TW201248152A - Dual-fluorescent MSI reporter plasmid and cell model harboring this MSI reporter plasmid - Google Patents

Dual-fluorescent MSI reporter plasmid and cell model harboring this MSI reporter plasmid Download PDF

Info

Publication number
TW201248152A
TW201248152A TW100117389A TW100117389A TW201248152A TW 201248152 A TW201248152 A TW 201248152A TW 100117389 A TW100117389 A TW 100117389A TW 100117389 A TW100117389 A TW 100117389A TW 201248152 A TW201248152 A TW 201248152A
Authority
TW
Taiwan
Prior art keywords
sequence
fluorescent protein
microsatellite
fluorescent
fluorescence
Prior art date
Application number
TW100117389A
Other languages
Chinese (zh)
Other versions
TWI421497B (en
Inventor
Christina Ling Chang
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW100117389A priority Critical patent/TWI421497B/en
Publication of TW201248152A publication Critical patent/TW201248152A/en
Application granted granted Critical
Publication of TWI421497B publication Critical patent/TWI421497B/en

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A dual-fluorescent MSI reporter plasmid and a cell model that harbors this MSI reporter are disclosed. From the promoter the dual-fluorescent MSI reporter plasmid of the present invention, the plasmid sequentially comprises a microsatellite sequence (or a random sequence as a control), a first fluorescent gene, an internal ribosome entry site, and a second fluorescent gene. In the cell model that harbors the MSI reporter plasmid, the cells emitting the second fluorescent protein is used for normalizing the cells emitting the first fluorescent protein achieving an accurate measurement of the MSI frequency.

Description

201248152 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種雙螢光微衛星報導質體及含此微衛 星不穩定報導質體之細胞模型,尤指一種可有效篩選導致 或抑制微衛星不穩定相關藥物之雙螢光微衛星報導質體及 細胞模型。 【先前技術】 癌症是一個複雜的基因疾病’其中25%是來自慢性發 炎病人中。以癌症病人之臨床治療而言,除了手術治療外, 更須搭配化療以達到最佳治療功效β目前已有研究指出, 慢性發炎病人、癌症病人、化療後之癌症病人,均帶有微 衛星不穩定性(microsatellite instability, MSI)。但微衛星不 穩定之病人’不僅基因突變率增加,往往也容易對化療產 生抗藥性。 微衛星不穩定性之發生,主要起因為DNA錯配修復系 統(DNA mismatch repair,MMR)的功能無法正常運作,因而 無法修復微衛星在DNA複製時常產生之錯誤。譬如:在編 碼區(codingregion)之微衛星的重複單元若有改變,則造成 讀框序列位移(frameshift)突變。在intron上之微衛星的重複 單元若有改變,則易導致基因轉譯或轉錄之失調。201248152 VI. Description of the Invention: [Technical Field] The present invention relates to a dual-fluorescence microsatellite reporter plastid and a cell model containing the microsatellite unstable reporter plastid, especially an effective screening for causing or inhibiting micro The dual-fluorescence microsatellite of satellite instability-related drugs reports plastid and cell models. [Prior Art] Cancer is a complex genetic disease in which 25% is from chronic inflammatory patients. In terms of clinical treatment of cancer patients, in addition to surgery, it is necessary to use chemotherapy to achieve the best therapeutic effect. β Studies have indicated that chronic inflammatory patients, cancer patients, and cancer patients after chemotherapy all have microsatellites. Stability (microsatellite instability, MSI). However, patients with microsatellite instability are not only more likely to have a mutation rate, but are also prone to resistance to chemotherapy. Microsatellite instability occurs mainly because the function of the DNA mismatch repair (MMR) does not function properly, and thus it is impossible to repair the errors often caused by microsatellites during DNA replication. For example, if the repeating unit of the microsatellite in the coding region is changed, the frame shift is abruptly changed. If the repeating unit of the microsatellite on the intron changes, it is easy to cause genetic translation or transcription disorder.

MMR也辨識並修復活性氧化物質(radical 〇xygen species,ROS)所造成之 8_ 氧-鳥嘌呤 DNA(8_〇x〇 guanine DNA)。除了 H202為產生R〇s的主要因子之一外,已知5FU 201248152 及順鉑抗癌藥物亦會產生R〇S,因而也能導致讀框序列位 移突變及微衛星不穩定性。 藥物產生的基因毒化(genotoxic)壓力,能損傷DNA, 因而導致癌症細胞的凋亡。但若細.胞的MMR功能喪失,則 無法走向細胞凋亡,因而產生抗藥性。 因此’若能發展出一種可快速且高靈敏度之微衛星不 穩定報導系統,則可找出容易導致微衛星不穩定之抗癌藥 物。並且,可進一步使用此報導系統大量篩選食藥品,而 找到能抑制ROS或抗癌藥物所導致的微衛星不穩定之食藥 品。抑制ROS所導致的微衛星不穩定之食藥品,適用於慢 性發炎病人,進而降低癌症之發生率。另外,將抑制抗癌 藥物所導致的微衛星不穩定之食藥品與抗癌藥物搭配使 用,勢必可提升癌症治療之成功率,亦即降低癌症之死亡 率〇 【發明内容】MMR also recognizes and repairs 8_oxo-guanine DNA (8_〇x〇 guanine DNA) caused by reactive 〇xygen species (ROS). In addition to H202 being one of the major factors responsible for the production of R〇s, it is known that 5FU 201248152 and cisplatin anticancer drugs also produce R〇S, which can also cause in-frame sequence shift mutations and microsatellite instability. The genotoxic stress produced by drugs can damage DNA and cause apoptosis in cancer cells. However, if the MMR function of the fine cells is lost, it is impossible to go to apoptosis and thus develop drug resistance. Therefore, if a microsatellite instability reporting system that can be quickly and highly sensitive can be developed, an anticancer drug that is prone to microsatellite instability can be found. Furthermore, this reporting system can be further used to screen foods in large quantities, and to find foods that inhibit the instability of microsatellites caused by ROS or anticancer drugs. The anti-ROS-induced microsatellite instability of foods is suitable for patients with chronic inflammation, thereby reducing the incidence of cancer. In addition, the use of anti-cancer drugs to prevent the microsatellite instability of food and anti-cancer drugs, will inevitably increase the success rate of cancer treatment, that is, reduce the death rate of cancer 〇 [Summary]

衍生(cell-type derived)的細胞株。Cell-type derived cell line.

不穩定性之相關因子或化合物。A factor or compound associated with instability.

不穩定之雙螢光微衛星報導質體, 供一種用以報導微衛星 其中由雙螢光微衛星報 201248152 導質體之啟動子區域起,係依序包括:微衛星序列、第一 螢光蛋白序列、内部核醣體插位點序列、及第二螢光蛋白 序列,且第一螢光蛋白與第二登光蛋白所發出的螢光顏色 係不相同。其中,第一螢光蛋白之讀框序列係位移至讀框 外,即微衛星的不穩定。 此外,本發明亦提供一種含上述雙螢光微衛星報導質 體之細胞模型。此細胞模型係包括:一如上述之雙螢光微 衛星報導質體、及一細胞株,其中,雙螢光微衛星報導質 體係轉殖於細胞株中,且細胞株係表現該雙螢光微衛星報 導質體中之第一螢光蛋白序列、及第二螢光蛋白序列。因 此,本發明之細胞模型可表達如上述微衛星報導質體之雙 螢光螢光蛋白(即,第一螢光蛋白與第二螢光蛋白),其中第 二螢光蛋白係做為一定量蛋白。當檢測出第一螢光蛋白所 發出之螢光時,表示有讀框序列位移(即,微衛星不穩定) 之情形產生;且當無法檢測出第一螢光蛋白所發出之螢光 時,表示無讀框序列位移(即’微衛星穩定)之情形產生。此 外,此第二螢光蛋白可做為一定量蛋白以標準化 (normalize)有發第一螢光蛋白的細胞數,而提升微衛星不穩 定之報導準確度。 u 於本發明所提供之雙螢光微衛星報導質體及含此雙螢 光微衛星報導質體之細胞模型中,係設計第一螢光蛋白之 讀框序列位移至·】位置,即在讀框外(〇ut_〇f frame)。因此, 當未有讀框序列位移時,則不會表現第一螢光蛋白。當氧 化壓力或抗癌藥物導致微衛星不穩定,因而讀框序列I移 6 201248152 至讀框内(in-frame)而使第一螢光蛋白之表現,故可觀察到 第一螢光蛋白所發出的螢光。此外,内部核醣體插位點序 列(internal ribosome entry site, IRES)則可使第二螢光蛋白 不受第一螢光蛋白之影響,而可繼續表現第二螢光蛋白, 以用於細胞計數用。 於本發明之雙螢光微衛星報導質體及含此雙螢光微衛 星報導質體之細胞模型中’微衛星序列係包括一(匸八^序 列’且η可為5-40。較佳為’於微衛星序列所包括之(CA)n 序列中’η係為10-16。更佳為,於微衛星序列所包括之(CA)n 序列中,且η係為13。 此外,本發明之含雙螢光微衛星報導質體之細胞模型 可更包括一控制組質體,此控制組質體亦轉殖於細胞株 中,而得到一含此控指組質體之人類細胞模型。由控制組 質體之啟動子區域起,係依序包括:控制組序列、第一勞 光蛋白序列、内部核醣體插位點序列、及第二螢光蛋白序 列’其中第一螢光蛋白與第二螢光蛋白所發出的螢光顏色 係不相同,且第二螢光蛋白係做為一定量蛋白。由於控制 組質體不包括一微衛星序列,故不易受到藥物或外界氧化 壓力而產生微衛星不穩定的現象。因此,當本發明之含雙 螢光微衛星報導質體之細胞模型同時使用轉殖有雙螢光微 衛星報導質體之細胞株及轉殖有控制組質體之細胞株時, 控制組質體可做為一比較控制組,藉此可明顯觀察出待測 物對雙螢光微衛星報導質體及控制組質體之影響力差別, 201248152 而使含雙螢光微衛星報導質體之細胞模型之準確性更加提 升0 其t,控制組序列係包括一(N)n序列,每一 n係各自獨 立選自由A、T、C、G所組成之群組,且n係為20-80。較佳 為,於控制組序列所包括之(Ν)η序列中,η係為2〇_3〇β更佳 為,於控制組序列所包括之(Ν)η序列中,且η係為16。 於本發明之雙螢光微衛星報導質體及含雙螢光微衛星 報導質體之細胞模型中,第一螢光蛋白可為一可發紅光之 營光蛋白’且第一螢光蛋白較佳為RFP。此外,第二螢光蛋 白可為一可發綠光之螢光蛋白,且第二螢光蛋白較佳為 GFP 〇 再者,本發明之含雙螢光微衛星報導質體之細胞模型 中,細胞株可選用人類細胞株。較佳為,細胞株係為—dna 錯配修復缺失之人類細胞模型(MMR_deficient human eeli model),且雙螢光微衛星報導質體係轉殖於此DNA錯配修 復缺失之人類細胞模型中。其中,DNA錯配修復缺失之人 類細胞模型可為任何已知之DNA錯配修復缺失細胞,且較 佳為具有DNA錯配修復缺失之細胞如:人類大腸癌細胞株 HCT116。 【實施方式】 以下係藉由特定的具體實施例說明本發明之實施方 式,熟習此技藝之人士可由本說明書所揭示之内容輕易地 了解本發明之其他優點與功效。本發明亦可藉由其他不同 201248152 的具體實施例加以施行或應用,本說明書中的各項細節亦 可針對不同觀點與應用,在不悖離本創作之精神下進行各 種修飾與變更。 建構雙螢光微衛星報導質體 首先,從 pDsRedl-Nl 質體(Clontech)取出 DsRed cDNA(可表現RFP紅光螢光蛋白,其序列如SEQ IDNO: 5所 示),並以SacII及Notl之酶切位點,將DsRed cDNA插至 pIRES-hrGFP-la 質體(Stratagene)中,以製得 pRFP-IRES-GFP載體,其中GFP之序列如SEQ ID NO: 6所 示,而IRES之序列如SEQ ID NO: 7所示。為確認此 pRFP-IRES-GFP載體是否建構成功,除了使用限切酶(如 SacII、NotI)判斷外,更以RFP引子做為定序引子(SEQ ID NO: 3、SEQ ID NO: 4)進行DNA基因定序。 而後,將一微衛星序列ATG_(CA)I3(SEQ ID NO: 1)或 一控制組序列 ATG-(N)16(SEQ ID NO: 2),以 SacI 及 Agel 之 酶切位點,插入至上述pRFP-IRES-GFP載體之DsRed起始子 之上游區域,並將RFP(即,DsRed)之讀框序列(reading frame) 位移至-1位置。接著,透過Cre介導重組反應(Cre-mediated recombination),貝丨J 可插入 pExchange Module EC-Hyg (Stratagene)之抗潮霉素基因(hygromycin resistance gene), 以建構一雙螢光微衛星報導質體 p(CA)l3RFP-IRES-GFP-Hyg ,以及一控制組質體 p(N)16RFP-IRES-GFP-Hyg。雙螢光微衛星報導質體 p(CA)i3RFP-IRES-GFP-Hyg之示意圖係如.圖 1A、圖 1B所 201248152 示,而控制組質體p(N)丨6RFP-IRES-GFP-Hyg之示意圖係如 圖2A、圖2B所示。其中,圖1A及圖2A係分別為雙螢光微衛 星報導質體及控制組質體之示意圖;而圖1B係表示雙螢光 微衛星報導質體之微衛星序列區域,圖2B係表示雙螢光控 制組質體之控制組序列區域》 同時,亦使用限切酶與DNA基因定序(定序引子如SEQ ID NO: 3、SEQ ID NO: 4所示),以確認上述雙螢光微衛星 報導質體、及控制組質體建構是否成功。 而後,使用將上述所建構之pRFP-IRES-GFP載體、雙 螢光微衛星報導質體、及控制組質體,轉染至人類結腸癌 細胞株 HCT116(American Type Culture Collection)、或 HCT116+chr3中,以表現上述之表現質體。其中,HCT116 細胞株因其/ϊΜΖ//·/基因有同型接合子突變(homozygous mutation),故為一 DNA錯配修復缺失細胞(MMR-deficient cells);而HCT116+chr3細胞株因其具有帶正常基因 之染色體3,故為一 DNA錯配修復健全細胞(M'MR-proficient cells)。此外,HCT116細胞株之培養,係於5% C02及37°C 下,以含有1 0%胎牛血清及2 mM之L-麵醯胺酸(L-glutamine) 之DMEM/F-12培養基進行培養;而HCT116+chr3細胞株之 培養係與HCT116細胞株相似,除了更於培養基中添加400 pg/ml之 G418。 在此,將說明如何將上述所建構之pRFP-IRES-GFP載 體、雙螢光微衛星報導質體、及控制組質體,轉染至HCT116 細胞株。首先,於六孔盤中,每孔種植6M 05個細胞;待種 201248152 植細胞16小時後’使用脂質體轉染試劑(Lip〇fectamine 20〇〇τΜ),將pRFP-IRES-GFP載體、雙螢光微衛星報導質體、 及控制組質體轉染至HCTU6細皰株。在此,轉染有雙瑩光 PRFIMRES-GFP載體之轉染有Hctu6細胞株係稱為 HCTU6-V,轉染有雙營光微衛星報導質體之HCTU6細胞 株係稱為HCT116-(CA)n,而轉染有雙螢光控制組質體之 HCT116細胞株係稱為HCT116-(N)l6。於轉染反應兩天後, 以200 pg/ml之抗潮霉素篩選HCT116_(CA)n及 HCTlie-CN)!6轉染細胞株,並使用dna基因定序(定序引子 如SEQ ID NO: 3、SEQ ID NO: 4所示)確認轉染是否成功。 此外,更以上述相同方法,將雙螢光微衛星報導質體 轉染至HCT116+chr3細胞株’而所得之轉染細胞株則稱為 HCT116+chr3_(CA)13。 以高通量螢光顯微系統判斷讀框序列位移 將細胞以4%之三聚甲酸 (paraformaldehyde)固定,並以 1 pg/ml之Hochest 33258試劑染細胞核。在此,係使用 ImageXpressMicro 系統(Molecular Devices)以 1 Ox放大倍率 進行檢測。使用DAPI濾光片組時,係曝光35 ms ;使用FITC 濾光片組時,係曝光175 ms ;而使用TexRed濾光片組時, 則曝光1500 ms,以取得螢光影像。而後,使用MetaXpress® V3.1軟體(Molecular Devices)分析所得之螢光影像。 當偵測到GFP螢光蛋白所發出之綠螢光時,表示可偵 測細胞;且當同時偵測到GFP螢光蛋白所發出之綠螢光及 RFP螢光蛋白所發出之紅螢光時,表示原先雙螢光微衛星報 201248152 導質體或控制組質體中有讀框序列位移的情形產生,而可 再次表現出RFP螢光蛋白。 因此’當使用螢光顯微鏡觀察上述之HCT116-V、 HCT116-(CA)13 及 HCT116-(N)16 細胞株時,因僅有 HCT116-(CA)i3及HCT116-(N)16細胞株内之RFP設計有讀框 序列位移,故僅可於HCT116-V細胞株中偵測到紅色螢光。 反之,如圖1C及圖2C所示,以螢光顯微鏡觀察未經任何處 理HCT116-(CA)n及HCT116-(N)16細胞株,僅觀察到GFP所 發出之綠螢光’而未觀察到RFP所發出之紅螢光。 實驗例1-評估H2〇2對細胞存活率及讀框序列位移之影饗 將HCT116及HCT116+chr3細胞株以每孔1 Χίο4細胞種 植於96孔盤中》於種植一天後,以η2〇2處理細胞1小時,且 反應培養基中係含有最終濃度為〇、〇·25、0.5、0.75、1.0 mM 之H202、以及1χ之PBS緩衝溶液。 而後,採習知之MTT分析法分析細胞存活率。於h2〇2 處理細胞後,於每一孔内加入25 μΐ之5 mg/ml的MTT於100 μΐ含細胞的培養基中’反應4小時後於每一孔内加入丨〇〇 的裂解液(lysis buffer) ’過夜後終止反應。最後,以酵素免 疫分析儀在595 nm吸光波長下測定其吸光值,藉以計算細 胞的存活率。其中,相對存活率係以未處理之細胞株吸光 值定為100%,計算經處理之細胞株相對於未處理之細胞株 之相對吸光值’而結果係如圖3 A所示(圖中亦顯示平均值土 標準差)。 12 201248152 如圖3A結果所示,上述劑量之h202為細胞非致死劑 量’且使用上述劑量評估H2〇2是否產生讀框序列位移而造 成微衛星不穩定的現象。 讀框序列位移之評估,係先將上述HCT116-V、 HCT116-(CA)13、HCT116-(N)16、及 HCT116+chr3-(CA)1:^ 胞株以每孔1 x 1 〇5細胞種植於12孔盤中。於種植一天後,以 上述濃度之Η202溶液處理細胞1小時;而後去除Η2〇2並清洗 細胞,且再置於培養基中繼續生長三天。 接著’使用流式細胞儀(flow cytometry)分析細胞中讀 框序列位移的情形。首先,將細胞以胰蛋白水解酵素(trypsin) 處理,再懸浮於含1 mM EDTA之PBS緩衝溶液中;而後以 40 μιη過渡器過渡,再通入流式細胞儀(QuantaTM sc_mpL, Beckman Coulter)進行分析。同時,係使用含有 pIRES-hrGFP-la (GFP單一螢光細胞)、pDsRedl-Nl (RFP單 一螢光細胞)' 及pRFP-IRES-GFP (GFP/RFP雙螢光細胞)載 體之HCT116細胞做為分析判斷標準(calibration),而未轉植 任何載體或質體之HCT116細胞則做為背景值。在此,讀樞 序列位移率則為同一細胞樣品中,同時表現Gfp/rfp雙勞 光之細胞數量對表現G F P單一螢光之細胞數量之相對值。讀 框序列位移率之結果係如圖3B所示(圖中亦顯示平均值土標 準差),其中*表示學生t-測試之p<〇.〇2。 如圖3B所示,隨著出〇2劑量增加,讀框序列位移率亦 隨之增加;且含有微衛星序列之ΗΟΓΠΙδ-γΑ)^,其讀框序 列位移率較控制組HCTIMJN),6要高。證明了雙螢光系統 201248152 即使在DNA錯配修復缺失HCT116細胞中,仍忠實的報導 H2〇2所造成微衛星的不穩定。此外,於HCT116+chr3-(CA)13 細胞株中,幾乎偵測不到讀框序列位移的情形產生,原因 在於HCT116+chr3細胞為DNA錯配修復健全細胞可修復 H202所導致之讀框序列位移,而降低微衛星的不穩定性。 因此證明了雙螢光微衛星不穩定報導系統在DNA錯配修復 缺失細胞比在DNA錯配修復健全細胞中較敏銳 (sensitivity) 〇 此外,若使用高通量螢光顯微系統分析細胞之螢光影 像時,亦可觀察到由0(無處理)至0.5 mM之H2〇2劑量,RFP 紅色螢光蛋白表現量由1.1%增加至3.6%,表示H202增加讀 框序列的位移率,如圖4A所示。此結果係與流式細胞儀分 析結果一致(如圖4B所示)。也證明此雙螢光微衛星不穩定 報導系統可藉由高通量螢光顯微系統而快速與大規模的篩 選藥物。 實驗例2-評估methotrexate(MTX)抗癌藥物對細胞存活率 及讀框序列位移之影響 將上述HCT116-(CA)I3& HCT116-(N)16細胞株以每孔 lx 104細胞種植於96孔盤中。於種植一天後,以甲氨蝶呤 (methotrexate,MTX,購自 Sigma- Adrich)處理細胞三天,且 反應培養基中係含有最終濃度為〇、5、10、25、50、100 nM 之ΜΤΧ、以及2.5 ηΜ之NaOH。而後,使用與實驗例1相同 之MTT分析法分析細胞存活率,結果係如圖5A所示(圖中亦 201248152 顯示平均值土標準差),其顯示MTX細胞非致死劑量約為25 ηΜ。 讀框序列位移之評估,係先將上述HCT116-(CA)13及 HCT116-(N)16細胞株以每孔ΙχΙΟ5細胞種植於12孔盤中。於 種植一天後,以最終濃度為0、6.3、12.5、25 ηΜ之MTX處 理細胞三天;而後去除ΜΤΧ並清洗細胞,且再置於培養基 中繼續成長三天。 接著,使用與實施例1相同之流式細胞儀分析細胞中讀 框序列位移的情形,結果係如圖5Β所示(圖中亦顯示平均值 土標準差),其中***表示學生t-測試之ρ<0.0001。 如圖5Β所示,含有微衛星序列之HCT116-(CA)13,其讀框序 列位移率較控制組HCT116-(N)16要高;且尤以MTX劑量為 25 ηΜ時,讀框序列位移產生的頻率更加顯著。 實驗例3 -評估雙螢光微衛星不穩定報導系統之忠實性 此外,更將HCT116-(CA)13細胞株以最終濃度為25 ηΜ 之MTX處理細胞三天,而後去除MTX並清洗細胞,且再置 於培養基中繼續成長三天。上述步驟循環處理共四次後, 收集了約80%雙螢光的細胞,並以流式細胞儀與高通量螢光 顯微系統分析細胞之螢光影像,結果係如圖6A及圖6B所 示。 同樣的細胞並以PCR放大HCT116-(CA)13中之DNA,再 進行DNA基因定序(定序引子如SEQ ID NO: 3、SEQ ID NO: 4所示)。DNA基因定序結果顯示,經MTX處理後之細胞株 比未經MTX處理之細胞株,微衛星序列中少了一組C A重複 201248152 單元,即定序結果為(CA)I2,如圖6C所示。其中圖6C上圖 為未經MTX處理之細胞株定序結果,而圖6C下圖為經四次 25 nM之MTX處理之細胞株定序結果。由於一組CA重複單 元缺失,則可使RFP讀框序列產生位移,從讀框外位移至讀 框内。據此,可再次表現RFP蛋白,故可觀測到RFP螢光蛋 白所發出之紅色螢光,如圖6B所示。 國際上,目前以基因體上的五個微衛星來檢驗大腸癌 症病人是否有微衛星不穩定性。因此,上述MTX處理與未 處理過細胞的DNA,以五對鑲螢光PCR引子放大此檢測用 的五個微衛星。分析結果顯示MTX增加了 D17S250微衛星 中六個序列(如圖6D所示)。因D17S250微衛星的序列含 (TA)7/(CA)24,所以MTX實質增加三組TA或CA的重複單元。 上述的實驗結果證明雙螢光系統能忠實的報導MTX抗 癌藥物導致外生(CA)13與内生D17S250的微衛星不穩定。此 外,由於本發明的雙螢光報導系統不需分離DNA與進行 PCR,因此能即時與靈敏的檢測每個細胞是否有微衛星不 穩定。 上述實施例僅係為了方便說明而舉例而已,本發明所 主張之權利範圍自應以申請專利範圍所述為準,而非僅限 於上述實施例。 【圖式簡單說明】 圖1A係本發明之雙螢光微衛星報導質體之示意圖。 201248152 圖1B係本發明之雙螢光報導質體含((:^)13微衛星序列之示 意圖。 圖1C係本發明之含雙螢光微衛星報導質體之HCT116細胞 株於螢光顯微鏡下所觀察之結果圖。 圖2A係本發明之雙螢光控制組質體之示意圖。 圖2B係本發明之雙螢光控制組質體含…、序列之示意圖。 圖2C係本發明之含雙螢光控制組質體之HCT116細胞株於 螢光顯微鏡下所觀察之結果圖。 圖3 A係本發明實驗例1經h2〇2處理之細胞存活率結果圖。 圖3B係本發明實驗例1經h2〇2處理之細胞以流式細胞儀分 析讀框序列位移率之結果圖。 圖4A係本發明實驗例1中未經處理或經〇 5 mM H2〇2處理 之細胞以高通量螢光顯微系統分析框序列位移而導致RFP 螢光蛋白表現之結果圖。 圖4B係本發明實驗例1經〇.5 mM H2〇2處理之細胞以流式 細胞儀分析讀框序列位移率之結果圖。 圖5A係本發明實驗例2經methotrexate (MTX)處理之細胞 存活率結果圖。 圖5B係本發明實驗例2經MTX處理之細胞以流式細胞儀分 析讀框序列位移率之結果圖。 圖6A係本發明實驗例3經共四次25nM之MTX處理之細胞 以流式細胞儀分析讀框序列位移率之結果圖。 201248152 圖6B係本發明實驗例3經共四次25nM之MTX處理之細胞 以高通量螢光顯微系統分析框序列位移而導致RFP螢光蛋 白表現之結果圖。 圖6C係本發明實驗例3中未經ΜΤΧ處理或經共四次25ηΜ 之MTX處理之細胞的DNA定序結果。 圖6D係本發明實驗例3經共四次25nM之MTX處理之細胞 的DNA以以鑲螢光PCR引子放大國際檢測用的五個微衛 星,結果顯示在含(TA)7/(CA)24的D17S250微衛星中MTX增 加了六個序列,即三組的重複單元。 【主要元件符號說明】 201248152 序列表 <110〉國立成功大學/ National Cheng Kung University <120〉雙螢光微衛星報導質體及含此微衛星不穩定報導質體之細胞模型 /Dual-fluorescent MSI reporter plasmid and cell model harboring this MSI reporter plasmid <130> 100-053BP_S4254 <160〉 4 <170> Patentln version 3.3 <210〉 1 <211> 65 <212> DNA <213〉 Artificial <220> <223> Artificail primer for cloning <400> 1 ctggagctca tgcacacaca cacacacaca cacacacagt acgcgtaccg gtcgccacca 60 tggtg 65 <210〉 2 <211> 47 <212〉 DNA <213〉 Artificial <220〉 <223〉 Articifial primer for cloning <400> 2 ctggagctca tggatatcat tactagtaac cggtcgccac catggtg 47 <210〉 3 19 201248152 <211> 21 <212> DNA <213〉 Artificial <220> <223> PCR primer for sequencing <400> 3 gttttggcag tacatcaatgg 21 <210〉 4 <211> 20 <212> DNA <213> Artificial <220> <223> PCR primer for sequencing <400〉 4 gtccttatca tcgtcgtctt 20Unstable dual-fluorescence microsatellite reporter plastids for use in reporting microsatellites from the promoter region of the dual-fluorescence microsatellite reporter 201248152, including: microsatellite sequence, first fluorescence The protein sequence, the internal ribosome insertion site sequence, and the second fluorescent protein sequence, and the fluorescent color of the first fluorescent protein and the second light-emitting protein are different. Among them, the reading sequence of the first fluorescent protein is shifted out of the reading frame, that is, the instability of the microsatellite. Furthermore, the present invention also provides a cell model comprising the above-described dual fluorescent microsatellite reporter. The cell model system comprises: a double-fluorescence microsatellite reporter plastid as described above, and a cell strain, wherein the dual-fluorescence microsatellite reporter system is transferred to the cell strain, and the cell line exhibits the double fluorescence The microsatellite reports the first fluorescent protein sequence in the plastid and the second fluorescent protein sequence. Therefore, the cell model of the present invention can express a double-fluorescent fluorescent protein (ie, a first fluorescent protein and a second fluorescent protein) as described above for the microsatellite, wherein the second fluorescent protein is used as a certain amount. protein. When the fluorescent light emitted by the first fluorescent protein is detected, it indicates that the reading frame sequence shift (ie, the microsatellite instability) occurs; and when the fluorescent light emitted by the first fluorescent protein cannot be detected, Indicates the occurrence of a frameless sequence shift (ie, 'microsatellite stabilization'). In addition, the second fluorescent protein can be used as a quantity of protein to normalize the number of cells that have the first fluorescent protein, and to improve the accuracy of microsatellite instability reporting. u in the double-fluorescent microsatellite reporter plastid provided by the present invention and the cell model containing the double-fluorescent microsatellite reporter plastid, the frame sequence of the first fluorescent protein is designed to be shifted to the position, ie, reading Outside the box (〇ut_〇f frame). Therefore, when there is no reading frame sequence displacement, the first fluorescent protein is not expressed. When oxidative stress or anticancer drugs cause microsatellite instability, the reading frame sequence I shifts 6 201248152 to in-frame to make the first fluorescent protein behave, so the first fluorescent protein can be observed. Fluorescent light emitted. In addition, the internal ribosome entry site (IRES) allows the second fluorescent protein to be unaffected by the first fluorescent protein, and can continue to express the second fluorescent protein for cell counting. use. In the dual-fluorescence microsatellite reporter plastid of the present invention and the cell model containing the double-fluorescent microsatellite reporter plastid, the 'microsatellite sequence system includes one (匸8^ sequence) and η may be 5-40. The 'η system is 10-16 in the (CA)n sequence included in the microsatellite sequence. More preferably, it is included in the (CA)n sequence included in the microsatellite sequence, and the η system is 13. In addition, The cell model containing the double-fluorescent microsatellite reporter plastid may further comprise a control group plastid, and the control group plastid is also transferred into the cell strain to obtain a human cell model containing the plastid of the control finger. Starting from the promoter region of the control plastid, the sequence includes: a control group sequence, a first Lloyd protein sequence, an internal ribosome insertion site sequence, and a second fluorescent protein sequence, wherein the first fluorescent protein The color of the fluorescent light emitted by the second fluorescent protein is different, and the second fluorescent protein is used as a certain amount of protein. Since the control group does not include a microsatellite sequence, it is not susceptible to drug or external oxidative stress. Producing microsatellite instability. Therefore, when the present invention contains When the fluorescent microsatellite report plastid cell model uses a cell line transfected with a double-fluorescence microsatellite to report plastids and a cell line transfected with a control plastid, the control group plastid can be used as a comparative control group. Therefore, the difference in the influence of the analyte on the fluoroplasts of the dual-fluorescence microsatellite and the control group can be clearly observed, and the accuracy of the cell model containing the dual-fluorescence microsatellite to report the plastid is further improved. t, the control group sequence comprises a (N)n sequence, each n line is independently selected from the group consisting of A, T, C, G, and n is 20-80. Preferably, in control In the sequence of (Ν)η included in the sequence of the group, the η system is preferably 2〇_3〇β, which is included in the (Ν)η sequence included in the control group sequence, and the η system is 16. In the present invention In the fluorescent microsatellite reporter plastid and the cell model containing the dual-fluorescence microsatellite reporter plastid, the first fluorescent protein may be a red light camping light protein' and the first fluorescent protein is preferably RFP. In addition, the second fluorescent protein may be a green fluorescent luminescent protein, and the second fluorescent protein is preferably GFP 〇 In the cell model containing the double-fluorescent microsatellite reporter plastid of the present invention, the cell strain may be a human cell strain. Preferably, the cell strain is a human cell model of the -dna mismatch repair deletion (MMR_deficient human eeli model) And the dual-fluorescence microsatellite reporter system is transferred to the human cell model in which the DNA mismatch repair is deleted. The human cell model in which the DNA mismatch repair is deleted can repair the missing cells for any known DNA mismatch, and Preferably, the cell having the DNA mismatch repair deletion is, for example, the human colon cancer cell line HCT116. [Embodiment] Hereinafter, embodiments of the present invention will be described by way of specific embodiments, and those skilled in the art can be disclosed by the present specification. The contents are readily understood to provide additional advantages and benefits of the present invention. The present invention may be implemented or applied by other specific embodiments of the present invention. The details of the present specification can be applied to various viewpoints and applications, and various modifications and changes can be made without departing from the spirit of the present invention. Construction of dual-fluorescence microsatellite reporter plastids First, DsRed cDNA (which can express RFP red fluorescent protein, the sequence is shown in SEQ ID NO: 5) is extracted from pDsRedl-Nl plastid (Clontech), and SacII and Notl are used. The DsRed cDNA was inserted into pIRES-hrGFP-la plastid (Stratagene) to prepare a pRFP-IRES-GFP vector, wherein the sequence of GFP is shown in SEQ ID NO: 6, and the sequence of IRES is as SEQ ID NO: 7 is shown. In order to confirm whether the pRFP-IRES-GFP vector constructs a work, in addition to the use of restriction enzymes (such as SacII, NotI), the RFP primer was used as a sequencing primer (SEQ ID NO: 3, SEQ ID NO: 4). DNA gene sequencing. Then, a microsatellite sequence ATG_(CA)I3 (SEQ ID NO: 1) or a control group sequence ATG-(N)16 (SEQ ID NO: 2) is inserted into the SacI and Agel cleavage sites. The upstream region of the DsRed promoter of the pRFP-IRES-GFP vector described above, and the reading frame of the RFP (i.e., DsRed) was shifted to the -1 position. Next, through Cre-mediated recombination, B. j. can be inserted into the hygromycin resistance gene of pExchange Module EC-Hyg (Stratagene) to construct a pair of fluorescent microsatellite reporters. The body p(CA)l3RFP-IRES-GFP-Hyg, and a control group plastid p(N)16RFP-IRES-GFP-Hyg. The dual-fluorescence microsatellite report of the plastid p(CA)i3RFP-IRES-GFP-Hyg is shown in Fig. 1A, Fig. 1B, 201248152, and the control group plastid p(N)丨6RFP-IRES-GFP-Hyg The schematic diagram is shown in Figures 2A and 2B. 1A and FIG. 2A are schematic diagrams of the dual-fluorescence microsatellite report plastid and control group plastid; and FIG. 1B shows the microsatellite sequence region of the double-fluorescence microsatellite report plastid, and FIG. 2B shows the double Fluorescence control group plastid control group sequence region" Also, restriction enzyme and DNA gene sequencing (sequence primers as shown in SEQ ID NO: 3, SEQ ID NO: 4) were also used to confirm the above double fluorescence Microsatellite reports whether the plastid and control group plastid construction is successful. Then, the pRFP-IRES-GFP vector, the dual-fluorescence microsatellite reporter plastid, and the control group plastid constructed above were transfected into human colon cancer cell line HCT116 (American Type Culture Collection), or HCT116+chr3. In order to express the above-mentioned performance plastids. Among them, the HCT116 cell line has a homozygous mutation, so it is a DNA mismatch repairing cell (MMR-deficient cells); and the HCT116+chr3 cell line has a band The chromosome 3 of the normal gene is a DNA mismatch repairing cell (M'MR-proficient cells). In addition, culture of HCT116 cell line was carried out in DMEM/F-12 medium containing 10% fetal bovine serum and 2 mM L-glutamine at 5% CO 2 and 37 ° C. Culture; the culture line of HCT116+chr3 cell line was similar to HCT116 cell line except that 400 pg/ml of G418 was added to the medium. Here, how to construct the pRFP-IRES-GFP vector, the dual-fluorescence microsatellite reporter plastid, and the control group plastid constructed above can be transfected into the HCT116 cell line. First, 6M 05 cells were planted in each well in a six-well plate; after 16 hours of planting the cells in 201248152, the liposome transfection reagent (Lip〇fectamine 20〇〇τΜ) was used, and the pRFP-IRES-GFP vector, double Fluorescent microsatellite reported plastid and control group plastid transfection to HCTU6 blister. Here, the transfected Shuangying PRFIMRES-GFP vector was transfected with Hctu6 cell line called HCTU6-V, and the HCTU6 cell line transfected with Shuangyingguang microsatellite reported plastid was called HCT116-(CA). n, and the HCT116 cell line transfected with the double-fluorescence control group plastid is called HCT116-(N)16. Two days after the transfection reaction, HCT116_(CA)n and HCTlie-CN) were transfected with 200 pg/ml of antihygromycin; 6 transfected cell lines and sequenced using dna gene (sequence primer such as SEQ ID NO) : 3, SEQ ID NO: 4) Confirm whether the transfection is successful. Further, the transfected cell line obtained by transfecting the double-fluorescence microsatellite reporter plastid into the HCT116+chr3 cell line' in the same manner as above was referred to as HCT116+chr3_(CA)13. The reading frame sequence was judged by high-throughput fluorescence microscopy. The cells were fixed with 4% paraformaldehyde and the nuclei were stained with 1 pg/ml of Hochest 33258 reagent. Here, the image was detected using an ImageXpressMicro system (Molecular Devices) at 1 Ox magnification. When using the DAPI filter set, the exposure is 35 ms; when using the FITC filter set, the exposure is 175 ms; and when using the TexRed filter set, the exposure is 1500 ms to obtain the fluorescent image. The resulting fluorescent image was then analyzed using MetaXpress® V3.1 software (Molecular Devices). When green fluorescein emitted by GFP fluorescent protein is detected, it means that cells can be detected; and when green fluorescent light emitted by GFP fluorescent protein and red fluorescent light emitted by RFP fluorescent protein are simultaneously detected , which indicates that the original double-fluorescence microsatellite reported that there was a shift in the reading frame sequence in the plastid or control group of the 201248152, and the RFP fluorescent protein was again exhibited. Therefore, when the above-mentioned HCT116-V, HCT116-(CA)13 and HCT116-(N)16 cell lines were observed using a fluorescence microscope, only HCT116-(CA)i3 and HCT116-(N)16 cell lines were present. The RFP design has a reading frame sequence shift, so red fluorescence can only be detected in the HCT116-V cell line. On the contrary, as shown in FIG. 1C and FIG. 2C, the HCT116-(CA)n and HCT116-(N)16 cell lines were not observed by a fluorescence microscope, and only the green fluorescence emitted by GFP was observed. Red fluorescent light emitted by the RFP. Experimental Example 1 - Evaluation of H2〇2 on cell viability and reading frame sequence shift HCT116 and HCT116+chr3 cell lines were seeded in 96-well plates at 1 Χίο4 cells per well. After one day of planting, η2〇2 The cells were treated for 1 hour, and the reaction medium contained H202 with final concentrations of 〇, 〇·25, 0.5, 0.75, 1.0 mM, and 1 PBS buffer solution. Then, the cell survival rate was analyzed by the MTT assay. After treating cells with h2〇2, add 25 μM of 5 mg/ml MTT to 100 μM of cell-containing medium in each well. After 4 hours of reaction, add sputum lysate to each well. Buffer) 'Through the overnight reaction. Finally, the absorbance of the cells was determined by measuring the absorbance at an absorbance of 595 nm using an enzyme immunoassay analyzer. The relative survival rate is determined by taking the absorbance of the untreated cell line as 100%, and calculating the relative absorbance of the treated cell strain relative to the untreated cell strain, and the results are shown in FIG. 3A (in the figure) Shows the mean soil standard deviation). 12 201248152 As shown in the results of Fig. 3A, h202 of the above dose is the cell non-lethal dose' and the above dose is used to evaluate whether H2〇2 produces a shift in the reading frame sequence, resulting in microsatellite instability. For the evaluation of the displacement of the reading frame sequence, the above HCT116-V, HCT116-(CA)13, HCT116-(N)16, and HCT116+chr3-(CA)1:^ cells were firstly 1 x 1 〇5 per well. The cells were planted in 12-well plates. One day after planting, the cells were treated with the above concentration of Η202 solution for 1 hour; then Η2〇2 was removed and the cells were washed and placed in the medium for further growth for three days. The flow cytometry is then used to analyze the displacement of the reading sequence in the cell. First, the cells were treated with trypsin and resuspended in PBS buffer containing 1 mM EDTA; then transitioned with a 40 μη transition and then flow cytometry (QuantaTM sc_mpL, Beckman Coulter) for analysis. . At the same time, HCT116 cells containing pIRES-hrGFP-la (GFP single fluorescent cells), pDsRedl-Nl (RFP single fluorescent cells) and pRFP-IRES-GFP (GFP/RFP double fluorescent cells) were used as The calibration was analyzed, and HCT116 cells that were not transfected with any vector or plastid were used as background values. Here, the readout sequence displacement rate is the relative value of the number of cells expressing Gfp/rfp double light to the number of cells expressing G F P single fluorescence in the same cell sample. The result of the displacement rate of the reading frame sequence is shown in Fig. 3B (the average soil standard deviation is also shown in the figure), where * represents the p<〇.〇2 of the student t-test. As shown in Fig. 3B, as the dose of the sputum 2 increases, the displacement rate of the reading frame sequence also increases; and the ΗΟΓΠΙδ-γΑ)^ containing the microsatellite sequence has a displacement rate of the reading frame sequence compared with the control group HCTIMJN),6 high. Prove that the dual-fluorescence system 201248152 faithfully reports the instability of the microsatellite caused by H2〇2 even in the absence of DNA mismatch repair in HCT116 cells. In addition, in the HCT116+chr3-(CA)13 cell line, almost no reading frame sequence shift was detected, because HCT116+chr3 cells were DNA mismatch repairing healthy cells and repairing the frame sequence caused by H202. Displacement, which reduces the instability of microsatellites. Therefore, it is proved that the dual-fluorescence microsatellite instability reporting system is more sensitive in DNA mismatch repair of damaged cells than in DNA mismatch repairing healthy cells. In addition, if high-flux fluorescence microscopy system is used to analyze cell firefly In the light image, the dose of H2〇2 from 0 (no treatment) to 0.5 mM was observed, and the expression of RFP red fluorescent protein increased from 1.1% to 3.6%, indicating that H202 increased the displacement rate of the reading frame sequence. 4A is shown. This result is consistent with the results of the flow cytometry analysis (as shown in Figure 4B). It has also been demonstrated that this dual-fluorescence microsatellite instability reporting system enables rapid and large-scale screening of drugs through high-throughput fluorescence microscopy systems. Experimental Example 2 - Evaluation of the effect of methotrexate (MTX) anticancer drugs on cell viability and reading sequence shifts The above HCT116-(CA)I3& HCT116-(N)16 cell lines were seeded at 96 wells at 1 x 104 cells per well. In the plate. One day after planting, cells were treated with methotrexate (MTX, purchased from Sigma-Adrich) for three days, and the reaction medium contained a final concentration of 〇, 5, 10, 25, 50, 100 nM, And 2.5 η Μ NaOH. Then, cell viability was analyzed using the same MTT assay as in Experimental Example 1, and the results are shown in Fig. 5A (also shown as mean standard deviation in 201248152), which shows that the non-lethal dose of MTX cells is about 25 η Μ. For the evaluation of the displacement of the reading frame sequence, the above HCT116-(CA)13 and HCT116-(N)16 cell lines were first planted in a 12-well plate at ΙχΙΟ5 cells per well. One day after planting, the cells were treated with MTX at final concentrations of 0, 6.3, 12.5, and 25 η for three days; then the sputum was removed and the cells were washed and placed in the medium for further three days. Next, using the same flow cytometer as in Example 1, the displacement of the reading frame sequence in the cells was analyzed, and the results are shown in Fig. 5A (the average soil standard deviation is also shown in the figure), wherein *** indicates the student t- Test ρ < 0.0001. As shown in Fig. 5A, the HCT116-(CA)13 containing the microsatellite sequence has a higher reading rate of the reading frame than the control group HCT116-(N)16; and especially when the MTX dose is 25 ηΜ, the reading frame sequence shift The frequency produced is more pronounced. Experimental Example 3 - Evaluation of the faithfulness of the dual-fluorescence microsatellite instability reporting system In addition, the HCT116-(CA)13 cell line was treated with MTX at a final concentration of 25 η 三 for three days, then MTX was removed and the cells were washed, and It was then placed in the medium and continued to grow for three days. After the above steps were cycled four times, about 80% of the double-fluorescent cells were collected, and the fluorescence images of the cells were analyzed by flow cytometry and high-throughput fluorescence microscopy. The results are shown in Figures 6A and 6B. Shown. The same cells were subjected to PCR amplification of the DNA in HCT116-(CA)13, followed by DNA gene sequencing (sequence primers as shown in SEQ ID NO: 3, SEQ ID NO: 4). The results of DNA gene sequencing showed that the cell line treated by MTX had a group of CA repeats of 201248152 units in the microsatellite sequence than the cell line without MTX treatment, that is, the sequence result was (CA) I2, as shown in Fig. 6C. Show. The upper panel of Figure 6C shows the sequencing results of the cell lines without MTX treatment, while the bottom panel of Figure 6C shows the sequencing results of the cell lines treated with four times of 25 nM MTX. Due to the absence of a set of CA repeating units, the RFP reading sequence can be shifted from outside the reading frame to the reading frame. According to this, the RFP protein can be expressed again, so that the red fluorescence emitted by the RFP fluorescent protein can be observed, as shown in Fig. 6B. Internationally, five microsatellites in the genome are currently used to test whether patients with colorectal cancer have microsatellite instability. Therefore, the above MTX treatment and the untreated cell DNA were amplified by five pairs of fluorescent PCR primers for the five microsatellites for the detection. The analysis showed that MTX increased the six sequences in the D17S250 microsatellite (as shown in Figure 6D). Since the sequence of the D17S250 microsatellite contains (TA)7/(CA)24, the MTX substantially adds three sets of repeating units of TA or CA. The above experimental results demonstrate that the dual-fluorescence system can faithfully report that MTX anticancer drugs cause microsatellite instability of exogenous (CA) 13 and endogenous D17S250. In addition, since the dual-fluorescence reporter system of the present invention does not require separation of DNA and PCR, it is possible to detect each cell in a timely and sensitive manner whether or not microsatellites are unstable. The above-described embodiments are merely examples for the convenience of the description, and the scope of the claims is intended to be limited by the scope of the claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1A is a schematic diagram of a double-fluorescent microsatellite reporter of the present invention. 201248152 FIG. 1B is a schematic diagram of a double-fluorescent reporter plastid containing ((:) 13 microsatellite sequence of the present invention. FIG. 1C is a HCT116 cell line containing a double-fluorescence microsatellite reporter of the present invention under a fluorescence microscope. Figure 2A is a schematic diagram of the plastid body of the dual-fluorescence control group of the present invention. Figure 2B is a schematic diagram of the plastid of the double-fluorescence control group of the present invention. Fig. 3 is a graph showing the results of cell viability of the H2116 cell line of the fluorescent control group plastid under the fluorescence microscope. Fig. 3 is a graph showing the results of cell viability of the experiment 1 of the present invention treated with h2 〇 2. Fig. 3B is an experimental example 1 of the present invention. The results of the displacement rate of the reading frame sequence were analyzed by flow cytometry on the cells treated with h2〇2. Fig. 4A is a high-throughput firefly of the untreated or treated 〇5 mM H2〇2 cells in Experimental Example 1 of the present invention. The light microscopy system analyzes the sequence shift of the frame to result in the expression of RFP luciferin. Figure 4B shows the displacement rate of the reading frame sequence by flow cytometry of the cells treated with 〇.5 mM H2〇2 in Experimental Example 1 of the present invention. Figure 5A is an experimental example 2 of the present invention via methotrexate (MTX) Fig. 5B is a graph showing the results of analyzing the displacement rate of the reading frame sequence by the flow cytometry of the MTX-treated cells of the experimental example 2 of the present invention. Fig. 6A is a total of 25 nM of MTX of the experimental example 3 of the present invention. The processed cells were analyzed by flow cytometry for the results of the displacement rate of the reading frame sequence. 201248152 Fig. 6B is the experimental example 3 of the present invention. A total of four 25 nM MTX-treated cells were analyzed by high-throughput fluorescence microscopy system for frame sequence displacement. Figure 6C shows the results of DNA sequencing of cells in the experimental example 3 of the present invention which were not sputum-treated or subjected to a total of four 25 Μ MTX treatments. Figure 6D is an experimental example 3 of the present invention. A total of four 25nM MTX-treated cells were amplified by a fluorescence PCR primer to amplify five microsatellites for international testing. The results showed that MTX was increased by six in the D17S250 microsatellite containing (TA)7/(CA)24. Sequences, ie, three groups of repeating units. [Main component symbol description] 201248152 Sequence Listing <110〉National Success University/National Cheng Kung University <120>Double-fluorescence microsatellite report plastids and including this microsatellite instability Reporting plastid The cell model /Dual-fluorescent MSI reporter plasmid and cell model harboring this MSI reporter plasmid <130> 100-053BP_S4254 <160> 4 <170> Patentln version 3.3 <210> 1 <211> 65 <212> DNA <213> Artificial <220><223> Artificail primer for cloning <400> 1 ctggagctca tgcacacaca cacacacaca cacacacagt acgcgtaccg gtcgccacca 60 tggtg 65 <210> 2 <211> 47 <212> DNA <213 〉 Artificial <220〉 <223> Articifial primer for cloning <400> 2 ctggagctca tggatatcat tactagtaac cggtcgccac catggtg 47 <210> 3 19 201248152 <211> 21 <212> DNA <213> Artificial <220&gt <223> PCR primer for sequencing <400> 3 gttttggcag tacatcaatgg 21 <210> 4 <211> 20 <212> DNA <213> Artificial <220><223> PCR primer for sequencing <;400> 4 gtccttatca tcgtcgtctt 20

<210> 5 <211> 681 <212> DNA <213> Plasmid DsRedl-Nl <400> 5 atggtgcgct cctccaagaa cgtcatcaag gagttcatgc gcttcaaggt gcgcatggag 60 ggcaccgtga acggccacga gttcgagatc gagggcgagg gcgagggccg cccctacgag 120 ggccacaaca ccgtgaagct gaaggtgacc aagggcggcc ccctgccctt cgcctgggac 180 atcctgtccc cccagttcca gtacggctcc aaggtgtacg tgaagcaccc cgccgacatc 240 cccgactaca agaagctgtc cttccccgag ggcttcaagt gggagcgcgt gatgaacttc 300 gaggacggcg gcgtggtgac cgtgacccag gactcctccc tgcaggacgg ctgcttcatc 360 tacaaggtga agttcatcgg cgtgaacttc ccctccgacg gccccgtaat gcagaagaag 420 20 201248152 accatgggct gggaggcctc caccgagcgc ctgtaccccc gcgacggcgt gctgaagggc 480 gagatccaca aggccctgaa gctgaaggac ggcggccact acctggtgga gttcaagtcc 540 atctacatgg ccaagaagcc cgtgcagctg cccggctact actacgtgga ctccaagctg 600 gacatcacct cccacaacga ggactacacc atcgtggagc agtacgagcg caccgagggc 660 cgccaccacc tgttcctgta g 681≪ 210 > 5 < 211 > 681 < 212 > DNA < 213 > Plasmid DsRedl-Nl < 400 > 5 atggtgcgct cctccaagaa cgtcatcaag gagttcatgc gcttcaaggt gcgcatggag 60 ggcaccgtga acggccacga gttcgagatc gagggcgagg gcgagggccg cccctacgag 120 ggccacaaca ccgtgaagct gaaggtgacc aagggcggcc ccctgccctt cgcctgggac 180 atcctgtccc cccagttcca gtacggctcc aaggtgtacg tgaagcaccc cgccgacatc 240 cccgactaca agaagctgtc cttccccgag ggcttcaagt gggagcgcgt gatgaacttc 300 gaggacggcg gcgtggtgac cgtgacccag gactcctccc tgcaggacgg ctgcttcatc 360 tacaaggtga agttcatcgg cgtgaacttc ccctccgacg gccccgtaat gcagaagaag 420 20 201248152 accatgggct gggaggcctc caccgagcgc ctgtaccccc gcgacggcgt gctgaagggc 480 gagatccaca aggccctgaa gctgaaggac ggcggccact acctggtgga gttcaagtcc 540 atctacatgg ccaagaagcc cgtgcagctg cccggctact actacgtgga ctccaagctg 600 Gacatcacct cccacaacga ggactacacc atcgtggagc agtacgagcg caccgagggc 660 cgccaccacc tgttcctgta g 681

<210〉 6 <211> 723 <212> DNA <213> Plasmid IRES-hrGFP-la <400〉 6 atggtgagca agcagatcct gaagaacacc ggcctgcagg agatcatgag cttcaaggtg 60 aacctggagg gcgtggtgaa caaccacgtg ttcaccatgg agggctgcgg caagggcaac 120 atcctgttcg gcaaccagct ggtgcagatc cgcgtgacca agggcgcccc cctgcccttc 180 gccttcgaca tcctgagccc cgccttccag tacggcaacc gcaccttcac caagtacccc 240 gaggacatca gcgacttctt catccagagc ttccccgccg gcttcgtgta cgagcgcacc 300 ctgcgctacg aggacggcgg cctggtggag atccgcagcg acatcaacct gatcgaggag 360 atgttcgtgt accgcgtgga gtacaagggc cgcaacttcc ccaacgacgg ccccgtgatg 420 aagaagacca tcaccggcct gcagcccagc ttcgaggtgg tgtacatgaa cgacggcgtg 480 ctggtgggcc aggtgatcct ggtgtaccgc ctgaacagcg gcaagttcta cagctgccac 540 atgcgcaccc tgatgaagag caagggcgtg gtgaaggact tccccgagta ccacttcatc 600 cagcaccgcc tggagaagac ctacgtggag gacggcggct tcgtggagca gcacgagacc 660 gccatcgccc agctgaccag cctgggcaag cccctgggca gcctgcacga gtgggtgtaa 720 tag 723 21 201248152≪ 210> 6 < 211 > 723 < 212 > DNA < 213 > Plasmid IRES-hrGFP-la < 400> 6 atggtgagca agcagatcct gaagaacacc ggcctgcagg agatcatgag cttcaaggtg 60 aacctggagg gcgtggtgaa caaccacgtg ttcaccatgg agggctgcgg caagggcaac 120 atcctgttcg gcaaccagct ggtgcagatc cgcgtgacca agggcgcccc cctgcccttc 180 gccttcgaca tcctgagccc cgccttccag tacggcaacc gcaccttcac caagtacccc 240 gaggacatca gcgacttctt catccagagc ttccccgccg gcttcgtgta cgagcgcacc 300 ctgcgctacg aggacggcgg cctggtggag atccgcagcg acatcaacct gatcgaggag 360 atgttcgtgt accgcgtgga gtacaagggc cgcaacttcc ccaacgacgg ccccgtgatg 420 aagaagacca tcaccggcct gcagcccagc ttcgaggtgg tgtacatgaa cgacggcgtg 480 ctggtgggcc aggtgatcct ggtgtaccgc ctgaacagcg gcaagttcta cagctgccac 540 atgcgcaccc tgatgaagag caagggcgtg gtgaaggact tccccgagta ccacttcatc 600 Cagcaccgcc tggagaagac ctacgtggag gacggcggct tcgtggagca gcacgagacc 660 gccatcgccc agctgaccag cctgggcaag cccctgggca gcctgcacga gtgggtgtaa 720 tag 723 21 201248152

<210> 7 <211> 575 <212> DNA <213> Plasmid IRES-hrGFP-la <400> 7 acccccctct ccctcccccc cccctaacgt tactggccga agccgcttgg aataaggccg 60 gtgtgcgttt gtctatatgt tattttccac catattgccg tcttttggca atgtgagggc 120 ccggaaacct ggccctgtct tcttgacgag cattcctagg ggtctttccc ctctcgccaa 180 aggaatgcaa ggtctgttga atgtcgtgaa ggaagcagtt cctctggaag cttcttgaag 240 acaaacaacg tctgtagcga ccctttgcag gcagcggaac cccccacctg gcgacaggtg 300 cctctgcggc caaaagccac gtgtataaga tacacctgca aaggcggcac aaccccagtg 360 ccacgttgtg agttggatag ttgtggaaag agtcaaatgg ctctcctcaa gcgtattcaa 420 caaggggctg aaggatgccc agaaggtacc ccattgtatg ggatctgatc tggggcctcg 480 gtgcacatgc tttacatgtg tttagtcgag gttaaaaaac gtctaggccc cccgaaccac 540 ggggacgtgg ttttcctttg aaaaacacga tgata 575 22≪ 210 > 7 < 211 > 575 < 212 > DNA < 213 > Plasmid IRES-hrGFP-la < 400 > 7 acccccctct ccctcccccc cccctaacgt tactggccga agccgcttgg aataaggccg 60 gtgtgcgttt gtctatatgt tattttccac catattgccg tcttttggca atgtgagggc 120 ccggaaacct ggccctgtct tcttgacgag cattcctagg ggtctttccc ctctcgccaa 180 aggaatgcaa ggtctgttga atgtcgtgaa ggaagcagtt cctctggaag cttcttgaag 240 acaaacaacg tctgtagcga ccctttgcag gcagcggaac cccccacctg gcgacaggtg 300 cctctgcggc caaaagccac gtgtataaga tacacctgca aaggcggcac aaccccagtg 360 ccacgttgtg agttggatag ttgtggaaag agtcaaatgg ctctcctcaa gcgtattcaa 420 caaggggctg aaggatgccc agaaggtacc ccattgtatg ggatctgatc tggggcctcg 480 gtgcacatgc tttacatgtg tttagtcgag gttaaaaaac gtctaggccc cccgaaccac 540 ggggacgtgg ttttcctttg aaaaacacga tgata 575 22

Claims (1)

201248152 七、申請專利範圍: 1. 一種用以報導微衛星不穩定之雙螢光微衛星報導 質體’其中由該雙螢光微衛星報導質體之啟動子區域起, 係依序包括:微衛星序列、第一螢光蛋白序列'内部核醣 體插位點序列、及第二螢光蛋白序列,且該第一螢光蛋白 與該第二螢光蛋白所發出的螢光顏色係不相同。 2. 如申請專利範圍第1項所述之雙螢光微衛星報導質 體,其中該微衛星序列係包括一(CA)n序列,且n係為1〇 4〇。 3. 如申請專利範圍第1項所述之雙螢光微衛星報導質 體’其中該第一螢光蛋白係為可發紅光之螢光蛋白。 4·如申請專利範圍第4項所述之雙螢光微衛星報導質 體,其中該第一螢光蛋白係為RFpe 5. 如申請專利範圍第1項所述之雙螢光微衛星報導質 體,其中該第二螢光蛋白係為可發綠光之螢光蛋白。 6. 如申請專利範圍第5項所述之雙螢光微衛星報導質 體’其中該第二螢光蛋白係為Gfp。 7. 一種含雙螢光微衛星報導質體之細胞模型,包括: 一雙勞光微衛星報導質體’由該雙螢光微衛星報導質體之 啟動子區域起’係依序包括:微衛星序歹4、第-登光蛋白 序列、内部核醣體插位點序列、及第二螢光蛋白序列其 中該第-螢光蛋白與該第二榮光蛋白所發出的螢光顏色係 不相同’且該第二螢光蛋白係做為-定量蛋白;以及 23 201248152 一細胞株,該雙螢光微衛星報導質體係轉殖於該細胞 株中,且該細胞株係表現該雙螢光微衛星報導質體中之第 一螢光蛋白序列'及第二螢光蛋白序列; 其中’當檢測出第一螢光蛋白所發出之螢光時,表示 有讀框序列位移之情形產生;且當無法檢測出第一螢光蛋 白所發出之螢光時,表示無讀框序列位移之情形產生。 8.如申請專利範圍第7項所述之報導系統,更包括一 控制組質體,其係轉殖於一細胞株中,由該控制組質體之 啟動子區域起,係依序包括:控制組序列、第一螢光蛋白 序列、内部核醣體插位點序列、及第二螢光蛋白序列,其 中該第一螢光蛋白與該第二螢光蛋白所發出的螢光顏色係 不相同,且該第二螢光蛋白係做為一定量蛋白。 9·如申請專利範圍第7項所述之報導系統,其中該微 衛星序列係包括一(CA)n序列,且η係為5_4〇。 10. 如申請專利範圍第8項所述之報導系統,其中控制 組序列係包括一(Ν)η序列,每一 Ν係各自獨立選自由Α、τ、 C、G所組成之群組,且η係為2〇·8〇。 11. 如申請專利範圍第7項所述之報導系統,其中該第 一螢光蛋白係為可發紅光之螢光蛋白。 12·如申請專利範圍第11項所述之報導系統,其中該第 一螢光蛋白係為RFP。 13.如申請專利範圍第7項所述之報導系統,其中該第 二營光蛋白係為可發綠光之螢光蛋白。 24 201248152 14. 如申請專利範圍第13項所述之報導系統,其中該第 二螢光蛋白係為GFP » 15. 如申請專利範圍第7項所述之報導系統,其中該細 胞株係為一 DNA錯配修復缺失之人類細胞模型 (MMR-deficient human cell model)。 16. 如申請專利範圍第15項所述之報導系統,其中該 DNA錯配修復缺失細胞係為人類結腸癌細胞株HCT116。 八、圖式(請見下頁): 25201248152 VII. Patent application scope: 1. A dual-fluorescence microsatellite report plastid for reporting microsatellite instability, in which the promoter region of the plastid is reported by the dual-fluorescence microsatellite, including: micro The satellite sequence, the first fluorescent protein sequence 'internal ribosome insertion site sequence, and the second fluorescent protein sequence, and the first fluorescent protein is different from the fluorescent color emitted by the second fluorescent protein. 2. A dual-fluorescence microsatellite reporter as described in claim 1 wherein the microsatellite sequence comprises a (CA)n sequence and the n is 1〇4〇. 3. The double-fluorescent microsatellite reporter as described in claim 1 wherein the first fluorescent protein is a red-emitting fluorescent protein. 4. The dual-fluorescence microsatellite reporter plastid as described in claim 4, wherein the first fluorescent protein is RFpe 5. The dual-fluorescence microsatellite report as described in claim 1 The second fluorescent protein is a fluorescent protein that emits green light. 6. The dual-fluorescence microsatellite reporter according to claim 5, wherein the second fluorescent protein is Gfp. 7. A cell model comprising a dual-fluorescence microsatellite reporter plastid, comprising: a pair of Laoguang microsatellite reporter plastids 'from the promoter region of the fluoroplast reported by the dual-fluorescence microsatellite' a satellite sequence 4, a sir-denacle protein sequence, an internal ribosome insertion site sequence, and a second fluorescent protein sequence, wherein the first-fluorescent protein is different from the fluorescent color of the second luminescent protein. And the second fluorescent protein is used as a -quantitative protein; and 23 201248152 a cell line, the double-fluorescent microsatellite reporter system is transferred into the cell strain, and the cell line expresses the double-fluorescent microsatellite Reporting a first fluorescent protein sequence ' and a second fluorescent protein sequence in the plastid; wherein 'when the fluorescent light emitted by the first fluorescent protein is detected, indicating that a sequence of reading frames is displaced; and when When the fluorescence emitted by the first fluorescent protein is detected, it indicates that the displacement of the in-frame sequence is not generated. 8. The reporting system of claim 7, further comprising a control group plastid, which is transferred to a cell line, from the promoter region of the control group, comprising: Controlling a sequence, a first fluorescent protein sequence, an internal ribosome insertion site sequence, and a second fluorescent protein sequence, wherein the first fluorescent protein is different from the fluorescent color emitted by the second fluorescent protein And the second fluorescent protein is used as a certain amount of protein. 9. The reporting system of claim 7, wherein the microsatellite sequence comprises a (CA)n sequence and the η system is 5_4〇. 10. The reporting system of claim 8, wherein the control group sequence comprises a sequence of (Ν)η, each of which is independently selected from the group consisting of Α, τ, C, G, and The η system is 2〇·8〇. 11. The reporting system of claim 7, wherein the first fluorescent protein is a red fluorescent luminescent protein. 12. The reporting system of claim 11, wherein the first fluorescent protein is RFP. 13. The reporting system of claim 7, wherein the second luminosity protein is a fluorescent protein that emits green light. The method of claim 14, wherein the second fluorescent protein is GFP, as described in claim 7, wherein the cell line is one DNA mismatched human cell model (MMR-deficient human cell model). 16. The reporting system of claim 15, wherein the DNA mismatch repairing defective cell line is human colon cancer cell line HCT116. Eight, schema (see next page): 25
TW100117389A 2011-05-18 2011-05-18 Dual-fluorescent msi reporter plasmid and cell model harboring this msi reporter plasmid TWI421497B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100117389A TWI421497B (en) 2011-05-18 2011-05-18 Dual-fluorescent msi reporter plasmid and cell model harboring this msi reporter plasmid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100117389A TWI421497B (en) 2011-05-18 2011-05-18 Dual-fluorescent msi reporter plasmid and cell model harboring this msi reporter plasmid

Publications (2)

Publication Number Publication Date
TW201248152A true TW201248152A (en) 2012-12-01
TWI421497B TWI421497B (en) 2014-01-01

Family

ID=48138656

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100117389A TWI421497B (en) 2011-05-18 2011-05-18 Dual-fluorescent msi reporter plasmid and cell model harboring this msi reporter plasmid

Country Status (1)

Country Link
TW (1) TWI421497B (en)

Also Published As

Publication number Publication date
TWI421497B (en) 2014-01-01

Similar Documents

Publication Publication Date Title
EP3512943B1 (en) Crisp-seq, an integrated method for massively parallel single cell rna-seq and crispr pooled screens
EP3476865B1 (en) Method for constructing pd-1 gene-modified humanized animal model and use thereof
US20230068547A1 (en) Compositions and methods for compartment-specific cargo delivery
BR112020016570A2 (en) COMPOSITIONS AND METHODS FOR MEMBRANE PROTEIN RELEASE
CN106893739A (en) For the new method and system of target gene operation
Karadge et al. Allorecognition proteins in an invertebrate exhibit homophilic interactions
AU2005263993B2 (en) Cell cycle reporting cell line
CN107893073A (en) A kind of method for screening glutamine synthelase deficiency HEK293 cell lines
JP2019511243A (en) Systems and methods for in vivo dual recombinase-mediated cassette exchange (dRMCE) and disease models thereof
US20130059757A1 (en) Novel Gene Targets Associated with Amyotrophic Lateral Sclerosis and Methods of Use Thereof
CN114085873A (en) Cancer cell state identification gene circuit group and preparation method thereof
US7569221B2 (en) Compositions and methods for identifying agents that alter expression of survivin
Makhija et al. Versatile labeling and detection of endogenous proteins using tag-assisted split enzyme complementation
CN104099357A (en) Protein stability detection method and application
CN105838736A (en) Screening method of cell strain of GS expression system
Tarquis-Medina et al. Synaptotagmin-13 is a neuroendocrine marker in brain, intestine and pancreas
TW201248152A (en) Dual-fluorescent MSI reporter plasmid and cell model harboring this MSI reporter plasmid
EP3008213B1 (en) Detection of protein to protein interactions
US20210214732A1 (en) Lux expression in cells and methods of use
CN111479932A (en) Method of treating lymphoma
WO2022153596A1 (en) Vector set for measuring transposase activity, kit, transposase activity measuring method, and cell separation method
CN114921484A (en) Reporter genome for in vitro screening of drugs causing gene silencing, kit and application thereof
Adaku et al. Apolipoprotein E2 promotes melanoma growth, metastasis, and protein synthesis via the LRP1 receptor
Patange et al. Fire Burn and Cauldron Bubble: What Is in Your Genome Editing Brew?
CN109504707A (en) The restorative procedure in the iPSCs Mitochondrial DNA Mutation site based on mitoTALENs

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees