TW201248600A - Display driver circuit and display driving method - Google Patents

Display driver circuit and display driving method Download PDF

Info

Publication number
TW201248600A
TW201248600A TW100118336A TW100118336A TW201248600A TW 201248600 A TW201248600 A TW 201248600A TW 100118336 A TW100118336 A TW 100118336A TW 100118336 A TW100118336 A TW 100118336A TW 201248600 A TW201248600 A TW 201248600A
Authority
TW
Taiwan
Prior art keywords
display driving
driving circuit
unit
bias
channel amplifiers
Prior art date
Application number
TW100118336A
Other languages
Chinese (zh)
Other versions
TWI453723B (en
Inventor
Hung-Yu Huang
Original Assignee
Himax Tech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Himax Tech Ltd filed Critical Himax Tech Ltd
Priority to TW100118336A priority Critical patent/TWI453723B/en
Publication of TW201248600A publication Critical patent/TW201248600A/en
Application granted granted Critical
Publication of TWI453723B publication Critical patent/TWI453723B/en

Links

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)

Abstract

The invention discloses a display driver circuit and a display driving method. The display driver circuit includes a plurality of channel amplifiers, a bias unit and a control unit. The channel amplifiers are used for driving a plurality of pixel data lines. The bias unit is used for supplying bias voltage to the channel amplifiers. The control unit selectively generates a control signal to the bias unit according to a polarity signal (POL) to the bias unit, such that the bias unit selectively provides an extra operating current to the channel amplifiers.

Description

201248600 六、發明說明: 【發明所屬之技術領域】 本揭示内容是有關於—種驅動電路架構,且特別是有 關於一種顯示驅動電路。 【先前技術】 近年來,因為液晶顯示面板具有重量輕、尺寸薄、省 電等優點,已逐漸成為顯示面板的主流。對於液晶顯示面 板而言,因為液晶分子本身具有不能夠一直被固定在某一 個電壓的特性。否則,當欲改變電壓而旋轉液晶分子時, 液晶分子的反應速度會變慢,進而留下殘影;甚至當持續 時間過長,即使將電壓去除掉,液晶分子會因為其特性已 經被破壞而無法再隨著電場的變化來轉動。所以對於液晶 顯示面板,每隔一段時間,即使所I員示的晝面沒有變化, 必須要變化施加在液晶上的電壓,以避免液晶分子的特性 遭到破壞。 因此,目前顯示驅動電路通常將施加於液晶分子兩端 的電壓差分為正電壓差(正極性)與負電壓差(負極性)兩 ^ 種’因此液晶分子被施加電壓後會具有正極性或負極性, 並隨時間改變切換個別液晶分子的極性,即是所謂的極性 反轉。常見的極性反轉的方法包括畫面反轉(frame inversion)、歹丨J 反轉(row inversion)、行反轉(column inversion) 以及點反轉(dot inversion)。上述幾種轉換方式,其不同處 是在於液晶顯示面板上,相鄰像素之間的極性反轉的頻率 與反轉的方式。 201248600 其中,行反轉(column inversion)以面板上同一行的像 素為相同極性的最小單位進行反轉,且相鄰兩行的像素為 相反極性;點反轉(dot inversion)則是以每一個像素為最小 單位進行反轉,且面板上任意相鄰兩點的像素的極性皆相 反。 對目前的顯示驅動電路架構中的源極驅動電路而言, 若採用點反轉時,可透過切換電路(如選擇器)將相鄰兩組 輸入訊號(分別為正電壓與負極性)互換即可,輸入訊號本 身極性並不改變。另一方面,若採用行反轉時,輸入訊號 的電壓準位則需要隨時間進行改變,因此,行反轉驅動方 式下電路元件需要有更高的電壓轉換速率(slewrate),才能 避免訊號失真或異常。 【發明内容】 因此,為了解決上述問題,本發明揭露一種顯示驅動 電路,其中顯示驅動電路根據極性訊號(POL)的訊號狀態來 判斷目前的驅動方式,當極性訊號為恆定值時,表示目前 可能為行反轉驅動,此時便產生控制訊號至偏壓單元,藉 此提供額外工作電流至通道放大器,進而提高通道放大器 的電壓轉換速率(slew rate);另一方面,當極性訊號為隨時 間切換時,表示目前可能為點反轉驅動,此時,便不提供 額外工作電流至通道放大器,以避免不必要的能源消耗。 本發明内容之一態樣是在提供一種顯示驅動電路,其 包含複數個通道放大器、偏壓單元以及控制單元。通道放 大器用以驅動複數個晝素資料線。偏壓單元用以提供偏壓 5 201248600 至通道放大器。控制單元根據一極性訊號(P O L)選擇性地產 生一控制訊號至該偏壓單元,藉此使該偏壓單元選擇性地 提供一額外工作電流至該等通道放大器。 根據本發明之一實施例,其中當該極性訊號恆定於一 電壓準位時,該控制單元產生該控制訊號至該偏壓單元, 藉以使該偏壓單元提供該額外工作電流至該等通道放大 器。於此實施例中,當該極性訊號恆定於一電壓準位時, 該顯示驅動電路係採用一行反轉驅動。 根據本發明之另一實施例,於行反轉驅動下,其中該 等通道放大器輸出至該等畫素資料線之一驅動電壓係週期 性地切換,該控制單元於該驅動電壓將進行切換之前一特 定時間之内產生該控制訊號,藉以使該偏壓單元提供該額 外工作電流。 根據本發明之另一實施例,其中當該極性訊號於不同 電壓準位之間切換時,該控制單元不產生該控制訊號至該 偏壓單元,則該偏壓單元不提供該額外工作電流至該等通 道放大器。於此實施例中,其中當該極性訊號於不同電壓 準位之間切換時,該顯示驅動電路係採用一點反轉驅動。 根據本發明之另一實施例,顯示驅動電路更包含一切 換單元,耦接於該等晝素資料線與該等通道放大器之間, 該切換單元用以根據該極性訊號(POL)切換該等晝素資料 線與該等通道放大器之間的對應關係。於此實施例中,該 切換單元包含複數個選擇器,其中每一選擇器分別耦接於 該等通道放大器其中兩個相鄰的通道放大器與該等畫素資 料線其中兩個相鄰的晝素資料線之間。 201248600 根據本發明之另一實施例,其中顯示驅動電路可為源 極驅動電路。 根據本發明之另一實施例,顯示驅動電路更包含複數 個數位類比轉換器,該等通道放大器用以根據該等數位類 比轉換器以驅動該等晝素資料線。 本發明内容之另一態樣是在提供一種顯示驅動方法, 其適用於一顯示驅動電路,其中該顯示驅動電路包含一偏 壓電路以及複數個通道放大器,該顯示驅動方法包含下列 步驟:偵測一極性訊號(POL);以及,根據該極性訊號(POL) 選擇性地產生一控制訊號至該偏壓單元,藉此使該偏壓單 元選擇性地提供一額外工作電流至該等通道放大器。 根據本發明之一實施例,其中當該極性訊號恆定於一 電壓準位時,該顯示驅動方法產生一控制訊號至該偏壓單 元,藉以使該偏壓單元提供該額外工作電流至該等通道放 大器。另一方面,其中當該極性訊號於不同電壓準位之間 切換時,則不產生該控制訊號至該偏壓單元,而該偏壓單 元不提供該額外工作電流至該等通道放大器。 . 【實施方式】 請參閱第1圖,其繪示根據本發明之一實施例中一種 顯示驅動電路100的示意圖。如第1圖所示,顯示驅動電 路100可包含N個數位類比轉換器(digital analog converter, DAC,於此例中為兩個數位類比轉換器120a, 120b)、N個 通道放大器(於此例中為兩個通道放大器140a,140b)、偏壓 單元160、控制單元180以及切換單元190。N個通道放大 201248600 器用以驅動N個晝素資料線(於此例中為兩個晝素資料線 Pl,P2)。 實際應用中’顯示驅動電路100可為源極驅動電路 (source driver) ’但本發明並不以此為限。此外,本實施例 中,為說明上的方便以兩組顯示訊號通道(N=2)舉例說明, 但本發明亦不以N=2為限。實際應用中,晝素資料線的數 量與顯示裝置的解析度有關,舉例來說,當顯示裝置的解 析度為1024x768時,]S[可為1024或其因數。 於此實施例中,通道放大器14〇a及通道放大器i4〇b 分別與數位類比轉換器12〇a與數位類比轉換器12〇b耦 接’並根據數位類比轉換器12〇a與數位類比轉換器12〇b 產生的訊號’進而驅動晝素資料線P1及P2。偏壓單元160 用以提供偏壓至通道放大器140a與140b。 於此實施例中,假設數位類比轉換器120a產生的是正 極性的訊號,而數位類比轉換器120b產生的是負極性的訊 號,作為舉例說明,但本發明並不以此為限。 ^於此實施例中有關行反轉驅動模式的做法說明如下, 明併參閱第2圖,其繪示顯示驅動電路1〇〇於行反轉驅 動時,號時序變化圖。如第2圖所示,當顯示驅動電路 1〇〇採用仃反轉驅動時,顯示驅動電路100中的極性訊號 (pol)基本上維持值定值不m圖中,時脈訊號TP(time pulse)為顯示驅動電路雨中採用的電路時脈。 „於行反轉驅動下,數位類比轉換器120a與數位類比轉 換器可依據前級的時序控制器(timing Controller, )或其他顯示訊號來源將目前欲顯示的訊號傳送至通 201248600 道放大器140a及通道放大器14〇b’經放大後傳送至畫素 資料線P1與P2 ’輪出至晝素資料線ρι與p2的驅動電壓 如第2圖所示。須特別注意的是,輸出至晝素資料線ρι與 P2的驅動電壓在不同電壓準位之間進行電壓訊號升降時的 速率’受通道放大器14〇a及通道放大器14〇b的電壓轉換 速率(slew rate)影響。 於此實施例中’偏壓單元160用以提供偏壓(如第2圖 中的偏壓電流lb)至通道放大器i40a, 140b。當極性訊號 POL恆定於固定的電壓準位時(如第2圖所示),即顯示驅 動電路100採用行反轉驅動,此B夺,控制單元18〇產生控 制訊號HDR至偏壓單元160,藉以使偏壓單元160提供額 外工作電流lex至通道放大器140a,140b。 更精確地說,通道放大器140a,140b輸出至畫素資料 線PI, P2之驅動電壓係週期性地切換,控制單元係在驅動 電壓將進行切換(低準位至高準位、高準位至低準位)之前 特定時間之内產生控制訊號HDR,藉以使偏壓單元提供額 外工作電流lex。 藉由額外工作電流lex提高通道放大器140a,140b的 電壓轉換速率(slew rate),如此一來,通道放大器i4〇a,140b * 輸出至晝素資料線Pl,P2之驅動電壓進行電壓準位切換所 - 需的切換時間(settling time,如第2圖中的切換時間Tt)就 愈短,如此便可避免顯不訊號的失真。 於此實施例中有關點反轉驅動模式的做法說明如下, 請一併參閱第3圖’其繪示顯示驅動電路100於點反轉驅 動時的訊號時序變化圖。如第3圖所示,當顯示驅動電路 201248600 100採用點反轉驅動時,顯示驅動電路100中的極性訊號 (POL)大致上係週期性地於高、低電壓準位之間切換。 顯示驅動電路100的切換單元190耦接於晝素資料線 Pl,P2與通道放大器140a,140b之間,切換單元190用以 根據極性訊號(POL)切換晝素資料線Pl,P2與該等通道放 大器140a, 140b之間的對應關係。於此實施例中,切換單 元190中可包含至少一選擇器(muitipiexer,MUX)電路,其 中切換單元190中的選擇器耦接通道放大器140a, 140b與 晝素資料線Pl,P2之間。實際應用中,當顯示裝置具有更 多畫素資料線時,切換單元190可相對應包含多個選擇 器,其中每一選擇器分別耦接於兩個相鄰的通道放大器與 兩個相鄰的晝素資料線之間。第3圖中,TP訊號為時序控 制器TCON送出切換單元190的控制訊號,其中當TP訊 號為High時,代表是高阻抗(high impedance,hi-Z)狀態, 亦即切換單元190暫時形成開路狀態且暫不送出欲顯示的 晝素訊號。 於此實施例中,在點反轉驅動模式下,數位類比轉換 器120a產生固定的正電壓訊號,數位類比轉換器120b產 生固定的負電壓訊號,通道放大器140a,140b用以根據數 位類比轉換器120a, 120b以驅動畫素資料線Pl,P2,且切 換單元190用以根據極性訊號POL切換晝素資料線P1,P2 與該等通道放大器140a,140b之間的對應關係。極性訊號 (POL)可由時序控制器TCON(未繪示)或其他訊號處理單元 產生。 當極性訊號POL為高準位時,切換單元190中的選擇 201248600 器將正驅動電壓輸出至畫素資料線pi,並將負驅動電壓輸 出至畫素資料線P2 ;另一方面,當極性訊號P〇L為低準位 時,切換單元190透過選擇器改變連接關係’將負驅動電 壓輸出至晝素資料線P1,並將正驅動電壓輸出至晝素資料 線P2。 於點反轉驅動模式下,驅動電壓的切換可透過上述方 式完成,而通道放大器140a,140b所處理的訊號為固定電 壓準位並不改變,也就是說,通道放大器140a, 140b不需 要額外的工作電流供給來提高電壓轉換速率(slew rate),於 此實施例中,當極性訊號p〇L於不同電壓準位之間切換時 (如第3圖所示),即顯示驅動電路100採用點反轉驅動, 控制單元180不產生控制訊號HDR(如第3圖中,控制訊號 HDR維持於低準位)至偏壓單元160,則偏壓單元160不提 供額外工作電流至通道放大器140a,140b,以避免不必要 的能量浪費。 也就是說,本發明的顯示驅動電路100其控制單元180 根據極性訊號(POL)是否有週期性的改變,而選擇性地產生 控制訊號至偏壓單元16〇,藉此使偏壓單元16〇選擇性地 提供額外工作電流至通道放大器140a,140b,藉此可在必 要夺通道放大器的電壓轉換速率(siew rate),同時可避 免不必要的能源消耗。 接著’請參閱第4圖,其繪示根據本發明之另一實施 例中一種顯示驅動方法的方法流程圖,此實施例中的顯示 驅動方法可適用於先前實施例中的顯示驅動電路100(請一 併參閱第1圖至第3圖),其中顯示驅動電路包含偏壓電路 201248600 以及複數個通道放大器。 如第4圖所示,本實施例中的顯示驅動方法,首先執 行步驟S100,偵測極性訊號(POL),判斷極性訊號(POL) 是否切換於不同電壓準位之間,於此實施例中,藉由極性 訊號的訊號波形特性可得知顯示驅動電路採用的行反轉驅 動或點反轉驅動。 接著,當極性訊號(POL)恆定於一電壓準位時(可參閱 第2圖),顯示驅動方法便可執行步驟S102,產生控制訊號 至偏壓單元,藉以使偏壓單元提供額外工作電流至通道放 大器,以提高通道放大器的電壓轉換速率。另一方面,其 中當極性訊號(POL)於不同電壓準位之間切換時(可參閱第 3圖),顯示驅動方法便可執行步驟S104,則不產生該控制 訊號至該偏壓單元,而該偏壓單元不提供該額外工作電流 至該等通道放大器,以避免不必要的電力浪費。有關極性 訊號與控制訊號產生的時序關係以及顯示驅動電路實際的 内部元件架構,可參閱先前實施例中的說明並參考第1圖 至第3圖,在此不另贅述。 雖然本揭示内容已以實施方式揭露如上,然其並非用 以限定本揭示内容,任何熟習此技藝者,在不脫離本揭示 内容之精神和範圍内,當可作各種之更動與潤飾,因此本 揭示内容之保護範圍當視後附之申請專利範圍所界定者為 準。 12 201248600 【圖式簡單說明】 為讓本揭示内容之上述和其他目的、特徵、優點與實 施例能更明顯易懂,所附圖式之說明如下: 第1圖根據本發明之一實施例中一種顯示驅動電路的 不意圖, 第2圖繪示顯示驅動電路於行反轉驅動時的訊號時序 變化圖; 第3圖繪示顯示驅動電路於點反轉驅動時的訊號時序 變化圖;以及 第4圖根據本發明之一實施例中一種顯示驅動方法的 示意圖。 【主要元件符號說明】 100 :顯示驅動電路 120b :數位類比轉換器 140b :通道放大器 180 :控制單元 S100 :步驟 S104 :步驟 120a :數位類比轉換器 140a :通道放大器 160 :偏壓單元 190 :切換單元 S102 :步驟 13201248600 VI. Description of the Invention: [Technical Field] The present disclosure relates to a drive circuit architecture, and more particularly to a display drive circuit. [Prior Art] In recent years, liquid crystal display panels have gradually become the mainstream of display panels because of their advantages of light weight, thin size, and power saving. For the liquid crystal display panel, since the liquid crystal molecules themselves have characteristics that they cannot be fixed to a certain voltage all the time. Otherwise, when the liquid crystal molecules are rotated when the voltage is to be changed, the reaction speed of the liquid crystal molecules becomes slow, thereby leaving a residual image; even when the duration is too long, even if the voltage is removed, the liquid crystal molecules may be destroyed due to their characteristics. It is no longer possible to rotate as the electric field changes. Therefore, for the liquid crystal display panel, the voltage applied to the liquid crystal must be changed every time, even if the surface of the member is not changed, so that the characteristics of the liquid crystal molecules are destroyed. Therefore, at present, the display driving circuit generally divides the voltage applied across the liquid crystal molecules into a positive voltage difference (positive polarity) and a negative voltage difference (negative polarity). Therefore, the liquid crystal molecules have a positive polarity or a negative polarity after being applied with a voltage. And changing the polarity of switching individual liquid crystal molecules with time, that is, the so-called polarity inversion. Common methods of polarity inversion include frame inversion, inJ inversion, column inversion, and dot inversion. The above several conversion methods differ in the manner in which the polarity of the polarity inversion between adjacent pixels is reversed on the liquid crystal display panel. 201248600 wherein the column inversion is reversed by the smallest unit of the same polarity on the same row of pixels on the panel, and the pixels of the adjacent two rows are opposite polarity; the dot inversion is each The pixels are inverted for the smallest unit, and the polarities of the pixels of any two adjacent points on the panel are opposite. For the source driving circuit in the current display driving circuit architecture, if dot inversion is used, the two adjacent input signals (positive voltage and negative polarity, respectively) can be exchanged through a switching circuit (such as a selector). However, the polarity of the input signal itself does not change. On the other hand, if row inversion is used, the voltage level of the input signal needs to be changed with time. Therefore, the circuit components in the row inversion driving mode need to have a higher voltage slew rate to avoid signal distortion. Or abnormal. SUMMARY OF THE INVENTION Therefore, in order to solve the above problems, the present invention discloses a display driving circuit in which a display driving circuit determines a current driving mode according to a signal state of a polarity signal (POL). When the polarity signal is a constant value, it indicates that it is currently possible. For row inversion driving, a control signal is generated to the biasing unit, thereby providing additional operating current to the channel amplifier, thereby increasing the voltage slew rate of the channel amplifier; on the other hand, when the polarity signal is over time When switching, it indicates that it is possible to drive the dot inversion at this time. At this time, no additional operating current is supplied to the channel amplifier to avoid unnecessary energy consumption. One aspect of the present invention is to provide a display driving circuit including a plurality of channel amplifiers, a biasing unit, and a control unit. The channel amplifier is used to drive a plurality of halogen data lines. The bias unit is used to provide a bias voltage of 5 201248600 to the channel amplifier. The control unit selectively generates a control signal to the bias unit based on a polarity signal (P O L), thereby causing the bias unit to selectively provide an additional operating current to the channel amplifiers. According to an embodiment of the present invention, when the polarity signal is constant at a voltage level, the control unit generates the control signal to the bias unit, so that the bias unit provides the additional operating current to the channel amplifiers. . In this embodiment, when the polarity signal is constant at a voltage level, the display driving circuit is driven by one row of inversion. According to another embodiment of the present invention, under the row inversion driving, wherein the driving voltage of the channel amplifier output to one of the pixel data lines is periodically switched, the control unit before the driving voltage is switched The control signal is generated within a certain time period, whereby the bias unit provides the additional operating current. According to another embodiment of the present invention, when the polarity signal is switched between different voltage levels, the control unit does not generate the control signal to the bias unit, and the bias unit does not provide the additional operating current to These channel amplifiers. In this embodiment, when the polarity signal is switched between different voltage levels, the display driving circuit is driven by a point inversion. According to another embodiment of the present invention, the display driving circuit further includes a switching unit coupled between the pixel data lines and the channel amplifiers, wherein the switching unit is configured to switch the signals according to the polarity signal (POL) Correspondence between the data line and the channel amplifiers. In this embodiment, the switching unit includes a plurality of selectors, wherein each of the selectors is respectively coupled to the equal channel amplifier, wherein two adjacent channel amplifiers and two adjacent ones of the pixel data lines are adjacent to each other. Between the data lines. 201248600 According to another embodiment of the invention, the display drive circuit can be a source drive circuit. In accordance with another embodiment of the present invention, the display driver circuit further includes a plurality of digital analog converters for driving the pixel data lines in accordance with the digital analog converters. Another aspect of the present invention provides a display driving method suitable for a display driving circuit, wherein the display driving circuit includes a bias circuit and a plurality of channel amplifiers, and the display driving method includes the following steps: Measuring a polarity signal (POL); and selectively generating a control signal to the bias unit according to the polarity signal (POL), thereby causing the bias unit to selectively provide an additional operating current to the channel amplifiers . According to an embodiment of the invention, the display driving method generates a control signal to the bias unit when the polarity signal is constant at a voltage level, so that the bias unit provides the additional operating current to the channels. Amplifier. On the other hand, when the polarity signal is switched between different voltage levels, the control signal is not generated to the bias unit, and the bias unit does not provide the additional operating current to the channel amplifiers. [Embodiment] Please refer to FIG. 1, which is a schematic diagram of a display driving circuit 100 according to an embodiment of the present invention. As shown in FIG. 1, the display driving circuit 100 may include N digital analog converters (DACs, in this example, two digital analog converters 120a, 120b), N channel amplifiers (in this example). The middle is a two-channel amplifier 140a, 140b), a biasing unit 160, a control unit 180, and a switching unit 190. N channels are amplified. The 201248600 device is used to drive N halogen data lines (in this case, two pixel data lines Pl, P2). In practical applications, the display driving circuit 100 can be a source driver, but the invention is not limited thereto. In addition, in the embodiment, for the convenience of description, two sets of display signal channels (N=2) are illustrated, but the present invention is not limited to N=2. In practical applications, the number of halogen data lines is related to the resolution of the display device. For example, when the resolution of the display device is 1024x768, ]S[ can be 1024 or its factor. In this embodiment, the channel amplifier 14A and the channel amplifier i4〇b are coupled to the digital analog converter 12A and the digital analog converter 12〇b, respectively, and are converted according to the digital analog converter 12〇a and the digital analogy. The signal generated by the device 12〇b drives the pixel data lines P1 and P2. Bias unit 160 is used to provide bias to channel amplifiers 140a and 140b. In this embodiment, it is assumed that the digital analog converter 120a generates a positive polarity signal, and the digital analog converter 120b generates a negative polarity signal, as an example, but the invention is not limited thereto. The description of the row inversion driving mode in this embodiment is as follows. Referring to Fig. 2, the timing change diagram of the display driving circuit 1 when the row inversion driving is performed is shown. As shown in FIG. 2, when the display driving circuit 1 is driven by 仃 inversion, the polarity signal (pol) in the display driving circuit 100 is substantially maintained at a constant value. In the figure, the clock signal TP (time pulse) ) is to display the circuit clock used in the rain of the drive circuit. „In the line inversion drive, the digital analog converter 120a and the digital analog converter can transmit the currently displayed signal to the 201248600 channel amplifier 140a according to the timing controller of the previous stage or other display signal source. The channel amplifier 14〇b' is amplified and transmitted to the pixel data lines P1 and P2' to drive the voltages to the pixel data lines ρι and p2 as shown in Fig. 2. Special attention must be paid to the output to the pixel data. The rate at which the voltages of the lines ρι and P2 drive voltage signals rise and fall between different voltage levels is affected by the voltage slew rate of the channel amplifier 14〇a and the channel amplifier 14〇b. In this embodiment The biasing unit 160 is configured to provide a bias voltage (such as the bias current lb in FIG. 2) to the channel amplifiers i40a, 140b. When the polarity signal POL is constant at a fixed voltage level (as shown in FIG. 2), The display driving circuit 100 adopts a row inversion driving, and the control unit 18 generates a control signal HDR to the bias unit 160, so that the bias unit 160 provides an additional operating current lex to the channel amplifiers 140a, 140b. More precisely, the channel amplifiers 140a, 140b output to the pixel data lines PI, P2 drive voltage is periodically switched, the control unit is switched at the drive voltage (low level to high level, high level to low The control signal HDR is generated within a certain time before the level, so that the bias unit provides an additional operating current lex. The voltage slew rate of the channel amplifiers 140a, 140b is increased by the additional operating current lex, thus, the channel The amplifiers i4〇a, 140b* are output to the pixel data lines P1, and the driving voltage of P2 is switched by the voltage level. The required switching time (settling time, such as the switching time Tt in Fig. 2) is shorter. The distortion of the display signal can be avoided. The description of the dot inversion driving mode in this embodiment is as follows. Please refer to FIG. 3 together, which shows the signal timing change diagram of the display driving circuit 100 during dot inversion driving. As shown in FIG. 3, when the display driving circuit 201248600 100 is driven by dot inversion, the polarity signal (POL) in the display driving circuit 100 is substantially periodically high and low. The switching unit 190 of the display driving circuit 100 is coupled between the pixel data lines P1 and P2 and the channel amplifiers 140a and 140b. The switching unit 190 is configured to switch the pixel data lines P1 according to the polarity signal (POL). Corresponding relationship between P2 and the channel amplifiers 140a, 140b. In this embodiment, at least one selector (MUX) circuit may be included in the switching unit 190, wherein the selector in the switching unit 190 is coupled to the channel The amplifiers 140a, 140b are connected to the halogen data lines P1, P2. In a practical application, when the display device has more pixel data lines, the switching unit 190 may correspondingly include a plurality of selectors, wherein each selector is respectively coupled to two adjacent channel amplifiers and two adjacent ones. Between the vegetarian data lines. In the third figure, the TP signal is a control signal sent by the timing controller TCON to the switching unit 190. When the TP signal is High, the high impedance (hi-Z) state is represented, that is, the switching unit 190 temporarily forms an open circuit. Status and temporarily do not send out the sinus signal to be displayed. In this embodiment, in the dot inversion driving mode, the digital analog converter 120a generates a fixed positive voltage signal, the digital analog converter 120b generates a fixed negative voltage signal, and the channel amplifiers 140a, 140b are used according to the digital analog converter. 120a, 120b drive the pixel data lines P1, P2, and the switching unit 190 is configured to switch the correspondence between the pixel data lines P1, P2 and the channel amplifiers 140a, 140b according to the polarity signal POL. The polarity signal (POL) can be generated by the timing controller TCON (not shown) or other signal processing unit. When the polarity signal POL is at a high level, the selection 201248600 in the switching unit 190 outputs the positive driving voltage to the pixel data line pi, and outputs the negative driving voltage to the pixel data line P2; on the other hand, when the polarity signal When P〇L is at the low level, the switching unit 190 changes the connection relationship through the selector to output the negative driving voltage to the pixel data line P1, and outputs the positive driving voltage to the pixel data line P2. In the dot inversion driving mode, the switching of the driving voltage can be completed in the above manner, and the signals processed by the channel amplifiers 140a, 140b are fixed voltage levels are not changed, that is, the channel amplifiers 140a, 140b do not need additional The operating current is supplied to increase the voltage slew rate. In this embodiment, when the polarity signal p〇L is switched between different voltage levels (as shown in FIG. 3), the display driving circuit 100 adopts a point. Inverting the driving, the control unit 180 does not generate the control signal HDR (as in FIG. 3, the control signal HDR is maintained at the low level) to the biasing unit 160, the biasing unit 160 does not provide additional operating current to the channel amplifiers 140a, 140b. To avoid unnecessary energy waste. That is, the display driving circuit 100 of the present invention has its control unit 180 selectively generating a control signal to the biasing unit 16A according to whether the polarity signal (POL) has a periodic change, thereby causing the biasing unit 16 to The additional operating current is selectively supplied to the channel amplifiers 140a, 140b, whereby the voltage slew rate of the channel amplifier can be taken as necessary while avoiding unnecessary energy consumption. Next, please refer to FIG. 4, which is a flowchart of a method for displaying a display driving method according to another embodiment of the present invention. The display driving method in this embodiment can be applied to the display driving circuit 100 in the previous embodiment ( Please refer to FIG. 1 to FIG. 3 together, wherein the display driving circuit includes a bias circuit 201248600 and a plurality of channel amplifiers. As shown in FIG. 4, the display driving method in this embodiment first performs step S100 to detect a polarity signal (POL) and determine whether the polarity signal (POL) is switched between different voltage levels. In this embodiment, The line inversion driving or the dot inversion driving used by the display driving circuit can be known by the signal waveform characteristic of the polarity signal. Then, when the polarity signal (POL) is constant at a voltage level (refer to FIG. 2), the display driving method can perform step S102 to generate a control signal to the bias unit, so that the bias unit provides additional operating current to Channel amplifier to increase the voltage slew rate of the channel amplifier. On the other hand, when the polarity signal (POL) is switched between different voltage levels (refer to FIG. 3), the display driving method can execute step S104, and the control signal is not generated to the bias unit. The biasing unit does not provide this additional operating current to the channel amplifiers to avoid unnecessary power wastage. For the timing relationship between the polarity signal and the control signal and the actual internal component architecture of the display driver circuit, refer to the description in the previous embodiment and refer to FIG. 1 to FIG. 3, and no further details are provided herein. The present disclosure has been disclosed in the above embodiments, but it is not intended to limit the disclosure, and any person skilled in the art can make various changes and refinements without departing from the spirit and scope of the disclosure. The scope of protection of the disclosure is subject to the definition of the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, advantages and embodiments of the present disclosure will become more apparent and understood. A schematic diagram of a display driving circuit, FIG. 2 is a diagram showing a timing change of a display driving circuit during line inversion driving; FIG. 3 is a diagram showing a timing change of a display driving circuit when driving in a dot inversion driving; 4 is a schematic diagram of a display driving method in accordance with an embodiment of the present invention. [Description of Main Element Symbols] 100: Display Drive Circuit 120b: Digital Analog Converter 140b: Channel Amplifier 180: Control Unit S100: Step S104: Step 120a: Digital Analog Converter 140a: Channel Amplifier 160: Bias Unit 190: Switching Unit S102: Step 13

Claims (1)

201248600 七、申請專利範圍: 1、 一種顯示驅動電路,包含: 複數個通道放大器,用以驅動複數個畫素資料線; 一偏壓單元,用以提供偏壓至該等通道放大器;以 及 一控制單元,該控制單元根據一極性訊號(POL)選擇 性地產生一控制訊號至該偏壓單元,藉此使該偏 壓單元選擇性地提供一額外工作電流至該等通道 放大器。 2、 如申請專利範圍第1項所述之顯示驅動電路,其中當該 極性訊號恆定於一電壓準位時,該控制單元產生該控 制訊號至該偏壓單元,藉以使該偏壓單元提供該額外 工作電流至該等通道放大器。 3、 如申請專利範圍第1項所述之顯示驅動電路,其中當該 極性訊號恆定於一電壓準位時,該顯示驅動電路係採 用一行反轉驅動。 4、 如申請專利範圍第3項所述之顯示驅動電路,於該行反 轉驅動下,其中該等通道放大器輸出至該等畫素資料 線之一驅動電壓係週期性地切換,該控制單元於該驅 動電壓將進行切換之前一特定時間之内產生該控制訊 號,藉以使該偏壓單元提供該額外工作電流。 201248600 5、 如申請專利範圍第1項所述之顯示驅動電路,其中當該 極性訊號於不同電壓準位之間切換時,該控制單元不 產生該控制訊號至該偏壓單元,該偏壓單元不提供該 額外工作電流至該等通道放大器。 6、 如申請專利範圍第1項所述之顯示驅動電路,其中當該 極性訊號於不同電壓準位之間切換時,該顯示驅動電 路係採用一點反轉驅動。 7、 如申請專利範圍第1項所述之顯示驅動電路,更包含一 切換單元耦接於該等畫素資料線與該等通道放大器之 間,該切換單元用以根據該極性訊號(POL)切換該等畫 素資料線與該等通道放大器之間的對應關係。 8、 如申請專利範圍第7項所述之顯示驅動電路,其中該切 換單元包含至少一選擇器,其中每一選擇器分別耦接 於該等通道放大器其中兩個相鄰的通道放大器與該等 晝素資料線其中兩個相鄰的晝素資料線之間。 9、 如申請專利範圍第1項所述之顯示驅動電路,其中該顯 示驅動電路為一源極驅動電路。 10、 如申請專利範圍第1項所述之顯示驅動電路,更包含複 數個數位類比轉換器,該等通道放大器分別與該等數 位類比轉換器耦接,該等通道放大器用以根據該等數 位類比轉換器以驅動該等晝素資料線。 15 201248600 11、 一種顯不驅動方法’適用於一顯示驅動電路,其中卞 顯示驅動電路包含一偏壓電路以及複數個通道放= 器’該顯示驅動方法包含下列步驟: 偵測一極性訊號(POL);以及 根據該極性訊號(POL)選擇性地產生一控制訊號至 該偏壓單元,藉此使該偏壓單元選擇性地提供一 額外工作電流至該等通道放大器。 八 12、 如申請專利範圍第11項所述之顯示驅動方法,其中當 該極性訊號恆定於一電壓準位時,更包含下列步驟: 產生一控制號至該偏壓單元,藉以使該偏壓單元 提供該額外工作電流至該等通道放大器。 13、 如申請專利範圍第u項所述之顯示驅動方法其中當 該極性訊號於不同電壓準位之間切換時’則不產生該 控制訊號至該偏壓單元,而該偏壓單元不提供該額外 工作電流至該等通道放大器。201248600 VII. Patent application scope: 1. A display driving circuit comprising: a plurality of channel amplifiers for driving a plurality of pixel data lines; a biasing unit for supplying a bias voltage to the channel amplifiers; and a control And a control unit that selectively generates a control signal to the bias unit according to a polarity signal (POL), thereby causing the bias unit to selectively provide an additional operating current to the channel amplifiers. 2. The display driving circuit of claim 1, wherein when the polarity signal is constant at a voltage level, the control unit generates the control signal to the biasing unit, so that the biasing unit provides the Additional operating current to these channel amplifiers. 3. The display driving circuit of claim 1, wherein the display driving circuit uses a row of inversion driving when the polarity signal is constant at a voltage level. 4. The display driving circuit according to claim 3, wherein the driving voltage of the channel amplifier output to one of the pixel data lines is periodically switched under the row inversion driving, the control unit The control signal is generated within a certain time before the driving voltage is switched, so that the bias unit provides the additional operating current. The display driving circuit of claim 1, wherein the control unit does not generate the control signal to the bias unit when the polarity signal is switched between different voltage levels, the bias unit This additional operating current is not supplied to the channel amplifiers. 6. The display driving circuit of claim 1, wherein the display driving circuit is driven by a point inversion when the polarity signal is switched between different voltage levels. 7. The display driving circuit of claim 1, further comprising a switching unit coupled between the pixel data lines and the channel amplifiers, wherein the switching unit is configured to use the polarity signal (POL) Switching the correspondence between the pixel data lines and the channel amplifiers. 8. The display driving circuit of claim 7, wherein the switching unit comprises at least one selector, wherein each selector is respectively coupled to the equal channel amplifier, wherein two adjacent channel amplifiers and the same The halogen data line is between two adjacent halogen data lines. 9. The display driving circuit of claim 1, wherein the display driving circuit is a source driving circuit. 10. The display driving circuit of claim 1, further comprising a plurality of digital analog converters respectively coupled to the digital analog converters for using the digital amplifiers according to the digital digits An analog converter drives the halogen data lines. 15 201248600 11. A display driving method is applicable to a display driving circuit, wherein the display driving circuit comprises a bias circuit and a plurality of channel discharges. The display driving method comprises the following steps: detecting a polarity signal ( POL); and selectively generating a control signal to the bias unit based on the polarity signal (POL), thereby causing the bias unit to selectively provide an additional operating current to the channel amplifiers. The display driving method of claim 11, wherein when the polarity signal is constant at a voltage level, the method further comprises the steps of: generating a control number to the biasing unit, thereby biasing the biasing unit The unit provides this additional operating current to the channel amplifiers. 13. The display driving method according to claim 5, wherein when the polarity signal is switched between different voltage levels, the control signal is not generated to the bias unit, and the bias unit does not provide the Additional operating current to these channel amplifiers.
TW100118336A 2011-05-25 2011-05-25 Display driver circuit and display driving method TWI453723B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100118336A TWI453723B (en) 2011-05-25 2011-05-25 Display driver circuit and display driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100118336A TWI453723B (en) 2011-05-25 2011-05-25 Display driver circuit and display driving method

Publications (2)

Publication Number Publication Date
TW201248600A true TW201248600A (en) 2012-12-01
TWI453723B TWI453723B (en) 2014-09-21

Family

ID=48138785

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100118336A TWI453723B (en) 2011-05-25 2011-05-25 Display driver circuit and display driving method

Country Status (1)

Country Link
TW (1) TWI453723B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI486932B (en) * 2013-04-03 2015-06-01 Himax Tech Inc Panel driving circuit
CN106469545A (en) * 2015-08-21 2017-03-01 瑞鼎科技股份有限公司 Driver for display device
TWI668684B (en) * 2018-08-24 2019-08-11 瑞鼎科技股份有限公司 Source driver and operating method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7388571B2 (en) * 2002-11-21 2008-06-17 Research In Motion Limited System and method of integrating a touchscreen within an LCD
JP4847702B2 (en) * 2004-03-16 2011-12-28 ルネサスエレクトロニクス株式会社 Display device drive circuit
JP5634005B2 (en) * 2007-11-02 2014-12-03 株式会社ジャパンディスプレイ Display device, display control method, and electronic device
TWI408638B (en) * 2008-10-20 2013-09-11 Raydium Semiconductor Corp Driver circuit system and method of elevating slew rate of operational amplifier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI486932B (en) * 2013-04-03 2015-06-01 Himax Tech Inc Panel driving circuit
CN106469545A (en) * 2015-08-21 2017-03-01 瑞鼎科技股份有限公司 Driver for display device
TWI668684B (en) * 2018-08-24 2019-08-11 瑞鼎科技股份有限公司 Source driver and operating method thereof

Also Published As

Publication number Publication date
TWI453723B (en) 2014-09-21

Similar Documents

Publication Publication Date Title
KR101329410B1 (en) Liquid crystal display and driving method thereof
JP5701517B2 (en) Display device
KR102237036B1 (en) Source driver and display device comprising the same
KR102237039B1 (en) Source driver and display device comprising the same
WO2016155157A1 (en) Display panel and drive method thereof, and liquid crystal display device
US8284147B2 (en) Source driver, display device using the same and driving method of source driver
JP2007094404A (en) Liquid crystal display apparatus and driving method thereof
US8633921B2 (en) Data driving circuit and liquid crystal display device including the same
KR20070016858A (en) Liquid crystal display and driving method for the same
TW201411585A (en) Source driver and method for updating a gamma curve
JP5676219B2 (en) Driving device for liquid crystal display panel
US20130286003A1 (en) Data driver with up-scaling function and display device having the same
US8390612B2 (en) Source driver and operation method thereof and flat panel display
JP2007206279A (en) Liquid crystal display device
US20070211005A1 (en) Gamma voltage generator
US20150042238A1 (en) Driving method of multi-common electrodes and display device
KR101885807B1 (en) Liquid Crystal Display And Chage Share Control Method Thereof
TWI453723B (en) Display driver circuit and display driving method
EP2458581B1 (en) Drive device for liquid crystal display panel
WO2014005391A1 (en) Gamma voltage generation device and method
US20110181570A1 (en) Display apparatus, display panel driver and display panel driving method
US8593389B2 (en) Gamma-voltage generator
KR102551295B1 (en) Gate driver and display apparatus having the same
KR20080078772A (en) Driving circuit of lcd
JP2010282201A (en) Liquid crystal dot inversion driving circuit