TW201246263A - Silaborane implantation processes - Google Patents

Silaborane implantation processes Download PDF

Info

Publication number
TW201246263A
TW201246263A TW100115332A TW100115332A TW201246263A TW 201246263 A TW201246263 A TW 201246263A TW 100115332 A TW100115332 A TW 100115332A TW 100115332 A TW100115332 A TW 100115332A TW 201246263 A TW201246263 A TW 201246263A
Authority
TW
Taiwan
Prior art keywords
source
ion
ionization
plasma
molecule
Prior art date
Application number
TW100115332A
Other languages
Chinese (zh)
Inventor
William Davis Lee
Original Assignee
Axcelis Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Axcelis Tech Inc filed Critical Axcelis Tech Inc
Priority to TW100115332A priority Critical patent/TW201246263A/en
Publication of TW201246263A publication Critical patent/TW201246263A/en

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

Methods for implanting an silaborane molecule or a selected ionized lower mass byproduct into a workpiece generally includes vaporizing and ionizing silaborane molecule in an ion source to create a plasma and produce silaborane molecules and its ionized lower mass byproducts. The ionized silaborane molecules and lower mass byproducts within the plasma are then extracted to form an ion beam. The ion beam is mass analyzed with a mass analyzer magnet to permit selected ionized silaborane molecules or selected ionized lower mass byproducts to pass therethrough and implant into a workpiece.

Description

201246263 六、發明說明: 【發明所屬之技術領域】 本揭示般關於半導體離子佈植,特別關於選擇性佈 植矽删烷分子到半導體工件裡的方法。 儿刖仪何 可乂使用離子佈植器而藉由離子束轟炸矽晶圓來處理 晶圓。此種束處理的一種用途是以控制濃度的雜質和/或 摻雜物來選擇性佈植晶圓以用於製造積體電路。 典型的離子佈植器包括離子來源、離子抽取裝置、質 量解析裝置 '束傳輸裝置、晶圓處理裝置。離子來源產生 所要的原子態或分子態物種的離子。這些離子藉由抽取系 統而從來源抽取中决 q “七 #出來,δ亥抽取系統典型是-組電極,其對 來自來源的離子供以能量 、 -w搜“ 里和導向其流動。想要的離子則在 貝里解析裝置令而從離子來源的副產物 解析裝置典型為磁偶極以進行抽取離子n 傳輸裝置典型為包含光學長列之聚焦裝置的ΐ::。: 將離子束傳輸到晶圓處理裝置,同時维持^其 學性質。最後,半導體晶 :所要的光 態或分子態物種或其離子性碎塊圓處理裝置中佈植以原子 離子能量是用於控制半導體元件的接面深Ρ 子束之離子的能量決定了佈植離子 X冓成離 半導體元件之逆行井〜互 又例如用於形成 特(Mev)的佈植% 〇月"*里k私需要高達幾百萬電子.伏 呷植而成接面可能 若要低於1千電子伏特 4 201246263 (keV)的此里,並且超淺接面可能需要的能量低到乃〇電子 伏特(e V)典型而s ’南電流佈植器(—般大於1 〇毫安培(爪人) 的離子束電流)係用於高劑量佈植,而中等電流佈植器(一般 月b夠回達大約1毫安培的束電流)則用於較低劑量應用。 持續朝向愈來愈小之半導體元件的趨勢乃需要具有離 子㈣的佈植器繼續在較低的能量下傳遞更高的束電流。 M &提供必需的劑量程度’而較低的能量程度則 ,許淺佈植°舉例而言’互補式金屬氧化物半導體(CM0S) 、纟原極及極接面需要此種高電流、低能量的應用。 傳統的離子來源利用可離子化的摻雜物氣體’其係直 接得自壓縮氣體來源或者間接得自氣化的固體。典型的來 源-素是爛⑻、磷(P)、鎵((Ja)、銦(in)、錄_、珅㈣。 大部分的這些來源元素乃一般同時用於固態和氣態形式, 但*朋例外(其幾平鼻鬥@ μ丄、 提供成氣態形式)。於特殊的應用,需 要低能量和超低能旦rnn从 '里勺朋佈植0然而,「空間電荷」(space charge)效應限制了 ^ 低此罝下傳輸至低數值的原子態 朋電、二因此減少了離子佈植器的生產力。 目則用於避免傳輸漏失和低能 的「空間電荷」效康的太、、h 十末傅輸w成所3月 , 心 ,乃利用具有多於一個硼原子的分 子。同時傳輸多於一個硼原 ^ 的刀 減少每個删原子的佈二 ¥ f何’則基本上 時辦,h ’植月b里達到傳輪原子數目分之一,同 = : = :到每個分子的原—此可: 團義而達Γ有幾乎任何數量之”子㈣分子或侧 201246263 於另一種方法,(多個)硼原子可以傳輸成為帶有不同元 素的分子。再次地,此減少了用於每個硼原子的有效佈植 能量達到正比於分子總質量的倍數。理想而言’添加的元 素將單純增加質量至爛基分+,而不影響石夕基板之晶體結 構的佈植結果。舉例而言,十㈣(BigH")可以是用於佈植 石朋的優異進給材料,因為每個十㈣分子(BiqHi4)當氣化和 離子化時可以提供包括十個㈣子的分子態離子。此種來 源特別適。用於生成淺接面之高劑量/低能量的佈植過 程,因A分子態十石朋院離子束每單位電流可以佈植達到的 石朋劑量是單原子態㈣子束的十倍。此外,並不認為氫分 子會有害地影響元件的佈植。然@,.十蝴烷和其他硼氫化 物在更高溫度下可能是不穩定的,例如在發現於標準離子 來源下的溫度。如此’ A 了使用這些分子必須實施離子 化和產生束的其他方法。 又一種傳遞多個石朋原子的方法則涉及使用具有不同材 料的分子’其建構成幫助穩定硼烷結構。一種範例是使用 碳硼烧’特別是鄰碳㈣(C2BiqHi2),因為該分子在標準離 子來源所發現的條件下是更穩健且穩定的。碳石朋烧於離子 化、抽取、傳輸至晶圓期間也保持穩定的。因此,以此種 分子佈植也會得到將修改石夕基板晶體結構的碳劑量。對於 佈植之後的晶體結構保持相同是很重要的應用而言,這可 能是不想要的。 因此想要提供可以在低或超低能量下佈植的穩定删分 子,而於佈植期間不把任何雜質帶到晶圓。 201246263 【發明内容】 …在此揭示的是佈植矽硼烷分子到工件裡的方法。在一 實施例中佈植;^烧分子的方法包括:於離子來源中氣 化和離子化石夕侧炫公^ ; 生成電衆以及產生離子化的石夕 硼烷分子和離子化的較低質量副產物;經由來源孔徑而抽 取電漿裡之離子化的矽硼烷團簇分子和離子化的較低質量 副產物以形成離子束^質量解析器磁鐵來質量解析離子 束,以允許離子化的石夕蝴烧分子或所選之離子化質量的較 低質量副產物由此通過;傳輸漂流的離子束和/或選擇性 地施加額外的加速或減速電位以設定最終能量;以及佈植 離子化的石夕删院分子或所選之離子化質量的較低質量副產 物到工件裡。 在另一實施例中,佈植硼原子到工件裡的方法包括: 氣化秒删烧分子;離子化破蝴烧分子,以及從離子來源抽 取離子以形成離子束;傳輸漂流的離子束和/或選擇性地 施加額外的加速或減速電位以設定最終能量;以及佈植具 有所要的電荷對質量比例之所選離子到工件裡,其中所選 的離子分解成硼原子。 從本揭示配合附圖所做的詳細敘述,本揭示的這些和 其他目的、優點和特色將變得更好了解。 【實施方式】 本揭示一般關於佈植離子化的矽硼烷分子或所選之離 201246263 子化質量的較低質量副產物當中一者到工件裡的方法。離 子化的矽硼烷分子或所選之離子化質量的較低質量副產物 乃從離子來源抽取(亦即加速)、質量解析、佈制工件裡。 在抵達工件之前,抽取的離子也可以經過額外的加速、減 速或聚焦階段。有利而言’做為離子佈植之來源材料的矽 :貌刀子乃於離子化期間提供分子穩定性,藉此允許使用 傳統的離子來源。具去,六+ Λ 夕原子而非碳原子(亦即非以 石反蝴貌)確保了無污染物加入基板(譬如石夕)的晶體結構。在 =火時’#晶體將於佈植損傷的區域再生長。石朋原子將駐 =於晶體中而提供ρ型換雜物,同時石夕原子將呈現於晶格 的位置而對晶體沒有造成改變。 如在此所用的,「石夕侧幻(silab〇rane)一詞一般是指具 有—十面體結構的任何類型化合物“夕硼烷化合物包括矽 ^原子’並且它們的結構提供足夠穩定的分子以用於標 ::子化來源。換言之’封閉的二十面體結構提供分子優 異的熱穩定性。再去,a I & 再者s相較於碳硼烷時’矽原子取代了 =中的碳則確保沒有污染物加入晶體。一種範例性石夕石朋 :于式為Sl2Bl°H'2的鄰矽硼烷分子。鄰矽硼烷的結構 不範於圖1。如圖所目 、7 ' 圖所見,分子的位置(頂點)1和2是被矽原 于所佔據,而每個石夕帶古 # 帶有…s的虱。二十面體的剩下十個 相由硼原子所佔據’其結合了向外延伸的氩原子。用 標準離子化來源的另-範例性石夕石朋烧是仏二曱基],2_ 夕閉。型(cl〇so)+二石朋烧,其結構顯示於圖2。此分子 似於鄰石夕職,例外的是結合於石夕原子的氫原子則由甲基 201246263 基(-CH3)所取代。於離子佈植器之電弧腔室的離子化期間, 結合較不緊密的甲基從此分子剝除,而剩餘的鄰石夕石朋炫二 十面體則傳輸到矽基板以供佈植。其他範例性二十面體矽 職可以包括(但不限於)化學式為聊叫2為门的化合 物,當中R是結合於矽原子的原子或化合物,η是整數。適 合此化學式的範例性「R」化合物可以包括(但不限於)氮原子 (例如於鄰石鹰)、甲基、乙基、苯基。石夕原子可以具有結 合於它之相同或不同的化合物。具有不同&化合物所結合 之石夕職的範例性實施例是Η基#二發閉合型十二棚 炫’其結構顯示於圖3。 Μ構的㈣燒分子最適合做為離子佈植 的來源材料’因為它們的二十面體結構於離子化期間提供 在離:來源中的附加穩定性。再者,”這些化合物具有 比較南的蒸氣壓,而在離;欲Θ 向在離子佈植工具所用之多樣離子化來 源所可此發現的升向溫度下是穩定的。二十面體結構提供 了增加的料性’就不再需要精巧的「軟離子化」㈣ i〇nizat1Gn)來源以精細地從分子移除電子如此而形成離子 化的分子。 _夕朋烷刀子可以使用任何離子佈植裝置來佈植,例如 揭示於美國專利第6,013,332、6,_、M88終 6,958,48 1、6,452 32 δ η , ,185,602號的離子佈植濃置。特殊 離子所產生的離子束可以建構成:點束機械掃 :;,甘、中工件機械式掃描於正交於-般靜止之點束的二 ㈣^定,該點束具有差不 201246263 的:殊直捏;帶束,其"束固定於一趟過工件的方向上, /料工件機械切福於正交方向,㈣束可以具有大的寬 / =並且可以至少如工件一樣寬,·或者電 式掃描束,其掃描於一 軤4 件的方向上,並且工件機械 ㈣^ X方向。範例性離子佈植裝置是商購自AXcens 0™AHD、子佈植裝置,其建構成提供點 束式一維機械掃描。 圖4示意地示範範例性離子佈植裝置1〇。該裝置一# 包括離子來源12、束線組件14、 又 成罩耆工件18的靶射腔 。來源12從氣化的矽硼烷分子產生帶電的離子, 其後續於操作期間抽取以形成離子束20。束線組件14包括 形成大約九十度角的質量解析器22,以及包括— 磁鐵㈣來在當中建立(偶極)磁場。當離子束2〇進入質量 解析$ 22’該束對應地由磁場所彎曲,.使得不想要的離子 被偏折而想要的離子由此通過。-旦經過質量解析器,離 子束可以加速、減速、聚焦或者修改以佈植到工件裡。以 此方式,由此通過的離子具有所要的電荷對質量比例,而 後續被佈植到工件裡。於佈植具有所要電荷對質量比例的 離子期間,m機械式料於垂直於料束的二維。 於佈植期間’離子束20所穿越的整個路桎是在真*下。 產生離子束的離子來源可以是單一電聚離子來源或雙 重電聚離子來源。類似而言’離子來源可以是間接加轨的 陰極離子來源或是藉由暴露於射頻(RF)能量而產生離子。圖 5示意地示範適合實施本方法的範例性單-電毁離子來源 10 201246263 50,並且大致揭示於頒給的美料利第mm,似號, 其内容整個併人以為參考。單-電聚離子來源5G包括氣化 :51和離子化器53。氣化器51包括非反應性的導熱昇華 器或掛禍52、加執介曾被诚丄 貝儲槽54、加熱介質泵55、溫度控制 益、質流控制器6〇。掛禍52的位置遠離於離子化器53 而由進給管62所連接,該營县山^ 〇上 由央或不鏽鋼所建構而沿 者八貫貝整個長度被單腔環形㈣%所圍繞。 68,二Μ提供包住腔穴66的容器64以包含來源材料 不二 是由適合的非反應性(惰性)材料所做的,例如 :1鋼、石墨、石英―,而能夠維持足量的來源材 矽硼烷分子可以液體或粉 储槽54所包含的加熱介質70來加= 在藉由 舉例而言’固想^炫分子可《加:到V4的广,· 傳輸所必需的廢力,业型 Y W更達成洛氣 炫分子經由進給其; 耳。完全氣化的石夕侧 60,1控制基氣二而離開_ 52並且進入質流控制器 ,、衩f j崧軋的流動,因此測量 氣化矽硼烷分子的量。 '、 子化器53之 另外可選擇的是進給管62提供 μ 鞠9〇提供成同抽雙腔鞘的形式,後者:::形式,並且 稱。加熱介質可以泵入叫置相鄰者::,的^ 外稍(位置從内鞘徑向朝外)。在此第二眘/ S 62)和果出 器60可以由位在進給管/離子化。。一貫:例中,質流控制 (未顯示)所取代,而直 =介面的加熱關閉閥 礼54的溫度來增加或減少 201246263 範例性離子化器53更詳細地顯示於圖6。於此特殊範 例,離子化器53包括大致圓桎形的主體96和大致環形的 基底或安裝凸緣98 ’此二者於較佳實施例中皆由鋁所建 構。主體96疋藉由進入冷卻通道1〇〇 (由入口 所進給) 和離開冷卻通道104 (經由出口 1〇6離開主體96)而冷卻。 冷郃介質可以是水或任何其他具有高熱容量的適合流體。 進入和離開冷卻通道提供連續路徑,藉此水經由當中流動 以冷卻離子化器主體96。雖然圖6僅以虛線顯示不連續的 邛刀路徑,但疋路徑可以採任何已知的組態來延伸接近和 圍繞著主體的外圍,以確保整個主體有效地冷卻。 冷卻主體96則確保離子化腔室1〇8所停留的溫度將容 納離子化腔室裡的矽硼烷分子壓力並且溫度是夠高。 離子化器主體96裡所侷限的是延伸的進給管62,其由 環形鞘90所圍繞而終結在離子化腔室1〇8。離子化腔室裡 駐留了熱陰極11〇和反陰極或排斥器112。熱陰極ιι〇包括 加熱的鎢絲114,其由鉬圓柱體116所圍繞以及由鎢末端蓋 1 1 8所加蓋。加熱絲! 14藉由通過並電絕緣於主體%的電 力進給通過器12〇和122而供以能量。排斥$ m經由導 熱的電絕緣材料(例如藍寶石,其實體耦合排斥器至冷卻的 離子化腔室108)而也電絕緣於主體96。 的進給官62而注入離子化腔室。當鎢絲 通過器120和122 於操作上,氣化的矽硼烷分子經由在離子化201246263 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present disclosure relates generally to semiconductor ion implantation, and more particularly to a method of selectively implanting decane molecules into a semiconductor workpiece. He can use the ion implanter to bomb the wafer by ion beam to process the wafer. One use of such beam processing is to selectively implant wafers for use in fabricating integrated circuits by controlling concentrations of impurities and/or dopants. A typical ion implanter includes an ion source, an ion extractor, a mass spectrometer, a beam transport device, and a wafer processing device. The ion source produces ions of the desired atomic or molecular species. These ions are extracted from the source by the extraction system. “Seven # comes out, the δ海 extraction system is typically a group electrode, which supplies energy to the ions from the source, and –w searches for and directs its flow. The desired ions are in the Berry resolution device so that the by-product analysis device from the ion source is typically a magnetic dipole for the extraction of the ion transport device, typically a focusing device comprising an optical column. : Transfer the ion beam to the wafer processing unit while maintaining its properties. Finally, the semiconductor crystal: the desired optical state or molecular species or its ionic fragment processing device is implanted with atomic ion energy, which is used to control the ions of the junction of the semiconductor element. Ion X turns into a retrograde well from a semiconductor component. For example, it is used to form a special (Mev) implant. The moon is required to be up to several million electrons. Below 1 keV 4 201246263 (keV), and the ultra-shallow junction may require as low energy as is the electron volt (e V) typical and s 'South current implanter (- generally greater than 1 〇 Ampere (clawed person's ion beam current) is used for high-dose implants, while medium-current implanters (typically enough to return about 1 milliampere of beam current) are used for lower dose applications. The trend toward continued semiconductor components that are increasingly smaller requires that implanters with ions (4) continue to deliver higher beam currents at lower energies. M &provides the necessary dose level' and the lower energy level, the shallower implants, for example, 'complementary metal oxide semiconductor (CM0S), tantalum and pole junctions require such high current, low The application of energy. Conventional ion sources utilize ionizable dopant gases' which are derived directly from a source of compressed gas or indirectly from a vaporized solid. Typical sources - prime are rotten (8), phosphorus (P), gallium ((Ja), indium (in), recorded _, 珅 (four). Most of these source elements are generally used in both solid and gaseous forms, but *peng Exceptions (there are several flat noses @μ丄, provided in gaseous form). For special applications, low energy and ultra low energy dens are needed from the 'pocket'. However, the "space charge" effect is limited. The low atomic power of the underarm is transmitted to the low value, which reduces the productivity of the ion implanter. The purpose is to avoid transmission loss and low energy "space charge" effect. Fu loses into the 3rd month, and the heart uses a molecule with more than one boron atom. At the same time, the knife that transmits more than one boron source ^ reduces the cloth of each deleted atom. 'In the month of planting b, the number of atoms in the passing wheel is one, the same as = : = : to the original of each molecule - this can be: the group is right and there are almost any number of "sub (4) molecules or side 201246263 in another method , the boron atom(s) can be transported into molecules with different elements. Again, this The effective planting energy for each boron atom is reduced to a multiple proportional to the total mass of the molecule. Ideally, the added element will simply increase the mass to the ruthenium base + without affecting the crystal structure of the stone substrate. For example, Ten(4)(BigH") can be an excellent feed material for planting stones, because each of the ten (four) molecules (BiqHi4) can provide ten (four) sub-gas when vaporized and ionized. Molecular state ions. This source is particularly suitable for high-dose/low-energy implantation processes for the formation of shallow junctions, because the A-molecular state of the Shishi Pengyuan ion beam can be implanted at a unit dose of Ten times the number of monoatomic (4) sub-beams. In addition, it is not believed that hydrogen molecules can adversely affect the implantation of components. However, @,. Decazone and other borohydrides may be unstable at higher temperatures, for example The temperature found in the source of standard ions. So, the other methods of ionization and beam generation must be carried out using these molecules. Another method of transferring multiple stone atoms involves the use of molecules with different materials. The composition helps to stabilize the borane structure. One example is the use of boron-boron, especially the adjacent carbon (4) (C2BiqHi2), because the molecule is more robust and stable under the conditions found by standard ion sources. It is also stable during extraction and transfer to the wafer. Therefore, the molecular weight of the crystal structure of the crystal substrate will be modified by this molecular implantation. It is an important application for maintaining the same crystal structure after implantation. In other words, this may not be desirable. Therefore, it is desirable to provide a stable deletion molecule that can be implanted at low or ultra-low energy without bringing any impurities to the wafer during implantation. 201246263 [Summary] The method of implanting borane molecules into a workpiece is disclosed. In one embodiment, the method of implanting the molecules includes: gasification in the ion source and ionization of the rock; and generation of the lower mass of the electricity and the ionized borax borane molecules and ionization. Byproduct; extracting ionized borane borane cluster molecules and ionized lower mass byproducts from the plasma via the source pores to form an ion beam mass spectrometer magnet to mass resolve the ion beam to allow ionization The lower mass by-product of the ion or the selected ionized mass is thereby passed; the drifting ion beam is transmitted and/or an additional acceleration or deceleration potential is selectively applied to set the final energy; and the implant ionization The stone eves the molecules or the lower quality by-products of the selected ionized mass into the workpiece. In another embodiment, a method of implanting boron atoms into a workpiece includes: gasifying a second de-burning molecule; ionizing the deflagration molecule, and extracting ions from the ion source to form an ion beam; and transmitting the drifting ion beam and/or Alternatively, an additional acceleration or deceleration potential is selectively applied to set the final energy; and the selected ions having the desired charge to mass ratio are implanted into the workpiece, wherein the selected ions are decomposed into boron atoms. These and other objects, advantages and features of the present invention will become apparent from [Embodiment] The present disclosure is generally directed to a method of implanting ionized borane borane molecules or selected ones of lower quality by-products of the quality of 201246263 into a workpiece. The ionized borane molecule or the lower quality by-product of the selected ionization mass is extracted from the ion source (i.e., accelerated), mass resolved, and fabricated into the workpiece. The extracted ions can also undergo an additional acceleration, deceleration or focusing phase before reaching the workpiece. Advantageously, 矽 as a source material for ion implantation: the knives provide molecular stability during ionization, thereby allowing the use of conventional ion sources. With the addition of six + Λ 夕 atoms instead of carbon atoms (that is, non-stone), it ensures the crystal structure of no substrate added to the substrate (such as Shi Xi). At the time of fire, the ## crystal will re-grow in the area where the implant is damaged. The Shi Peng atom will be stationed in the crystal to provide a p-type change, while the Shi Xi atom will appear in the lattice position without any change to the crystal. As used herein, the term "silab〇rane" generally refers to any type of compound having a decahedral structure, "the borane compound includes a ruthenium atom" and their structure provides a sufficiently stable molecule. For the label:: child source. In other words, the 'closed icosahedral structure provides excellent thermal stability of the molecule. Again, a I & s compared to carborane, the 矽 atom replaces the carbon in = to ensure that no contaminants are added to the crystal. An exemplary Shi Xi Shipeng: an o-borane borane molecule of the formula Sl2Bl °H'2. The structure of o-borane borane is not shown in Figure 1. As seen in the figure, as seen in the 7' figure, the positions (vertices) 1 and 2 of the numerator are occupied by the annihilation, and each shi xi lan ancient # with ... s. The remaining ten phases of the icosahedron are occupied by boron atoms, which combine with the outwardly extending argon atoms. Another example of a standard ionization source is Shi Xi Shi Peng, which is a ruthenium ruthenium. Type (cl〇so) + two stones, its structure is shown in Figure 2. This molecule is similar to the neighboring stone, with the exception that the hydrogen atom bonded to the Shi Xi atom is replaced by the methyl 201246263 group (-CH3). During the ionization of the arc chamber of the ion implanter, the less dense methyl group is stripped from the molecule, and the remaining neighboring Shishi Pengxuan dioctahedron is transferred to the tantalum substrate for implantation. Other exemplary icosahedral occupations may include, but are not limited to, a chemical formula of a compound called 2, wherein R is an atom or compound bound to a ruthenium atom, and η is an integer. Exemplary "R" compounds suitable for this chemical formula may include, but are not limited to, a nitrogen atom (e.g., in the adjacent stone eagle), a methyl group, an ethyl group, a phenyl group. The Shixi atom may have the same or different compound bound to it. An exemplary embodiment of a Shih-hsien having a combination of different & compounds is a Η基#二发闭式十二棚炫” whose structure is shown in Figure 3. The (four) burned molecules of the rafts are best suited as source materials for ion implantation because their icosahedral structures provide additional stability in the source during ionization. Furthermore, "these compounds have a relatively south vapor pressure, which is stable; it is stable at the ascending temperature that can be found at the various ionization sources used in ion implantation tools. The icosahedral structure provides The increased materiality eliminates the need for delicate "soft ionization" (4) i〇nizat1Gn) sources to finely remove electrons from molecules to form ionized molecules. The ionic pipe can be implanted using any ion implanting device, such as the ion cloth disclosed in U.S. Patent Nos. 6,013,332, 6, _, M88, 6,958, 48 1, 6,452 32 δ η, , 185, 602. Plant concentrated. The ion beam generated by the special ion can be constructed: the spot beam mechanical sweep:;, the mechanical scan of the workpiece in the Gan and the middle is determined by the two (four) points of the beam that is orthogonal to the rest, and the spot beam has the difference of 201246263: The belt is bundled, the bundle is fixed in the direction of the workpiece, the workpiece is mechanically cut in the orthogonal direction, and (4) the bundle can have a large width / = and can be at least as wide as the workpiece. Or an electric scanning beam, which is scanned in the direction of one 軤 4 pieces, and the workpiece is mechanically (four) ^ X direction. An exemplary ion implantation apparatus is commercially available from AXcens 0TMAHD, a sub-planting device that is constructed to provide a point-by-beam one-dimensional mechanical scan. Figure 4 schematically illustrates an exemplary ion implantation apparatus. The device # includes an ion source 12, a beamline assembly 14, and a target cavity that is also a cover workpiece 18. Source 12 produces charged ions from the vaporized borane molecule which are subsequently drawn during operation to form ion beam 20. The beamline assembly 14 includes a mass resolver 22 that forms an angle of about ninety degrees, and includes a magnet (four) to establish a (dipole) magnetic field therein. When the ion beam 2 〇 enters mass resolution $ 22' the beam is correspondingly curved by the magnetic field, causing the unwanted ions to be deflected and the desired ions to pass therethrough. Once the mass resolver is passed, the ion beam can be accelerated, decelerated, focused or modified to be implanted into the workpiece. In this way, the ions thus passed have the desired charge-to-mass ratio and are subsequently implanted into the workpiece. During the implantation of ions having the desired charge-to-mass ratio, m is mechanically oriented in two dimensions perpendicular to the bundle. During the implantation period, the entire path that the ion beam 20 traverses is under the true*. The source of ions that produce the ion beam can be a single source of electropolymer ions or a source of dual electropolymer ions. Similarly, the ion source can be an indirectly loaded source of cathode ions or generated by exposure to radio frequency (RF) energy. Figure 5 schematically illustrates an exemplary single-electrodestroy ion source 10 201246263 50 suitable for practicing the method, and is generally disclosed in the U.S. Patent No. mm, which is incorporated herein by reference. The mono-electropolymer ion source 5G includes gasification: 51 and an ionizer 53. The gasifier 51 includes a non-reactive heat-transfer sublimator or a hazard 52, and has been used by the Chengbei storage tank 54, the heating medium pump 55, the temperature control, and the mass flow controller. The position of the hazard 52 is remote from the ionizer 53 and is connected by the feed pipe 62. The Yingxian Mountain is constructed by the central or stainless steel and is surrounded by a single-cavity ring (four)% along the entire length of the eight-bath. 68. The second container provides a container 64 enclosing the cavity 66 to contain the source material, which is made of a suitable non-reactive (inert) material, such as: 1 steel, graphite, quartz, and capable of maintaining a sufficient amount. The source material borane molecule can be added by the heating medium 70 contained in the liquid or powder storage tank 54. By way of example, 'there is a wide range of V4, the necessary waste force for transmission. The industry type YW has reached the Luo Xing molecule by feeding it; ear. The fully vaporized stone side 60,1 controls the base gas to leave the _52 and enters the flow controller, 衩f j嵩 rolling flow, thus measuring the amount of gasified borane borane molecules. Alternatively, the sub-processor 53 may be provided with a feed tube 62 providing a form of a double-chambered sheath, the latter::: form, and said. The heating medium can be pumped into the adjacent::, ^ outside (the position is radially outward from the inner sheath). Here the second caution / S 62) and the fruit extractor 60 can be placed in the feed tube / ionized. . Consistently: in the example, the mass flow control (not shown) is replaced, while the straight = interface heating shuts off the temperature of the valve 54 to increase or decrease. 201246263 The exemplary ionizer 53 is shown in more detail in Figure 6. In this particular example, ionizer 53 includes a generally circular body 96 and a generally annular base or mounting flange 98' which are both constructed of aluminum in the preferred embodiment. The body 96 is cooled by entering the cooling passage 1 (infeed by the inlet) and exiting the cooling passage 104 (away from the body 96 via the outlet 1〇6). The cold heading medium can be water or any other suitable fluid with a high heat capacity. Entering and exiting the cooling passage provides a continuous path whereby water flows through it to cool the ionizer body 96. Although Figure 6 shows only the discontinuous boring path in dashed lines, the 疋 path can be extended to approach and surround the periphery of the body in any known configuration to ensure that the entire body is effectively cooled. Cooling body 96 ensures that the temperature at which ionization chamber 1 〇 8 is held will accommodate the borane borane molecular pressure in the ionization chamber and the temperature is high enough. Limited in the ionizer body 96 is an extended feed tube 62 that is surrounded by an annular sheath 90 and terminates in the ionization chamber 1〇8. A hot cathode 11 〇 and a counter cathode or repeller 112 reside in the ionization chamber. The hot cathode ιι includes a heated tungsten wire 114 surrounded by a molybdenum cylinder 116 and covered by a tungsten end cap 1 18 . Heating wire! 14 is energized by feeding the electrodes 12A and 122 by electrical and electrical insulation of the body %. The repelling $m is also electrically insulated from the body 96 via a thermally conductive electrically insulating material (e.g., sapphire, which physically couples the repeller to the cooled ionization chamber 108). The feed officer 62 is injected into the ionization chamber. When the tungsten filaments are passed through the actuators 120 and 122, the vaporized deborane molecules are ionized via

1 14藉由跨過進給 I能時,細絲發出 12 201246263 電子而加速朝向並衝擊著末端蓋U8。當末端蓋118被電子 轟炸所充分加熱時,它轉而發出電子到離子化腔室1 〇8裡, 該等電子打到氣化的矽硼烷分子而於腔室中生成離子。視 條件而定,也可以使分子發生破碎。 低在.度的離子電漿便藉此生成,再經由來源孔徑12 6 而從腔室抽取離子束。電漿包括多樣之離子化的矽硼烷物 種,其皆可選擇性地佈植到工件裡。抽取的離子束然後由 質里解析磁鐵i 27做質量解析,以僅允許具有規定之電荷 對質置比例的離子由此通過。腔室丨〇8中之低密度離子化 的矽硼烷分子電漿是由維持於來源中之比較低的電弧放電 功率所部分提供。 於離子佈植裝置中使用圖5的單一電漿離子來源5〇, 貝J整個矽硼烷分子(大於5個硼原子)或其破碎的較低質量 田1J產物可α選擇性佈植到。石夕蝴&分子在工件表面 '使彳于母個蝴原子的能量是石夕棚烧分子或較低質量副 物的#分。舉例而t,於鄰#石朋&的例+,每個#子 的能量大約是鄰石夕删烷之十個硼能量的十分之一。因此, :束可以在所要的爛佈植能量下多次傳輸,其能夠極淺佈 ^:無顯者的束傳輸漏失。&外,因為每單位分子的電荷 曰:。原子心束佈植的一部分,所以工件充電問題在給定劑 $速率下是輕微許多。 如此技術所已知’可以調整質量解析磁鐵m以允 磁電何對質量比例在特定範圍的粒子才通過。質量解 偶極磁场,以經由拱形通道中的磁偏折而 13 201246263 折離子束中夕樣的離子’此將有效地分開不同之電荷對 量比例的離子。 陰極1 10戶斤產生的電子並不打在離子化腔室中0 ” 貌分子以生成離子化的碎職分子和其破碎的較低質量離 子,14些電子乃朝向排斥器112而移動,後者偏折這些電 子回去朝向陰極。排斥器最好是由鉬所建構’並且類似吟 極而電絕緣於離子化器主體96。離子化腔室108的壁二 維持在局部電接地的電位。陰極i 10 (包括末端蓋叫則維 持在比壁128的電位低差不多5()到15G伏特的電位。細絲 114維持在比末端蓋i 18的電位低差不多2〇〇到6⑻伏特的 電壓。細絲Π4和末端蓋丨丨8之間的大電壓差異則賦予高 能量給細絲所發出的電子,以充分加熱末端蓋ιΐ8而專門 發出電子到離子化腔室1 〇 8裡。 單一電漿離子來源50所提供的控制機制乃控制坩堝52 的操作溫度,以及控制氣化的矽硼烷分子路上通過並經過 離子化器53的進給管62操作溫度。加熱介質7〇是藉由電 阻式或類似的加熱元件80而於儲槽54裡加熱並且藉由熱 父換益而冷卻。溫度控制方式包括溫度控制器%,其經由 熱偶92而從儲槽54的回饋獲得輸入溫度,以及輸出控制 訊號到加熱元件80 ’如底下進一步描述,如此則儲槽中的 加熱介質70便加熱至適合的溫度。 加熱介質70包括提供高熱容量的礦物油或其他適合的 介質(譬如水)。油以加熱元件8〇加熱至2(rc到25(rc的 溫度範圍,並且以泵55而循環圍繞著坩堝52以及經由鞘 14 201246263 90而圍繞著進給管62。系55乃分別提供以入口 82和出口 84 ’並且儲槽54乃類似地分別提供以入口 86和出口 88 加熱介質圍繞著掛禍52和進給管以的流動樣式可以是提 供该介質合理循環圍繞著掛禍52和進給管62的任何樣式。 回去參見圖5’掛禍腔穴66可以加屢以便於氣化的石夕 :U子從_ 52經由進給管62而材料轉移到離子化腔 室⑽。隨著腔穴66裡的壓力上升,材料轉移速率遂對應 地增^。離子化腔室操作於接近真空(大約丨毫托耳),因 此,從掛禍52到離子化腔室1〇8,沿著進給管62的整個長 度,存在著壓力梯度。坩堝的塵力典型是在ι托耳的等級。 猎由讓㈣52遠離離子化腔室1〇8,㈣腔穴 =係熱隔離的,藉此提供不受離子化腔室溫度 T環境。如此,則㈣腔穴66 (其中發生昇華過二 獨立於離子化腔室1〇8的操作溫度來控制成高正 :以内)。同時,於氣化的矽硼烷分子經由加熱的進 ::二而傳輸至離子化腔室期間,維持分子於固定不變的 1度,則瘵氣不會發生凝結或熱分解。 溫度控制器56藉由控制加熱介 8〇的操作而控制甜禍52和進給管6 …凡件 儲槽並且#、、,Λ 的 熱偶92感測 56、… 發迗〉皿度回饋訊冑93到溫度控制器 ::空制器藉由輸出控制訊號94到儲槽加熱元件 二°方式來回應於此輸入回饋訊號。以此方式,均勻 ^皿度係提供於靖分子所暴露的所有表面,直到離子 化腔室的位置。 且』雕于 15 201246263 2控制系統中的加熱介質猶環(經由泉55)以及控制 加熱介/的溫度(經由加熱元件81 14 By crossing the feed I, the filament emits 12 201246263 electrons and accelerates the direction and impacts the end cap U8. When the end cap 118 is sufficiently heated by electron bombardment, it in turn emits electrons into the ionization chamber 1 〇 8 which strikes the vaporized borane molecule to generate ions in the chamber. Depending on the conditions, the molecules can also be broken. An ion plasma of a low degree is generated thereby, and an ion beam is extracted from the chamber via the source aperture 12 6 . The plasma includes a variety of ionized borane borane species that are selectively implantable into the workpiece. The extracted ion beam is then mass resolved by the in-mass analytical magnet i 27 to allow only ions having a defined charge-to-scale ratio to pass therethrough. The low density ionized borane molecular plasma in chamber 丨〇8 is provided in part by the relatively low arc discharge power maintained in the source. The single plasma ion source of Figure 5 is used in the ion implantation apparatus. The entire borane molecule (greater than 5 boron atoms) or its broken lower mass field 1J product can be selectively implanted. The stone eve and the molecule on the surface of the workpiece 'make the energy of the mother's butterfly atom is the #分分烧烧 molecule or the lower mass of the sub-point. For example, t, in the example of Neighbor #石朋&, the energy of each #子 is about one tenth of the ten boron energies of the neighboring stone. Therefore, the beam can be transmitted multiple times under the desired squeegee energy, which can be extremely shallow ^: no obvious beam transmission loss. &, because the charge per unit molecule 曰:. Part of the atomic beam is implanted, so the problem of workpiece charging is much lighter at a given agent rate. As is known in the art, the mass resolving magnet m can be adjusted to allow the particles to pass through a specific range of masses. The mass decouples the dipole magnetic field to the magnetic deflection in the arched channel. This will effectively separate ions of different charge-ratio ratios. The electrons generated by the cathode 1 10 jin do not hit the morphological molecules in the ionization chamber to generate ionized broken molecules and their broken lower mass ions, and the 14 electrons move toward the repeller 112, the latter The electrons are deflected back toward the cathode. The repeller is preferably constructed of molybdenum and is electrically insulated from the ionizer body 96 like a drain. The wall 2 of the ionization chamber 108 maintains a potential at a local electrical ground. 10 (including the end cap is maintained at a potential that is approximately 5 () to 15 GV lower than the potential of the wall 128. The filament 114 is maintained at a voltage approximately 2 to 6 (8) volts lower than the potential of the end cap i 18. Filament The large voltage difference between the crucible 4 and the end cap 8 imparts high energy to the electrons emitted by the filament to sufficiently heat the end cap ι 8 to specifically emit electrons into the ionization chamber 1 〇 8. Single plasma ion source The control mechanism provided by 50 controls the operating temperature of the crucible 52 and controls the operating temperature of the vaporized borane boron molecular passage and through the feed tube 62 of the ionizer 53. The heating medium 7 is by resistance or the like. of The heating element 80 is heated in the reservoir 54 and cooled by the hot parent. The temperature control mode includes a temperature controller %, which receives the input temperature from the feedback of the reservoir 54 via the thermocouple 92, and outputs a control signal to The heating element 80' is further described below, such that the heating medium 70 in the reservoir is heated to a suitable temperature. The heating medium 70 includes mineral oil or other suitable medium (e.g., water) that provides a high heat capacity. The oil is heated by the element 8. The crucible is heated to a temperature range of 2 (rc to 25 (rc) and is cycled around the crucible 52 with a pump 55 and around the feed tube 62 via a sheath 14 201246263 90. The system 55 is provided with an inlet 82 and an outlet 84 respectively] And the reservoirs 54 are similarly provided with inlets 86 and outlets 88, respectively. The flow pattern of the heating medium surrounding the slamming 52 and the feed tube may be any pattern that provides reasonable circulation of the medium around the hangover 52 and the feed tube 62. Referring back to Figure 5, the catastrophic cavity 66 can be added to facilitate gasification: the U sub-transfer from the _52 via the feed tube 62 to the ionization chamber (10). With the pressure in the cavity 66 on The material transfer rate 遂 is correspondingly increased. The ionization chamber operates close to the vacuum (about 丨mTorr), so from the hazard 52 to the ionization chamber 1〇8, along the entire length of the feed tube 62 There is a pressure gradient. The dust force of the cockroach is typically at the level of ιTorr. The hunter is made of (4) 52 away from the ionization chamber 1 〇 8 and (4) the cavity = is thermally isolated, thereby providing no ionization chamber Temperature T environment. Thus, (4) cavity 66 (where sublimation occurs twice independent of the operating temperature of ionization chamber 1〇8 to control high positive: within). At the same time, the vaporized borane molecule is heated by heating. In the second:: During the transfer to the ionization chamber, the molecules are maintained at a constant 1 degree, so the helium does not condense or thermally decompose. The temperature controller 56 controls the sweetness 52 and the feed tube 6 by means of the operation of the heating medium. The thermocouple 92 of the #, ,, Λ sensing 56, ...胄93 to the temperature controller:: The air conditioner responds to the input feedback signal by outputting the control signal 94 to the sump heating element. In this way, the uniformity is provided to all surfaces exposed by the molecules until the position of the ionization chamber. And the heat medium in the control system of 15 201246263 2 control system (via spring 55) and the temperature of the heating medium (via heating element 8)

) 雕于來/原5 0可以;告J 在20 C到25 0。C之等級(士 1。(^的^ )旳知作溫度。相較於最靠近 離子化腔室的進給管末端,精確的溫度控制_而言更 以便控㈣禍的壓力以及因此控制蒸氣流出掛禍的 加熱㈣也可以由接觸電阻式加熱器或任何其他加埶 方式來達成。精確控制此溫度則決定了㈣院的蒸氣壓。 圖7和8示範簡化的範例性雙重電㈣子來源細,其 中雙重電漿離子來源、200適合佈植矽硼烷分子。應該注意 是為了示範而提供圖7和8所示的雙重電毁離子來源彻二 其並非包括離子來源的所有方面、構件、特色。 舉例而言,雙重電漿離子來源2〇〇包括第一電锻腔室 2〇2,其純相鄰於第二電毁腔室叫。第一電聚腔室加 包括氣體來源供應線206,並且是以電漿產生構件2〇4所建 構以從第-來源氣體產生電毁。來源氣體是由氣體供應線 206而引入第一電漿腔室2〇2。來源氣體可以包括下列至少 一者.惰性氣體(例如氬(Ar)和氙(Xe))、標準離子佈植科體 (例如三氟化硼(BF3)、氫化砷(AsH3)、氫化磷(PH3))、反應 性氣體(例如氧(〇2)和三氟化氮(Νί?3^應該了解提供前述列 出的來源氣體只是為了示範而已,而不應視為代表完全列 出了可能傳遞到第一電漿腔室的所有來源氣體。 電漿產生構件204可以包括陰極208/陽極210組合, 其中陰極208可以包括簡單的Bernas型細絲組態或是間接 16 201246263 加熱的陰極。另外可選擇的是電漿產生構件2〇4包括RF感 應線圈天線,其支持成具有直接安裝在氣體侷限腔室裡的 射頻傳導區段以傳遞離子化能量到氣體離子化區裡,舉例 而言,如揭示於共同讓與的美國專利第5,6613〇8號。 第一(或電子來源)電漿腔室2〇2界定出孔徑212,其形 成進入離子佈植系統之尚真空區域(亦即當中壓力遠低於第 一電漿腔室202之來源氣體壓力的區域)的通道。孔徑 提供泵動孔徑以維持來源氣體於高純度,如下文將進—步 所討論。 電子來源電漿腔室202也界定出孔徑214,其形成從電 子來源電漿腔室202抽取電子的抽取孔徑。在一實施例中, 抽取孔徑2M乃提供成可替換之陽極元件21〇的形式,如 圖8所示範,而孔徑214形成於其中。如此,則熟習該^ 技術者將會體認電子來源電漿腔室2〇2可以建構成具有正 偏壓的電極219 (相對於陰極2〇8而言),而以所謂的非反射 模式來從電漿吸引電子。另外可選擇的是電極219相對於 陰極208而;T是負偏壓的’而以所謂的反射模式使電子排 斥回到電子來源電衆腔t 2()2裡。將會了解此反射模式組 態會需要適當偏壓的電漿腔室壁,同時電極219需要 緣和獨立偏壓。 、毛 如之前所述,雙重電襞離子來源2〇〇也包括第二 子來源腔室216〇第二離子來源電漿腔室216包括第二? 1 來源供應'線218來把來源氣體引人離子來源電ϋ腔室""體 裡’並且第二離子來源電毁腔室216進一步建構成從電: 17 201246263 來源電t腔室2G2 #收電子,藉此經由電子和第二來源氣 體之間的碰撞而於當中產生電漿。第二來源氣體包括矽硼 烧分子。 第一(或離子來源)電漿腔室216界定出孔徑2丨7,其校 準於第- t聚腔t 202的抽取孔# 214,而於其間形成通道 以允許抽取自第一電漿腔室2〇2的電子流動到第二電漿腔 室216裡◊較佳而言,離子來源電漿腔室216乃建構成具 有正偏壓的電極219,而以所謂的非反射模式來吸引注入離 子來源電漿腔室216的電子,以在電子和氣體分子之間生 成所要的碰撞而生成離子化電漿,另外可選擇的是電極21’9 是負偏壓的,而以所謂的反射模式使電子排斥回到離子來 源電漿腔室2 16裡。 抽取孔徑220乃建構於第二電漿腔室216,以抽取離子 而以通常方式形成用於佈植的離子束。 士-實施例中,第二電漿腔t 216利用外部偏壓電源 供應器215而相對於第一電漿腔室2〇2呈正偏壓。電子因 此從電子來源電漿腔室202抽取並且注入離子來源電漿腔 室216裡,而於第二電漿腔室216中感應出電子(由第一電 毁腔室202所提供)和石夕硼烧分子(經由第二氣體來源供應 線218供應至第二電漿腔室216)之間的碰撞以生成電漿。 應該注意第一電漿腔室202和第二電漿腔室216可以 具有三個開放邊界··氣體入口(譬如第一氣體供應入口 222 和第二氣體供應入口 224)、通往高真空區域的開口(譬如泵 動孔徑212和抽取孔徑220)、分別在第一和第二電漿腔室 18 201246263 202和216之間形成共同通道的共同邊界孔徑214和217。 較佳而言’相較於通往高真空區域的孔徑2 1 2和2 2 0 (亦即 第一電激腔室孔徑212和第二電漿腔室孔徑220)來看,共 同邊界孔徑2 14和2 1 7的面積乃保持成小。 於一範例性的雙重電漿離子來源組態,離子來源包括 位在麻塞諸塞州Beverly的Axcelis科技公司所製造和販售 之那種標準間接加熱陰極(indirectly heated cathode,IHC) 離子來源的構件,其中離子來源電漿腔室包括標準電弧腔 室(以標準陽極所建構)、抽取系統、來源進給管。移除了標 準IHC來源的内部加熱陰極元件,而於該處安裝了小的電 子來源電锻腔室來取代之,其包含的構件類似於八^^“科 技公司所製造和販售的那種標準mc離子來源,包括電弧 腔室、標準内部加熱陰極元件、來源進給管。 二電漿腔室也可以分享沿著抽取孔徑所指向的磁場, 其由可得自AXCellS科技公司的標準來源磁鐵所提供,如以 參考數字230所顯示的。孰釦 7热知於電漿產生腔室中感應出垂 直的磁場,則離子化過程(於h _ I於此If $係電子產生過程)變得更 有效率。如此,則在|交佔音 衩佳貫她例中,電磁鐵構件230分別 定位於第一和第二電漿脉玄 电在腔至202和216外面,最好是沿著 其間的分享邊界軸。這此雷 _ -電鐵凡件230感應出捕陷電子 的磁場以改善離子化過程的效率。 電子來源腔室20? A- i 最好!由定位於它與離子來源電漿 腔至2 1 6之間的絕緣構件 ,、、、隔離於離子來源電漿腔 至2 1 6,只有小夏輻射功率人 祸σ於離子來源電漿腔室216(i 19 201246263 型在10瓦的等級,其從陰極208經由孔徑214、217所形 成的共同邊界孔徑而提供)以及放電功率(其關聯於注入離 子來源電漿腔室216的電子流,典型為1〇瓦)。低量功率淳馬 合於離子來源電漿腔室216則便於維持壁溫度夠低以避免 大分子氣體解離。電子來源腔室202藉由絕緣構件226而 電隔離於離子來源電漿腔室216。 在一實施例中,離子來源電漿腔室2 1 6是以面積差不 多300平方毫米(5毫米χ60毫米)的抽取孔徑220所建構。 電子來源腔室202也是以總面積300平方毫米的栗動孔徑 2 1 2所建構《孔徑214和2 1 7所形成而由二電漿腔室所分享 的共同邊界孔徑最好具有等級在30平方毫米(4毫米χ7 5毫 米)的面積。 如之前注意的,相較於孔徑214和.217所生成的共同 邊界孔徑’電子來源電漿腔室之泵動孔徑212和離子來源 電漿腔室之抽取孔徑220的面積選擇最好為大,此導致每 個腔室202 ' 216裡有比較高的氣體純度。於典型的應用, 電子來源電渡腔冑202巾的氣體密度和離子來源電黎腔室 216 t的第二氣化矽硼烷分子密度差不多相等,使得每個電 毁腔室的氣體為大約9 〇 %那麼純。 圖9不意地示範範例性離子佈植裝置3〇〇,其利用例如 上述的雙重電漿離子來源。離子佈植設備3〇〇 (也稱為離子 佈植器)操作地耦合於控制器302以控制實施於離子佈植設 備300上的多樣操作和過程。離子佈植設備3㈧包括上述 雙重«離子來源組件遍,以產生多個離子而產生沿著離 20 201246263 子束路徑 支樓平台 等)〇 p行進的離子束3G8,用於佈植離子到握持於工件 3 12上的工件31〇 (譬如半導體工件、顯示面板… 離子來源組件306包括第一電漿腔室3丨4 (譬如電漿腔 室或電弧腔室)和笫-雷將映〜 弟一電水腔至316’其中第一電漿腔室314 疋以電漿產生構件3 1 8所措· +}. 所建構’其可以包括陰極208 (見圖 )#陽極210 (見g| 8),以從第一氣體供應器⑻而經由第 一氣體進給線322所引入第―電衆腔室3M的第-氣體來 產生電i:冑例而s ’電聚產生構件3 i 8可以另外選擇改 為包括RF感應線圈。第—氣體可以包括下列至少一者:惰 f氣體.(例如氬(Ar)和风(Xe))、標準離子佈植氣體(例如三i 化石朋(bf3)、虱化石申(AsH3)和氫化碟(pH3》、反應性氣體⑽ 如氧(〇2)和三氟化氮(nf3))。 第二電漿腔室316座落成經由第一和第二電漿腔室314 和316之間所形成的共同邊界孔徑326而流體連通於第一 電漿腔室314’其中第二電漿腔室316包含從第二氣體供應 器330而經由第二氣體進給線328所引入的第二氣體。第 —氣體包括氣化的石夕侧院分子。 第二電漿腔室316最好藉由偏壓電源供應器332而相 對於第一電漿腔室3M來說為正偏壓,則能夠從第一電渡 腔室314抽取電子而注射到第二電聚腔室316裡。當抽取 的電子碰撞第二電漿腔室3 16中的第二氣體時,它們於第 二電漿腔室316中生成電漿。抽取孔徑334乃提供於第二 電漿腔t 316以從第二電聚腔冑316 #中形成的電毁抽取 21 201246263 離子。 關聯於來源組件306的 組件3 3 1加以偏壓以從 經由抽取孔徑做抽取。 離子佈植系統300進一步包括 抽取電極組件33 1 ’其中將抽取電極 來源組件306吸引帶電的離子,而 束線組件336則進-步提供於離子來源組件_的下游, 其中束線組件336大致接收來自來源306的帶電離子。舉 例而言,束線組件336包括束導引器342、質量解析器別、 解析孔徑340,其中束線組件336可操作以沿著離子束路徑 P而傳輸離子,以便佈植到工件3 1〇裡。 舉例而言,質量解析器338進—步包括場產生構件, 例如磁鐵(未顯示),其中質量解析器338 一般提供跨過離子 束308的磁場’因此根據關聯於抽取自來源3〇6之離子的 電荷對質量比例來從在變化軌道的離子束3〇8偏折離子。 舉例而言,行進經過磁場的離子經歷到力^,其把所要的 電荷對質量比例之個別離子導向沿著束路徑p,並且把不相 :的電荷對質量比例之離子偏折離開束路徑卜一旦經過:: 里解析益338,離子束308便導向經過解析孔徑34〇,其中 離子束308可以加速、減速、聚焦或者修改以便佈植到定 位在末端站344的工件裡3 10。 由於前述單一和雙重電漿離子來源之硬體組態的結 果,舉例而言,利角來自第一電漿腔室2〇2的電子,矽硼 烷分子離子物種和其破碎的較低質量副產物則形成於第二 電漿腔室216裡,可以避免典型關聯於陰極的離子來源污 染問題,同時此種硬體的功率逸散性質能夠做到典型關聯 22 201246263 於分子態物種離子化之廣範圍的電子流離子化應用,以及 做到典型關聯於單體物種離子化的高電子流離子化應用。 典型的離子能置是在1到5〇〇千電子伏特(16〇到8〇,〇〇〇 a曰的範圍裡。雖然可以使用低於1千電子伏特(⑽aJ)的能 ΐ ’但是導致僅穿透幾奈米或更小。也可以使用更高的能 置.能夠達成5百萬電子伏特(8〇〇,_ aJ)的加速器很普通。 而經*對靶造成大的結構損傷,並且因為深度分布是 寬廣的,所以靶中任何一點的淨組成改變將會是小的。 離子的能篁以及離子物種和靶的組成決定了離子於固 體中的穿透深度:單-能量的離子束一般將具有寬廣的深 度刀布平均穿透深度稱為離子範圍^於典型的狀況,離 子範圍將在1〇奈米和㈣米之間。因此,離子佈植對於在 化學或結構的改變想要發生接近無表面的情況下是特別有 用的。隨著離子行經固體,它們逐漸喪失其能量,原因是 偶爾則里靶原子(其引起突然的能量轉移)以及由於電子軌 道重疊所造成的溫和牽引(其係連續過程)。離子於輕中喪失 能*則稱為停止。 、 每個獨立離子在衝擊時於數晶體中產生許多點缺陷, 2空缺和間隙物。空缺是未被原子所佔據的晶格點:於 广離子碰撞靶原子,導致顯著的能量轉移到靶原子, 2侍乾原子離開其晶體位置。然後此乾原子本身變成固體 原以引起接連的碰撞事件。雖然當此種原子(或 找不到空缺空間供駐 …曰格中 一點缺可以遷移和彼此團 23 201246263 聚,導致差排環和其他的缺陷。 因為離子佈植引起靶晶體的結構損傷,此經常為不想 要的,所以離子佈植處理經常接著做熱退火 損傷復心 為 ▲為了不範和描述,已經提出了本揭示之較佳實施例的 2面敘述。其並非想要是窮盡的或限制本揭示於所揭示的 ;、月確形式。#於前面的教導,有可能做出明顯的修改或變 Γ最ί擇t敘述實施例以提供本揭示之原理與其實際應用 稀眚祐’藉此使所4技術領域具有通常知識者能以多 種貫施例和多種修改來牙丨 - J用本揭不以符合所涵蓋的特殊用 途“艮據所賦予之公平、合法、公正的幅度來解讀時, 所有此種修改和變化係位於^ ^ ^ ^ ^ ^ ^ 1 決定的範圍裡。 附上之申叫專利範圍所 【圖式簡單說明】 立二::r_==i2Bi°Hi2之範例性㈣w子的 ® 2 1 〇 2疋申矽原子所佔據; 圃2 k供1,2_二甲基q 2_二 圖,直中_ 4·工μ /閉D型十二硼烷的立體 八中一十面體的位置丨和2是由 基附著於矽原子; 田夕原子所佔據’而甲 圖3提供1-甲基_丨,2_二矽閉合 其中二十面體的仞史14 玉十—硼烷的立體圖, 體的位置1和2是由矽原子 著於位置!,氫原子附著於位置2;斤佔據’而甲基附 圖4示思地示範範例性離子佈植裝置· 24 201246263 圖5示意地示範適合實施根據本揭示方法的離子佈植 裝置之單一電激離子來源的部分截面圖; 圖T思地不|a圖5的離子佈植裝置之離子化器部分 的部分截面圖; 圖7示意地示範適合實施根據本揭示方法的離子佈植 裝置之雙重電漿離子來源的等角圖; 圖8不意地示範適合實施根據本揭 裝置之雙重電漿離子來源 的截面立體圖 示方法的離子佈植 :以及 圖9示意地示範利用雙重電漿 佈植裝置。 離子來源的範例性離 子 【主要元件符號說明】 10 離子佈植裝置 12 離子來源 14 束線組件 16 靶射腔室 18 工件 20 離子束 22 質量解析器 50 單一電漿離子來源 51 氣化器 52 昇華器或掛禍 53 離子化器 54 加熱介質儲槽 25 201246263 55 加熱介質栗 56 溫度控制器 60 質流控制器 62 進給管 64 容器 66 腔穴 68 來源材料 70 加熱介質 80 加熱元件 82 入口 84 出口 86 入口 88 出口 90 鞘 92 熱偶 93 溫度回饋訊號 94 控制訊號 96 主體 98 基底或安裝凸緣 100 進入冷卻通道 102 入口 104 離開冷卻通道 106 出σ 108 離子化腔室 26 201246263 110 熱陰極 112 反陰極或排斥器 114 鎢絲 116 钥圓柱體 118 鎢末端蓋 119 離子化器入口 120 、 122 電力進.給通過器 126 來源孔徑 127 質量解析磁鐵 128 離子化腔室壁 200 雙重電漿離子來源 202 第一(.或電子來源)電漿腔室 204 電漿產生構件 206 氣體來源供應線 208 陰極 210 陽極 212 、 214 孔徑 215 電源供應器 216 第二(或離子來源)電漿腔室 217 孔徑 218 第二氣體來源供應線 219 電極 220 抽取孔徑 222 第一氣體供應入口 27 201246263 224 226 230 300 301 302 306 308 310 3 12 314 316 318 322 326 328 330 33 1 332 334 336 338 340 342 第二氣體供應入口 絕緣構件 電磁鐵構件 離子佈植裝置 第一氣體供應器 控制器 雙重電漿離子來源組件 離子束 工件 支撐平台’ 第一電漿腔室 第二電漿腔室 電漿產生構件 第一氣體進給線 共同邊界孔徑 第二氣體進給線 第二氣體供應器 抽取電極組件 偏壓電源供應器 抽取孔徑 束線組件 質量解析器 解析孔徑 束導引器 28 201246263) Carved in / original 5 0 can; sue J in 20 C to 25 0. The grade of C (±1.^^^) is known as the temperature. Compared with the end of the feed tube closest to the ionization chamber, the precise temperature control is more controllable (four) the pressure of the disaster and thus the control of the vapor The heating (4) of the outflow can also be achieved by a contact resistance heater or any other twisting method. Precise control of this temperature determines the vapor pressure of the (4) courtyard. Figures 7 and 8 demonstrate a simplified example dual electrical (four) subsource Fine, in which the dual plasma ion source, 200 is suitable for implanting borane molecules. It should be noted that for the sake of demonstration, the source of the double electro-destructive ion shown in Figures 7 and 8 is provided. It does not include all aspects of the ion source, components, For example, the dual plasma ion source 2 includes a first electrical forging chamber 2〇2, which is purely adjacent to the second electrical destruction chamber. The first electrical polymerization chamber includes a gas source supply line. 206, and constructed by the plasma generating member 2〇4 to generate electrical damage from the first source gas. The source gas is introduced into the first plasma chamber 2〇2 by the gas supply line 206. The source gas may include at least the following One. Inert gas (example Such as argon (Ar) and xenon (Xe)), standard ion implants (such as boron trifluoride (BF3), hydrogen arsenic (AsH3), hydrogen hydride (PH3)), reactive gases (such as oxygen (〇2) And nitrogen trifluoride (Νί?3^ should be aware that the source gases listed above are provided for demonstration purposes only and should not be considered to represent a complete list of all source gases that may be passed to the first plasma chamber. The slurry generating member 204 can include a cathode 208/anode 210 combination, wherein the cathode 208 can include a simple Bernas type filament configuration or an indirect 16 201246263 heated cathode. Alternatively, the plasma generating member 2〇4 includes RF sensing. A coil antenna that supports a radio frequency conducting section that is directly mounted in a gas confined chamber to deliver ionized energy to the gas ionization zone, for example, as disclosed in commonly assigned U.S. Patent No. 5,661, the disclosure of which is incorporated herein by reference. No. 8. The first (or electron source) plasma chamber 2〇2 defines an aperture 212 that forms a vacuum region into the ion implantation system (ie, where the pressure is much lower than the source of the first plasma chamber 202) Passage of gas pressure) The aperture provides a pumping aperture to maintain the source gas in high purity, as discussed further below. The electron source plasma chamber 202 also defines an aperture 214 that forms an extraction of electrons from the electron source plasma chamber 202. Aperture. In one embodiment, the extraction aperture 2M is provided in the form of a replaceable anode element 21A, as exemplified in Figure 8, and an aperture 214 is formed therein. Thus, those skilled in the art will recognize the electron. The source plasma chamber 2〇2 can be constructed to form a positively biased electrode 219 (relative to the cathode 2〇8), while attracting electrons from the plasma in a so-called non-reflective mode. Alternatively, the electrode 219 T is negatively biased with respect to cathode 208; and electrons are repelled back into electron source chamber t2()2 in a so-called reflection mode. It will be appreciated that this reflective mode configuration would require a properly biased plasma chamber wall while electrode 219 requires a rim and independent bias. As described earlier, the dual ion source 2〇〇 also includes the second sub-source chamber 216. The second ion source plasma chamber 216 includes the second? 1 source supply 'line 218 to bring the source gas into the ion source chamber""" and the second ion source smash chamber 216 is further constructed from electricity: 17 201246263 source electricity t chamber 2G2 # Electrons are received whereby plasma is generated therein by collision between the electrons and the second source gas. The second source gas comprises a boron boring molecule. The first (or ion source) plasma chamber 216 defines an aperture 2丨7 that is aligned with the extraction aperture #214 of the t-th collection cavity t202 to form a channel therebetween to allow extraction from the first plasma chamber The electrons of 2〇2 flow into the second plasma chamber 216. Preferably, the ion-sourced plasma chamber 216 is constructed to form a positively biased electrode 219, and attracts the implanted ions in a so-called non-reflective mode. The electrons from the source plasma chamber 216 generate an ionized plasma by creating a desired collision between the electron and gas molecules. Alternatively, the electrode 21'9 is negatively biased and is rendered in a so-called reflection mode. The electrons are repelled back into the ion source plasma chamber 2 16 . The extraction aperture 220 is constructed in the second plasma chamber 216 to extract ions to form an ion beam for implantation in a conventional manner. In the embodiment, the second plasma chamber t 216 is positively biased relative to the first plasma chamber 2〇2 by an external bias power supply 215. Electrons are thus extracted from the electron source plasma chamber 202 and injected into the ion source plasma chamber 216, while electrons are induced in the second plasma chamber 216 (provided by the first electrical destruction chamber 202) and Shi Xi A collision between the boron-burning molecules (supplied to the second plasma chamber 216 via the second gas source supply line 218) to generate a plasma. It should be noted that the first plasma chamber 202 and the second plasma chamber 216 may have three open boundaries, such as a gas inlet (e.g., a first gas supply inlet 222 and a second gas supply inlet 224), leading to a high vacuum region. Openings (such as pump aperture 212 and extraction aperture 220) form common boundary apertures 214 and 217 of the common channel between first and second plasma chambers 18 201246263 202 and 216, respectively. Preferably, the common boundary aperture 2 is seen in comparison to the apertures 2 1 2 and 2 2 0 (i.e., the first electrosynthesis chamber aperture 212 and the second plasma chamber aperture 220) leading to the high vacuum region. The area of 14 and 2 1 7 is kept small. In an exemplary dual plasma ion source configuration, the ion source includes a standard indirectly heated cathode (IHC) ion source manufactured and sold by Axcelis Technologies, Inc. of Beverly, Mass. A member, wherein the ion source plasma chamber comprises a standard arc chamber (constructed with a standard anode), an extraction system, a source feed tube. The internal heating cathode element of the standard IHC source was removed, and a small electronic source electric forging chamber was installed there instead, which contained components similar to those manufactured and sold by the company. Standard mc ion source, including arc chamber, standard internal heated cathode element, source feed tube. The two plasma chambers can also share the magnetic field pointed along the extraction aperture, which is available from AXCellS Technologies' standard source magnets. Provided, as indicated by reference numeral 230. The snap 7 is known to induce a vertical magnetic field in the plasma generating chamber, and the ionization process (at h _ I in this If $ electron generation process) becomes More efficient. Thus, in the case of the accommodating sound, the electromagnet members 230 are respectively positioned at the first and second plasma waves outside the chambers 202 and 216, preferably along the middle thereof. The sharing of the boundary axis. This lightning _ - electric iron piece 230 induces the magnetic field of the trapping electron to improve the efficiency of the ionization process. The electron source chamber 20? A-i best! By positioning it with the ion source Insulation between the slurry chamber and 2 16 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The resulting common boundary aperture is provided) and the discharge power (which is associated with the flow of electrons injected into the ion source plasma chamber 216, typically 1 watt). The low power hummer is coupled to the ion source plasma chamber 216. It is convenient to maintain the wall temperature low enough to avoid dissociation of the macromolecular gas. The electron source chamber 202 is electrically isolated from the ion source plasma chamber 216 by an insulating member 226. In one embodiment, the ion source plasma chamber 2 1 6 It is constructed with an extraction aperture 220 of approximately 300 square millimeters (5 mm χ 60 mm). The electron source chamber 202 is also constructed with a total aperture area of 300 mm 2 of the chestnut aperture 2 1 2 constructed by apertures 214 and 271. The common boundary aperture shared by the two plasma chambers preferably has an area of 30 square millimeters (4 mm χ 75 mm). As previously noted, the common boundary holes are generated compared to the apertures 214 and .217. The area of the pumping aperture 212 of the electron source plasma chamber and the extraction aperture 220 of the ion source plasma chamber are preferably selected to be large, which results in a relatively high gas purity in each chamber 202' 216. In a typical application, the gas density of the electron source 电 胄 202 towel is approximately equal to the molecular density of the second vaporized borane boron of the ion source chamber 216 t, such that the gas per electro-destruction chamber is approximately 9 〇. % is so pure. Figure 9 is an illustration of an exemplary ion implantation apparatus 3 that utilizes, for example, a dual plasma ion source as described above. An ion implantation apparatus 3 (also known as an ion implanter) is operatively coupled to The controller 302 controls various operations and processes implemented on the ion implantation apparatus 300. The ion implantation apparatus 3 (8) includes the above-mentioned dual «ion source component passes to generate a plurality of ions to generate an ion beam 3G8 traveling along the 2012p from 20 201246263 beam path path pedestal platform, etc., for implanting ions to the grip The workpiece 31 on the workpiece 3 12 (such as a semiconductor workpiece, a display panel... The ion source assembly 306 includes a first plasma chamber 3丨4 (such as a plasma chamber or an arc chamber) and a 笫-雷将映~ An electro-hydraulic chamber to 316' wherein the first plasma chamber 314 is constructed by a plasma generating member 3 1 . . . which may include a cathode 208 (see FIG.) # anode 210 (see g|8) The electric energy i is generated by the first gas introduced into the first electric chamber 3M from the first gas supply (8) via the first gas feed line 322: 胄 'the electropolymer generating member 3 i 8 may In addition, the choice includes an RF induction coil. The first gas may include at least one of the following: an inert gas (for example, argon (Ar) and wind (Xe)), a standard ion implant gas (for example, three i-stones (bf3),虱石石申(AsH3) and hydrogenated dish (pH3), reactive gas (10) such as oxygen (〇2) and nitrogen trifluoride ( Nf3)) The second plasma chamber 316 is seated in fluid communication with the first plasma chamber 314' via the common boundary aperture 326 formed between the first and second plasma chambers 314 and 316. The plasma chamber 316 includes a second gas introduced from the second gas supply 330 via the second gas feed line 328. The first gas includes gasified rockery side molecules. The second plasma chamber 316 is the most Preferably, by biasing the power supply 332 to be positively biased relative to the first plasma chamber 3M, electrons can be extracted from the first electrical chamber 314 and injected into the second electrical polymerization chamber 316. When the extracted electrons collide with the second gas in the second plasma chamber 3 16 , they generate plasma in the second plasma chamber 316. The extraction aperture 334 is provided in the second plasma chamber t 316 to The electrical destruction extraction 21 formed in the second electrical cavity 316 # 201246263 ions. The component 3 3 1 associated with the source component 306 is biased for extraction from the extraction aperture. The ion implantation system 300 further includes an extraction electrode assembly 33 1 . 'Where the extracted electrode source component 306 attracts charged ions, and the beam line The piece 336 is further provided downstream of the ion source assembly _, wherein the beam line assembly 336 substantially receives the charged ions from the source 306. For example, the beam line assembly 336 includes a beam guide 342, a mass resolver, and an analysis. An aperture 340, wherein the beamline assembly 336 is operable to transport ions along the ion beam path P for implantation into the workpiece 31. For example, the mass resolver 338 further includes a field generating member, such as a magnet ( Not shown), wherein the mass resolver 338 generally provides a magnetic field across the ion beam 308' thus deflecting ions from the ion beam 3〇8 in the varying orbital according to the charge-to-mass ratio associated with the ions extracted from the source 3〇6 . For example, ions traveling through a magnetic field experience a force ^, which directs the desired charge-to-mass ratio of individual ions along the beam path p, and deflects the non-phase-charge-to-mass ratio ions away from the beam path. Once passed through: lysis benefit 338, ion beam 308 is directed through resolution aperture 34, wherein ion beam 308 can be accelerated, decelerated, focused, or modified for implantation into the workpiece positioned at end station 344. As a result of the aforementioned hardware configuration of single and dual plasma ion sources, for example, the angle of interest comes from the electrons of the first plasma chamber 2〇2, the borane borane molecular ion species and its broken lower mass pair The product is formed in the second plasma chamber 216, which avoids the ion source contamination problem typically associated with the cathode, and the power dissipation property of the hardware can achieve a typical correlation 22 201246263 Range of electron flow ionization applications, as well as high electron flow ionization applications typically associated with ionization of monomer species. Typical ion energies are in the range of 1 to 5 〇〇 keV (16 〇 to 8 〇, 〇〇〇 a 。. Although energy can be used below 1 keV ((10) aJ), but only Penetrating a few nanometers or less. It is also possible to use a higher energy setting. Accelerators capable of achieving 5 million electron volts (8 〇〇, _ aJ) are common, and * cause large structural damage to the target, and Because the depth profile is broad, the net compositional change at any point in the target will be small. The energy of the ion and the composition of the ion species and target determine the depth of penetration of the ion into the solid: a single-energy ion beam Generally, the average penetration depth of a knife with a wide depth is called the ion range. In the typical case, the ion range will be between 1 nanometer and (four) meters. Therefore, ion implantation is required for chemical or structural changes. It is particularly useful in the case of near-surface-free. As ions travel through solids, they gradually lose their energy due to occasional target atoms (which cause sudden energy transfer) and mild traction due to overlapping electron orbitals. It is a continuous process.) The loss of energy in the light is called stop. Each independent ion produces many point defects in the number of crystals during impact, 2 vacancies and spacers. Vacancies are crystals that are not occupied by atoms. Grid point: The wide ion collides with the target atom, causing significant energy transfer to the target atom, and the stem atom leaves its crystal position. The dry atom itself becomes a solid original to cause successive collision events. Although such an atom (or No vacant space can be found for the station... There is a lack of space in the grid that can migrate and reunite with each other. 23 201246263 Poly, resulting in poor exhaust ring and other defects. Because ion implantation causes structural damage to the target crystal, this is often unwanted, so The ion implantation process is often followed by a thermal annealing damage reinstatement. ▲ In order to avoid the description and description, a two-faced description of the preferred embodiment of the present disclosure has been presented. It is not intended to be exhaustive or to limit the disclosure. In the previous teachings, it is possible to make obvious modifications or changes. The embodiments are described to provide the principles of the present disclosure and their practical application. You're able to make the general knowledge of the 4 technical fields able to use a variety of examples and a variety of modifications to the teeth - J use this to not meet the special purposes covered by the "fair, legal and fair When interpreting the magnitude, all such modifications and changes are within the scope of ^ ^ ^ ^ ^ ^ ^ 1 . The attached patent scope [simplified description] Li 2:: r_==i2Bi°Hi2 The exemplary (4) w sub-® 2 1 〇 2 疋 疋 矽 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The position of steric eight-octahedral 丨 and 2 is attached to the 矽 atom by the base; the Tianxi atom occupies ' and the figure 3 provides 1-methyl 丨, 2 矽 矽 closes the icosahedron仞史14 Jade-borane stereoscopic view, the position of the body 1 and 2 is the position of the cesium atom! Hydrogen atom attached to position 2; kg occupied 'and methyl FIG. 4 schematically demonstrates exemplary ion implantation apparatus · 24 201246263 FIG. 5 schematically illustrates a single electric excitation suitable for implementing an ion implantation apparatus according to the disclosed method Partial cross-sectional view of ion source; Figure T is a partial cross-sectional view of the ionizer portion of the ion implantation apparatus of Figure 5; Figure 7 schematically illustrates dual electrical power suitable for implementing the ion implantation apparatus according to the disclosed method An isometric view of the source of the slurry ions; Figure 8 is not intended to demonstrate ion implantation suitable for implementing the cross-sectional stereolithographic method of the dual plasma ion source of the present apparatus: and Figure 9 schematically illustrates the use of a dual plasma implant apparatus. Exemplary ions of ion source [Key component symbol description] 10 Ion implantation device 12 Ion source 14 Beam assembly 16 Target chamber 18 Workpiece 20 Ion beam 22 Mass analyzer 50 Single plasma ion source 51 Gasifier 52 Sublimation Or a fault 53 ionizer 54 heating medium reservoir 25 201246263 55 heating medium pump 56 temperature controller 60 mass flow controller 62 feed tube 64 container 66 cavity 68 source material 70 heating medium 80 heating element 82 inlet 84 outlet 86 Inlet 88 Outlet 90 Sheath 92 Thermocouple 93 Temperature feedback signal 94 Control signal 96 Body 98 Base or mounting flange 100 Access cooling channel 102 Inlet 104 Exit cooling channel 106 Out σ 108 Ionization chamber 26 201246263 110 Hot cathode 112 Reverse cathode Or repeller 114 tungsten wire 116 key cylinder 118 tungsten end cap 119 ionizer inlet 120, 122 power feed. passer 126 source aperture 127 mass analytical magnet 128 ionization chamber wall 200 dual plasma ion source 202 first (or electronic source) plasma chamber 204 plasma generation Piece 206 gas source supply line 208 cathode 210 anode 212, 214 aperture 215 power supply 216 second (or ion source) plasma chamber 217 aperture 218 second gas source supply line 219 electrode 220 extraction aperture 222 first gas supply inlet 27 201246263 224 226 230 300 301 302 306 308 310 3 12 314 316 318 322 326 328 330 33 1 332 334 336 338 340 342 Second gas supply inlet insulation member electromagnet member ion implantation device first gas supply controller double Plasma ion source component ion beam workpiece support platform 'first plasma chamber second plasma chamber plasma generating member first gas feed line common boundary aperture second gas feed line second gas supply extraction electrode assembly Bias power supply extraction aperture beam line component mass resolver analytical aperture beam guide 28 201246263

344 P 末端站 離子束路徑 29344 P end station ion beam path 29

Claims (1)

201246263 七、申請專利範圍: 1 · 一種佈植矽硼烷分子的方法,該方法包括: 於離子來源中氣化和離子化矽硼烷分子,以生成電喂 以及產生離子化的石夕職分子和離子化的較低 產 物; 經由來源隸而抽取電漿裡之離子化的石夕石朋烧 離子化的較低質量副產物以形成離子束; 以質量解析器磁鐵來質量解柄雜 解析離子束,以允許離子化 的…分子或所選之離子化質量的較低質量副產物由此 通過; 傳輸離子束和/或選擇性地施加額外的加速或減速電 位以設定最終能量;以及 x &amp;电 佈植離子化的石夕硼燒分子或所選之離子化質量的較低 質量副產物到工件裡。 貝里的毕乂低 2·如申請專利範圍第1項的 只J万法’其中矽硼烷分子包括 二十面體結構。 3. 如申請專利範圍第丨項 鄰鑛分子。 …,其…烧分子包括 4. 如申請專利範圍第!項的方 旳方决,其中矽硼烷分子包括 ,甲基_1,2_二石夕閉合型〜十二繼子。 化=請專利範圍第1項的方法,其中$職分子包括 ^ ' nHnSll2_nRl2_n的二十面體砂職分子,當中R是 結合於矽原子的原子或化合物。 6.如申請專利範圍第5項 囤矛貝的方法’,其中R是氫原子、 30 201246263 甲基乙基、苯基或包括前述 7·如申請專利範圍第-的組合。 大於5個硼原子。 、的方法,其中矽硼烷分子具有 8-如申凊專利範圍第i項 石朋烧分子或所選之離子化質 中佈植離子化的石夕 包括:形成點束以及機械式二广低質量副產物到工件裡 束乃正交於工件。式知描工件於至少-維,其中點 9.如申請專利範圍第丨項 删烧分子# $ 1 2 3 ,/、中佈植離子化的石夕 =:成1T離子化質量的較低質量副產物到工件裡 :“成:束以及機械式掃描工件於正交方向。 子或所選之離子化質量的較低;中佈植_分 电兹m電式掃描離子束越 &gt; 有第二機械軸。 而於正父方向上帶 其中離子來源是 其中離子來源是 其中離子來源是 其中離子來源是 n.如申請專利範圍帛1項的方法 接加熱的陰極離子來源。 / 12. 如申請專利範圍帛1項的方法 重電漿離子來源。 13. 如申請專利範圍第1項的方法 一電漿離子來源。. ^ ^ ^ ,、〜〜戍,其中於離子來 虱化和離子化矽硼烷分产 木 •氣化矽硼烷分子以及 31 1 4·如申請專利範圍第1項的方法 2 頻離子來源。 ' 3 15.如申請專利範圍第丨項的方法 201246263 子化器中離子化氣化的石夕彌烧分子。 16. 如申請專利範圍帛!項的方法,其中於離子來源中 氣化和離子化石夕職分子包括:從第一氣體產生第一電 漿;從第-電聚抽取電子;以及使電子與氣化的石夕石朋烧分 子反應,以形成包括離子化的石夕蝴燒分子和離子化的較低 質量副產物之第二電漿。 17. 如申請專利範圍第16項的方法,其中第一氣體包括 乱二…氟化蝴、氫化钟、氫化碟、氧、三氟化氮或其 組合。 18. -種佈植硼原子到工件裡的方法該方法包括·· 氣化矽硼烷分子; 離子化矽硼烷分子,以及 離子束; 及從離子來源抽取離子以形成 傳輸漂流的離子束和/哎 減速雷H — a 4擇性地施加額外的加速或 减迷電位以設定最終能量;以及 佈植具有所要的電荷對 , 里比例之所選離子到工件 裡,其中所選的離子分解成侧原子。 t到工仵 19.如申請專利範圍第18項 子包括.皙吾組批从η 方法’其中佈植所選的離 丁 ι枯.質量解析抽取的離子 „ „ θ 以選擇性佈植具有所|的雷 何對質量比例之離子。 W要的% 2〇·如申請專利範圍第18項 ' 重電漿離子來源。 ,Z,/、中離子來源是雙 21.如申請專利範圍第18項 一電漿離子來源。 / ,八中離子來源是單 32 201246263 22.如申請專利範圍第1 8項的方法,其中離子來源是射 頻衍生的離子來源。 八、圖式: (如次頁) 33201246263 VII. Scope of Application: 1 · A method for implanting borane molecules, which comprises: gasifying and ionizing a borane molecule in an ion source to generate an electrofeed and generate an ionized Shixia molecule And the lower product of ionization; extracting the ionized lower-quality by-product of ionization in the plasma from the source to form an ion beam; mass-resolving the ion-resolving ion with a mass resolver magnet Beam, to allow ionized molecules or lower quality by-products of selected ionization quality to pass therethrough; transport ion beam and/or selectively apply additional acceleration or deceleration potential to set final energy; and x &amp; Electrochemically implanted ionized Borsch-boron molecules or lower quality by-products of selected ionized mass into the workpiece. Berry's Bi Bi 2 2, as in the patent application scope 1 only J Wan method' where the borane molecule includes an icosahedral structure. 3. For example, the scope of the patent application is the same as the ore molecule. ..., its...burning molecules include 4. As claimed in the scope of patents! The formula of the term , 决 , , 矽 矽 矽 矽 矽 矽 矽 矽 矽 矽 矽 甲基 甲基 甲基 甲基 甲基 甲基 甲基 甲基 甲基 甲基 甲基 甲基 甲基= The method of claim 1 of the patent scope, wherein the occupational molecule includes ^ ' nHnSll2_nRl2_n's icosahedral sand molecule, where R is an atom or compound bound to a germanium atom. 6. The method of claim 5, wherein R is a hydrogen atom, 30 201246263 methylethyl, phenyl or a combination comprising the aforementioned 7th patent scope. More than 5 boron atoms. The method, wherein the borane borane molecule has 8 - as in the scope of the patent application, the i-th stone-burning molecule or the ionization of the ionization in the selected ionized material includes: forming a spot beam and mechanically The mass by-product into the workpiece is orthogonal to the workpiece. The formula is known to be at least-dimensional, wherein the point 9. as claimed in the scope of the patent item 删 burning molecule # $ 1 2 3 , /, the medium ionization of the ionization of Xi Xi =: the lower quality of the ionization quality of 1T By-products into the workpiece: "forming: beam and mechanical scanning of the workpiece in orthogonal direction. Sub- or selected ionization quality is lower; medium-grown _ sub-distribution m-electric scanning ion beam is more" The second mechanical axis. In the positive parent direction, the ion source is the source of the ion source in which the ion source is the source of the ion source. The source of the ion source is n. The method of the range 帛1 is the source of the heavy plasma ion. 13. As in the method of claim 1, the method of plasma ion source is . ^ ^ ^ , , ~ ~ 戍, which is used to deuterate and ionize boron Alkane fractionation • Gasification of borane borane molecules and 31 1 4 • Method 2 of the patent range 1 source ion source. ' 3 15. Method of application of the scope of the patent 201246263 ionization in the sub-ifier Gasified stone ceremonial molecules. 16. Such as The method of claim </ RTI> wherein the gasification and ionization of the ion source in the ion source comprises: generating a first plasma from the first gas; extracting electrons from the first electricity; and electrons and gasifying the stone The sulphate is reacted to form a second plasma comprising ionized smectite molecules and ionized lower mass by-products. 17. The method of claim 16, wherein the first gas comprises Chaos... Fluorinated butterfly, hydrogenated clock, hydrogenated dish, oxygen, nitrogen trifluoride or a combination thereof 18. Method for implanting boron atoms into a workpiece This method includes ·· gasification of borane molecules; ionization a borane molecule, and an ion beam; and an ion beam that extracts ions from the ion source to form a drift, and/or a decelerating thunder H - a 4 selectively applies an additional acceleration or fading potential to set the final energy; Having the desired charge pair, the ratio of selected ions to the workpiece, wherein the selected ions are decomposed into side atoms. t to the work 仵 19. As in the scope of claim 18, the 皙 组 group batch from the η method ' its The selected ions are separated from the Ding. The ions extracted by the mass analysis are „ θ θ to selectively implant the ions with the mass ratio of the Ray to the mass. W% of the required 2 〇 · as claimed in the 18th item Heavy plasma ion source., Z, /, medium ion source is double 21. For example, the source of plasma ion is in the 18th item of the patent application. / , The source of the eight ion is single 32 201246263 22. If the patent scope is 1 8 The method of the item, wherein the ion source is a source of radio frequency-derived ions. 8. Pattern: (eg, next page) 33
TW100115332A 2011-05-02 2011-05-02 Silaborane implantation processes TW201246263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100115332A TW201246263A (en) 2011-05-02 2011-05-02 Silaborane implantation processes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100115332A TW201246263A (en) 2011-05-02 2011-05-02 Silaborane implantation processes

Publications (1)

Publication Number Publication Date
TW201246263A true TW201246263A (en) 2012-11-16

Family

ID=48094532

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100115332A TW201246263A (en) 2011-05-02 2011-05-02 Silaborane implantation processes

Country Status (1)

Country Link
TW (1) TW201246263A (en)

Similar Documents

Publication Publication Date Title
TW521295B (en) Ion implantation ion source, system and method
KR101838578B1 (en) Silaborane implantation processes
Schmidt et al. Ion beams in materials processing and analysis
TWI288964B (en) Method of manufacturing CMOS devices by the implantation of N-and P-type cluster ions and negative ions
JP4749713B2 (en) Ion implantation method and semiconductor manufacturing method by implantation of borohydride cluster ions
US7528550B2 (en) Ion implantation system and control method
TWI416573B (en) Multipurpose ion implanter beam line configuration, ion implanter beam line, device providing an adjustable mass seletion aperture for an ion implanter beam line, and analyzer magnet for an ion implanter beam line
US7759657B2 (en) Methods for implanting B22Hx and its ionized lower mass byproducts
US20070178679A1 (en) Methods of implanting ions and ion sources used for same
US20070178678A1 (en) Methods of implanting ions and ion sources used for same
EP1945832A1 (en) Dual mode ion source for ion implantation
EP2426692A2 (en) Ion source
WO2002071816A2 (en) Improved double chamber ion implantation system
US8350236B2 (en) Aromatic molecular carbon implantation processes
TWI334196B (en) Method of manufacturing cmos devices by the implantation of n- and p- cluster ions and negative ions
Current Ion implantation for fabrication of semiconductor devices and materials
TW201246263A (en) Silaborane implantation processes
TWI263249B (en) An ion implantation device and a method of semiconductor manufacturing by the implantation of boron hydride cluster ions
Perel et al. A decaborane ion source for high current implantation
Schmidt et al. Ion Beam Technology
Rüdenauer et al. Ion Beam Devices for Material Processing and Analysis
US8283638B2 (en) Method for preparing ion source from nanoparticles
Chen et al. Ion beam technologies for the 20nm technology node, 450mm wafer processes, and beyond
Brown Rare-earth doping by ion implantation and related techniques
Vella Charge exchange molecular ion source