B, it is known from the piezoelectric effect that the piezoelectric element 31 can emit a quantity e. Referring again to FIG. 2, the control unit 22 is connected to the drive unit 21 201249090. Wherein the drive unit 21 has a _ energy storage element c. Here, $'月匕凡件C is - electric valley. The control unit 22 can control the drive unit 2 so that the amount of electricity _ emitted by the electric device 3 is stored in the energy storage element C. In addition, the control unit 22 can control the piezoelectric unit 3 of the drive unit 21. U reflow and drive, as shown in FIG. 3, to further illustrate the driving circuit of the present invention, and how to recover the amount of electricity generated by the piezoelectric device 3 and how to use the electric E to drive the piezoelectric device. The first switch S1 and the second switch s2 are electrically connected to the piezoelectric device 3 by the first switch Μ and the second switch S2, respectively. The first end of the energy storage element C is electrically connected to the second end su of the first switch S1 and the second switch end S22', and the second end C2 of the energy storage element C is electrically grounded. The control unit 22 can control the first switch S1 and the second switch to be turned on or off. The control unit 22 controls (4) - "the switch S1 and the = switch =" to store the electric quantity E to the energetic element C, and causes the electric quantity E to reflow and drive the piezoelectric device 3. The piezoelectric element 31 has a first electrical connection end 311 and a second electrical connection end 312, and the drive signal DS is in turn inserted into the first electrical connection end to the first electrical connection end 312 to drive the voltage. Electrical device 3. Furthermore, the first switch si and the second switch S2 are respectively connected to the first electrical connection end 311 and the second electrical connection end 312 of the piezoelectric device 3, the switch S3, and the first The four-switch driving unit 21 may further have a third a 12 201249090 S4, a fifth switch S5, and a first switch S Ι 、 、 、 、 、 、 A DC signal DC system is input to the third switch S3 and the 篦yang Ρ θ M, respectively. The first end S3 of your first and fourth switches S4 is S41. In addition, the second switch; § 3 and the fourth switch ς4 are connected to the second end S32, S42 of the switch S4, and are electrically connected to the first electrical connection end 311 of the piezoelectric device 3 The second electrical connection end 312. The fifth switch S5 sighs, the first ends S51, S 61 of the switch S6 are electrically connected to the second open female music switch S3 and the second switch S4 second end S32, S42 and the piezoelectric device Jin 3_ lt The first electrical connection end 311 and the second electrical connection end 312 of the third switch, and the second ends S52 and S62 of the fifth switch R # music switch S5 and the sixth switch S6 are respectively grounded. Hereinafter, please refer to FIG. 3 and FIG. 5 simultaneously to explain a method in which the driving unit 21 of the present invention drives the piezoelectric device 3, recovers the amount of electricity generated by the piezoelectric device 3, and uses the electric quantity E to drive the piezoelectric device 3. 5 is a flow chart showing a driving method of the driving circuit 2 of the present invention. The driving method of the present invention includes steps P01 to P3. The step P〇1 is to drive the piezoelectric device 3 to operate by turning on the third switch S3 and the sixth switch S6 during the -first driving period. Here, the control unit 22 simultaneously turns on the third switch S3 and the sixth switch S6 so that the DC signal DC is input to the first electrical terminal 3U' of the piezoelectric device 3 via the third switch s 3 and the piezoelectric device 3 The second electrical connection 312 is grounded via the sixth switch S6. In other words, the control unit 22 simultaneously turns on the third switch S3 and the sixth switch S6 to make the DC signal D (: the supplied current i5 " I / 'il, the two switches S3, the piezoelectric element 31 and the switch § 6 The piezoelectric element 31 is deformed by driving the piezoelectric device 3. Step P02 is: storing the electric energy E emitted from the piezoelectric device 3 to the energy storage by turning on the first switch S1 and the sixth switch S6, 13 201249090 Element C. Here, the control unit 22 simultaneously turns on the first switch S1 and the sixth switch S6, so that the power E generated by the dust electric device 3 due to the piezoelectric effect (the mechanical energy is converted into electric energy) can be stored to The energy storage device C. Next, the step P03 is: when the second driving cycle is turned on, the second switch S2 and the fifth switch S5 are turned on, so that the electric energy E stored in the energy storage device C is reflowed and the piezoelectric device 3 is driven. Here, the control unit 22 simultaneously turns on the second switch S2 and the fifth switch S5 to reflow the amount E stored in the energy storage element C during the first driving period, and is used to drive the piezoelectric device 3. Since it is stored in the energy storage device The electric quantity E of the component C is the positive voltage effect of the piezoelectric device 3 The generated electric quantity, the electric quantity E is not enough to completely drive the piezoelectric device 3 in the second driving cycle. In addition, please also refer to FIG. 3 and FIG. 6. The driving method of the present invention may further include step P04: by conducting The fourth switch S4 and the fifth switch % act to drive the piezoelectric device 3. Here, the control unit 22 simultaneously turns on the fourth switch S4 and the fifth switch S5 to make the DC signal 〇 (: via the fourth switch S) 4, the second electrical connection terminal 3丨2 of the piezoelectric device 3 is input, and the first connection terminal 311 of the piezoelectric device 3 is grounded via the fifth switch S5. In other words, the control unit 22 simultaneously turns on the fourth switch S4 and the fifth Switch s5, so that the current 16 provided by the DC signal DC can flow through the switch, the piezoelectric element 31 and the switch S5, so as to drive the action of the electric device to supplement the electric quantity of the step E to drive the piezoelectric device 3 In addition, the driving method may further include the step P〇5: by turning on the second switch S2 and the fifth switch S5, so that the electric quantity E emitted by the piezoelectric device 3 stores 14 201249090 to the energy storage element C. The control unit 22 simultaneously turns on the second switch S2 and the fifth S5 is turned on so that the electric energy E generated by the positive voltage effect of the piezoelectric device 3 after the step driving can be stored to the energy storage element c. Next, the driving method further includes the step P06: by turning on the first switch S1 and the sixth The switch S6 is configured to cause the electric energy E stored by the energy storage element c to be re-entered and drive the piezoelectric device 3. Here, the control unit 2 2 simultaneously turns on the first $off si and the sixth switch S6 to store the step p〇5 The electric quantity E of the energy storage element c is recirculated and used to drive the piezoelectric device 3. After step p. 6, the step P01 to the step P06 can be repeated, and the control can be controlled in each driving cycle. The third opening of the unit 21, the S3 to the sixth switch S6 are turned on and off, so that the direct current signal π ^ electric device 3 : to drive the piezoelectric device 3 to operate. In addition, the control unit Μ turns on the second switch S1 and the sixth switch S6 or the second switch S2. S5' is taken out when the recovered piezoelectric element 31 is returned to the initial state. In addition, the control unit 22 can simultaneously turn on the S2 and S5 switches S5 and the sixth switch S0 to recover the last drive cycle, and the E reflows and drives the piezoelectric device 3. Change 9 by Bei's test, when applying the driving power with energy recovery of the present invention and: _ method driving - piezoelectric micro-system operation, firstly, the electric energy E stored in the second c is reflowed to drive the piezoelectric micro-pump Therefore, in the lower _ drive m ^ 』 A, the current drive provided by the DC signal dc & 电 3 action 睹, 叮 increase. Change +,. The application of the flow rate of the fluid of the electric micro-Mulu transmission and distribution is the same as that of the DC signal of the voltage level DC driving the pressure-type secret pump, the fish-like white 5 phase is better than the energy recovery drive of the present invention. 201249090 Γ2 and its driving method can effectively improve the flow of the Li-electric micro-pump transmission and distribution
Tjl所述/因依據本發明之—種縣f路及具能量回 收的驅動方法係驅動一邀雷驴 00 切&览裝置’且控制單元係控制驅動 =土以使壓電裝置所發出之―電量儲存至驅動單元之儲 内。另外’控制單元並可控制驅動單元,以使該電 置回流並驅動壓電裝置。藉此,可透過本發明之驅動電路 量回收的驅動方法將壓電裝置之壓電效應所產生 之電里儲存至儲能元件,並可將儲能元件_存的電量於 下-驅動週期時輸出’以驅動壓電裝置。因此,本發明之 驅動電路及具能量回收的驅動方法且右θ ,,、,Η %勒万忐具有能量回收的優 明占之==電量之節省以達到省電的效果。另外,在本發 貫&例巾,與f知純’本翻之|g動電路及且能 置回收的驅動方法更可提升壓電式微泵浦輸出之流量: 本發為舉例性’而非為限制性者。任何未脫離 精神與範嘴’而對其進行之等效修改或變更,均 應包3於後附之申請專利範圍中。 【圖式簡單說明】 圖1A為習知一種壓電裝置的驅動電路示意圖; 為習知另一種壓電裝置的驅動電路;圖; 示意為本發明較佳實施例之一種驅動電路的功能方塊 圖3係為圖2之驅動單元的電路示意圖; !6 201249090 圖4A至圖4B為本發明之壓電裝置的動作示意圖; 圖5為本發%之驅動電路的轉方法纽圖;以及 圖6為本發日月之路的另—鶴方法流程圖。 【主要元件符號說明】 la、lb、2 :驅動電路 21 .驅動單元 22 .控制單元 3、Zl、Z2 :壓電裝置 31 :壓電元件 311 、 312 、 Cl 、 C2 、 Sll 、 S12 、 S21 、 S22 、 S31 、 S32 、 S41 、 S42 、 S51 、 S52 、 S61 、 S62 :端 -32 =本體 33 :致動膜片 C :儲能元件 DC :直流訊號 DS:驅動訊號 E :電量 * II〜16 :電流 - P01〜P06 ··步驟According to the invention, the driving method of the county road and the energy recovery system drives an inviting Thunder 00 cutting & viewing device and the control unit controls the driving = soil to cause the piezoelectric device to emit ―The battery is stored in the storage unit of the drive unit. In addition, the control unit can control the drive unit to cause the current to reflow and drive the piezoelectric device. Thereby, the electric power generated by the piezoelectric effect of the piezoelectric device can be stored in the energy storage element through the driving method of the driving circuit amount recovery of the present invention, and the electric energy stored in the energy storage element can be stored in the lower-drive cycle. Output 'to drive the piezoelectric device. Therefore, the driving circuit of the present invention and the driving method with energy recovery and the right θ , , , , Η % 勒 忐 have the advantage of energy recovery == power saving to achieve power saving effect. In addition, in the present invention, the flow rate of the piezoelectric micropump output can be increased by the method of "following the pure" and the movable circuit can be recovered: Not restricted. Any equivalent modification or change made without any departure from the spirit and the norm should be included in the scope of the patent application attached. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a schematic diagram of a driving circuit of a conventional piezoelectric device; a driving circuit of another piezoelectric device; FIG. 1 is a functional block diagram of a driving circuit according to a preferred embodiment of the present invention; 3 is a circuit diagram of the driving unit of FIG. 2; !6 201249090 FIG. 4A to FIG. 4B are schematic diagrams showing the operation of the piezoelectric device of the present invention; FIG. 5 is a diagram showing the method of converting the driving circuit of % of the present invention; The flow chart of the other crane method of the road of the sun and the moon. [Description of main component symbols] la, lb, 2: drive circuit 21. drive unit 22. control unit 3, Z1, Z2: piezoelectric device 31: piezoelectric elements 311, 312, Cl, C2, S11, S12, S21, S22, S31, S32, S41, S42, S51, S52, S61, S62: End-32 = Body 33: Actuated diaphragm C: Energy storage element DC: DC signal DS: Drive signal E: Power* II~16: Current - P01~P06 ··Steps
Ql、Q2、S1 〜S6、T1 〜T4 :開關 R :腔室Ql, Q2, S1 ~ S6, T1 ~ T4: switch R: chamber
Rl、R2 :電阻Rl, R2: resistance