TW201248198A - Display apparatuses and methods for displaying images - Google Patents

Display apparatuses and methods for displaying images Download PDF

Info

Publication number
TW201248198A
TW201248198A TW100118815A TW100118815A TW201248198A TW 201248198 A TW201248198 A TW 201248198A TW 100118815 A TW100118815 A TW 100118815A TW 100118815 A TW100118815 A TW 100118815A TW 201248198 A TW201248198 A TW 201248198A
Authority
TW
Taiwan
Prior art keywords
display
electrochromic
eye image
image
substrate
Prior art date
Application number
TW100118815A
Other languages
Chinese (zh)
Other versions
TWI490548B (en
Inventor
Chi-Che Tsai
Jian-Cheng Chen
Chien-Hung Chen
Original Assignee
Chimei Innolux Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chimei Innolux Corp filed Critical Chimei Innolux Corp
Priority to TW100118815A priority Critical patent/TWI490548B/en
Publication of TW201248198A publication Critical patent/TW201248198A/en
Application granted granted Critical
Publication of TWI490548B publication Critical patent/TWI490548B/en

Links

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

Disclosed is a display apparatus including a display device having a plurality of pixels, a patterned retardant film having a plurality of right-eye image polarization regions and left-eye image polarization regions individually vertically aligned to the pixels, and an electrochromic device outside or inside a substrate of the display device, wherein the electrochromic device has a electrochromic region corresponding to a boundary between the right-eye image polarization regions and left-eye image polarization regions.

Description

201248198 六、發明說明: 【發明所屬之技術領域】 本發明係關於顯示裝置,更特別關於顯示二維影像與 三維影像之間的切換方法。 【先前技術】 隨著科技進步,電視資訊從黑白到彩色再進步到高晝 質影像。為了滿足人類對自然視覺重現的要求,顯示技術 已由平面走向立體顯示。要造成立體影像可藉由兩眼視差 達成,其原理是兩眼的位置及視角不同,導致左眼及右眼 看到的影像略為不同,最後左眼影像與右眼影像經大腦結 合形成立體影像。一般立體顯示技術可分為戴眼鏡式與裸 眼式。 戴眼鏡式的立體顯示技術主要分為偏光眼鏡和快門眼 鏡,均利用顯示器送出左右眼影像,經眼鏡選擇後讓左右 眼分別看到左右眼影像以形成立體視覺。但快門眼鏡受到 液晶反應速度及資料線排列的限制,左右眼影像之間的串 音效應較嚴重。另一方面,快門式眼鏡需和顯示器同步驅 動,其耗電量、重量、及成本均較偏光眼鏡高上許多。综 上所述,偏光眼鏡已慢慢成為戴眼鏡式的立體顯示之技術 主流。偏光眼鏡式的立體顯示技術如第1圖所示,在顯示 器10外側貼上偏光層11,再將圖案化的相位差膜13貼附 於顯示器10之玻璃基板外側,即偏光層11夾設於顯示器 10與圖案化的相位差膜13之間。圖案化的相位差膜13具 有左眼影像偏振區13A (相位差為0)對應顯示器10之左眼 3 201248198 影像畫素區’與右眼影像偏振區13B (相位差為1/2λ)對應 顯示器10之右眼影像晝素區。如此一來,經偏光層11偏 振後的影像經過圖案化的相位差膜13後’對應區域13Α 之影像的偏振方向將轉為45。(左眼影像15Α),而對應區域 13Β之影像的偏振方向將轉為_45。(右眼影像15Β)。使用者 可藉由偏光眼鏡17讓左眼只看到左眼影像15Α,右眼只看 到右眼影像15Β,經大腦結合後即產生立體影像的視覺感 受。然而此技術的問題在於只要影像光束稍微偏離垂直視 角’就會產生嚴重的串音效應。如第2圖所示’液晶顯示 器具有背光源21、偏光層22、玻璃基板23、陣列電路層 24、液晶層25、彩色濾光層26、玻璃基板27、與偏光層 28 °在液晶顯示器的偏光層28外具有圖案化的相位差膜 29。彩色濾光層26之彩色濾光片r與[,分別對應圖案化 的相位差膜29其右眼影像偏振區29R與左眼影像偏振區 29L。在第2圖中,垂直光束210R與210L,在經過偏光眼 鏡220後可讓使用者觀賞立體影像。但偏向光束21〇,將會 讓左眼影像穿過右眼影像偏振區29R,造成串音的結果。 在玻璃基板27和偏光層28之厚度過厚時,偏向光束21〇, 的問題會更嚴重。 為解決上述問題’一般是在圖案化的相位差膜29的右 眼影像偏振區29R與29L之間夾設黑條bS,如第3A圖所 示另個方法是增加彩色濾光片R與L之間黑色矩陣BM 的寬度,如第3B圖所示。不論是採用黑條BS或黑色矩陣 BM,都會降低開口率。另一個問題是,當顯示模式由三維 轉為一維時’上述黑條Bs或黑色矩陣Bm仍存在於顯示裝 4 201248198 置中並降低影像的開口率。換句話說,為了避免三維顯示 的串音問通而採用的黑條或黑色矩陣,將會影響一鉍舶'一' 的品質。 〜維顯不 綜上所述,目前亟需在不大幅改變現有設計的情況下 解決三維顯示的串音問題,並兼顧二維顯示的開口^: 【發明内容】 本發明一實施例提供一種顯示裝置,包括顯示器,具 有多個晝素區;圖案化相位差膜,具有多個右眼影像偏振 區與左眼影像偏振區各自對應晝素區;以及電致變色^ 件,位於液晶顯示器之基板的外側或内側,且該電致變色 元件具有電致變色區,其中電致變色區對應右眼影像偏振 區與左眼影像偏振區之交界。 本發明另一實施例提供一種顯示影像的方法,包括提 供偏光眼鏡;提供顯示裝置,包括顯示器,具有多個晝素 區,圖案化相位差臈,具有多個右眼影像偏振區與多個左 眼影,偏振區各自對應畫素區;以及電致變色元件,位於 顯不器之基板的外側或内側,且電致變色元件具有電致變 =區其中電致變色區對應右眼影像偏振區與左眼影像偏 ^區之交界;開啟電致變色元件,使電致變色區遮光後關 ::致變色兀件’·以及控制顯示器使晝素區分為多個左眼 目^象晝素與多個右《彡像晝素,时別顯#眼影像與右 :像’其中左眼影像與右眼影像穿過偏光眼鏡,讓使用 者硯賞到三維影像。 本發明另-實施例提供—種顯示影像的方法,包括提 201248198 供=裝置顯示器,具有多個晝素 位f膜,具有多個右眼影像偏振區與多個左眼影= 目 各自對應畫素區;以及電致變色元件,位於顯示 的外側或内側,且電致變色元件具有電致變色區,复^ 電致變色區對應右眼影像偏振區與左眼影像偏振區之= 界;控制顯示器,使晝素區顯示二維影像。 【實施方式】 本發明為解決習知技藝中偏向光束造成的串音問題, 採用電致變色元件(ECD)阻擋偏向光束。電致變色元件可為 電致變色材料夾設於兩片基板之間的三明治結構,藉由基 板上的電路讓電致變色材料變色,達到遮光效果。為縮減 元件厚度,本發明之電致變色元件之基板較佳為塑膠等可 撓透明材料。一般而言,電致變色材料可粗分為有機材料 與無機材料,有機材料在施加電壓後改變分子間的共軛雙 鍵數目,進而改變其透光率。無機材料在施加電壓後會改 變其金屬離子的氧化態,進而改變其透光率。關於電致變 色材料的選擇、原理、和元件結構,可進一步參考美國氰 胺公司於1969年發表的期刊:0〆如/?〆 1969, vol. 3, page 193. ’及其他相關專利及期刊。開啟電致變色元件, 使電致變色材料變色之電路可為主動電路或被動電路。由 於應用於本發明之㈣變色元件只是絲賴偏向光束, 並不而顯示複雜的圖形,因此使電致變色材料變色之電路 較佳為被動電路。電致變色元件有下列優點。首先,電致 變色7L件的驅動電壓(約3V)不高。再者,電致變色元件在 施加電壓後形成的遮光圖案,並不會在停止施加電壓後消 6 201248198 失。換句話說,只要 持續耗電。最重要的是,j圖,後即可關閉電源,不需 切換為二維影像的顯器自三維影像的顯示模式 致變色的遮光區回復透光^:,可_電致變色^件使電 電致變色區將不會像黑如此一來’電致變色元件之 維影像之開口率。’、或黑色矩陣bm—樣,降低二 為使本技藝人士更加 實施例說明電致變色元:::發明之特徵’特提供下述 所示之顯示裝置中2D/3D顯示器。如第, 22、玻璃基板23、陣列電路層24、=源21:偏光層 層26、玻璃基板27、與偏光層28。電二25一、彩色濾、光 於偏光層28外側,而圖案化的相 | ’兀牛4〇係位 们相位差獏29位於雷致戀Α 元件40外側。陣列電路層24可控制液晶層25二= 域’將顯不區分為右眼影像晝素區與左眼影像晝素區 色濾、光層26具有多個遽光區,分別對應右眼影像 = 左眼影像畫素區。舉例來說’穿過某1光區的^線二 穿過其對應之右眼影像晝素區(或左眼影像晝素區),而= 穿過其他的右眼影像畫素區與左眼影像晝素區。圖案化 相位差膜29具有右眼影像偏振區通與左眼影像偏振區 视’分別對應右眼影像晝素區與左眼影像畫素區。舉例來 說,穿過某-右眼影像晝素區(或左眼影像晝素區)的光 線’只穿過其對應的右眼影像偏振區29R(或左眼影像偏振 區29L)’而不穿過其他的右眼影像偏振區遭與左眼影像 偏振區29L。如第4圖所示’電致變色元件4()具有電致變 色區佩對應右眼影像偏振區肅與左眼影像偏振區观 201248198 之交界。舉例來說’穿過右眼影像偏振區29R與左眼影像 偏振區29L之交界的光、線,必然穿過電致變色區4〇A (透明 時)或被電致變色區40A遮擋(遮光時),而不穿過電致變色 元件40的其他透光部份。當顯示裳置顯示三維影像時,將 開啟電致變色元件40,使電致變色區4〇A呈遮光型態以避 免串音效應後,再關閉電致變色元件。當顯示裝置顯示二 維影像時,將開啟電致變色元件4〇,使電致變色區4〇A呈 透光型態以避免影響二維影像的開口率後,再關閉電致變 色元件40。 在本發明另一實施例中,可將玻璃基板23及/或玻璃基 板27置換為可撓式的塑膠基板,以進一步縮減元件尺寸。 可以理解的是,上述置換亦可減少偏向光束的角度,進而 縮減光致變色區40A的寬度。經由理論計算,要增加視角 的方法大致有三:增加光致變色區40A的寬度、另外採用 黑條BS’或縮減基板的厚度。第5圖係本發明一實施例中, 電致變色區40A之不同寬度對應的垂直視角。以厚度為 7〇〇μιη之玻璃基板為例,當電致變色區40A之寬度為 ΙΟΟμηι時,其垂直視角約為6。。若要將垂直視角提升至 13°,需將電致變色區40Α之寬度增加到200μιη。另一方 面’若是採用厚度為ΙΟΟμιη的塑膠基板,在電致變色區4〇α 之寬度為ΙΟΟμιη時’即可讓垂直視角達到16。。若是電致 變色區40Α的寬度增加至200μιη時,可讓垂直視角大幅提 升至33。。 如第6圖所示,電致變色區40Α的寬度將會降低顯示 元件的穿透度。以31.5吋的顯示器為例,當電致變色區4〇α 8 201248198 的寬度由ΙΟΟμιη增加至200μπι時,其穿透度損失由約_1〇% 增加到-40%。以40付的顯示器為例,當電致變色區4〇a 的寬度由ΙΟΟμιη增加至200μιη時,其穿透度損失由約_8〇/。 增加到-32%。以46 11寸的顯示器為例,當電致變色區4〇α 的寬度由ΙΟΟμιη增加至200μιη時,其穿透度損失由約_6% 增加到-24%。以55吋的顯示器為例,當電致變色區4〇Α 的寬度由ΙΟΟμιη增加至200μιη時,其穿透度損失由約_5〇/〇 增加到-20%。由上述可知,增加電致變色區40Α寬度的做 法雖可增加垂直視角,但會降低穿透度。 在本發明另一實施例中’當42吋的顯示器之基板採用 寬度為42μιη的電致變色區40Α時’厚度為700μιη的玻璃 基板其垂直視角僅為8.9° ’而厚度為ΙΟΟμπι的塑膠基板其 垂直視角可高達26.8°。除了不增加電致變色區40Α的寬度 即可增加垂直視角的優點外,塑膠基板還具有輕量化及可 撓性等優點。 第7圖所示之顯示裝置與第4圖類似’差別在於偏光 層28的位置由位於玻璃基板27與電致變色元件40之間, 改為置於電致變色元件40與圖案化的相位差膜29之間。 此外’本實施例之破螭基板23及/或玻璃基板27亦可置換 為可撓式的塑膠基板,其優點如前述。 第8圖所不之顯示裝置與第4圖類似,差別在於彩色 遽光層26之位置由破螭基板27上,改為置於玻璃基板23 上的陣列電路層24上。上述具有陣列電路層24與彩色濾 光層26形成其上的破璃基板23,即所謂的彩色濾光層上 陣列(AOC)基板。另〜方面’可將彩色濾光層26夹設於玻 201248198 璃基板23與陣列電路層24之間,此即所謂的陣列上彩色 遽光(COA)基板。此外,本實施例之玻璃基板23及/或玻璃 基板27亦可置換為可撓式的塑膠基板,其優點如前述。 第9圖所示之顯示裝置與第6圖類似,差別在於偏光 層28的位置由位於玻璃基板27與電致變色元件40之間, 改為置於電致變色元件40與圖案化的相位差膜29之間。 此外,本實施例之玻璃基板23及/或玻璃基板27亦可置換 為可撓式的塑膠基板,其優點如前述。 第10圖所示之顯示裝置與第4圖類似,差別在於第4 圖中的電致變色元件40係夾設於偏光層28與圖案化的相 位差膜29之間,而第8圖中的圖案化的相位差膜29係夾 設於偏光層28與電致變色元件40之間。此外,本實施例 之玻璃基板23及/或玻璃基板27亦可置換為可撓式的塑膠 基板,其優點如前述。 第Π圖所示之顯示裝置與第8圖類似,差別在於彩色 濾光層26之位置由玻璃基板27上,改為置於玻璃基板23 上的陣列電路層24上。上述具有陣列電路層24與彩色濾 光層26形成其上的玻璃基板23,即所謂的彩色濾光層上 陣列(AOC)基板。另一方面,可將彩色濾光層%夾設於玻 璃基板23與陣列電路層24之間’此即所謂的陣列上彩色 濾光(COA)基板。此外,本實施例之破螭基板23及/或玻璃 基板27亦可置換為可撓式的歸基板,其優點如前述。 除了上述之液晶顯示器以外’其他顯示器如電子紙、 電子閱讀器、電致發光顯示器、有機電致發光顯示器、: 空螢光顯示器、發光二極體、陰極射線管、液晶顯^器、 201248198 電聚顯示面板、數位光學處理器、石夕基板上液晶顯示器、 有機發光二極體、表面傳導電子發射顯示器、場發射顯示 裔、ΐ子點雷射電視、液晶雷射電視、鐵電液晶顯不ι§、 干涉測量調節顯示器、厚膜介電電致發光器、量子點發光 二極體、屈伸晝素顯示器、有機發光電晶體、光致變色顯 示器、或雷射螢光體顯示器亦可搭配上述之電致變色元 件。只要是偏光眼鏡式的立體顯示器,均可採用本發明之 電致變色元件,而不限於圖示之液晶顯示器。 雖然本發明已以數個較佳實施例揭露如上,然其並非 用以限定本發明,任何熟習此技藝者,在不脫離本發明之 精神和範圍内,當可作任意之更動與潤飾,因此本發明之 保護範圍當視後附之申請專利範圍所界定者為準。 201248198 【圖式間單說明】 第1圖係習知技藝中,偏光眼鏡式的立體顯示技術的 不意圖; 第2圖係習知技藝中’偏光眼鏡式的立體顯示裝置之 剖視圖; 第3A-3B係習知技藝中 置之剖視圖; 解決串音效應的立體顯示裝 =4與7;11圖係本發明實施例中,顯示裝置之剖視圖; 直視自本發明—實施例中,電致變色區寬度對應垂 1視角的線性圖;以及 電致變色區寬度對應穿 第6圖係本發明一實施例中 透度損失的線性圖。 【主要元件符號說明】 BM〜黑色矩陣; BS〜黑條; R、L〜彩色濾光片; 10〜顯示器; η、22、28〜偏光層; 13、29〜圖案化的相位差膜; 13Α、29L〜左眼影像偏振區; 13Β、29R~右眼影像偏振區; 15 A〜左眼影像; 15B〜右眼影像; 17、220〜偏光眼鏡; 12 201248198 21〜背光源; 23、27〜玻璃基板; 24〜陣列電路層; 25〜液晶層; 26〜彩色濾、光層; 40〜電致變色元件; 40A〜電致變色區; 210R、210L〜垂直光束; 210’〜偏向光束。 13201248198 VI. Description of the Invention: [Technical Field] The present invention relates to a display device, and more particularly to a method of switching between displaying a two-dimensional image and a three-dimensional image. [Prior Art] With the advancement of technology, TV information has progressed from black and white to color to high-quality images. In order to meet the human requirements for the reproduction of natural vision, the display technology has been displayed from the plane to the stereo. The stereo image can be achieved by binocular parallax. The principle is that the position and angle of view of the two eyes are different, and the images seen by the left eye and the right eye are slightly different. Finally, the left eye image and the right eye image are combined by the brain to form a stereoscopic image. Generally, stereoscopic display technology can be divided into glasses-type and nude-eye type. The glasses-type stereoscopic display technology is mainly divided into polarized glasses and shutter eyeglasses, which use the display to send left and right eye images. After the glasses are selected, the left and right eyes respectively see left and right eye images to form stereoscopic vision. However, the shutter glasses are limited by the liquid crystal reaction speed and the arrangement of the data lines, and the crosstalk effect between the left and right eye images is serious. On the other hand, shutter glasses need to be driven synchronously with the display, and their power consumption, weight, and cost are much higher than those of polarized glasses. In summary, polarized glasses have gradually become the mainstream of glasses-based stereoscopic display technology. As shown in FIG. 1, the polarized glasses type stereoscopic display technology has a polarizing layer 11 attached to the outside of the display 10, and the patterned retardation film 13 is attached to the outside of the glass substrate of the display 10, that is, the polarizing layer 11 is interposed. The display 10 is between the patterned phase difference film 13. The patterned retardation film 13 has a left-eye image polarization region 13A (phase difference is 0) corresponding to the left eye 3 of the display 10 201248198 image pixel region 'and right-eye image polarization region 13B (phase difference 1/2λ) corresponding display 10 right eye image of the vegetarian area. As a result, after the image polarized by the polarizing layer 11 passes through the patterned retardation film 13, the polarization direction of the image corresponding to the region 13A is changed to 45. (The left eye image is 15Α), and the polarization direction of the image corresponding to the area 13Β will be changed to _45. (The right eye image is 15 inches). The user can use the polarized glasses 17 to make the left eye only see the left eye image 15 Α, and the right eye only see the right eye image 15 Β. After the brain is combined, the stereoscopic image is visually recognized. However, the problem with this technique is that as long as the image beam is slightly off the vertical viewing angle, a severe crosstalk effect is produced. As shown in FIG. 2, the liquid crystal display has a backlight 21, a polarizing layer 22, a glass substrate 23, an array circuit layer 24, a liquid crystal layer 25, a color filter layer 26, a glass substrate 27, and a polarizing layer 28° on a liquid crystal display. The patterned retardation film 29 is provided outside the polarizing layer 28. The color filters r and [the color filter layer 26 correspond to the patterned retardation film 29, respectively, and the right-eye image polarization region 29R and the left-eye image polarization region 29L. In Fig. 2, the vertical beams 210R and 210L allow the user to view the stereoscopic image after passing through the polarizing glasses 220. However, the deflection of the beam 21 〇 will cause the left eye image to pass through the right image polarization zone 29R, resulting in crosstalk. When the thickness of the glass substrate 27 and the polarizing layer 28 is too thick, the problem of deflecting the light beam 21 is more serious. In order to solve the above problem, a black strip bS is generally interposed between the right-eye image polarization regions 29R and 29L of the patterned retardation film 29, and as shown in FIG. 3A, another method is to add color filters R and L. The width between the black matrix BM is shown in Figure 3B. Whether using a black strip BS or a black matrix BM, the aperture ratio is lowered. Another problem is that when the display mode is changed from three-dimensional to one-dimensional, the above black bar Bs or black matrix Bm is still present in the display device 4 201248198 and reduces the aperture ratio of the image. In other words, the black bar or black matrix used to avoid the crosstalk of the three-dimensional display will affect the quality of the ship's one. In view of the fact that there is no need to change the existing design, the crosstalk problem of the three-dimensional display is not required to be solved, and the opening of the two-dimensional display is also considered. [Invention] An embodiment of the present invention provides a display. The device includes a display having a plurality of halogen regions; a patterned retardation film having a plurality of right-eye image polarization regions and a left-eye image polarization region respectively corresponding to the pixel regions; and an electrochromic device located on the substrate of the liquid crystal display The outer side or the inner side, and the electrochromic element has an electrochromic area, wherein the electrochromic area corresponds to the boundary between the right-eye image polarization area and the left-eye image polarization area. Another embodiment of the present invention provides a method for displaying an image, including providing polarized glasses, and providing a display device including a display having a plurality of pixel regions, patterned phase difference 臈, having a plurality of right-eye image polarization regions and a plurality of left The eye shadow, the polarizing regions respectively correspond to the pixel regions; and the electrochromic element is located outside or inside the substrate of the display, and the electrochromic element has an electro-variable=region, wherein the electrochromic region corresponds to the right-eye image polarization region and The left eye image is at the boundary of the partial area; the electrochromic element is turned on, and the electrochromic area is shielded from the back:: the discoloration element is selected and the display is made to distinguish the element into a plurality of left eye elements and a plurality of elements. Right "彡像昼素,时别显#eye image and right: like 'where the left eye image and the right eye image pass through the polarized glasses, allowing the user to enjoy the 3D image. Another embodiment of the present invention provides a method for displaying an image, comprising: a 201248198 device display having a plurality of morphological f-films having a plurality of right-eye image polarization regions and a plurality of left-eye shadows And an electrochromic element located on the outer side or the inner side of the display, and the electrochromic element has an electrochromic zone, the complex electrochromic zone corresponding to the right eye image polarization zone and the left eye image polarization zone = control panel; To display a two-dimensional image in the alizarin area. [Embodiment] The present invention solves the problem of crosstalk caused by a deflected beam in the prior art, and uses an electrochromic element (ECD) to block a deflected beam. The electrochromic element can be a sandwich structure in which an electrochromic material is sandwiched between two substrates, and the electrochromic material is discolored by a circuit on the substrate to achieve a light-shielding effect. In order to reduce the thickness of the element, the substrate of the electrochromic element of the present invention is preferably a flexible material such as plastic. In general, electrochromic materials can be roughly classified into organic materials and inorganic materials. The organic materials change the number of conjugated double bonds between molecules after applying a voltage, thereby changing the light transmittance. The inorganic material changes the oxidation state of its metal ions after applying a voltage, thereby changing its light transmittance. For the selection, principle, and structure of electrochromic materials, reference may be made to the journal published by the American Cyanamide Corporation in 1969: 0〆/?〆1969, vol. 3, page 193. 'and other related patents and periodicals. . The circuit that turns on the electrochromic element and discolors the electrochromic material can be an active circuit or a passive circuit. Since the (4) color-changing element applied to the present invention is only a biased light beam and does not exhibit a complicated pattern, the circuit for discoloring the electrochromic material is preferably a passive circuit. Electrochromic elements have the following advantages. First, the driving voltage (about 3 V) of the electrochromic 7L device is not high. Moreover, the light-shielding pattern formed by the electrochromic element after the voltage is applied does not disappear after the voltage is stopped. In other words, as long as the power consumption continues. The most important thing is that the j picture can be turned off after the power is turned off. The display device that does not need to be switched to the 2D image returns to the light-shielding area of the 3D image display mode. The discoloration zone will not be as black as the 'opening rate of the dimensional image of the electrochromic element. </ RTI> or black matrix bm-like, lowering in order to enable the skilled person to describe the electrochromic element in more embodiments:: Features of the invention 'Specially provided 2D/3D display in the display device shown below. For example, 22, glass substrate 23, array circuit layer 24, = source 21: polarizing layer 26, glass substrate 27, and polarizing layer 28. The second filter is colored outside the polarizing layer 28, and the patterned phase | 兀 〇 4 〇 〇 们 们 相位 相位 位于 位于 位于 位于 位于 位于 位于 位于 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The array circuit layer 24 can control the liquid crystal layer 25, the second domain can be distinguished from the right-eye image pixel region and the left-eye image pixel region, and the light layer 26 has a plurality of light-emitting regions, respectively corresponding to the right-eye image= The left eye image pixel area. For example, 'the second line passing through a certain light zone passes through its corresponding right-eye image pixel area (or the left-eye image pixel area), and = passes through the other right-eye image pixel area and the left eye. Image area. The patterned retardation film 29 has a right-eye image polarization zone pass and a left-eye image polarization zone view corresponding to the right-eye image pixel region and the left-eye image pixel region, respectively. For example, light passing through a certain right-eye image region (or left-eye image region) passes only through its corresponding right-eye image polarization region 29R (or left-eye image polarization region 29L) instead of The polarization zone passing through the other right eye image is polarized with the left eye image 29L. As shown in Fig. 4, the electrochromic element 4 () has an electrochromic region corresponding to the boundary between the right-eye image polarization region and the left-eye image polarization region 201248198. For example, the light and the line passing through the boundary between the right-eye image polarization region 29R and the left-eye image polarization region 29L must pass through the electrochromic region 4A (transparent) or be blocked by the electrochromic region 40A (shading) When not passing through other light transmissive portions of the electrochromic element 40. When the display shows a three-dimensional image, the electrochromic element 40 is turned on, and the electrochromic zone 4A is shielded to avoid the crosstalk effect, and then the electrochromic element is turned off. When the display device displays the two-dimensional image, the electrochromic element 4 is turned on, and the electrochromic region 4A is made transparent to avoid affecting the aperture ratio of the two-dimensional image, and then the electrochromic element 40 is turned off. In another embodiment of the invention, the glass substrate 23 and/or the glass substrate 27 can be replaced with a flexible plastic substrate to further reduce the component size. It will be appreciated that the above replacement may also reduce the angle of the deflecting beam and thereby reduce the width of the photochromic zone 40A. Theoretically, there are roughly three ways to increase the viewing angle: increase the width of the photochromic region 40A, additionally use the black strip BS' or reduce the thickness of the substrate. Fig. 5 is a vertical viewing angle corresponding to different widths of the electrochromic zone 40A in an embodiment of the invention. Taking a glass substrate having a thickness of 7 μm as an example, when the width of the electrochromic region 40A is ΙΟΟμηι, the vertical viewing angle is about 6. . To increase the vertical viewing angle to 13°, increase the width of the electrochromic zone 40Α to 200μηη. On the other hand, if a plastic substrate having a thickness of ΙΟΟμηη is used, the vertical viewing angle can be made 16 when the width of the electrochromic region 4〇α is ΙΟΟμιη. . If the width of the 40° of the electrochromic zone is increased to 200 μm, the vertical viewing angle can be greatly increased to 33. . As shown in Fig. 6, the width of the electrochromic zone 40Α will reduce the transmittance of the display element. Taking a 31.5 inch display as an example, when the width of the electrochromic zone 4〇α 8 201248198 is increased from ΙΟΟμιη to 200μπι, the loss of penetration increases from about _1〇% to -40%. Taking a 40-payout display as an example, when the width of the electrochromic zone 4〇a is increased from ΙΟΟμιη to 200μηη, the loss of transmittance is about _8〇/. Increase to -32%. Taking a 46-inch display as an example, when the width of the electrochromic zone 4〇α is increased from ΙΟΟμιη to 200μηη, the loss of transmittance is increased from about _6% to -24%. Taking a 55-inch display as an example, when the width of the electrochromic zone 4〇Α is increased from ΙΟΟμιη to 200 μm, the loss of transmittance is increased from about _5 〇 / 〇 to -20%. As can be seen from the above, increasing the width of the electrochromic zone 40 Α can increase the vertical viewing angle but reduce the penetration. In another embodiment of the present invention, 'when the substrate of the 42-inch display adopts an electrochromic zone 40 宽度 having a width of 42 μm, the glass substrate having a thickness of 700 μm has a vertical viewing angle of only 8.9°' and a plastic substrate having a thickness of ΙΟΟμπι The vertical viewing angle can be as high as 26.8°. In addition to the advantages of increasing the vertical viewing angle without increasing the width of the electrochromic zone 40 ,, the plastic substrate has the advantages of light weight and flexibility. The display device shown in Fig. 7 is similar to Fig. 4 in that the position of the polarizing layer 28 is located between the glass substrate 27 and the electrochromic element 40, and is placed in the phase difference between the electrochromic element 40 and the pattern. Between the membranes 29. Further, the broken substrate 23 and/or the glass substrate 27 of the present embodiment may be replaced with a flexible plastic substrate, and the advantages thereof are as described above. The display device shown in Fig. 8 is similar to Fig. 4 except that the position of the color light-emitting layer 26 is changed from the broken substrate 27 to the array circuit layer 24 on the glass substrate 23. The above-mentioned glass substrate 23 having the array circuit layer 24 and the color filter layer 26 formed thereon is a so-called color filter layer array (AOC) substrate. In another aspect, the color filter layer 26 can be interposed between the glass substrate 24 and the array circuit layer 24, which is a so-called array color-on-coil (COA) substrate. Further, the glass substrate 23 and/or the glass substrate 27 of the present embodiment may be replaced with a flexible plastic substrate, and the advantages thereof are as described above. The display device shown in Fig. 9 is similar to Fig. 6, except that the position of the polarizing layer 28 is located between the glass substrate 27 and the electrochromic element 40, and is placed in the phase difference between the electrochromic element 40 and the pattern. Between the membranes 29. Further, the glass substrate 23 and/or the glass substrate 27 of the present embodiment may be replaced with a flexible plastic substrate, and the advantages thereof are as described above. The display device shown in FIG. 10 is similar to FIG. 4 except that the electrochromic element 40 in FIG. 4 is interposed between the polarizing layer 28 and the patterned retardation film 29, and in FIG. The patterned retardation film 29 is interposed between the polarizing layer 28 and the electrochromic element 40. Further, the glass substrate 23 and/or the glass substrate 27 of the present embodiment may be replaced with a flexible plastic substrate, and the advantages thereof are as described above. The display device shown in Fig. 8 is similar to Fig. 8 except that the position of the color filter layer 26 is changed from the glass substrate 27 to the array circuit layer 24 on the glass substrate 23. The above-mentioned glass substrate 23 having the array circuit layer 24 and the color filter layer 26 formed thereon is a so-called color filter layer array (AOC) substrate. On the other hand, the color filter layer % can be interposed between the glass substrate 23 and the array circuit layer 24, which is a so-called array color filter (COA) substrate. Further, the ruthenium substrate 23 and/or the glass substrate 27 of the present embodiment may be replaced with a flexible substrate, and the advantages are as described above. In addition to the above liquid crystal display, other displays such as electronic paper, electronic reader, electroluminescent display, organic electroluminescent display,: empty fluorescent display, light emitting diode, cathode ray tube, liquid crystal display, 201248198 Poly display panel, digital optical processor, liquid crystal display on shixi substrate, organic light-emitting diode, surface conduction electron emission display, field emission display, scorpion point laser, liquid crystal laser, ferroelectric LCD Ι§, interferometric adjustment display, thick film dielectric electroluminescent device, quantum dot light emitting diode, flexographic display, organic light emitting transistor, photochromic display, or laser phosphor display can also be used with the above Electrochromic element. The electrochromic element of the present invention can be used as long as it is a polarized glasses type stereoscopic display, and is not limited to the liquid crystal display shown. While the invention has been described above in terms of several preferred embodiments, it is not intended to limit the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. 201248198 [Description of Schema Description] Fig. 1 is a schematic view of a stereoscopic display technology of a polarized glasses type in the prior art; FIG. 2 is a cross-sectional view of a stereoscopic display device of a polarized glasses type in the prior art; 3A- 3B is a cross-sectional view of a conventional technique; a stereoscopic display device for solving crosstalk effects = 4 and 7; 11 is a cross-sectional view of a display device in an embodiment of the present invention; direct view from the present invention - an electrochromic region A linear view of the width corresponding to the vertical viewing angle; and a width of the electrochromic zone corresponding to the sixth figure is a linear plot of the loss of transparency in an embodiment of the invention. [Description of main component symbols] BM~black matrix; BS~black strip; R, L~ color filter; 10~ display; η, 22, 28~ polarizing layer; 13, 29~ patterned retardation film; , 29L ~ left eye image polarization zone; 13 Β, 29R ~ right eye image polarization zone; 15 A ~ left eye image; 15B ~ right eye image; 17, 220 ~ polarized glasses; 12 201248198 21 ~ backlight; 23, 27~ Glass substrate; 24~ array circuit layer; 25~ liquid crystal layer; 26~ color filter, optical layer; 40~ electrochromic element; 40A~ electrochromic zone; 210R, 210L~ vertical beam; 210'~ deflected beam. 13

Claims (1)

201248198 七、申請專利範圍: 1. 一種顯示裝置,包括: 一顯示器,具有多個晝素區; 一圖案化相位差膜,具有多個右眼影像偏振區與多個 左眼影像偏振區各自對應該些晝素區;以及 一電致變色元件,位於該顯示器之一基板的外側或内 側,且該電致變色元件具有一電致變色區, 其中該電致變色區對應該些右眼影像偏振區與該些左 眼影像偏振區之交界。 2. 如申請專利範圍第1項所述之顯示裝置,其中該圖 案化相位差膜位於該電致變色元件與該顯示器之間。 3. 如申請專利範圍第1項所述之顯示裝置,其中該電 致變色元件位於該圖案化相位差膜與該顯示器之間。 4. 如申請專利範圍第1項所述之顯示裝置,其中該顯 示器包括一液晶顯示器,且該液晶顯示器包括: 該基板; 一對向基板;以及 一液晶層位於該基板與該對向基板之間。 5. 如申請專利範圍第4項所述之顯示裝置,其中該基 板及/或該對向基板為可撓之塑膠基板。 6. 如申請專利範圍第4項所述之顯示裝置,其中該基 板係一彩色濾、光基板,而該對向基板係一陣列基板。 7. 如申請專利範圍第4項所述之顯示裝置,其中該基 板係一彩色濾光上陣列基板或一陣列上彩色濾光基板。 14 201248198 8. —種顯示影像的方法,包括: 提供一偏光眼鏡; 提供一顯示裝置,包括: 一顯示器,具有多個晝素區; 一圖案化相位差膜,具有多個右眼影像偏振區與多個 左眼影像偏振區各自對應該些晝素區,以及 一電致變色元件,位於該顯示器之一基板的外側或内 側,且該電致變色元件具有一電致變色區, 其中該電致變色區對應該些右眼影像偏振區與該些左 眼影像偏振區之交界; 開啟該電致變色元件,使該電致變色區遮光後關閉該 電致變色元件;以及 控制該顯示器使該些晝素區分為多個左眼影像晝素與 多個右眼影像晝素,以分別顯示一左眼影像與一右眼影像, 其中該左眼影像與該右眼影像穿過該偏光眼鏡,讓一 使用者觀賞到一三維影像。 9. 如申請專利範圍第8項所述之顯示影像的方法,在 讓該使用者觀賞到該三維影像後,更包括: 移除該偏光眼鏡;以及 控制該顯示器,使該些晝素區顯示一二維影像。 10. 如申請專利範圍第9項所述之顯示影像的方法, 更包括開啟該電致變色元件,使該電致變色區透光後關閉 該電致變色元件。 11. 一種顯示影像的方法,包括: 提供一顯示裝置,包括: 15 201248198 一顯示器’具有多個晝素區; 一圖案化相位差膜,具有多個右眼影像偏振區與多個 左眼影像偏振區各自對應該些畫素區;以及 電致變色件’位於該顯示器之—基板的外侧或内 侧,且該電致變色元件具有一電致變色區; 其中該電致變色區對應該些右眼影像偏振區與該些左 眼影像偏振區之交界; 控制該顯示器,使該些晝素區顯示一二維影像。 12.如申凊專利範圍帛u項所述之顯示影像的方法, 3 =該電致變色元件,使該電致變色區透光後關閉 該電致變色元件。 力申睛專利範圍第U項所述之顯*影像的方法 工了顯示器,使該些畫素區顯示該二維 後’更包括: ’使該電致變色區遮光後關閉該 提供一偏光眼鏡; 開啟該電致變色元件 電致變色元件;以及 ^制麵示器㈣些晝純分為多個左眼 夕個素’以分別顯示一左眼影像舆_錢上: 使用者=左㈣像與該右眼影像穿過該偏光眼鏡,讓- 便用者觀賞到一三維影像。201248198 VII. Patent application scope: 1. A display device comprising: a display having a plurality of halogen regions; a patterned retardation film having a plurality of right-eye image polarization regions and a plurality of left-eye image polarization regions a plurality of electrochromic elements, and an outer or inner side of a substrate of the display, and the electrochromic element has an electrochromic zone, wherein the electrochromic zone corresponds to a right eye image polarization The boundary between the region and the polarization regions of the left eye images. 2. The display device of claim 1, wherein the patterned retardation film is between the electrochromic element and the display. 3. The display device of claim 1, wherein the electrochromic element is between the patterned retardation film and the display. 4. The display device of claim 1, wherein the display comprises a liquid crystal display, and the liquid crystal display comprises: the substrate; a pair of substrates; and a liquid crystal layer located on the substrate and the opposite substrate between. 5. The display device of claim 4, wherein the substrate and/or the counter substrate is a flexible plastic substrate. 6. The display device of claim 4, wherein the substrate is a color filter, a light substrate, and the opposite substrate is an array substrate. 7. The display device of claim 4, wherein the substrate is a color filter array substrate or an array of color filter substrates. 14 201248198 8. A method for displaying an image, comprising: providing a polarizing glasses; providing a display device comprising: a display having a plurality of halogen regions; a patterned retardation film having a plurality of right eye image polarization regions And each of the plurality of left-eye image polarization regions respectively corresponding to the pixel regions, and an electrochromic element located outside or inside the substrate of the display, and the electrochromic element has an electrochromic region, wherein the electricity The discoloration zone corresponds to the boundary between the polarization region of the right eye image and the polarization zone of the left eye image; the electrochromic element is turned on, the electrochromic zone is shielded from light, and the electrochromic component is turned off; and the display is controlled to The pixels are divided into a plurality of left-eye image pixels and a plurality of right-eye image pixels to respectively display a left-eye image and a right-eye image, wherein the left-eye image and the right-eye image pass through the polarized glasses. Let a user see a three-dimensional image. 9. The method for displaying an image according to claim 8 , after the user views the three-dimensional image, further comprising: removing the polarized glasses; and controlling the display to display the pixel regions A two-dimensional image. 10. The method of displaying an image according to claim 9, further comprising opening the electrochromic element such that the electrochromic zone transmits light and then turns off the electrochromic element. 11. A method of displaying an image, comprising: providing a display device comprising: 15 201248198 a display having a plurality of halogen regions; a patterned retardation film having a plurality of right-eye image polarization regions and a plurality of left-eye images The polarizing regions respectively correspond to the pixel regions; and the electrochromic member is located outside or inside the substrate of the display, and the electrochromic element has an electrochromic region; wherein the electrochromic region corresponds to some right a boundary between the polarization region of the ocular image and the polarization regions of the left-eye images; controlling the display to display the two-dimensional image in the pixel regions. 12. A method of displaying an image as described in the scope of the patent, 3 = the electrochromic element, which causes the electrochromic zone to transmit light and then close the electrochromic element. The method for displaying the image according to the U-part of the patent scope is to display the display, so that the pixels are displayed after the two-dimensional display, and the following includes: 'Making the electrochromic region to be shaded and then closing the lens for providing a polarizing lens Turn on the electrochromic element of the electrochromic element; and the surface display device (4) is divided into a plurality of left eye singular elements to display a left eye image 舆 _ money on: user = left (four) image And the right eye image passes through the polarized glasses, allowing the user to view a three-dimensional image.
TW100118815A 2011-05-30 2011-05-30 Display apparatuses and methods for displaying images TWI490548B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100118815A TWI490548B (en) 2011-05-30 2011-05-30 Display apparatuses and methods for displaying images

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100118815A TWI490548B (en) 2011-05-30 2011-05-30 Display apparatuses and methods for displaying images

Publications (2)

Publication Number Publication Date
TW201248198A true TW201248198A (en) 2012-12-01
TWI490548B TWI490548B (en) 2015-07-01

Family

ID=48138672

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100118815A TWI490548B (en) 2011-05-30 2011-05-30 Display apparatuses and methods for displaying images

Country Status (1)

Country Link
TW (1) TWI490548B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103207456A (en) * 2012-12-05 2013-07-17 深圳市亿思达显示科技有限公司 Three-dimensional display device
CN113223419A (en) * 2020-06-03 2021-08-06 友达光电股份有限公司 Light emitting diode display

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM368088U (en) * 2009-04-07 2009-11-01 Chunghwa Picture Tubes Ltd Integrated electro chromic 2D/3D display device
CN201514515U (en) * 2009-05-21 2010-06-23 华映视讯(吴江)有限公司 Display device for switching 2D plane images/3D stereo image display pictures

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103207456A (en) * 2012-12-05 2013-07-17 深圳市亿思达显示科技有限公司 Three-dimensional display device
CN103207456B (en) * 2012-12-05 2014-08-20 深圳市亿思达显示科技有限公司 Three-dimensional display device
CN113223419A (en) * 2020-06-03 2021-08-06 友达光电股份有限公司 Light emitting diode display
TWI747768B (en) * 2020-06-03 2021-11-21 友達光電股份有限公司 Light emitting diode (led) display

Also Published As

Publication number Publication date
TWI490548B (en) 2015-07-01

Similar Documents

Publication Publication Date Title
KR102112979B1 (en) Liquid crystal display device and method of fabricating the same
US5805250A (en) Liquid crystal display device with contact holes extending through interlayer insulating film between switching elements and pixel electrodes
KR102028988B1 (en) Liquid crystal display device and method of fabricating the same
US9110303B2 (en) 3D display panel and method of manufacturing phase difference plate
JP5657508B2 (en) Liquid crystal display device, electronic device, and optical device
TW201239468A (en) Display device
US9448412B2 (en) Color filter substrate, fabrication method thereof and display device
US20130107146A1 (en) Display apparatus
US8730576B2 (en) Microretarder film
JP2010020274A (en) Stereoscopic image display
CN103703411B (en) 3 d display device
JP5589157B2 (en) Method for forming a microretarder film
US20150153580A1 (en) 3d liquid crystal display apparatus and control method for the same
KR101252573B1 (en) Multi displayable system
KR101861616B1 (en) Liquid crystal display device and method of fabricating thereof
JP5863133B2 (en) Display device and manufacturing method of display device
TW201248198A (en) Display apparatuses and methods for displaying images
CN102789084B (en) Display device and method for displaying image
KR100811818B1 (en) Lenticular LC shutter for 2D/3D image display and diplay device having the same
KR101851627B1 (en) Lenticular array type stereoscopic display device
JP2014174363A (en) Pattern phase difference film and image display device
US20120188495A1 (en) Cholesteric liquid crystal display device
CN102809862B (en) The method of display device and show image
KR101774279B1 (en) Liquid crystal display device
JP4275589B2 (en) Parallax barrier element and display device including the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees