TW201248883A - Thin film solar cell module and method of forming thereof - Google Patents

Thin film solar cell module and method of forming thereof Download PDF

Info

Publication number
TW201248883A
TW201248883A TW100117847A TW100117847A TW201248883A TW 201248883 A TW201248883 A TW 201248883A TW 100117847 A TW100117847 A TW 100117847A TW 100117847 A TW100117847 A TW 100117847A TW 201248883 A TW201248883 A TW 201248883A
Authority
TW
Taiwan
Prior art keywords
substrate
solar cell
layer
electrode layer
cell module
Prior art date
Application number
TW100117847A
Other languages
Chinese (zh)
Inventor
Kai-Hsiang Chuang
Chih-Hsiung Lin
Ching-In Wu
Original Assignee
Auria Solar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Auria Solar Co Ltd filed Critical Auria Solar Co Ltd
Priority to TW100117847A priority Critical patent/TW201248883A/en
Publication of TW201248883A publication Critical patent/TW201248883A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

A thin film solar cell module includes a first substrate, a photovoltaic layer and a second substrate. The first substrate has a surface including multiple bulge textures with curved surface and the pitch of the bulge textures is between 80 nm to 500 nm. The photovoltaic layer is disposed on the surface of bulge textures and the second substrate is disposed on the photovoltaic layer. The efficiency of popto-electric conversion of the solar cell module increases by means of the bulge textures.

Description

201248883 六、發明說明: 【發明所屬之技術領域】 本發明是有關於-種薄膜太陽能電池模組及其製造方法,且 特別是有關於-種可增加光捕捉特性的薄膜太陽能電池模組及 其製造方法。 【先前技術】 目前太陽能電池之型式主要可分為晶片(wafer她冲太陽能 電池與薄卿太電池兩大種。^太陽㈣池普遍以 單晶石夕或多祕為基板材料’其缺點為材料成本較高。薄膜太陽 能電池則是在-般平滑之玻絲板上沉積非晶H㈣或三五 族材料等薄膜。而薄膜太陽能電關具有低成本、料大面積生 產且核組化製程料等優點,因此薄膜太陽能電池之研發逐漸成 為新的發展方向。 在薄膜太陽能電池模組中,光電轉換層通常是由P型半導體、 本質(intrinsic)半導體(i型半導體)、n型半導體堆疊形成p+N之結 構,光線由玻璃純入射進來,透過光電轉換層吸收產生電子及 電洞對,經由峨f場將電子與朗對分_形成龍與電流, 再經由導線傳輸至負載使用。為了提昇電池的效率,習知薄膜太 陽成電池模組在將剌電極配置域明基板的表面時會形成金字 塔形(pyramid)結構’此金字塔形結構具有留滯特定入射光之效 果,但對大部分的入射光,仍無法多次利用。 201248883 為了提昇太陽能電池的效率,習知之太陽能電池之另一種作 法為堆疊多個光電轉換層。詳細而言,光電轉換層通常使用非晶 (amorphous)矽薄膜,但因為其能隙通常介於1.7至1.8 eV之間, 只能吸收波長小於800nm之太陽光,為了增加光的利用,通常會 再堆疊一層微晶(micro-crystalline or nano-crystalline)石夕薄膜,微晶 矽之能隙通常介於1.1至1.2eV之間,可以吸收波長小於ιιοο!^ 之太陽光’用以形成P-I-N/P-I-N之堆疊型(tandem)太陽能電池。 為了提昇太陽能電池的效率,習知之太陽能電池之另一種作 法為以表面平滑玻璃為基板,直接於玻璃基板上依序形成透明電 極膜、P型半導體、本質半導體(i型)或η型半導體與金屬背面電 極等光電轉換層,並且於製程中以雷射光束穿透玻璃基板並聚 焦,進而切割光電轉換層以形成所需之圖案。然而,根據發明人 之研究發現習知之平滑玻璃基板會增加入射光線被反射的機會, 導致太陽能電池的光線利用率下降。有鑑於此,如何提升薄膜太 IW月b電池之光線利用率,仍為目前極欲突破之一大課題。 【發明内容】 馨於以上關題,本發明是關於—種細太雜電池模組及 其製造方法,藉以解決先前技術所存在無法提昇光線照射薄膜太 陽能電池之利用率的問題。 根據本發明所揭露之薄膜太陽能電池模組,其包括—第一基 板光電薄膜層及-第二基板。其中,第一基板包含多個弧形 的凹凸結構,凹凸結構之週期介於8〇奈米至奈米之間。光電 201248883 薄膜層配置於苐一其把μ 土板上。第二基板配置於光電薄膜層上。 根據本發明戶斤描靈 _ 斤揭露之一種溥膜太陽能電池 :包括提佯—坌一且知从 衣每々次具 土反。接著形成多個弧形的凹凸結構於一 基板’凹騎構之介㈣奈紅奈 形 光電薄闕於第-紐。接毅# 接科成 於光電_層上。者沾第一基板,將第二基板配置 利用ΓΓΓ賴露之義峨魏麵及造方法,係 、土板上的多個弧形的凹凸結構。此弧形的凹凸結構帶 的好處為-方面會增加人射之光線被直接反射的機會,以及辦 加光線入射之後再觀射料的齡,轴增加域進入薄料 2電池模崎畴降蝴侧產生裂痕的 機會’進而增加薄膜太陽能電池模組的製程良率。 以上之關於本發明内容之說明及以下之實施方式之說明係用 以不範與糖本發岐顧,並賴供本剌之專财請範圍更 進一步之解釋。 【實施方式】 睛问時參閱1第1圖」 π L圃」,步A固」两很嫘本發 明所揭露-實施例之薄膜太陽能電池模組的剖面示意圖,「第从 ^為「第1圖」的放大示意圖,「第2B圖」為根據本發明所揭 路另貫%例之第-基板與第-電極層的剖面示意圖,「第2C圖」 為根據本發賴揭露又—實_之第—基板與第—電極層的剖面」 示意圖。 201248883 本實施例之薄膜太陽能電池模組ι〇包括-第-基板loo、_ 光電薄膜層200及一第-其缸 的-第-表㈣及;=3^,第一基板腦具有相對 第一表面130’第—表面110包含多個弧形 太凹凸結構12G,這些凹凸結請之週期d介於80奈米至500 °上述所指之凹凸結構_週期d為任二相鄰之凹凸 冓的間距換句魏,任二相鄰之凹凸結構12〇的間距介 ^ 4至5GG奈米之間。另外,每—凹凸結構凸出於表面的高 f範圍介於4G奈米至㈣奈米之間。而每-凸出結構m之曲 钟t亦介於4G奈米至25G奈米之間。其中,這些凹凸結構m 二以疋如「.第2A圖」所示之朝向光電薄膜層出獨立 Γ也可以是如「第2B圖」所示之朝向光電薄膜釋凸出連 、Γ弧型的鶴、,換言之,恥結構⑽之概為波浪形。也可以 一第2C圖」所不之凹陷型態。而上述之第一基板励可以是 一透明基板,如:玻璃基板。201248883 VI. Description of the Invention: [Technical Field] The present invention relates to a thin film solar cell module and a method of fabricating the same, and in particular to a thin film solar cell module capable of increasing light capturing characteristics and Production method. [Prior Art] At present, the types of solar cells can be mainly divided into wafers (wafer her solar cells and thin Qingtai batteries). ^The sun (four) pool is generally based on single crystal stone or more secret substrate material's shortcomings as materials The cost is higher. Thin-film solar cells deposit thin films such as amorphous H (qua) or tri-five materials on a smooth glass plate, while thin-film solar switches have low-cost, large-area production and nuclear process materials. Advantages, therefore, the development of thin film solar cells has gradually become a new development direction. In thin film solar cells, the photoelectric conversion layer is usually formed by P-type semiconductor, intrinsic semiconductor (i-type semiconductor), n-type semiconductor stack. The structure of +N, the light is incident from the glass purely, and the electron and hole pairs are absorbed through the photoelectric conversion layer, and the electrons and the lanus are divided by the 峨f field to form a dragon and current, and then transmitted to the load through the wire. The efficiency of the battery, the conventional thin film solar cell module will form a pyramid structure when the surface of the electrode is arranged on the surface of the substrate. The tower structure has the effect of retaining specific incident light, but it cannot be used for many times. 201248883 In order to improve the efficiency of solar cells, another method of conventional solar cells is to stack a plurality of photoelectric conversion layers. In detail, the photoelectric conversion layer usually uses an amorphous germanium film, but since the energy gap is usually between 1.7 and 1.8 eV, it can only absorb sunlight having a wavelength of less than 800 nm. In order to increase the utilization of light, it is usually A micro-crystalline or nano-crystalline film is stacked, and the energy gap of the microcrystalline germanium is usually between 1.1 and 1.2 eV, and the sunlight having a wavelength less than ιιοο!^ can be absorbed to form a PIN/ PIN stacking type tandem solar cell. In order to improve the efficiency of the solar cell, another method of the conventional solar cell is to form a transparent electrode film, a P-type semiconductor, and an essence directly on the glass substrate by using a surface smooth glass as a substrate. a photoelectric conversion layer such as a semiconductor (i-type) or an n-type semiconductor and a metal back electrode, and penetrates the glass substrate with a laser beam during the process The coke, which in turn cuts the photoelectric conversion layer to form the desired pattern. However, according to research by the inventors, it has been found that a conventional smooth glass substrate increases the chance of incident light being reflected, resulting in a decrease in the light utilization efficiency of the solar cell. It is still one of the major issues to improve the light utilization rate of the film of the IW month b battery. [Invention] The present invention relates to a fine battery module and a manufacturing method thereof. The invention solves the problem that the utilization of the light-irradiating thin film solar cell cannot be improved by the prior art. The thin film solar cell module according to the present invention comprises a first substrate photoelectric film layer and a second substrate. Wherein, the first substrate comprises a plurality of curved concave-convex structures, and the period of the concave-convex structure is between 8 nanometers and nanometers. Photoelectric 201248883 The film layer is placed on a micro-soil board. The second substrate is disposed on the photovoltaic film layer. According to the invention, the sputum film solar cell disclosed by the jin jin ling jin is included in the : 佯 坌 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且Then, a plurality of curved concave-convex structures are formed on a substrate of a concave-shaped structure (fourth).接毅# 接科成于光电_层. The first substrate is adhered to the second substrate, and the curved surface and the manufacturing method are used to form a plurality of curved concave-convex structures on the soil plate. The advantage of this curved concave-convex structure belt is that it increases the chance that the light emitted by the human being is directly reflected, and the age of the incident material after the incident light is incident, and the axis increases the domain into the thin material 2 battery mode. The chance of cracking on the side' increases the process yield of the thin film solar cell module. The above description of the contents of the present invention and the following description of the embodiments are intended to be interpreted in a manner that is inconsistent with the scope of the present invention. [Embodiment] When referring to FIG. 1 "FIG. 1" π L圃", step A solid" is a schematic cross-sectional view of a thin film solar cell module according to the present invention. FIG. 2B is a schematic cross-sectional view showing a first substrate and a first electrode layer according to another example of the method of the present invention, and FIG. 2C is a disclosure according to the present disclosure. The first section - the cross section of the substrate and the first electrode layer. 201248883 The thin film solar cell module of the present embodiment includes a -first substrate loo, a photo film layer 200, and a first-to-cylinder-the-table (four) and a =3^, the first substrate brain has a relative first The surface 130' first surface 110 includes a plurality of arc-shaped concave-convex structures 12G, and the period d of the concave-convex knots is between 80 nm and 500 °. The above-mentioned concave-convex structure _ period d is any two adjacent ridges The spacing is changed by the sentence Wei, and the spacing between the adjacent two concave and convex structures 12〇 is between 4 and 5GG nanometers. In addition, the height f of each of the relief structures protrudes from the surface between 4G nanometers and (four) nanometers. The bell t of each-convex structure m is also between 4G nanometers and 25G nanometers. The concave-convex structure m 2 may be independent of the photoelectric film layer as shown in the "Fig. 2A", or may be an outward-facing photoelectric film as shown in "Fig. 2B". Crane, in other words, the shame structure (10) is wavy. It is also possible to have a concave pattern that is not in the 2C chart. The first substrate excitation may be a transparent substrate such as a glass substrate.

光電相層200包括一第一電極層22〇、至少一光電轉換層 帛—電極層230 ’第—電極層22〇配置於第一表面則, 拖“轉換層21〇配置於第—電極層⑽。在本實施例巾,光電轉 可以疋石夕專膜、_ΙΠ_ν化合物半導體薄膜、- II-VI 口物半導體薄膜或—有機化合物半導體賴。詳細而言,石夕 袖列如是包対心、㈣i、、a_SiGe、,siGe、a_Sic、 :-slC、堆疊式(tandem)矽薄膜或三層㈣⑹矽薄膜至少其 。ιπ-ν化合物半導體薄關如是包含树化鎵(GaAs)、碑 201248883 化銦鎵(InGaP)或其組合。„_VI化合物半導體薄關如是包含 有銅銦石西(CIS)、銅銦鎵碼(CIGS)、錯化碲(CdTe)或其組合。有 機化合物半導體薄膜例如是包含有3·己烷噻吩 (p〇iy(3-hexylthi〇Phene),P3HT)與奈米碳球(PCBM)混合物。 意即薄膜太陽能電池模組10至少可以是採用非晶石夕薄膜 太陽能電池、微晶㈣膜太陽能電池、堆疊式(tandem)薄膜太 陽能電池、三雜ip!e)式薄膜太陽能電池、銅銦_膜太陽能 電池、銅贿_膜太陽能電池、録碲_太陽能電池或有機 薄膜太陽能電池之膜層結構。 換言之,本實施例之光電轉換層21G可視實際需求而定, 上述僅為料m明’賴太陽能電池餘1G亦可以是採用其 他可能的薄臈太陽能電池模組10的膜層結構。 第-電極層220配置於具有多個弧形之凹凸結構12〇的第一 基板100,且第-電極層220與第一基板一側具有一結晶棱 狀結構240。結晶稜狀結構240之内部結構的週期約為6〇奈米, 換句話說’結晶稜狀結構240之波峰至波峰間的間距約為6〇奈 米。第一電極層220或第二電極層230可以是一透明電極層,其 材質可以是銦錫氧化物(Indium Tin 〇xide,IT〇)、銦鋅氧化物 (Indium Zinc Oxide,ΙΖ0)、銦錫鋅氧化物(Indium Ήη 石如 Oxide ’ ITZO)、氧化鋅(Zinc 0xide)、銘錫氧化物(物油㈣Tin Oxide,ATO)、銘鋅氧化物(AIuminum Zinc㈤如,AZ⑺鎘 銦氧化物(Cadmium Indium Oxide,CIO)、鎘鋅氧化物(Cadmium 201248883The photoelectric phase layer 200 includes a first electrode layer 22, at least one photoelectric conversion layer, and an electrode layer 230'. The first electrode layer 22 is disposed on the first surface, and the "conversion layer 21" is disposed on the first electrode layer (10). In the towel of this embodiment, the photoelectric conversion can be a smectite film, a _ΙΠ_ν compound semiconductor film, a -II-VI oral semiconductor film or an organic compound semiconductor ray. In detail, the stone sleigh sleeve column is a bag heart, (4) i , a_SiGe, siGe, a_Sic, :-slC, stacked (tandem) tantalum film or three-layer (four) (6) tantalum film at least. The iπ-ν compound semiconductor thin such as including gallium arsenide (GaAs), monument 201248883 indium gallium (InGaP) or a combination thereof. The _VI compound semiconductor thin film includes copper indium lithography (CIS), copper indium gallium code (CIGS), miscible ruthenium (CdTe), or a combination thereof. The organic compound semiconductor film is, for example, a mixture containing p.ihex (3-hexylthi〇Phene, P3HT) and a nanocarbon sphere (PCBM). That is to say, the thin film solar cell module 10 can be at least an amorphous thin-film solar cell, a microcrystalline (tetra) film solar cell, a stacked (tandem) thin film solar cell, a three-hybrid ip!e) thin film solar cell, and a copper indium _ Membrane structure of membrane solar cells, copper brittle-film solar cells, recording _ solar cells or organic thin film solar cells. In other words, the photoelectric conversion layer 21G of the present embodiment may be determined according to actual needs, and the film structure of the other thin solar cell module 10 may be used as the material. The first electrode layer 220 is disposed on the first substrate 100 having a plurality of curved concave-convex structures 12A, and the first electrode layer 220 and the first substrate side have a crystal rib structure 240. The internal structure of the crystalline prismatic structure 240 has a period of about 6 nanometers. In other words, the pitch between the peaks to the peaks of the crystalline prismatic structure 240 is about 6 nanometers. The first electrode layer 220 or the second electrode layer 230 may be a transparent electrode layer, which may be made of indium tin oxide (IT), indium zinc oxide (Indium Zinc Oxide, ΙΖ0), indium tin. Zinc oxide (Indium Ή 石 stone such as Oxide 'ITZO), zinc oxide (Zinc 0xide), Ming tin oxide (Im Oxide, ATO), Ming zinc oxide (AIuminum Zinc (5), such as, AZ (7) cadmium indium oxide (Cadmium Indium Oxide, CIO), cadmium zinc oxide (Cadmium 201248883

Zinc Oxide,CZO)、鎵鋅氧化物(GZ〇)及錫氟氧化物(FT〇)至少 其一0 值得注意的是,第一電極層220或第二電極層230也可以 是一反射層,而反射層的材質例如是使用銀或鋁之類反射性較 佳的金屬。在此需要說明的是,當第二電極層23〇具有反射層 時,第一電極層220僅可為透明電極層。反之,當第一電極層 220具有反射層的設計時’第二電極層23()僅可為透明電極 層’而不具有上述的反射層。在—實施例中,第—電極層22〇 與第二電極層23G也可以皆為透明電極層,而無反射層的配 置。換言之’此部分的設計可依使用者的需求而作調整(例如 是製作雙面受光的薄膜太陽能電池或單面受光的薄膜太陽能 電池),上述僅為舉例說明,非限於此。 值得注意的是’由於第-電極層22()具有結晶稜狀結構 謂,因此,後續配置於第-電極層22〇上之光電轉換層21〇 及第二電極層細皆具有結晶稜狀結構。而圖示中結晶稜 狀結構240之表面粗链度僅為了讓觀察者方便觀察,實際上社 晶稜狀結構240表面粗之均方根值為%至觸奈米。σ 接下來描述本實施例之製作薄'" 法,其朗如下。 《太“電池_10的方 請參閱「第3Α圖」至「第3Ε圖」,「第3Α圖」至 3Ε圖」為根據本㈣所揭露―實 的製作流程圖。首先如「第3Ag ^膜场能電池模組 A圖」,提供-具有-第-表面 201248883 110的第一基板100,並形成多個弧形的凹凸結構丨2〇於第一 表面110。在本實施例中,形成這些凹凸結構12〇的方式例如 是進行一翻模製程或一蝕刻製程。其中,蝕刻製程的方法包括 一物理性蝕刻製程及一化學性蝕刻製程。物理性蝕刻製程包括 一喷砂製程、珠擊製程、雷射熔融製程。化學性钱刻製程包括 一利用含氟離子之酸液或氣體進行蝕刻製程。 然後,如「第3B圖」所示’形成一第一電極層220於第 一表面110上,第一表面110形成多個結晶稜狀結構24〇,這 些結晶棱狀結構240包覆這些凹凸結構120。在本實施例甲, 形成第一電極層220的方式例如是使用濺鍍法(sputtering)、金 屬有機化學氣相沈積(metal organic chemical vapor deposition,MOCVD)法、或蒸鍵法(evaporation)。一般來說, 在薄膜太陽能電池模組1〇的製程中,形成第一電極層220後, 通常可接著使用第一道雷射製程以圖案化第一電極層220,用 以增加薄膜太陽能電池模組10的入光量。 接著’如「第3C圖」所示,形成一光電轉換層210於第 一電極層220上。在本實施例中,形成光電轉換層210的方法 例如採用射頻電聚輔助化學氣相沉積法(Radi〇 ;preqUenCyZinc Oxide, CZO), gallium zinc oxide (GZ〇), and tin oxyfluoride (FT〇) are at least one of them. It is worth noting that the first electrode layer 220 or the second electrode layer 230 may also be a reflective layer. The material of the reflective layer is, for example, a metal having better reflectivity such as silver or aluminum. It should be noted here that when the second electrode layer 23 has a reflective layer, the first electrode layer 220 may only be a transparent electrode layer. On the contrary, when the first electrode layer 220 has a design of a reflective layer, the second electrode layer 23 () may be only the transparent electrode layer ' without the above-described reflective layer. In the embodiment, the first electrode layer 22A and the second electrode layer 23G may both be transparent electrode layers without a reflective layer. In other words, the design of this part can be adjusted according to the needs of the user (for example, a double-sided light-receiving thin film solar cell or a single-sided light-receiving thin film solar cell), which is merely illustrative and not limited thereto. It is to be noted that since the first electrode layer 22 has a crystal rib structure, the photoelectric conversion layer 21 and the second electrode layer which are subsequently disposed on the first electrode layer 22 have a crystal rib structure. . The surface roughness of the crystalline prismatic structure 240 is only for the observer to observe. In fact, the root mean square value of the surface of the prismatic structure 240 is from % to nanometer. σ Next, the manufacturing thin '" method of the present embodiment will be described, which is as follows. For the "Too" battery _10, please refer to the "3rd drawing" to "3rd drawing", and the "3rd drawing" to the 3rd drawing" is the actual production flow chart disclosed in (4). First, as the "3rd Ag^ film field energy battery module A", a first substrate 100 having a - surface-surface 201248883 110 is provided, and a plurality of curved concave-convex structures are formed on the first surface 110. In the present embodiment, the formation of the uneven structure 12 is performed, for example, by a molding process or an etching process. The etching process includes a physical etching process and a chemical etching process. The physical etching process includes a sandblasting process, a beading process, and a laser melting process. The chemical etching process includes an etching process using a fluoride-containing acid or gas. Then, as shown in FIG. 3B, a first electrode layer 220 is formed on the first surface 110, and the first surface 110 forms a plurality of crystalline prismatic structures 24, which coat the concave and convex structures. 120. In the present embodiment A, the first electrode layer 220 is formed by, for example, sputtering, metal organic chemical vapor deposition (MOCVD), or evaporation. Generally, in the process of forming a thin film solar cell module, after forming the first electrode layer 220, the first electrode layer 220 can be generally patterned by using a first laser process to increase the thin film solar cell mode. The amount of light entering the group 10. Next, as shown in Fig. 3C, a photoelectric conversion layer 210 is formed on the first electrode layer 220. In the present embodiment, the method of forming the photoelectric conversion layer 210 is, for example, radio frequency electropolymerization assisted chemical vapor deposition (Radi〇; preqUenCy).

Plasma Enhanced Chemical Vapor Deposition,RF PECVD)、 超咼頻電聚輔助化學氣相沉積法(Very High Frequency Plasma Enhanced Chemical Vapor Deposition,VHF PECVD)或者是微 波電製輔助化學氣相沉積法(Microwave Plasma Enhanced 201248883Plasma Enhanced Chemical Vapor Deposition (RF PECVD), Very High Frequency Plasma Enhanced Chemical Vapor Deposition (VHF PECVD) or Microwave Plasma Enhanced Chemical Vapor Deposition (Microwave Plasma Enhanced 201248883)

Chemical Vapor Deposition, MW PECVD)。其中光電轉換岸 23〇可根據所採用的膜層設計(如上述之石夕薄臈或π·νι化人: 半導體薄膜的結構),而調整其膜層的形成方法,上述僅為2 例說明。同樣地,完成上述光電轉換層21〇的製作步驟後,牛 常會再使用第二道雷射製程以圖案化光電轉換層2ι〇。、 然後,如「第3D圖」所示,形成上述提及的第二電極層 230於光電轉換層21G上。在本實施例中’形成第二電極層挪 的方式同於上述形成第一電極層的方式,在此不再贅述。同樣 地,完成上述第二電極層230的製作步驟後,通常會再使用第 三道雷射製程以圖案化第二電極層230。 然後’如「第3Ε圖」所示,提供一第二基板3〇〇並配置 於第二電極層230崎行縣製程以完賴社陽能電池模 組10,由於封裝製程無關本發明之主要技術特徵,故在此不 贅述。 當然光電轉換層不限於配置於第一表面11〇,在其他實施 例中’也可以配置於第二表面13〇。請參閱「第4圖」所示, 「第4圖」為根據本發明所揭露再一實施例之薄膜太陽能電池模 組的剖面示意圖。 本實施例之薄膜太陽能電池模組1〇包括一第一基板1〇〇、_ 光電薄膜層200及一第二基板珊。其中,第一基板削具有相對 的一第一表面110及一第二表面130,第一表面η〇包含多値弧形 的凹凸結構120,這些凹凸結構12〇之週期d介於8〇奈米至5〇〇 201248883 奈米之間。 光電薄膜層200包括-第一電極層22〇、至少一光電轉換層 2H)及-第二電極層230,第-電極層22〇配置於第二表面13〇: 光電轉換層210配置於第一電極層22〇。 接下來描述本實施例之製作薄膜太陽能電池模組1〇的方 法,其說明如下。由於製作薄膜太陽能電池模組1〇的方法與 上述相似,故僅針對相異處提出說明。 請參閱「第5A圖」至「第5E圖」,「第5A圖」至「第 5E圖」為根據本發明所揭露—實施例之薄膜太陽能電池模电 的製作流程圖。首先如「第5A圖」,提供第一基板刚,第 一基板100具有相對的一第一表面no及-第二表面130,並 形成多個弧形的凹凸結構12〇於第一表面11〇。 然後’如「第5B圖」所示,形成一第一電極層22〇於第 一表面130上,第—表面11〇形成多個結晶棱狀結構撕。 接者’如「第5C圖」所示,形成一光電轉換詹21〇於第 -電極層220上。同樣地,完成上述光電轉換層训的製作步 驟後,通常會再使用第二道雷射製程關案化光電轉換層. 然後’如「第5D圖」所示,形成上述提及的第二電極層 230於光電轉換層21〇上。在本實施例中,形成第二電極層⑽ 的方式同於上卿成第_f極層22()的方式,在此不再費述。 同樣地’完成上述第二電極層23〇的製作步驟後,通常會再使 用第三道#射製程以圖案化第二電極層230。 12 ⑧ 201248883 .於第然^ ’如「第5E圖」所示’提供—第二基板300並配置 广-電極層23。以進行縣製程以完成_太陽能電池模 -二 1〇,由於卿程無關本發明之主要技術特徵,故在此不 賢述。 根據本^崎揭露之_太陽能電賴 .:於第—基板上的多個弧形的凹凸結構。此弧形_凸結構; 、,好處為—方岭增加人射之級被直接反射的機會 ,以及增 β '線入射之後再被反射出去的機會’進而增加光線進入薄膜太 知能電池模組的利用率。 旱另一方面會降低光電轉換層產生裂痕的 機會,進而增加薄膜太陽能電池模組的製程良率。 U么明之貫施例揭露如上所述,然並非用以限定本發 月任何4習相關技藝者,在不脫離本發明之精神和範圍内,舉 凡依本發明申叙形狀、構造、龍及精神當可做些許 之^更因此本發明之專利保護範圍須視本說明書所附之申請專 利範圍所界定者為準。 【圖式簡單說明】 第1圖」為根據本發明所揭露一實施例之薄膜太陽能電池 模組的剖面示意圖。 第2Α圖」為「第】圖」的放大示意圖。 「第2Β圖」為根據本發明所揭露另一實施例之第一基板與第 一電極層的剖面示意圖。 第2C圖」為樹虞本發明所揭露又一實施例之第一基板與第 13 201248883 -電極層的剖面示意圖。 「第3A圖」至「第3E圖」為「第1圖」之薄膜太陽能 電池模組的製作流程圖。 「第4圖」為根據本發明所揭露再一實施例之薄膜太陽能電 ’也模組的剖面示意圖。 「第5A圖」至「第5E圖」為「第4圖」 電池模組的製作流程圖。 膜太^ 【主要元件符號說明】 10 100 110 120 130 200 210 220 230 240 300 薄膜太陽能電池模組 第一基板 第一表面 凹凸結構 第二表面 光電薄膜層 光電轉換層 第一電極層 第二電極層 結晶稜狀結構 第二基板 ⑧ 14Chemical Vapor Deposition, MW PECVD). Among them, the photoelectric conversion bank 23〇 can adjust the formation method of the film layer according to the film layer design (such as the above-mentioned stone 臈 臈 or π·νι化人: structure of the semiconductor film), the above is only 2 examples . Similarly, after the above-described fabrication steps of the photoelectric conversion layer 21 are completed, the cow often uses a second laser process to pattern the photoelectric conversion layer 2 ι. Then, as shown in the "3D drawing", the above-mentioned second electrode layer 230 is formed on the photoelectric conversion layer 21G. In the present embodiment, the manner of forming the second electrode layer is the same as the manner of forming the first electrode layer, and details are not described herein again. Similarly, after the fabrication of the second electrode layer 230 is completed, a third laser process is typically used to pattern the second electrode layer 230. Then, as shown in the "3rd drawing", a second substrate 3 is provided and disposed in the second electrode layer 230 in the Sasaki process to complete the Laiyang solar battery module 10. The main technical features of the present invention are not related to the packaging process. Therefore, I will not go into details here. Of course, the photoelectric conversion layer is not limited to being disposed on the first surface 11A, and may be disposed on the second surface 13A in other embodiments. Referring to Fig. 4, Fig. 4 is a schematic cross-sectional view showing a thin film solar cell module according to still another embodiment of the present invention. The thin film solar cell module 1 of the present embodiment includes a first substrate 1 , a photo film layer 200 and a second substrate. The first substrate is cut to have a first surface 110 and a second surface 130. The first surface η〇 includes a plurality of curved concave and convex structures 120. The period d of the concave and convex structures 12 is between 8 nanometers. Between 5〇〇201248883 nm. The photoelectric thin film layer 200 includes a first electrode layer 22, at least one photoelectric conversion layer 2H), and a second electrode layer 230. The first electrode layer 22 is disposed on the second surface 13A: the photoelectric conversion layer 210 is disposed at the first The electrode layer 22 is. Next, a method of fabricating a thin film solar cell module 1 of the present embodiment will be described, which is explained below. Since the method of manufacturing the thin film solar cell module 1 is similar to the above, it is only explained for the difference. Please refer to "5A" to "5E", and "5A" to "5E" are flowcharts for fabricating a thin film solar cell module according to the disclosed embodiment of the present invention. First, as shown in FIG. 5A, a first substrate is provided. The first substrate 100 has a first surface no and a second surface 130, and a plurality of curved concave and convex structures 12 are formed on the first surface 11〇. . Then, as shown in Fig. 5B, a first electrode layer 22 is formed on the first surface 130, and the first surface 11 is formed into a plurality of crystalline prismatic structures. As shown in Fig. 5C, a photoelectric conversion is formed on the first electrode layer 220. Similarly, after completing the fabrication steps of the above-mentioned photoelectric conversion layer training, the second laser processing method is usually used to turn off the photoelectric conversion layer. Then, as shown in the "5D drawing", the above-mentioned second electrode is formed. Layer 230 is on the photoelectric conversion layer 21A. In this embodiment, the manner of forming the second electrode layer (10) is the same as that of the upper _f pole layer 22(), and will not be described herein. Similarly, after the step of fabricating the second electrode layer 23 is completed, the third electrode layer 230 is usually patterned by using a third pass. 12 8 201248883 . The second substrate 300 is provided as shown in FIG. 5E and the wide-electrode layer 23 is disposed. In order to complete the county process to complete the _ solar cell module - two 〇, because Qing Cheng has nothing to do with the main technical features of the present invention, it is not described here. According to the present disclosure, the solar power circuit has a plurality of curved concave-convex structures on the first substrate. The arc-convex structure; , the advantage is that - Fangling increases the chance that the human-shot level is directly reflected, and increases the chance of being reflected after the β' line is incident, thereby increasing the light entering the thin film of the battery module. Utilization rate. On the other hand, the drought will reduce the chance of cracks in the photoelectric conversion layer, thereby increasing the process yield of the thin film solar cell module. The application of the present invention is not limited to the spirit and scope of the present invention, and the shape, structure, dragon and spirit of the present invention are described herein without departing from the spirit and scope of the present invention. The scope of patent protection of the present invention is defined by the scope of the patent application attached to the specification. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic cross-sectional view showing a thin film solar cell module according to an embodiment of the present invention. The second diagram is an enlarged view of the "graph". Fig. 2 is a schematic cross-sectional view showing a first substrate and a first electrode layer according to another embodiment of the present invention. 2C is a schematic cross-sectional view of a first substrate and a 13 201248883-electrode layer according to still another embodiment of the present invention. "3A" to "3E" is a flow chart for the production of the thin film solar cell module of "Fig. 1". Fig. 4 is a schematic cross-sectional view showing a thin film solar cell module according to still another embodiment of the present invention. "5A" to "5E" is the "4th drawing" battery module production flow chart. Film too ^ [Main component symbol description] 10 100 110 120 130 200 210 220 230 240 300 Thin film solar cell module first substrate first surface uneven structure second surface photoelectric thin film layer photoelectric conversion layer first electrode layer second electrode layer Crystalline prismatic structure second substrate 8 14

Claims (1)

201248883 七、申請專利範圍: . L —種薄獏太陽能電池模級,其包括: 、第—基板’包含多個弧形的凹凸結構,該些凹凸結構之 週期介於80奈米至500奈米之間; —光電薄膜層’配置於該第一基板上;及 —第二基板’配置於該光膜層上。 2.如請求項第1項所述之薄膜太陽能電池餘,其中該第-基板 具有相對的-第-表面及—第二表面,触凹凸結構設置於該 第一表面,該光膜層配置於該第一表面。 .如。月求項第1酬述之薄膜太陽能電池模組,其巾該第一基板 具有相對的H面及—第:表面,該些凹凸結構設置於該 第一表面,該光電薄膜層配置於該第二表面。 4.如請求項第1項所述之薄膜太陽能電池模組,其中每 一該凹凸 、、’。構凸出於該第-基板的高度範圍介於4G奈米至25G奈米之 間。 5·如請求項第1酬述之触太陽能電池模組,其巾該光電薄膜 層更包括一第一電極層、至少一光電轉換層及一第二電極層, • 該第一電極層配置於該第一基板,該光電轉換層配置於該第一 電極層’該第一電極層與該第一基板接觸之一側具有一結晶稜 狀結構。 6.如請求項第5項所述之薄膜太陽能電池模組,其中該結晶稜狀 結構表面粗糙度之均方根值為30至1〇〇奈米。 > 15 201248883 7. —種薄膜太陽能電池模組製造方法,其步驟包括: 提供一第一基板; 形成多個弧形的凹凸結構於該第一基板,該凹凸結構之遞 期介於80奈米至500奈米之間; 形成一光電薄膜層於該第一基板;及 提供一第二基板,將該第二基板配置於該光電薄膳層上。 如請求項第7項所述之薄膜太陽能電池模組製造方法,其中形 成5亥些凹凸結構於該第一基板的步驟另包括: 形成該些凹凸結構於該該第一基板之一第一表面。 9.如請求項第8摘述之_太陽能電池模_造方法,其中形 成該光電薄膜層的步驟更包括: 形成-第-電極層於該第一表面上,該第一表面具有一結 稜狀結構,該結晶稜狀結構包覆於該些凹凸結構; 形成一光電轉換層於該第—電極層上;及 形成一第二電極層於該光電轉換層上。 瓜如請_ 8項所述之_太_賴域造方法 成該光電薄膜層的步驟更包括: 一 y 形成-第-電極層於相_第—表 形成-光轉換層補第1極層上;及 形成一第二電極層於該光電轉換層上。 ⑧ 16201248883 VII. Patent application scope: . L is a thin-film solar cell module, which includes: The first substrate includes a plurality of curved concave-convex structures, and the period of the concave and convex structures ranges from 80 nm to 500 nm. - a photo-film layer is disposed on the first substrate; and - a second substrate is disposed on the film layer. 2. The thin film solar cell of claim 1, wherein the first substrate has opposite first-surface and second surface, and the contact-convex structure is disposed on the first surface, and the light-film layer is disposed on the first surface The first surface. .Such as. The thin film solar cell module of the first aspect of the present invention, wherein the first substrate has opposite H-planes and a first surface, and the concave-convex structures are disposed on the first surface, and the photovoltaic film layer is disposed on the first surface Two surfaces. 4. The thin film solar cell module of claim 1, wherein each of the bumps, . The height of the first substrate is between 4G nanometers and 25G nanometers. The solar cell module of claim 1 , wherein the photo-film layer further comprises a first electrode layer, at least one photoelectric conversion layer and a second electrode layer, • the first electrode layer is disposed on In the first substrate, the photoelectric conversion layer is disposed on the first electrode layer ′, and the first electrode layer has a crystal rib structure on one side of the first substrate. 6. The thin film solar cell module of claim 5, wherein the surface roughness of the crystalline prismatic structure has a root mean square value of 30 to 1 nanometer. < 15 201248883 7. A method for manufacturing a thin film solar cell module, the method comprising: providing a first substrate; forming a plurality of curved concave and convex structures on the first substrate, the projection of the concave and convex structure being between 80 Between m and 500 nm; forming a photovoltaic film layer on the first substrate; and providing a second substrate, the second substrate being disposed on the photovoltaic thin layer. The method for manufacturing a thin film solar cell module according to claim 7, wherein the step of forming the embossed structure on the first substrate further comprises: forming the embossed structures on the first surface of the first substrate . 9. The solar cell module manufacturing method according to claim 8, wherein the step of forming the photovoltaic film layer further comprises: forming a first electrode layer on the first surface, the first surface having a rib a crystalline structure, the crystalline prismatic structure is coated on the concave and convex structures; a photoelectric conversion layer is formed on the first electrode layer; and a second electrode layer is formed on the photoelectric conversion layer. The step of forming the photo-film layer by the _T__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ And forming a second electrode layer on the photoelectric conversion layer. 8 16
TW100117847A 2011-05-20 2011-05-20 Thin film solar cell module and method of forming thereof TW201248883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100117847A TW201248883A (en) 2011-05-20 2011-05-20 Thin film solar cell module and method of forming thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100117847A TW201248883A (en) 2011-05-20 2011-05-20 Thin film solar cell module and method of forming thereof

Publications (1)

Publication Number Publication Date
TW201248883A true TW201248883A (en) 2012-12-01

Family

ID=48138849

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100117847A TW201248883A (en) 2011-05-20 2011-05-20 Thin film solar cell module and method of forming thereof

Country Status (1)

Country Link
TW (1) TW201248883A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI647861B (en) * 2017-09-01 2019-01-11 茂迪股份有限公司 Mono-facial solar cell and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI647861B (en) * 2017-09-01 2019-01-11 茂迪股份有限公司 Mono-facial solar cell and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP6506837B2 (en) Photoelectric conversion device and photoelectric conversion module
TWI373848B (en) Method of fabricating solar device
CN108140735B (en) Multi-junction photoelectric conversion device and photoelectric conversion module
TW201001729A (en) Photovoltaic cell and methods for producing a photovoltaic cell
US20100035413A1 (en) Active layer for solar cell and the manufacturing method making the same
TW201010094A (en) Nano or micro-structured PN junction diode array thin-film solar cell and manufacturing method thereof
US8569615B2 (en) Solar cells and methods of forming the same
JP5455142B2 (en) Manufacturing method using dry etching of glass substrate with uneven structure film, glass substrate with uneven structure film, solar cell, and manufacturing method of solar cell
JP2014075526A (en) Photoelectric conversion element and photoelectric conversion element manufacturing method
US20120073641A1 (en) Solar cell apparatus having the transparent conducting layer with the structure as a plurality of nano-level well-arranged arrays
TW201128789A (en) New structure solar cell with superlattices
CN102947947B (en) Photo-electric conversion device
KR20090067350A (en) Thin film type solar cell and method for manufacturing the same
CN102163638A (en) Etching-technology-based silicon science (SIS) junction solar cell
TW201248883A (en) Thin film solar cell module and method of forming thereof
TW201001731A (en) Photovoltaic device and method of manufacturing a photovoltaic device
CN104505461B (en) Multilayer anti-reflection film mixed solar cell base on organic polymer, and preparation method
TW201240130A (en) Manufacturing method for multi-color crayoned solar cells
CN102185037A (en) Silicon nanocolumn solar cell capable of improving photoelectric conversion efficiency and manufacturing method thereof
TWI405347B (en) Cigs solar cell
KR102363401B1 (en) A solar cell and manufacturing method thereof
TWI380459B (en)
KR101170595B1 (en) Flexible thin film type Solar Cell and Method for manufacturing the same
JP2012164712A (en) Multi-junction type thin film solar cell
TW201628208A (en) Solar cell having surface ladder-type anti-reflection layer