TW201247308A - System and process for the physical absorption of carbon dioxide from a flue gas stream - Google Patents

System and process for the physical absorption of carbon dioxide from a flue gas stream Download PDF

Info

Publication number
TW201247308A
TW201247308A TW101108211A TW101108211A TW201247308A TW 201247308 A TW201247308 A TW 201247308A TW 101108211 A TW101108211 A TW 101108211A TW 101108211 A TW101108211 A TW 101108211A TW 201247308 A TW201247308 A TW 201247308A
Authority
TW
Taiwan
Prior art keywords
carbon dioxide
flue gas
gas stream
solvent
stream
Prior art date
Application number
TW101108211A
Other languages
Chinese (zh)
Inventor
Gianfranco Ludovico Guidati
Jean-Marc Gilbert Amann
Zedtwitz-Nikulshyna Viktoria Von
Andre Burdet
Original Assignee
Alstom Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology Ltd filed Critical Alstom Technology Ltd
Publication of TW201247308A publication Critical patent/TW201247308A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/202Alcohols or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/202Alcohols or their derivatives
    • B01D2252/2021Methanol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

Disclosed herein is a system comprising a first heat exchanger; the first heat exchanger being operative to reduce a temperature of a carbon dioxide rich flue gas stream to about -100 to about -60C; an absorber; the absorber being located downstream of the first heat exchanger; wherein the absorber facilitates contact between the flue gas stream and a solvent to form a carbon dioxide rich solvent stream; the solvent being operative to selectively absorb carbon dioxide over other gases present in the flue gas stream; and a valve; the valve being located downstream of the absorber; the valve being operative to reduce a pressure on the carbon dioxide rich solvent stream to produce carbon dioxide and a lean carbon dioxide solvent stream.

Description

201247308 六、發明說明: 【發明所屬之技術領域】 本揭示内容係關於煙道氣流中二氧化碳物之理吸收之系 統及方法。具體而言,本揭示内容係關於使用溶劑物理吸 收過程氣體流中之二氧化碳(co2)之方法及系統。 此參考文獻主張於2011年3月10曰提出申請之美國臨時 申請案第61/451,278號之優先權,該案件之全部内容皆以 引用方式併入本文中。 【先前技術】 在用於生成電力或產生諸如水泥、鋼或玻璃或諸如此類 等材料之燃燒設備中燃燒燃料(例如,煤、油、泥炭、廢 料、生物燃料、天然氣 '或諸如此類)時,生成熱煙道氣 (有時亦稱作過程氣體)之流。在其他組份中,該熱煙道氣 含有二氧化碳(C〇2)。已廣泛認識到向大氣中釋放二氧化 碳具有負面環境影響,且其已致使研發適於使用液體溶劑 以吸收氣體中之二氧化碳而去除熱煙道氣中之二氧化碳的 方法。 儘管據信該等方法有效,但業内仍需要減少用於操作系 統之電力(所謂「寄生電力」)並降低因溶劑損失造成之溶 劑的花費及環境影響。 < 【發明内容】 本文揭示包含以下之系統:第-熱交換器;該第一教交 換器可操作以將富二氧化碳煙道氣流之溫度降至約衡c 至約销;吸收器;該吸收器位於第一熱交換器之下 163003.doc 201247308 游;其中該吸收器有利於煙道氣流與溶劑接觸以形成富二 氧化碳溶劑流;該溶劑可操作以相對於存於煙道氣流中之 其他氣體選擇性吸收二氧化碳;及閥;該閥位於吸收器之 下游,該閥可操作以降低富二氧化碳溶劑流上之壓力以產 生二氧化碳及貧二氧化碳溶劑流。 本文揭示捕獲煙道氣流中之二氧化碳之方法,該方法包 含自發射器接收富二氧化碳煙道氣流;該富二氧化碳煙道 氣流係在該發射器之壓力及溫度下;針對富二氧化碳煙道 氣流内之二氧化碳的給定莫耳濃度,將該富二氧化碳煙道 氣流冷康至大於或等於約101.325 kPa之壓力及約〇t至約 一氧化碳之熔點之溫度;使經冷凍之富二氧化碳煙道氣流 與液體貧二氧化碳溶劑流接觸;該液體貧二氧化碳溶劑流 對於二氧化碳之溶解度比存於富二氧化碳煙道氣流中之其 他氣體高;用液體溶劑吸收二氧化碳以提供富二氧化碳溶 劑流及貧二氧化碳煙道氣流;及降低富二氧化碳溶劑流之 壓力以提供液體貧二氧化碳溶劑流及二氧化碳氣體。 【實施方式】 本文揭示用於處理含有二氧化碳之溶劑流的系統及方 法’該二氧化碳係萃取自發電廠中生成之煙道氣流。該系 統有利地包含與閃蒸罐、及閥或渦輪機流體連通之吸收器 塔。在吸收器塔(下文為「吸收器」)中,富二氧化碳煙道 氣流中之二氧化碳選擇性吸收至吸收器中之溶劑中,而在 閃蒸罐中,所吸收二氧化碳自溶劑釋放且隨後排放至管線 中,隨後隔絕二氧化碳或將其用於其他過程。 163003.doc 201247308 在"個實施例中’捕獲煙道氣中之二氧化碳之方法包含 化?煙道氣流内之二氧化碳的給定莫耳漠度, 之料之-:約1。1 325 kPa之壓力及約〇。。至約二氧化碳 之落點之^度下冷;東富二氧化碳煙道氣(RFG)流。自發射 器發出之富二氧化碳煙道氣流具有大於或等於約大氣壓之 壓:及約啊至約_之溫度。在—個實施射,經冷康 之富二氧化碳煙道氣流的壓力可高達約丨〇〇〇 kpa。 該方法進—步包含使經冷珠之富二氧化碳煙道氣流與貧 二氧化碳溶劑接觸,該溶劑在富二氧化碳煙道氣流溫度下 對二氧化碳(在煙道氣流中)之溶解度比對氮及氧高。富二 氧化碳煙道氣流與溶劑間之接觸導致自富二氧化碳煙道氣 流萃取二氧化碳以產生貧二氧化碳煙道氣流及富二氧化碳 溶劑流。藉由降低富二氧化碳溶劑流之壓力,二氧化碳解 吸以及產生貧二氡化碳溶劑流。單獨隔絕解吸之二氧化 碳0 此系統具有大量優點,此乃因溶劑選擇性地吸收煙道氣 中之二氧化碳,同時不與諸如氮氧化物、硫氧化物 (sox)及諸如此類等其他煙道氣成份相互作用。若需要, 可自系統之上游去除諸如Ν〇χ及S〇x等其他煙道氣成份。 此意味著’若需要,與溶劑分離後獲得之二氧化碳流可有 利地用於其他化學目的(除隔絕外)。 圖1繪示用於去除富二氧化碳煙道氣流中之二氧化碳之 系統100。該系統包含與第一主動冷卻迴路200、吸收-解 吸迴路300及第二主動冷卻迴路4〇〇流體連通之第一熱交換 163003.doc -6 · 201247308 器102。吸收-解吸迴路包含吸收器3〇2、閥304、閃蒸罐 306、熱交換器3 10及中間冷卻壓縮器3 12、幫浦3 14及壓縮 器308。第一熱交換器102位於生成煙道氣流(欲去除其中 之二氧化碳)之煙道氣發射器110之下游。煙道氣流可穿過 諸如洗務器(未顯示)等其他裝置,其中諸如氧、氮及微粒 物質等其他污染物可在進入第一熱交換器1〇2之前去除。 第一熱交換器102位於第一主動冷卻迴路200、吸收-解 吸迴路300及第二主動冷卻迴路4〇〇之上游。第一熱交換器 I 02可包含任一類型之熱交換器或任一順序之熱交換器且 用於將自煙道氣流發射器11〇發出之煙道氣流冷卻至接近 二氧化碳之熔點之溫度。現參照圖1中所繪示之例示性實 施例,在第一熱交換器1〇2中藉由自吸收器3〇2發出之經冷 卻貧一氧化碳煙道氣流1 〇7的對流冷卻自煙道氣流發射器 II 〇發出之备二氧化碳煙道氣流1 〇 1。富二氧化碳煙道氣流 101通常3有佔富二氧化碳煙道氣流1 〇 1之總重量約3至約 3〇莫耳/c»(mol%)之二氧化碳。貧二氧化碳煙道氣流} 〇7通 常含有佔貧二氧化碳煙道氣流107之總重量約〇至約10 m〇1°/〇之二氧化碳。在一個實施例中,第一熱交換器102將 煙道氣流之溫度自約4〇°C至約100eC之溫度降至約-60°C至 約-100°C之溫度。 在一個實施例中,第一熱交換器102將煙道氣流之溫度 降至稍微同於二氧化碳之熔融溫度之溫度。在—例示性實 施例中’期望將煙道氣流之溫度降至·抓至_6代之溫 度在例示性實施例中,對於煙道氣流中之丨4〇/〇之二氧 163003.doc 201247308 化碳莫耳濃度而言,期望自第一熱交換器1〇2發出後之富 二氧化碳煙道氣溫度為約· 1 〇〇〇C至_6〇。〇。 第一熱交換器102可不為單一單元,而是相反可視情況 包含元件之集合,目的係將煙道氣流冷卻至高於二氧化碳 之熔點之溫度。舉例而言,第一熱交換器i 〇2可包含一或 多種熱交換器;直接接觸冷卻(DCC)塔,其包括以下能 力.⑴使用pH控制系統去除富二氧化碳煙道氣(rfg)流中 之SOx ’及(ii)使用鹽水溶液零下冷卻;主動冷卻迴路、諸 如流體幫浦、風扇及諸如此類等辅助系統;及經由在DCC 及熱交換器中去除水來乾燥富二氧化碳煙道氣的能力。 如上所述,第一熱交換器102可為多種熱交換器中之一 者。適宜熱交換器之實例係殼式及管式熱交換器、板式熱 交換器、再生熱交換器、絕熱輪式熱交換器、板翅式熱交 換器、枕板式熱交換器、動態刮光面式熱交換器或或相變 熱交換器。若需要,可使用▲等熱交換器中之一或多者。 例示性第一熱交換器102係板翅式熱交換器。 在第一熱交換器102中冷卻後’將富二氧化碳煙道氣流 103排放至第一主動冷卻迴路200中。第一主動冷卻迴路 200係可選的。第一主動冷卻迴路200僅用於在富二氧化碳 煙道氣流103未達到第一熱交換器102中期望之低溫時進一 步將其冷卻。在一個實施例中,在貧二氧化碳煙道氣流 107之質量流量顯著小於富二氧化碳煙道氣流101之質量流 量且因此無法將富煙道氣流103之溫度降至-60°C至-i〇〇t 之期望值時’使用第一主動冷卻迴路2〇〇。作為單一冷床 163003.doc 201247308 迴路之主動冷卻系統200的圖示係象徵性的,且在現實中 可使用標準低溫多級冷卻級聯達成。舉例而言,第一主動 冷卻迴路200可包括用於將熱自富二氧化碳煙道氣流交換 至製冷劑210之熱交換器202、用於使製冷劑21〇在第一主 動冷卻迴路200中循環之壓縮器204、用於自製冷劑2 1〇去 除熱之熱交換器206、及節流閥208。可用於第一主動冷卻 迴路200中之例示性製冷劑21〇係非鹵化烴(例如甲烷、丙 烷、丙烯 '異丁烷、或諸如此類)、氨、二氧化硫、或諸 如此類、或包含上述製冷劑中之至少一者之組合β儘管氣 氟烴亦可用作製冷劑,但期望在主動冷卻迴路及4〇〇中 分別使用不受環境影響(environment-neutral)之製冷劑。 隨後將自第一主動冷卻迴路2〇〇發出之富二氧化碳煙道 氣流105排放至吸收-解吸迴路3〇〇。吸收_解吸迴路3〇〇包含 吸收器302、閥304、閃蒸罐306、絕熱壓縮器308、熱交換 器3 10及中間冷卻壓縮器312。閥304、閃蒸罐306、絕熱壓 縮器308、熱交換器310及中間冷卻壓縮器312各自連續位 於吸收器302之下游且彼此流體連通。 現就圖1中之吸收器302而言,富二氧化碳煙道氣流1〇5 自底部進入。富二氧化碳煙道氣流1〇5自吸收器之底部向 上流動且作為貧二氧化碳煙道氣流丨〇7自頂部離開吸收器 3 02。在吸收器302中,富二氧化碳煙道氣流1〇5接觸選擇 性吸收富二氧化碳煙道氣流1 〇5中之二氧化碳之溶劑。該 溶劑可為優先於煙道氣流中之其他污染物(例如氮、氧、 氮氧化物、硫氧化物、微粒物質、及諸如此類)選擇性吸 163003.doc 201247308 ::道:流1〇5中之二氧化碳之任何溶劑。期望該溶劑於 ㈣(零下)溫度下具有低炫點及低蒸氣壓。亦期望該溶劑 於操作(零下)溫度下展示最小黏度。 —適用於在吸收器中吸收二氧化碳之溶劑係醇。醇可為一 凡、多①、脂肪族、脂環族醇、或諸如此類,或包含上述 醇中之至少一者之組合。醇之實例係曱醇'乙醇、丙醇、 :醇、戊醇、十六烷醇、乙烷],2·二醇、丙烷三 醇、丁烷_1,2,3,4-四醇、戊烧·1’2’3,4,5-五醇、己烧_ 以,3’4,5,6-六醇、庚烷十从七以,?-七醇、丙_2_烯 醇3,7-一甲基辛_2,6_二稀醇、丙冬快小醇、環己烧_ 1,2,3,4,5,6-六醇、(2_丙基)_5_甲基環己烧小醇、或諸如 此類、或包含上述醇中之至少一者之組合。例示性醇係甲 醇、乙醇'丙醇、丁醇、戍醇、或包含上述例示性醇中之 至少一者之組合。 +如上所述’富:氧化碳煙道氣流1()5自底部進入吸收器 :。肖上",L動’在此期間其接觸溶劑並在頂部離開吸 收器302。,谷劑作為貧二氧化碳溶劑流3⑽自頂部進入吸收 =02且作為富二氧化碳溶劑流3〇1自底部離開吸收器 在溶劑與富二氧化碳煙道氣體流^ Q 5接觸期間將吸收器 内之壓力維持於接近大氣廢下。在吸收器3〇2中溶劑與富 氧化炭煙道氣流丨〇5接觸期間,由溶劑吸收煙道氣流中 之二氧化碳及熱”容劑經由物理吸收作用吸收煙道氣流 1〇5中之二氧化碳。主要由在吸收過程期間升溫之溶劑提 I63003.doc 201247308 取吸收熱。貧二氧化碳煙道氣流107 (其在頂部離開吸收器 302)用於預冷卻上述第一熱交換器1〇2中進入之富二氧化 碳煙道氣體流101。 富二氧化碳溶劑流3〇 1收集於吸收器塔302之底部處並將 其傳遞至吸收-解吸迴路300之解吸部分〇吸收-解吸迴路 300之解吸部分包含閥304、閃蒸罐306、幫浦314及絕熱壓 縮器308 » 閥304將富二氧化碳溶劑流3〇 1之壓力有效降低至如下位 準:自富二氧化碳煙道氣流1 〇5萃取之二氧化碳可自溶劑 解吸且在閃蒸罐3 06内恢復成氣相。溶劑自頂部進入吸收 器3 02且作為富二氧化碳溶劑流3〇1自底部離開吸收器 3 02。可用渦輪機替換閥3〇4以實施相同壓力降低,此使得 所吸收二氧化碳可自溶劑解吸。在期望改良膨脹之冷卻效 應並產生電力時,可使用渦輪機。 所降低壓力係富二氧化碳煙道氣流1〇5中之二氧化碳之 初始分壓的約1/5至約丨/500 (針對9〇%二氧化碳捕獲率)。 如上所述,吸收器3〇2中之壓力係約大氣壓。因此,閥之 後之虽二氧化碳溶劑流之壓力係約1/5大氣壓至約1/5〇〇大 氣壓。在一例不性實施例中,對於煙道氣流ι〇ι中之14% 一氧化碳之上述莫耳濃度及1巴排除氣體壓力而言,閥304 之後之壓力將為約〇〇 1〇巴。根據操作條件,此壓力亦可 較低或較高。 在閃蒸罐306中收集貧二氧化碳溶劑流3〇3及自溶劑釋放 之二氧化碳。藉由貧溶劑幫浦3U自閃蒸罐萃取呈液體形 163003.doc 201247308 式之貧溶劑且將其排放回吸收器302之頂部。貧溶劑幫浦 3 14將溶劑之壓力增加至吸收器3〇2之頂部處期望之位準: 吸收器302之頂部處之壓力係約!大氣壓哎 王·。在一例示 性實施例中,吸收器3〇2之頂部處之溶劑之壓力係約】大氣 壓。 、 藉由絕熱壓縮器308自閃蒸罐306汲取自溶劑解吸之二氧 化碳氣體。絕熱壓縮器308將碳氣體之壓力自約〇〇ι〇巴增 加至如下位準:其中氣體之溫度高於可用冷卻水之溫度。 根據具體條件(閃蒸罐4壓力,富含溶劑之溫度),絕熱二氧 化碳壓縮器308之排出壓力可高達約1巴,具體而言約 0.001至約1巴〇為使將二氧化碳壓縮至約1〇〇巴之管線壓 力所需之工作最小化,可使用熱交換器3 1〇中之冷卻水冷 卻離開絕熱二氧化碳壓縮器3〇8之二氧化碳氣體。在熱交 換器3 10之下游,在中間冷卻壓縮器3丨2中以若干步驟將二 氧化碳氣體之壓力升高至期望管線壓力,其中可輸送二氧 化碳氣體以使用或隔絕。在一個實施例中,二氧化碳氣體 之此壓縮可類似於基於化學吸收及氧基_燃料過程的後燃 燒二氧化碳捕獲過程中所用者。 在一個贯施例中’吸收_解吸迴路3〇〇之解吸部分可包含 複數個閥、閃蒸罐 '及絕熱二氧化碳壓縮器,每一後續閃 蒸罐中之壓力小於前一閃蒸罐之壓力。換言之,位於前一 閃蒸罐之下游之閃蒸罐的壓力比前一閃蒸罐低。 現參照圖2 ’多級解吸系統5〇〇包含與第一閃蒸罐5〇4流 體連通之第一閥502、第二閥5〇6、第二閃蒸罐5〇8、第三 163003.doc 12 201247308 閥5 1 0、第三閃蒸罐5 12、第一絕熱壓縮器5 14、第二絕熱 壓縮器516及第三絕熱壓縮器518。絕熱壓縮器514、516及 5 1 8與發動機機械連通。第一級解吸系統包含第一閥502、 第一閃蒸罐504及第一絕熱壓縮器5 14,該第一級解吸系統 與包含第二閥506、第二閃蒸罐508及第二絕熱壓縮器516 之第二級解吸系統及包含第三閥51〇、第三閃蒸罐512及第 三絕熱壓縮器5 1 8之第三解吸系統流體連通。第一閥5〇2之 後之第一級解吸系統中之二氧化碳的壓力P1高於第二閥 506之後之第二級解吸系統中之二氧化碳的壓力p2,其又 大於第三閥510之後之第三級解吸系統中之二氧化碳的壓 力P3。在中間冷卻壓縮器3丨2中對由多級解吸系統5〇〇釋放 之一氧化碳進行加壓(如上文詳述)。亦可使用位於中間冷 卻壓縮器3 12上游之熱交換器3 1〇中的冷卻水冷卻二氧化 碳。 此多級佈置使得系統可於大於約〇 〇丨〇巴之上述最小壓 力之壓力下收集盡可能多之二氧化碳。此佈置亦降低電力 消耗及絕熱二氧化碳壓縮器之尺寸及成本。儘管圖2顯示 可旎佈置有二個壓力位準級,但預計壓力位準級之數量可 大於3或小於3但大於或等於1。 現參照圖卜可看出,第二主動冷卻系統400亦可視情況 用於貧溶劑上。第二主動冷卻系統4〇〇係可選的且以非常 類似於第-主動冷卻系統200之方式起作用。舉例而言, 第一主動冷部迴路4〇〇可包括用於將熱自貧溶劑流交換 U + #Μΐα之第二熱交換器4G2、用於使製冷劑41〇在第 163003.doc 201247308 二主動冷卻迴路400中循環之壓縮器404、用於自製冷劑 41〇去除熱之熱交換器406、及節流閥4〇8。第二主動迴路 400可用於將貧二氧化碳溶劑流3〇9冷卻至將最有效地萃取 富二氧化碳煙道氣流105中之二氧化碳之溫度。 所揭不方法係以多種方式有利。估計系統1〇〇之當前方 法的電力消耗與使用選擇性萃取煙道氣流中之二氧化碳之 溶劑的其他二氧化碳捕獲系統相比較低。此係由於在無需 煙道氣壓縮之吸收階段期間(在吸收器3〇2内),富二氧化碳 煙道氣流105係在大約大氣壓下,且由於溶劑藉由閥3〇4及 閃蒸罐306經由膨脹再生,系統1〇〇之主要電力消耗元件係 二氧化碳壓縮器308及312❹使用高效軸向壓縮器作為二氧 化碳壓縮器308由此可產生低電力消耗。該壓縮器可基於 燃氣輪機中所用技術。 另外’由於低操作溫度(例如,吸收器3 〇 2中之約· 1 〇 〇 至-6(TC之富二氧化碳煙道氣流溫度),預期系統1〇〇之方法 中的溶劑損失極低。此外,由於可安裝系統i 〇〇而對現有 二氧化碳回收系統作出最小改變(例如,無需安裝壓縮器 以增加富煙道氣流之壓力),故可在現有發電廠中安裝系 統100而無需長關機時段。 應瞭解,儘管本文中可使用「第一」、「第二」、「第三」 專術語來闡述多種元件、組件、區域、層及/或區段,但 此等元件、組件、區域、層及/或區段不應受限於該等術 5吾°該等術語僅用於相互區分各元件、組件、區域、層或 區段。因此,下文論述之「第一元件」、「組件」、「區 163003.doc 201247308 域」、「層」或「區段」可稱為第二元件、組件、區域、層 或區段而不背離本文之教示。 本文所用術語僅用於描述特定實施例之目的而非意欲具 有限定性。除非上下文另外明確指明,否則如本文中所使 用’單數形式「一」(「a」、「an」)及「該」意欲亦包括複 數形式。應進一步瞭解,在本說明書中使用時,術語「包 含(comprises)」及/或「包含(comprising)」、或「包括 (includes )」及/或「包括(ineiuding )」表示所述特徵、 區域、整數、步驟、操作、元件、及/或組件之存在,但 不排除一個或多個其他特徵、區域、整數、步驟'操作、 元件、組件、及/或其群組之存在或添加。 此外,本文可使用諸如「下部」或「底部」及「上部」 或「頂部」等等相對性術語來闌述一個元件與其他元件之 關係,如該等圖中所圖解說明。應理解,除圖中所繪示之 定向以外,該等相對性術語意欲囊括裝置的不同定向。例 如,若將其中一個圖中之裝置顛倒,則闡述為在其他元件 「下」側上之7〇件將定向在該等其他元件之「上」側上。 因此’例不性術語「下」可端視該圖之特定取向而涵蓋 下」與「上」兩個定向。類似地,若將其中一個圖中之 裝置反轉,則闡述為位於其他元件「下方」或「下面」之 兀件將疋向在該等其他元件「上方」。因此,例示性術語 下方J或「下面」可涵蓋上方及下方兩個定向。 除非另有規定’否則本文中所使用之全部術語(包括技 術術π與#學術語)&有與㉟習本發明所屬技術領域之一 163003.doc -!5· 201247308 般人士所共知之相同含義。應進一步瞭解,應將術語(諸 如在常用字典中所定義之彼等術語)解釋為具有與其在相 關技術及本發明環境中之含義相一致之含義,而不應以理 想化或過分形式化之意義來解釋,除非本文中明確規定如 此。 本文參照示意性圖解說明理想化實施例之剖面圖解說明 闡述例示性實施例。因此,預計會因(例如)製造技術及/或 公差而使圖解說明中之形狀有所變化。因此,本文所述實 施例不應視為限於如本文所闡釋區域之特定形狀,而是欲 包括因(例如)製造而引起之形狀偏差。舉例而言,闡釋或 闡述為平整之區域通常可具有粗糙及/或非線性形體。此 外,闡釋之銳角可被倒圓。因此,圖中所闡釋區域實質上 係示意性,且其形狀並非意欲闡釋區域之精確形狀且並非 意欲限定本申請專利範圍之範嘴。 術語及/或在本文中用於意指「及」以及「或」二者。 舉例而言「Α及/或Β」應視為意指a、Β或Α及Β。 過渡術語「包含」包括過渡術語「基本上由…組成」及 「由…組成」且可與「包含」互換。 儘管已參照各種例示性實施例闡述了本發明,但熟習此 項技術者應瞭解,可對該等實施例作各種改變且可用其等 效物替代其要素而不背離本發明之範疇◦另外,為適應具 體情況或材料可對本發明之教示實施多項改良且不背離本 發明之貫質範疇。因此,本文並非意欲將本發明限於所揭 示的作為實施本發明最佳設想模式之特定實施例,而係意 163003.doc -16· 201247308 欲使本發明包括所有屬於隨附申請專利範圍範疇内之實施 例。 【圖式簡單說明】 圖1繪示用於捕獲煙道氣流中之二氧化碳之例示性系 統;且 圖2示意性繪示可用於圖1之系統中之例示性多級解吸系 統。 【主要元件符號說明】 100 系統 101 富二氧化碳煙道氣流 102 第一熱交換器 103 富二氧化碳煙道氣流 105 富二氧化碳煙道氣流 107 貧二氧化碳煙道氣流 110 煙道氣流發射器 200 第一主動冷卻迴路 202 熱交換器 204 壓縮器 206 熱交換器 208 節流閥 210 製冷劑 300 吸收-解吸迴路 301 富二氧化碳溶劑流 302 吸收器/吸收器塔201247308 VI. Description of the Invention: [Technical Field of the Invention] The present disclosure relates to a system and method for the absorption of carbon dioxide in a flue gas stream. In particular, the present disclosure relates to methods and systems for physically absorbing carbon dioxide (co2) in a process gas stream using a solvent. This reference claims priority to U.S. Provisional Application Serial No. 61/451,278, filed on March 10, 2011, the entire disclosure of which is incorporated herein by reference. [Prior Art] Heat generation when burning fuel (for example, coal, oil, peat, waste, biofuel, natural gas, or the like) in a combustion apparatus for generating electric power or generating materials such as cement, steel, glass, or the like The flow of flue gas (sometimes referred to as process gas). In other components, the hot flue gas contains carbon dioxide (C〇2). It has been widely recognized that the release of carbon dioxide into the atmosphere has a negative environmental impact and has led to the development of methods suitable for the use of liquid solvents to absorb carbon dioxide from gases to remove carbon dioxide from hot flue gases. Although it is believed that these methods are effective, there is still a need in the industry to reduce the power used to operate the system (so-called "parasitic power") and to reduce the cost and environmental impact of solvents due to solvent losses. < SUMMARY OF THE INVENTION Disclosed herein is a system comprising: a first heat exchanger; the first teach exchanger operable to reduce a temperature of the carbon dioxide rich flue gas stream to an approximate c to about a pin; an absorber; the absorption The apparatus is located below the first heat exchanger 163003.doc 201247308; wherein the absorber facilitates contact of the flue gas stream with the solvent to form a carbon dioxide rich solvent stream; the solvent is operable to oppose other gases present in the flue gas stream Selectively absorbing carbon dioxide; and a valve; the valve is located downstream of the absorber, the valve being operable to reduce the pressure on the carbon dioxide rich solvent stream to produce a carbon dioxide and carbon dioxide lean solvent stream. Disclosed herein is a method of capturing carbon dioxide in a flue gas stream, the method comprising receiving a carbon dioxide rich flue gas stream from a launcher; the carbon dioxide rich flue gas stream is at a pressure and temperature of the emitter; a given molar concentration of carbon dioxide, the carbon dioxide rich flue gas stream is cooled to a pressure greater than or equal to about 101.325 kPa and a temperature from about 〇t to about the melting point of carbon monoxide; the frozen carbon dioxide rich flue gas stream and liquid lean Contact with a carbon dioxide solvent stream; the liquid carbon dioxide solvent stream is more soluble in carbon dioxide than other gases present in the carbon dioxide rich flue gas stream; the carbon dioxide is absorbed by the liquid solvent to provide a carbon dioxide rich solvent stream and a carbon dioxide lean flue gas stream; The pressure of the carbon dioxide solvent stream provides a liquid carbon dioxide depleted solvent stream and carbon dioxide gas. [Embodiment] Disclosed herein are systems and methods for treating a solvent stream containing carbon dioxide. The carbon dioxide system extracts a flue gas stream generated from a power plant. The system advantageously includes an absorber column in fluid communication with the flash tank, and the valve or turbine. In the absorber column (hereinafter "absorber"), the carbon dioxide in the carbon dioxide rich flue gas stream is selectively absorbed into the solvent in the absorber, and in the flash tank, the absorbed carbon dioxide is released from the solvent and subsequently discharged to the solvent. In the pipeline, carbon dioxide is then isolated or used in other processes. 163003.doc 201247308 In a "embodiment' method of capturing carbon dioxide in flue gas inclusion? The given Moire in the flue gas stream, the material of which - a pressure of about 1. 325 kPa and about 〇. . Cool down to about the point of CO2 drop; Dongfu Carbon Dioxide Flue Gas (RFG) flow. The carbon dioxide rich flue gas stream from the emitter has a pressure greater than or equal to about atmospheric pressure: and a temperature from about ah to about _. In a single implementation, the pressure of the carbon dioxide flue gas stream through the cold can be as high as about 丨〇〇〇 kpa. The method further comprises contacting the cold beaded carbon dioxide rich flue gas stream with a lean carbon dioxide solvent which is more soluble in carbon dioxide (in the flue gas stream) than nitrogen and oxygen at the carbon dioxide rich flue gas stream temperature. Contact between the carbon dioxide rich flue gas stream and the solvent results in the extraction of carbon dioxide from the carbon dioxide rich flue gas stream to produce a carbon dioxide lean flue gas stream and a carbon dioxide rich solvent stream. By reducing the pressure of the carbon dioxide rich solvent stream, carbon dioxide desorbs and produces a lean carbon dioxide solvent stream. Separating desorbed carbon dioxide alone This system has a number of advantages due to the solvent selectively absorbing carbon dioxide from the flue gas without interfering with other flue gas components such as nitrogen oxides, soxes and the like. effect. Other flue gas components such as helium and S〇x may be removed from upstream of the system if desired. This means that the carbon dioxide stream obtained after separation from the solvent can be advantageously used for other chemical purposes (except for isolation) if desired. Figure 1 illustrates a system 100 for removing carbon dioxide from a carbon dioxide rich flue gas stream. The system includes a first heat exchange 163003.doc -6 · 201247308 102 in fluid communication with the first active cooling circuit 200, the absorption-desorption circuit 300, and the second active cooling circuit 4A. The absorption-desorption circuit comprises an absorber 3〇2, a valve 304, a flash tank 306, a heat exchanger 3 10 and an intercooling compressor 3 12, a pump 3 14 and a compressor 308. The first heat exchanger 102 is located downstream of the flue gas emitter 110 that generates a flue gas stream from which carbon dioxide is to be removed. The flue gas stream can pass through other means such as a scrubber (not shown) wherein other contaminants such as oxygen, nitrogen and particulate matter can be removed prior to entering the first heat exchanger 1〇2. The first heat exchanger 102 is located upstream of the first active cooling circuit 200, the absorption-desorption circuit 300, and the second active cooling circuit 4A. The first heat exchanger I 02 may comprise any type of heat exchanger or heat exchanger of any order and is used to cool the flue gas stream emanating from the flue gas streamer 11 to a temperature near the melting point of carbon dioxide. Referring now to the exemplary embodiment illustrated in FIG. 1, the convection of the cooled lean carbon monoxide flue gas stream 1 〇7 emitted from the absorber 3〇2 in the first heat exchanger 1〇2 is cooled from the flue. Airflow emitter II emits a carbon dioxide flue gas stream of 1 〇1. The carbon dioxide rich flue gas stream 101 typically has a total weight of from about 3 to about 3 Torr/c»(mol%) of carbon dioxide based on the total carbon dioxide flue gas stream of 1 〇1. Carbon dioxide-lean flue gas stream} 〇7-pass often contains carbon dioxide in a total weight of about 10 m〇1°/〇 of the carbon dioxide-depleted flue gas stream 107. In one embodiment, the first heat exchanger 102 reduces the temperature of the flue gas stream from a temperature of from about 4 °C to about 100 °C to a temperature of from about -60 °C to about -100 °C. In one embodiment, the first heat exchanger 102 reduces the temperature of the flue gas stream to a temperature that is slightly the same as the melting temperature of carbon dioxide. In an exemplary embodiment, it is desirable to reduce the temperature of the flue gas stream to a temperature of -6 generations in an exemplary embodiment, for a helium gas in the flue gas stream 163003.doc 201247308 In terms of carbon monoxide concentration, it is desirable that the temperature of the carbon dioxide-rich flue gas after being emitted from the first heat exchanger 1〇2 is about 1 〇〇〇C to _6 〇. Hey. The first heat exchanger 102 may not be a single unit, but instead may optionally include a collection of elements for the purpose of cooling the flue gas stream to a temperature above the melting point of carbon dioxide. For example, the first heat exchanger i 〇 2 may comprise one or more heat exchangers; a direct contact cooling (DCC) column comprising the following capabilities: (1) using a pH control system to remove carbon dioxide rich flue gas (rfg) streams SOx 'and (ii) use sub-cooling with brine solution; active cooling circuits, auxiliary systems such as fluid pumps, fans, and the like; and the ability to dry carbon dioxide-rich flue gas by removing water in DCCs and heat exchangers. As noted above, the first heat exchanger 102 can be one of a variety of heat exchangers. Examples of suitable heat exchangers are shell and tube heat exchangers, plate heat exchangers, regenerative heat exchangers, insulated wheel heat exchangers, plate fin heat exchangers, pillow plate heat exchangers, dynamic scraping surfaces Heat exchanger or phase change heat exchanger. If necessary, one or more of the heat exchangers such as ▲ can be used. The exemplary first heat exchanger 102 is a plate fin heat exchanger. The carbon dioxide rich flue gas stream 103 is discharged into the first active cooling circuit 200 after being cooled in the first heat exchanger 102. The first active cooling circuit 200 is optional. The first active cooling circuit 200 is only used to further cool the carbon dioxide rich flue gas stream 103 when it does not reach the desired low temperature in the first heat exchanger 102. In one embodiment, the mass flow rate in the carbon dioxide lean flue gas stream 107 is significantly less than the mass flow rate of the carbon dioxide rich flue gas stream 101 and thus the temperature of the flue rich gas stream 103 cannot be lowered to -60 ° C to -i〇〇t When the expected value is used, 'the first active cooling circuit 2' is used. As a single cooling bed 163003.doc 201247308 The illustration of the active cooling system 200 of the circuit is symbolic and can be achieved in practice using a standard low temperature multi-stage cooling cascade. For example, the first active cooling circuit 200 can include a heat exchanger 202 for exchanging heat from the carbon dioxide rich flue gas stream to the refrigerant 210 for circulating the refrigerant 21 in the first active cooling circuit 200. A compressor 204, a heat exchanger 206 for removing heat from the refrigerant 2 1 , and a throttle valve 208. An exemplary refrigerant 21 that can be used in the first active cooling circuit 200 is a non-halogenated hydrocarbon (such as methane, propane, propylene 'isobutane, or the like), ammonia, sulfur dioxide, or the like, or includes the above-described refrigerant. Combination of at least one of the compounds β Although a fluorocarbon can also be used as a refrigerant, it is desirable to use an environmental-neutral refrigerant in the active cooling circuit and the enthalpy, respectively. The carbon dioxide rich flue gas stream 105 from the first active cooling circuit 2 is then discharged to the absorption-desorption loop 3〇〇. The absorption_desorption circuit 3A includes an absorber 302, a valve 304, a flash tank 306, an adiabatic compressor 308, a heat exchanger 3 10, and an intercooling compressor 312. Valve 304, flash tank 306, adiabatic compressor 308, heat exchanger 310, and intercooling compressor 312 are each continuously downstream of and in fluid communication with absorber 302. Referring now to the absorber 302 of Figure 1, the carbon dioxide rich flue gas stream 1〇5 enters from the bottom. The carbon dioxide rich flue gas stream 1〇5 flows upward from the bottom of the absorber and exits the absorber as a lean carbon dioxide flue gas stream 7 from the top. In the absorber 302, the carbon dioxide rich flue gas stream 1〇5 contacts a solvent which selectively absorbs carbon dioxide in the carbon dioxide rich flue gas stream 1 〇5. The solvent can be selectively adsorbed in preference to other contaminants in the flue gas stream (eg, nitrogen, oxygen, nitrogen oxides, sulfur oxides, particulate matter, and the like). 163003.doc 201247308 ::Channel: Stream 1〇5 Any solvent of carbon dioxide. It is expected that the solvent will have a low smudge point and a low vapor pressure at (d) (lower) temperatures. It is also desirable for the solvent to exhibit a minimum viscosity at an operating (zero) temperature. - A solvent based alcohol suitable for absorbing carbon dioxide in an absorber. The alcohol may be a mono-, poly-, aliphatic, alicyclic alcohol, or the like, or a combination comprising at least one of the foregoing alcohols. Examples of alcohols are sterols 'ethanol, propanol, : alcohol, pentanol, cetyl alcohol, ethane], 2·diol, propane triol, butane-1,2,3,4-tetraol, Ethylene burning 1'2'3,4,5-pentaol, hexane _, 3'4,5,6-hexanol, heptane ten from seven,? - heptaol, propan-2-enol 3,7-monomethyl osine 2,6-di-diol, propylene fast alcohol, cyclohexane _ 1,2,3,4,5,6-six A combination of an alcohol, (2-propyl)-5-methylcyclohexanol, or the like, or at least one of the foregoing alcohols. An exemplary alcoholic methanol, ethanol 'propanol, butanol, decyl alcohol, or a combination comprising at least one of the above exemplary alcohols. + As described above, 'rich: oxidized carbon flue gas stream 1 () 5 enters the absorber from the bottom: In the meantime, it contacts the solvent and leaves the absorber 302 at the top. , the granule as a carbon dioxide-lean solvent stream 3 (10) from the top into the absorption = 02 and as a carbon dioxide rich solvent stream 3 〇 1 leaving the absorber from the bottom to maintain the pressure in the absorber during the contact of the solvent with the carbon dioxide rich flue gas stream ^ Q 5 It is close to the atmosphere. During the contact of the solvent with the oxidizing-rich carbon flue gas stream 丨〇5 in the absorber 3〇2, the carbon dioxide and the heat in the flue gas stream are absorbed by the solvent. The volume of the carbon dioxide in the flue gas stream 1〇5 is absorbed by the physical absorption. The absorption heat is taken mainly by the solvent which is heated during the absorption process. The carbon dioxide-lean flue gas stream 107 (which leaves the absorber 302 at the top) is used for pre-cooling the above-mentioned first heat exchanger 1〇2 into the rich Carbon dioxide flue gas stream 101. Carbon dioxide rich solvent stream 3〇1 is collected at the bottom of absorber column 302 and passed to the desorption portion of absorption-desorption loop 300. The desorption portion of absorption-desorption loop 300 contains valve 304, flash Steamer 306, pump 314 and adiabatic compressor 308 » Valve 304 effectively reduces the pressure of the carbon dioxide rich solvent stream 3〇1 to the following level: carbon dioxide extracted from the carbon dioxide rich flue gas stream 1 〇5 can be desorbed from the solvent and The flash tank 3 06 is restored to the gas phase. The solvent enters the absorber 312 from the top and exits the absorber 032 from the bottom as a carbon dioxide rich solvent stream 3 〇 1. It can be replaced by a turbine 3〇4 to implement the same pressure reduction, which allows the absorbed carbon dioxide to be desorbed from the solvent. When it is desired to improve the cooling effect of expansion and generate electricity, a turbine can be used. The reduced pressure is carbon dioxide in the carbon dioxide rich flue gas stream 1〇5. The initial partial pressure is about 1/5 to about 丨/500 (for 9〇% carbon dioxide capture rate). As mentioned above, the pressure in the absorber 3〇2 is about atmospheric pressure. Therefore, the carbon dioxide solvent flow after the valve The pressure system is from about 1/5 atmospheres to about 1/5 atmospheres. In one example, for the above molar concentration of 14% carbon monoxide in the flue gas stream ι〇ι and 1 bar of excluded gas pressure, The pressure after valve 304 will be about 1 Torr. This pressure can also be lower or higher depending on the operating conditions. In the flash tank 306, the carbon dioxide-depleted solvent stream 3〇3 and the carbon dioxide released from the solvent are collected. The poor solvent pump 3U is extracted from the flash tank to form a liquid-shaped 163003.doc 201247308 lean solvent and is discharged back to the top of the absorber 302. The lean solvent pump 3 14 increases the pressure of the solvent to the absorber 3〇2 Top The desired level of the department: the pressure at the top of the absorber 302 is about! Atmospheric pressure. In an exemplary embodiment, the pressure of the solvent at the top of the absorber 3〇2 is about atmospheric pressure. The carbon dioxide gas desorbed from the solvent is extracted from the flash tank 306 by the adiabatic compressor 308. The adiabatic compressor 308 increases the pressure of the carbon gas from about 〇〇ι〇bar to a level in which the temperature of the gas is higher than that of the available cooling water. Depending on the specific conditions (flash tank 4 pressure, solvent rich temperature), the adiabatic carbon dioxide compressor 308 can have a discharge pressure of up to about 1 bar, specifically from about 0.001 to about 1 bar, to compress carbon dioxide to about The work required for the line pressure of 1 bar is minimized, and the carbon dioxide gas leaving the adiabatic carbon dioxide compressor 3〇8 can be cooled using the cooling water in the heat exchanger 3 1〇. Downstream of the heat exchanger 3 10, the pressure of the carbon dioxide gas is raised in a number of steps in the intercooling compressor 3丨2 to a desired line pressure, wherein the carbon dioxide gas can be delivered for use or isolation. In one embodiment, this compression of carbon dioxide gas can be similar to those used in post-combustion carbon dioxide capture processes based on chemical absorption and oxy-fuel processes. In one embodiment, the desorption portion of the 'absorption_desorption loop 3' may comprise a plurality of valves, a flash tank' and an adiabatic carbon dioxide compressor, the pressure in each subsequent flash tank being less than the pressure of the previous flash tank. In other words, the pressure of the flash tank located downstream of the previous flash tank is lower than that of the previous flash tank. Referring now to Figure 2, the multi-stage desorption system 5A includes a first valve 502, a second valve 5〇6, a second flash tank 5〇8, and a third 163003 in fluid communication with the first flash tank 5〇4. Doc 12 201247308 Valve 5 1 0, third flash tank 5 12, first adiabatic compressor 5 14, second adiabatic compressor 516 and third adiabatic compressor 518. Adiabatic compressors 514, 516 and 516 are in mechanical communication with the engine. The first stage desorption system comprises a first valve 502, a first flash tank 504 and a first adiabatic compressor 514. The first stage desorption system comprises a second valve 506, a second flash tank 508 and a second adiabatic compression. The second stage desorption system of unit 516 is in fluid communication with a third desorption system including a third valve 51A, a third flash tank 512, and a third adiabatic compressor 518. The pressure P1 of the carbon dioxide in the first stage desorption system after the first valve 5〇2 is higher than the pressure p2 of the carbon dioxide in the second stage desorption system after the second valve 506, which is greater than the third after the third valve 510 The pressure P3 of the carbon dioxide in the stage desorption system. The carbon monoxide released by the multistage desorption system 5 is pressurized in an intercooling compressor 3丨2 (as detailed above). Cooling water in the heat exchanger 3 1〇 upstream of the intermediate cooling compressor 3 12 can also be used to cool the carbon dioxide. This multi-stage arrangement allows the system to collect as much carbon dioxide as possible at a pressure greater than the minimum pressure of about 〇 〇丨〇. This arrangement also reduces the size and cost of power consumption and adiabatic carbon dioxide compressors. Although Figure 2 shows that two pressure levels can be arranged, the number of pressure levels can be expected to be greater than 3 or less than 3 but greater than or equal to one. As can be seen with reference to Figure 2, the second active cooling system 400 can also be used on lean solvents as appropriate. The second active cooling system 4 is optional and functions in a manner very similar to the first active cooling system 200. For example, the first active cold section circuit 4A may include a second heat exchanger 4G2 for exchanging heat from the lean solvent stream U + #Μΐα for the refrigerant 41 to be entangled in the 163000.doc 201247308 The compressor 404 circulating in the active cooling circuit 400, the heat exchanger 406 for removing heat from the refrigerant 41, and the throttle valve 4〇8. The second active circuit 400 can be used to cool the carbon dioxide lean solvent stream 3〇9 to the temperature at which the carbon dioxide in the carbon dioxide rich flue gas stream 105 will be most efficiently extracted. The method disclosed is advantageous in a variety of ways. It is estimated that the power consumption of the current method of the system is lower than other carbon dioxide capture systems that use a solvent that selectively extracts carbon dioxide from the flue gas stream. This is because the carbon dioxide rich flue gas stream 105 is at about atmospheric pressure during the absorption phase (within the absorber 3〇2) without the need for flue gas compression, and because the solvent is passed through the valve 3〇4 and the flash tank 306. In the case of expansion regeneration, the main power consuming components of the system are carbon dioxide compressors 308 and 312, and a high efficiency axial compressor is used as the carbon dioxide compressor 308, thereby generating low power consumption. The compressor can be based on the technology used in the gas turbine. In addition, due to the low operating temperature (for example, about 1 〇〇 to -6 in the absorber 3 〇 2 (TC rich carbon dioxide flue gas temperature), the solvent loss in the method of the system is expected to be extremely low. The system 100 can be installed in an existing power plant without the need for a long shutdown period due to the minimal changes to the existing carbon dioxide recovery system (eg, without the need to install a compressor to increase the pressure of the flue-rich gas stream). It should be understood that, although the terms "first," "second," and "third" may be used herein to describe various elements, components, regions, layers and/or sections, such elements, components, regions, and layers The terms and/or sections are not to be construed as limited to such terms. The terms are only used to distinguish one element, component, region, layer or section from each other. Therefore, the "first component" and "component" are discussed below. The singular elements, components, regions, layers or sections may be referred to as the second element, component, region, layer or section without departing from the teachings herein. The terminology used herein is for the purpose of describing particular embodiments. Purpose The singular forms "a" ("a", "an") and "the" are intended to include the plural. As used herein, the terms "comprises" and/or "comprising", or "includes" and/or "ineiuding" mean the features, regions, integers, steps, operations, The presence of components, and/or components, but does not exclude the presence or addition of one or more other features, regions, integers, steps, operations, components, components, and/or groups thereof. Or a relative term such as "bottom" and "upper" or "top" to describe the relationship of one element to another element, as illustrated in the figures. It should be understood that in addition to the orientation illustrated in the figures These relative terms are intended to encompass different orientations of the device. For example, if the device in one of the figures is reversed, the 7 pieces that are stated on the "lower" side of the other component will be determined. On the "upper" side of the other elements, the term "lower" can be used to refer to the specific orientation of the figure and encompass both the "up" and "up" orientations. Similarly, if one of the figures is In the case of a reversal of the device, it is stated that the "below" or "below" elements of other components will be "above" the other components. Therefore, the exemplary term below J or "below" may cover both upper and lower. Orientation. Unless otherwise specified, all terms used herein (including technical π and #学词) & have one of the technical fields of 35 learned inventions 163003.doc -!5· 201247308 It is understood that the same meaning is understood. It should be further understood that terms (such as those defined in commonly used dictionaries) should be interpreted as having meanings consistent with their meaning in the relevant art and the context of the present invention, and should not be idealized. Or to over-formal meaning to explain, unless explicitly stated in this article. BRIEF DESCRIPTION OF THE DRAWINGS Exemplary embodiments are described herein with reference to the schematic illustrations of the preferred embodiments. Accordingly, variations in the shapes of the illustrations are contemplated as a result, for example, of manufacturing techniques and/or tolerances. Therefore, the embodiments described herein are not to be considered as limited to the specific shapes of the regions as illustrated herein, but are intended to include the <RTIgt; For example, regions that are interpreted or illustrated as flattened may generally have rough and/or non-linear features. In addition, the acute angle of interpretation can be rounded. Therefore, the regions illustrated in the figures are illustrative, and are not intended to limit the precise shapes of the regions and are not intended to limit the scope of the invention. The terms and/or are used herein to mean both "and" and "or". For example, "Α and / or Β" shall be taken to mean a, Β or Α and Β. The transition term "including" includes the transition terms "consisting essentially of" and "consisting of" and may be interchanged with "including". Although the present invention has been described with reference to various exemplary embodiments, those skilled in the art will appreciate that various modifications may be made to the embodiments and the equivalents may be substituted for the elements without departing from the scope of the invention. A number of modifications can be made to the teachings of the present invention to adapt to the particular circumstances or materials without departing from the scope of the invention. Therefore, the present invention is not intended to be limited to the specific embodiments disclosed as the preferred embodiments of the present invention, but is intended to be included in the scope of the appended claims. Example. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 illustrates an exemplary system for capturing carbon dioxide in a flue gas stream; and Figure 2 schematically illustrates an exemplary multi-stage desorption system that can be used in the system of Figure 1. [Main component symbol description] 100 System 101 Carbon dioxide rich flue gas stream 102 First heat exchanger 103 Carbon dioxide rich flue gas stream 105 Carbon dioxide rich flue gas stream 107 Carbon dioxide lean flue gas stream 110 Flue gas stream emitter 200 First active cooling circuit 202 Heat exchanger 204 Compressor 206 Heat exchanger 208 Throttle valve 210 Refrigerant 300 Absorption-desorption circuit 301 Carbon dioxide-rich solvent stream 302 Absorber/absorber tower

163003.doc -17- S 201247308 303 貧二氧化碳溶劑流 304 閥 306 閃蒸罐 307 貧溶劑流 308 絕熱壓縮器 309 貧二氧化碳溶劑流 310 熱交換器 312 中間冷卻壓縮器 314 幫浦 400 第二主動冷卻迴路 402 第二熱交換器 404 壓縮器 406 熱交換器 408 節流閥 410 製冷劑 500 多級解吸系統 502 第一閥 504 第一閃蒸罐 506 第二閥 508 第二閃蒸罐 510 第三閥 512 第三閃蒸罐 514 第一絕熱壓縮器 516 第二絕熱壓縮器 518 第三絕熱壓縮器 163003.doc • 18 ·163003.doc -17- S 201247308 303 Carbon Dioxide Solvent Flow 304 Valve 306 Flash Tank 307 Lean Solution Stream 308 Adiabatic Compressor 309 Carbon Dioxide Solvent Stream 310 Heat Exchanger 312 Intermediate Cooling Compressor 314 Pump 400 Second Active Cooling Circuit 402 Second Heat Exchanger 404 Compressor 406 Heat Exchanger 408 Throttle Valve 410 Refrigerant 500 Multistage Desorption System 502 First Valve 504 First Flash Tank 506 Second Valve 508 Second Flash Tank 510 Third Valve 512 Third flash tank 514 first adiabatic compressor 516 second adiabatic compressor 518 third adiabatic compressor 163003.doc • 18 ·

Claims (1)

201247308 七、申請專利範圍: 1. 一種系統,其包含: 第-熱父換器;該第-熱交換器可操作以將富二氧化 碳煙道氣流之溫度降至約-l〇(TC至約.6〇<>c ; 吸收器;該吸收器係位於該第—熱交換器之下游;其 中該吸收器有利於該煙道氣流與溶劑間之接觸以形成富 二氧化碳溶劑流;該溶劑可操作以相對於存於該煙道氣 流中之其他氣體選擇性地吸收二氧化碳;及 ^該閥係位於該吸收器之下游;該閥可操作以降低 該富二氧化碳溶劑流上之壓力而產生二氧化碳及貧二氧 化碳溶劑流。 2_如請求項1之系統’其進一步包含閃蒸罐;該閃蒸罐可 操作以有利於分離該二氧化碳與該f二氧化碳溶劑流。 3. 如請求項2之系統,其中該貧二氧化碳溶劑流在與該二 氧化碳分離後再循環至該吸收器。 4. 如請求項2之系統’其中該二氧化碳在與該貧二氧化碳 溶劑流分離後排放至絕熱壓縮器及中間冷卻壓縮器。 5. 如請求項2之系、統,其中隔絕與該貧二氧化碳溶劑流分 離後之該二氧化碳。 6. 如。月求項i之系统,其進一步包含位於該第一熱交換器 之下游之第一主動冷卻系統;該第一主動冷卻系統包含 彼此流體連通之第二熱交換器及壓縮器,且其中該第一 主動冷卻系統可操作轉低該I氧化碳煙道氣流 度。 163003.doc 201247308 如請求項1之系統,其 ^ ^ 、 步匕5位於該第一熱交換器 之下游之第二主 乂俠器 彼此、7 Ρ系、、先,該第二主動冷卻系統包含 敬此流體連通之第- 3 主動A S么 一…交換器及壓縮器,且其中該第二 度。 降低°亥貧一氧化碳溶劑流之溫 8. 如請求項2之系統 罐及絕熱壓縮器, 化碳。 ’其進一步包含複數個節流閥、閃蒸 以分離該貧二氧化碳溶劑流與該二氧 9.如清求項1之系統,其中該溶劑係醇。 丙醇 1〇·如咕求項9之系統,其中該醇係乙醇、曱醇 醇、或包含上述醇中之至少一者之組合。 11. 一種捕獲煙道氣流中之二氧化碳之方法,該方法包含: 自發射器接收富二氧化碳煙道氣流;該富二氧化碳煙 道氣流係在該發射器之壓力及溫度下; 針對該富二氧化碳煙道氣流内之二氧化碳的給定莫耳 濃度’將該富二氧化碳煙道氣流冷凍至大於或等於約 101.325 kPa之壓力及約〇t至約二氧化碳之熔點之溫 度; 使该經冷凍之富二氧化碳煙道氣流與液體貧二氧化碳 溶劑流接觸;該液體貧二氧化碳溶劑流對二氧化碳之溶 解度咼於存於該富二氧化碳煙道氣流中之其他氣體; 用液體溶劑吸收二氧化碳以提供富二氧化碳溶劑流及 貧二氧化碳煙道氣流;及 降低該富二氧化破溶劑流之壓力以提供該液體貧二氧 163003.doc -2- 201247308 化碳溶劑流及二氧化碳氣體。 1 2.如請求項11之方法,其中將該富二氧化碳煙道氣流冷凍 至介於約-lOOt至-601之間之溫度。 13. 如請求項π之方法,其中該冷凍包含使用該貧二氧化碳 煙道氣流冷卻該富二氧化碳煙道氣體流。 14. 如請求項11之方法,其進一步包含絕熱壓縮該二氧化碳 氣體。 15. 如請求項14之方法’其中該絕熱壓縮係使用軸向壓縮器 實施。 16_如請求項11之方法’其中降低該富二氧化碳溶劑流之壓 力係使用閥及閃蒸罐實施。 17. 如請求項11之方法’其中降低該富二氧化碳溶劑流之壓 力係在一系列減壓級中實施。 18. 如請求項丨7之方法,其中每一減壓級包括閥及閃蒸罐或 渦輪機及閃蒸罐。 19. 如請求項U之方法,其中藉由主動冷卻迴路冷卻該富二 氧化奴煙道氣流及該貧二氧化碳溶劑流中之至少一者。 20·如請求項"之方法,其中該富二氧化碳煙道氣流係由火 力發電廠、生物質發電薇(bio-fuel fired P〇Wer叫叫或 工業過程中之一者生成。 163003.doc201247308 VII. Patent application scope: 1. A system comprising: a first-hot parent converter; the first heat exchanger is operable to reduce the temperature of the carbon dioxide-rich flue gas stream to about -1 〇 (TC to about. 6〇<>c; an absorber; the absorber is located downstream of the first heat exchanger; wherein the absorber facilitates contact between the flue gas stream and the solvent to form a carbon dioxide rich solvent stream; Operating to selectively absorb carbon dioxide relative to other gases present in the flue gas stream; and the valve is located downstream of the absorber; the valve is operable to reduce pressure on the carbon dioxide rich solvent stream to produce carbon dioxide and a carbon dioxide-lean solvent stream. The system of claim 1 further comprising a flash tank; the flash tank being operable to facilitate separation of the carbon dioxide from the f-carbon dioxide solvent stream. 3. The system of claim 2, wherein The carbon dioxide-lean solvent stream is recycled to the absorber after separation from the carbon dioxide. 4. The system of claim 2, wherein the carbon dioxide is separated from the carbon dioxide-depleted solvent stream To the adiabatic compressor and the intercooling compressor. 5. The system of claim 2, wherein the carbon dioxide is separated from the carbon dioxide-depleted solvent stream. 6. The system of the monthly solution i further comprises a first active cooling system downstream of the first heat exchanger; the first active cooling system includes a second heat exchanger and a compressor in fluid communication with each other, and wherein the first active cooling system is operable to lower the I oxidation The carbon flue gas flow degree is 163003.doc 201247308. The system of claim 1, wherein the second main singer located downstream of the first heat exchanger is the other, the 乂, the first, the The second active cooling system comprises a third-active AC exchanger and a compressor, and wherein the second degree is reduced. The temperature of the carbon monoxide solvent stream is reduced by 8. The system tank of claim 2 And an adiabatic compressor, carbonizing. 'It further comprises a plurality of throttle valves, flashing to separate the carbon dioxide-depleted solvent stream from the dioxane. 9. The system of claim 1, wherein the solvent is an alcohol. The system of claim 9, wherein the alcohol is ethanol, a sterol alcohol, or a combination comprising at least one of the foregoing alcohols. 11. A method of capturing carbon dioxide in a flue gas stream, the method comprising : receiving a carbon dioxide rich flue gas stream from the emitter; the carbon dioxide rich flue gas stream is at a pressure and temperature of the emitter; a given molar concentration of carbon dioxide in the carbon dioxide rich flue gas stream 'the carbon dioxide rich The stream is chilled to a pressure greater than or equal to about 101.325 kPa and a temperature from about 〇t to about the melting point of carbon dioxide; contacting the frozen carbon dioxide rich flue gas stream with a liquid carbon dioxide lean solvent stream; the liquid lean carbon dioxide solvent stream to carbon dioxide The solubility is greater than the other gases present in the carbon dioxide rich flue gas stream; the carbon dioxide is absorbed by the liquid solvent to provide a carbon dioxide rich solvent stream and the carbon dioxide lean flue gas stream; and the pressure of the rich dioxide rich solvent stream is reduced to provide the liquid Lean dioxide 163003.doc -2- 201247308 Carbon solvent stream and carbon dioxide gas. 1 2. The method of claim 11, wherein the carbon dioxide rich flue gas stream is frozen to a temperature between about -100 and -601. 13. The method of claim π, wherein the freezing comprises cooling the carbon dioxide rich flue gas stream using the carbon dioxide lean flue gas stream. 14. The method of claim 11, further comprising adiabatically compressing the carbon dioxide gas. 15. The method of claim 14 wherein the adiabatic compression system is implemented using an axial compressor. 16_ The method of claim 11 wherein the pressure to reduce the flow of the carbon dioxide rich solvent is carried out using a valve and a flash tank. 17. The method of claim 11 wherein the reducing the pressure of the carbon dioxide rich solvent stream is carried out in a series of reduced pressure stages. 18. The method of claim 7, wherein each of the pressure reduction stages comprises a valve and a flash tank or a turbine and a flash tank. 19. The method of claim U, wherein the at least one of the sulphur dioxide-rich flue gas stream and the carbon dioxide-lean solvent stream are cooled by an active cooling circuit. 20. The method of claim 1, wherein the carbon dioxide rich flue gas stream is generated by a thermal power plant, biomass power generation (bio-fuel fired P〇Wer, or one of industrial processes. 163003.doc
TW101108211A 2011-03-10 2012-03-09 System and process for the physical absorption of carbon dioxide from a flue gas stream TW201247308A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161451278P 2011-03-10 2011-03-10
US13/414,132 US20120227440A1 (en) 2011-03-10 2012-03-07 System And Process For The Physical Absorption of Carbon Dioxide From a Flue Gas Stream

Publications (1)

Publication Number Publication Date
TW201247308A true TW201247308A (en) 2012-12-01

Family

ID=46794271

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101108211A TW201247308A (en) 2011-03-10 2012-03-09 System and process for the physical absorption of carbon dioxide from a flue gas stream

Country Status (5)

Country Link
US (1) US20120227440A1 (en)
EP (1) EP2683462A2 (en)
CN (1) CN103415332A (en)
TW (1) TW201247308A (en)
WO (1) WO2012120370A2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9267415B2 (en) 2010-12-29 2016-02-23 Delphi Technologies, Inc. Heat exchanger equipped with thermal electric device for engine exhaust carbon dioxide collection system
US8696804B2 (en) 2010-12-29 2014-04-15 Delphi Technologies, Inc. Carbon dioxide absorbent fluid for a carbon dioxide sequestering system on a vehicle
IN2013MU03192A (en) * 2013-10-09 2015-07-03 Reliance Ind Ltd
US9901846B2 (en) * 2014-11-21 2018-02-27 Gas Technology Institute Energy efficient solvent regeneration process for carbon dioxide capture
US10871085B2 (en) 2018-03-16 2020-12-22 Uop Llc Energy-recovery turbines for gas streams
US10794225B2 (en) 2018-03-16 2020-10-06 Uop Llc Turbine with supersonic separation
US10811884B2 (en) 2018-03-16 2020-10-20 Uop Llc Consolidation and use of power recovered from a turbine in a process unit
US11131218B2 (en) 2018-03-16 2021-09-28 Uop Llc Processes for adjusting at least one process condition of a chemical processing unit with a turbine
US10829698B2 (en) * 2018-03-16 2020-11-10 Uop Llc Power recovery from quench and dilution vapor streams
US10753235B2 (en) 2018-03-16 2020-08-25 Uop Llc Use of recovered power in a process
US10690010B2 (en) 2018-03-16 2020-06-23 Uop Llc Steam reboiler with turbine
US10508568B2 (en) 2018-03-16 2019-12-17 Uop Llc Process improvement through the addition of power recovery turbine equipment in existing processes
US10745631B2 (en) 2018-03-16 2020-08-18 Uop Llc Hydroprocessing unit with power recovery turbines
US11507031B2 (en) 2018-03-16 2022-11-22 Uop Llc Recovered electric power measuring system and method for collecting data from a recovered electric power measuring system
US11194301B2 (en) 2018-03-16 2021-12-07 Uop Llc System for power recovery from quench and dilution vapor streams
US10920624B2 (en) 2018-06-27 2021-02-16 Uop Llc Energy-recovery turbines for gas streams
CN113813744B (en) * 2021-09-26 2022-10-25 西安交通大学 Promote CO in coal fired boiler flue gas 2 System and method for capture economics

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2863527A (en) * 1949-09-15 1958-12-09 Metallgesellschaft Ag Process for the purification of gases
DE2312754C3 (en) * 1973-03-14 1980-06-26 Linde Ag, 6200 Wiesbaden Method and device for the recovery of valuable components during physical gas scrubbing
FR2863910B1 (en) * 2003-12-23 2006-01-27 Inst Francais Du Petrole METHOD OF CAPTURING CARBON DIOXIDE CONTAINED IN FUMES
WO2007019632A1 (en) * 2005-08-16 2007-02-22 Co2Crc Technologies Pty Ltd Plant and process for removing carbon dioxide from gas streams
CN102065976A (en) * 2008-06-26 2011-05-18 环球油品公司 Carbon dioxide absorber partial pumparound for cooling semi-lean physical solvent
DE102008057937A1 (en) * 2008-11-19 2010-05-20 Linde Aktiengesellschaft Process and apparatus for detergent regeneration in physical gas washes

Also Published As

Publication number Publication date
CN103415332A (en) 2013-11-27
EP2683462A2 (en) 2014-01-15
WO2012120370A2 (en) 2012-09-13
WO2012120370A3 (en) 2012-12-20
US20120227440A1 (en) 2012-09-13

Similar Documents

Publication Publication Date Title
TW201247308A (en) System and process for the physical absorption of carbon dioxide from a flue gas stream
Song et al. Energy analysis of the cryogenic CO2 capture process based on Stirling coolers
JP7145530B2 (en) VOCs recovery system by cryogenic condensation using air as a refrigerant
Song et al. Design of a cryogenic CO2 capture system based on Stirling coolers
TWI554325B (en) Low emission power generation systems and methods
RU2456060C2 (en) Absorbent recovery by compressed top flow bled for heating purposes
JP5692761B2 (en) Composition and method of high pressure acid gas removal in the production of ultra low sulfur gas
RU2626850C2 (en) Dual-flow system and method of production of carbon dioxide
US9844748B2 (en) Method to condense and recover carbon dioxide (CO2) from CO2 containing gas streams
WO2007012143A1 (en) Recovery of carbon dioxide from flue gases
US10005032B2 (en) Carbon dioxide recovery apparatus and carbon dioxide recovery method
TW201215820A (en) Stoichiometric combustion of enriched air with exhaust gas recirculation
AU2016203120A1 (en) Integration of pressure swing adsorption with a power plant for CO2 capture/utilization and N2 production
TW201248099A (en) Cryogenic CO2 separation using a refrigeration system
WO2012104202A1 (en) Combined cycle power plant with co2 capture plant
JP2012106180A (en) Carbon dioxide recovery apparatus and carbon dioxide recovery method
US9447996B2 (en) Carbon dioxide removal system using absorption refrigeration
RU2606725C2 (en) Methods and systems for condensation of co2
JP2013029304A (en) System and method for carbon dioxide removal
JP2014004525A (en) Carbon dioxide recovery apparatus and method for operating the same
Bonalumi et al. Kinetic study of a layout for the carbon capture with aqueous ammonia without salt precipitation
US20210293165A1 (en) Processes For Removing Carbon Dioxide From Exhaust Gas Using Scraped and Non-Scraped Heat Exchangers
KR20120013588A (en) Co2 collecting apparatus
Alptekin et al. Direct Air Capture (DAC) of CO 2 using a Rapid Cycling Sorbent System
AU2006274437A1 (en) Recovery of carbon dioxide from flue gases