201245667 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種導航裝置的模擬導航方法,特別 是指一種導航裝置的互動式模擬導航方法。 【先前技術】 現有導航裝置為了提供使用者更便利的導航路徑預覽 功能,提供模擬導航模式供使用者選擇。在模擬導航模式 下,導航裝置接收使用者輸入的起始地及目的地之後,即 直接播放模擬導航畫面。該模擬導航畫面顯示一代表使用 者車輛的圖標,該圖標在規劃路徑上以特定速度移動;目 月’J有些導航糸統還it供調整έ亥圖標在規劃路徑上之移動速. 度的功能。 對於不熟悉路徑的使用者而言,導航裝置之模擬導航 功能可以讓使用者預先了解路口處的行駛路徑,確保行車 安全。然而,現有模擬導航機制單調,使用者僅被動觀看 模擬導航晝面’容易忽略或錯過某些路口的轉彎或切換車 道等資訊。因此,現有模擬導航模式對使用者的幫助有限 0 【發明内容】 因此,本發明之目的,即在提供一種互動式模擬導航 方法,讓使用者透過實際操作導航裝置前傾、後傾、左傾 或右傾而控制模擬導航畫面中代表車輛的圖標移動,藉此 讓使用者模擬行敬導航路徑以確保行車安全。 於疋’本發明互動式模擬導航方法是利用一導航裝置 201245667 執行,該導航裝置具有一用以感應該導航裝置自身之運動 狀態而產生一運動資訊的感測單元,該互動式模擬導航方 法包含以下步驟: (a )啟動一模擬導航模式,顯示一模擬導航畫面,該 模擬導航畫面中標示有—導航路徑及—代表車輛的圖標。 (b) 接收該感測單元輸出的運動資訊。 (c) 依據該運動資訊換算產生一代表該導航裝置自身 繞一軸線旋轉的旋轉值。 (d) 判斷該旋轉值是否超出一預設值若是則使該 圖標在該模擬導航畫面中朝一與該旋轉值相關的預設方向 移動。 前述軸線可以單指垂直穿出該導航裝置之顯示幕的軸 線;該步驟(d)當判斷該旋轉值超出一正的預設值,該預 設方向是指朝右;當判斷該旋轉值超出一負的預設值,該 預設方向是指朝左。 當然,本發明也可以接收感測單元輸出二軸以上的運 動資訊。因此,步驟(c)可以是依據該運動資訊換算產生 代表該導航裝置自身繞一第一軸線旋轉的第一旋轉值, 及產生一代表該導航裝置自身繞一第二軸線旋轉的第二旋 轉值。例如,該第一軸線是指垂直穿出該導航裝置之顯示 幕的軸線,該第二轴線是指橫向穿過該導航裝置且與該第 一轴線垂直的軸線;該步驟(d)當判斷該第一旋轉值超出 一正的預設值,該預設方向是指朝右,當判斷該第一旋轉 值超出一負的預設值,該預設方向是指朝左;當判斷該第 201245667 二旋轉值超出一正的預設值,該預設方向是指朝前,當判 斷超出一負的預設值,該預設方向是指朝後。 前述感測單元可以僅包括一陀螺儀,該運動資訊是一 角速度值;該步驟(c )對該角速度值積分得到代表該導航 裝置自身繞該軸線旋轉的角度。 前述感測單元也可以僅包括一重力感測器,該運動資 疋一重力加速度值;該步驟(c)對該重力加速度值利用 二角函數轉換得到代表該導航裝置自身繞該軸線旋轉的角 度。 當然’前述感測單元也可以同時包括陀螺儀及重力感 測器。 有關步驟(d ),可以進一步詳細地判斷該旋轉值是否 超出一第一預設值;若否,則不改變該圖標的狀態,若是 ,則判斷該旋轉值是否超出一超出該第一預設值的第二預 设值;若否,使該圖標以一第一速度在該模擬導航畫面中 朝該預設方向移動,若是,則使該圖標以一超出該第一速 度的第二速度在該模擬導航畫面中朝該預設方向移動。 更進一步,該步驟(a)的模擬導航模式,是使該圖標 以一預定速度在該導航路徑上前進;該步驟(d)中若判斷 該旋轉值超出該第一預設值或第二預設值,該圖標在該模 擬導航畫面中以第一速度或第二速度朝該預設方向加速移 動或偏離該導航路徑,該第一速度或第二速度皆大於該預 定速度。 有關步驟(d ),還可以是判斷該旋轉值是否維持超出 201245667 該預設值達-預設時間’若是,才使該圖標在該模擬導航 畫面中朝該預設方向移動。 更進-步,該步驟⑴的模擬導航模式,是使該圖標 以一預定速度在該導航路徑上前進;該步驟中若判斷 該旋轉值超出該預設值達該預設時間,言亥圖標纟該模擬導 航畫面中朝該預設方向加速移動或偏離該導航路徑。更進 步,本發明互動式模擬導航方法還包含一步驟(e)判斷 該圖標是否在該導航路徑上,若否,則重新規劃路徑再 回到步驟(a)的顯示模擬導航畫面,並持續執行步驟(b) 至⑷。 本發明之再一目的,在於提供一種電腦程式產品,當 一導航裝置載入該電腦程式產品並執行後,可完成前述互 動式模擬導航方法。 本發明之另一目的,在於提供一種導航裝置,使用者 可透過實際操作導航裝置前傾、後傾、左傾或右傾而控制 模擬導航畫面中代表車輛的圖標移動,藉此讓使用者模擬 行駛導航路徑以確保行車安全。 該導航裝置包含一模擬導航單元、一顯示幕、一感測 單元及一處理單元。 一模擬導航單元接收一起始地資訊及一目的地資訊, 並執行路徑規劃後產生一模擬導航畫面,該模擬導航畫面 中標不有一導航路徑及一代表車輛的圖標。顯示幕顯示該 模擬導航畫面。感測單元感應該導航裝置自身之運動狀態 而產生一運動資訊。處理單元依據該運動資訊換算產生一 201245667 代表該導航裝置自身繞一轴線旋轉的旋轉值’並判斷該旋 轉值是否超出一預設值’若是,則使該圖標在該模擬導航 畫面中朝一與該旋轉值相關的預設方向移動。 本發明之功效在於’讓使用者能在規劃路徑後,利用 前傾、後傾、左傾或右傾導航裝置,使模擬導航晝面中的 圖標加速移動或偏離導航路徑,提供使用者新的體驗。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之一個較佳實施例的詳細說明中,將可 清楚的呈現。 在本發明被詳細描述之前,要注意的是,在以下的說 明内容中,類似的元件是以相同的編號來表示。 參閱圖1,本發明導航裝置100之第一較佳實施例包含 模擬導航單元1、一顯示幕2、一感測單元4及一處理單 tl 3。本實施例之感測單元4包括一陀螺儀41。處理單元3 内建有計時器31。 配合參閱圖2’當導航裝置ι〇〇被操作而啟動一模擬導 航模式,關始執行本發明互動式模擬導航方法,該方法 包含以下步驟。 步驟SU —模擬導航單元1接收由使用者操作輸入的-起始地資訊及一目的地資訊。 步驟S12-模擬導航單元丨開始執行路徑規劃。 步驟S13—模擬導航單元1產生-如圖3所示的模擬導 航畫面1G,並使該顯示幕2顯示之。該模擬導航畫面10中 201245667 標不有一導航路徑51及一代表車輛的圖標52。該圖標52 在模擬導航畫面10中從起始地開始以一預定速度在導航路 徑51上前進,藉此讓使用者觀看及了解導航路徑51。此外 ,由於本發明提供的是互動式的模擬導航方法因此圖標 52初始的運動狀態不以前述為限,亦可設計為一開始圖標 52位於導航路徑51的起始地且靜止不動,完全由使用者操 控圖標52移動狀態》 本實施例僅以圖標52以一預定速度在導航路徑51前 進的模式舉例說明,使用者可透過實際操作導航裝置1〇〇 前傾、後傾、左傾或右傾而使模擬導航畫面中的圖標52 加速移動或偏離導航路徑51 ;藉此,導航裝置100的模擬 導航不再是單純播放模擬導航畫面,而是讓使用者操控圖 標52,以互動的方式在實際出發前模擬行車。 步驟S21 —當使用者操作導航裝置i〇〇,使導航裝置 1〇〇繞一第一轴線A1前傾、後傾,或繞一第二軸線A2左 傾或右傾,感測單元4之陀螺儀41會針對繞各軸線A1、 A2的運動狀態輸出代表一角速度值的訊號,處理單元3則-接收該訊號而獲知角速度值。前述第一轴線A1是指垂直穿-出該導航裝置100之顧示幕2的轴線,該第二軸線A2是指 橫向穿過該導航裝置100且與該第一軸線A1垂直的軸線。 步驟S22—處理單元3對各該角速度值積分得到代表該 導航裝置100自身繞對應軸線旋轉的角度。參閱圖4,圖中 折線61代表陀螺儀41輸出的角速度值,折線62則代表處 理單元3積分後的角度,以下稱旋轉值。 201245667 -預3判斯該旋轉值是否持續超出-第 門設時間,該第—預設值例如咖。,預設時 若是’則進行步驟s24;若否,則視為平放 步驟S24-處理單元3繼續判斷該旋轉值是否維持超出 一第二預設值達-預設時間,該第二預設值例如+6()。;若 否,代表旋轉值介於+30。〜+60。之間,或介於_3〇。〜_6〇。之門 ,則進行步驟心若是’代表旋轉值超出±6〇 驟 S26。 步驟S25—使圖標52在該模擬導航晝面1〇中以一第_ 速度朝-與該旋轉值相關的預設方向移動1第—速度大 於圖標52原本在導航路徑51上前進的預定速度。 步驟S26-使圖標52在該模擬導航畫面1〇中以一大於 第一速度的第二速度朝預設方向移動。 有關步驟S25及S26詳細來說,當該旋轉值是繞第— 轴線Ai所產生且介於+30。〜+6〇。之間,則該預設方向是指 朝右;當該旋轉值是繞第一軸線A1所產生且介於_3〇。…6〇。 之間,則該預設方向是指朝左。當該旋轉值是繞第二軸線 A2所產生且介於+30〜+60。之間,則該預設方向是指朝前 :當該旋轉值是繞第二軸線A2所產生且介於_3〇。〜_6〇。之間 ’則該預設方向是指朝後。 藉此,模擬導航晝面1〇中的圖標52不只是按照預定 速度在導航路徑51上前進,使用者可操控導航裝置1〇〇而 改變圖標52的運動狀態,使其左轉、右轉或前行、後退。 201245667 步驟S31-接著,處理單元3還判斷圖標52是否在導 航路徑51上?若是,則執行步驟S41 ;若否,則代表模擬 行.驶已經偏離導航路徑5卜就如同實際駕駛時錯誤辨識指 令而駛離導航路徑,此時模擬導航單元丨執行步驟S32而 重新規劃路徑,之後回到步驟S13。使用者可藉此事先得知· 實際使用導航系統100於某路段未依照規劃路徑行駛時, 導航系統100的反應》 步驟S41 —最後,判斷圓標52是否抵達模擬導航畫面 10中的目的地,若是,則結束模擬導航模式;若否,則回 到步驟S21持續接收運動資訊。 參閱圖5及圖6,本發明第二較佳實施例與第一較佳實 施例的差異在於,感測單元4是包括一重力感測器42,因 此在執行的流程方面,第一較佳實施例的步驟S2丨及 改成步驟S21’及S22’ ’其餘流程則不變,因此以下僅針對 步驟S21’及S22’詳述如下,未改變的流程不予贅述。 步驟S21’一感測單元4之重力感測器42針對繞各軸線 A1、A2的運動狀態輸出代表一重力加速度值的訊號,處理 單元3則接收該訊號而獲知重力加速度值^ 步驟S22’一處理單元3對各該重力加速度值利用三角 函數轉換得到代表該導航裝置1〇〇自身繞對應軸線旋轉的 角度。 配合參閱圓6,以導航裝置100繞第一轴線A1旋轉的 運動狀態舉例來說’平放時’重力感測器42輸出之訊號所 代表重力加速度值為〇g,g = 9.8m/s2。當導航裝置1〇〇繞第201245667 VI. Description of the Invention: [Technical Field] The present invention relates to an analog navigation method for a navigation device, and more particularly to an interactive analog navigation method for a navigation device. [Prior Art] The existing navigation device provides an analog navigation mode for the user to select in order to provide a more convenient navigation path preview function for the user. In the simulated navigation mode, after the navigation device receives the start and destination of the user input, the analog navigation screen is directly played. The simulated navigation screen displays an icon representing the user's vehicle, and the icon moves at a specific speed on the planned path; the visual month 'J some navigation system is also used to adjust the moving speed of the icon on the planned path. . For users who are not familiar with the path, the navigation function of the navigation device allows the user to know the driving path at the intersection in advance to ensure safe driving. However, the existing analog navigation mechanism is monotonous, and the user only passively watches the analog navigation surface. It is easy to ignore or miss the turn of some intersections or switch the lanes. Therefore, the existing analog navigation mode has limited help to the user. [Invention] Therefore, an object of the present invention is to provide an interactive analog navigation method for allowing a user to lean forward, backward, left, or The right tilt controls the movement of the icon representing the vehicle in the simulated navigation screen, thereby allowing the user to simulate the navigation path to ensure driving safety. The interactive analog navigation method of the present invention is implemented by using a navigation device 201245667, which has a sensing unit for sensing the motion state of the navigation device itself to generate a motion information, and the interactive analog navigation method includes The following steps: (a) Start a simulated navigation mode to display a simulated navigation screen with a navigation path and an icon representing the vehicle. (b) receiving motion information output by the sensing unit. (c) generating a rotation value representative of the rotation of the navigation device about an axis based on the motion information conversion. (d) determining whether the rotation value exceeds a preset value, if so, causing the icon to move in the simulated navigation screen in a predetermined direction associated with the rotation value. The foregoing axis may be a single finger that vertically passes through the axis of the display screen of the navigation device; and the step (d) determines that the rotation value exceeds a positive preset value, the preset direction refers to the right; when it is determined that the rotation value is exceeded A negative preset value, which refers to the left. Of course, the present invention can also receive the motion information of the sensing unit output above two axes. Therefore, step (c) may be based on the motion information conversion to generate a first rotation value representing the navigation device itself rotating about a first axis, and generating a second rotation value representing the navigation device itself rotating about a second axis. . For example, the first axis refers to an axis that vertically passes through the display screen of the navigation device, and the second axis refers to an axis that passes transversely through the navigation device and is perpendicular to the first axis; the step (d) is Determining that the first rotation value exceeds a positive preset value, the preset direction means pointing to the right, when determining that the first rotation value exceeds a negative preset value, the preset direction means pointing to the left; No. 201245667 The second rotation value exceeds a positive preset value, which refers to the forward direction. When the judgment exceeds a negative preset value, the preset direction refers to the backward direction. The sensing unit may include only a gyroscope, and the motion information is an angular velocity value; and the step (c) integrates the angular velocity value to obtain an angle representing the navigation device itself rotating about the axis. The sensing unit may also include only a gravity sensor, the motion is a gravitational acceleration value; and the step (c) converts the gravitational acceleration value by a dihedral function to obtain an angle representing the navigation device itself rotating about the axis. . Of course, the aforementioned sensing unit may also include a gyroscope and a gravity sensor. In step (d), it may be further determined in detail whether the rotation value exceeds a first preset value; if not, the state of the icon is not changed, and if yes, it is determined whether the rotation value exceeds a first preset a second preset value of the value; if not, causing the icon to move toward the predetermined direction in the simulated navigation screen at a first speed, and if so, causing the icon to be at a second speed that exceeds the first speed The simulated navigation screen moves toward the preset direction. Further, the simulated navigation mode of the step (a) is to advance the icon on the navigation path at a predetermined speed; if the rotation value exceeds the first preset value or the second pre-determination in the step (d) a value is set, the icon is accelerated or deviated from the navigation path at the first speed or the second speed in the simulated navigation screen, and the first speed or the second speed is greater than the predetermined speed. In step (d), it may also be determined whether the rotation value is maintained beyond 201245667. The preset value reaches - preset time'. If so, the icon is moved in the preset direction in the simulated navigation screen. Further, the simulated navigation mode of the step (1) is to advance the icon on the navigation path at a predetermined speed; if it is determined in the step that the rotation value exceeds the preset value for the preset time, the icon is spoken加速 The simulated navigation screen accelerates or deviates from the navigation path toward the preset direction. Further, the interactive analog navigation method of the present invention further comprises a step (e) determining whether the icon is on the navigation path, and if not, re-planning the path and returning to the display simulation navigation screen of step (a), and continuing to execute Steps (b) to (4). It is still another object of the present invention to provide a computer program product which, when loaded into a computer program product by a navigation device, can perform the aforementioned interactive analog navigation method. Another object of the present invention is to provide a navigation device that allows a user to control the movement of an icon representing a vehicle in a simulated navigation screen by actually operating the navigation device to tilt forward, backward, left, or right, thereby allowing the user to simulate driving navigation. Path to ensure safe driving. The navigation device comprises an analog navigation unit, a display screen, a sensing unit and a processing unit. An analog navigation unit receives an initial location information and a destination information, and performs path planning to generate a simulated navigation screen. The simulated navigation screen does not have a navigation path and an icon representing the vehicle. The display shows the simulated navigation screen. The sensing unit senses the motion state of the navigation device itself to generate a motion information. The processing unit generates a 201245667 representing the rotation value of the navigation device itself rotating around an axis according to the motion information conversion and determining whether the rotation value exceeds a preset value. If yes, the icon is displayed in the simulated navigation screen. The preset direction of the rotation value is moved. The effect of the present invention is to enable the user to use the forward tilting, backward tilting, left tilting or right tilting navigation device after the planning path to accelerate or deviate the icon in the simulated navigation surface to provide a new experience for the user. The above and other technical contents, features, and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments. Before the present invention is described in detail, it is noted that in the following description, similar elements are denoted by the same reference numerals. Referring to Figure 1, a first preferred embodiment of the navigation device 100 of the present invention includes an analog navigation unit 1, a display screen 2, a sensing unit 4, and a processing unit tl 3. The sensing unit 4 of the embodiment includes a gyroscope 41. The processing unit 3 has a built-in timer 31. Referring to Fig. 2', when the navigation device ι is operated to initiate a simulated navigation mode, the interactive analog navigation method of the present invention is executed, and the method includes the following steps. Step SU - The analog navigation unit 1 receives the start-to-start information and a destination information input by the user. Step S12 - Simulating the navigation unit 丨 starting to perform path planning. Step S13 - The analog navigation unit 1 generates - the simulated navigation screen 1G as shown in Fig. 3, and causes the display screen 2 to display it. In the simulated navigation screen 10, 201245667 does not have a navigation path 51 and an icon 52 representing the vehicle. The icon 52 advances on the navigation path 51 at a predetermined speed from the start in the simulated navigation screen 10, thereby allowing the user to view and understand the navigation path 51. In addition, since the present invention provides an interactive analog navigation method, the initial motion state of the icon 52 is not limited to the foregoing, and may also be designed such that the start icon 52 is located at the beginning of the navigation path 51 and is stationary, completely used. The user controls the icon 52 to move the state. This embodiment exemplifies only the mode in which the icon 52 advances at the navigation path 51 at a predetermined speed. The user can actually move the navigation device 1 forward, backward, left, or right. The icon 52 in the simulated navigation screen accelerates or deviates from the navigation path 51; thereby, the simulated navigation of the navigation device 100 is no longer simply playing the simulated navigation screen, but the user is allowed to manipulate the icon 52 in an interactive manner before the actual departure. Simulated driving. Step S21 - When the user operates the navigation device i, the navigation device 1 is tilted forward and backward about a first axis A1, or tilted left or right around a second axis A2, the gyroscope of the sensing unit 4 41 will output a signal representing an angular velocity value for the motion state around each of the axes A1, A2, and the processing unit 3 will receive the signal to obtain the angular velocity value. The aforementioned first axis A1 refers to an axis that passes through the screen 2 of the navigation device 100 vertically, and the second axis A2 refers to an axis that passes through the navigation device 100 and is perpendicular to the first axis A1. Step S22 - The processing unit 3 integrates each of the angular velocity values to obtain an angle representing that the navigation device 100 itself rotates about the corresponding axis. Referring to Fig. 4, the broken line 61 represents the angular velocity value output by the gyro 41, and the broken line 62 represents the angle after the integration of the processing unit 3, hereinafter referred to as the rotational value. 201245667 - Pre-3 judges whether the rotation value continues to exceed - the gate time, the first preset value such as coffee. If it is preset, then step s24 is performed; if not, it is regarded as a flat step S24 - the processing unit 3 continues to determine whether the rotation value is maintained beyond a second preset value for a preset time, the second preset The value is for example +6(). ; if no, the representative rotation value is between +30. ~+60. Between, or between _3〇. ~_6〇. If the door is the step, if the step is 'representing the rotation value exceeds ±6〇 S26. Step S25 - causing the icon 52 to move 1 in the simulated navigation plane 1 to a predetermined direction associated with the rotation value at a _ speed greater than a predetermined speed at which the icon 52 is originally advanced on the navigation path 51. Step S26 - causing the icon 52 to move in the preset direction in the simulated navigation screen 1 以 at a second speed greater than the first speed. In detail, with respect to steps S25 and S26, when the rotation value is generated around the first axis Ai and is between +30. ~+6〇. Between the two, the preset direction means to the right; when the rotation value is generated around the first axis A1 and is between _3 〇. ...6〇. Between, then the preset direction means to the left. When the rotation value is generated around the second axis A2 and is between +30 and +60. Between, then the preset direction means forward: when the rotation value is generated around the second axis A2 and is between _3 〇. ~_6〇. Between 'the default direction means backwards. Thereby, the icon 52 in the simulated navigation plane 1 is not only advanced on the navigation path 51 according to the predetermined speed, and the user can control the navigation device 1 to change the motion state of the icon 52 to make it turn left, turn right or Go forward and back. 201245667 Step S31 - Next, the processing unit 3 also determines whether the icon 52 is on the navigation path 51. If yes, go to step S41; if no, it means to simulate the line. The driving has deviated from the navigation path 5, just like the actual driving error recognition command and leave the navigation path. At this time, the simulated navigation unit performs step S32 to re-plan the path. Then, it returns to step S13. The user can know in advance that the navigation system 100 reacts when the navigation system 100 is actually used in a certain section without following the planned route. Step S41 - Finally, it is determined whether the circle 52 reaches the destination in the simulated navigation screen 10. If yes, the simulated navigation mode is ended; if not, the process returns to step S21 to continuously receive the motion information. Referring to FIG. 5 and FIG. 6, the difference between the second preferred embodiment of the present invention and the first preferred embodiment is that the sensing unit 4 includes a gravity sensor 42. Therefore, in terms of the flow of execution, the first preferred Step S2 of the embodiment and the steps S21' and S22' are not changed. Therefore, the following steps are only described in detail for steps S21' and S22', and the unmodified flow will not be described again. Step S21' The gravity sensor 42 of the sensing unit 4 outputs a signal representing a gravity acceleration value for the motion state of each axis A1, A2, and the processing unit 3 receives the signal to obtain the gravity acceleration value. Step S22' The processing unit 3 converts each of the gravitational acceleration values by a trigonometric function to obtain an angle representing that the navigation device 1 itself rotates about the corresponding axis. Referring to the circle 6, the movement state of the navigation device 100 rotating about the first axis A1, for example, the signal outputted by the gravity sensor 42 when the 'flat-flat' is 〇g, g = 9.8 m/s2 . When the navigation device 1 lingers
S 10 201245667 一軸線A1旋轉90°而直立’重力感測器42輸出的訊號所代 表重力加速度值為lg。利用二角函數可得知以下關係, sin(0°)=0 ; sin(30°)=0.5 ; sin(90°)=i。因此,當導航裝置 100繞第一轴線A1旋轉+30°,即代表右傾3〇。;反之,繞 第一轴線旋轉-30°即代表左傾30° 值得一提的是’本發明在實作上,也可以同時採用陀 螺儀41及重力感測器42輸出的運動資訊,且換算出旋轉 值之後兩者相互校正或運算出平均值,在執行後續步驟, 藉此提高穩定度。 綜上所述,本發明導航裝置100及互動式模擬導航方 法利用陀螺儀41或重力感測器42來感測使用者的操作行 為,使用者因此可藉由控制導航裝置前傾、後傾、左傾或 右傾而控制模擬導航畫面1〇中代表車輛的圖標52的運動 狀態,達到互動的效果,藉此讓使用者模擬行駛導航路徑 以確保行車安全,故確實能達成本發明之目的。 惟以上所述者,僅為本發明之較佳實施例而已,當不 Sb以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是一系統方塊圖,說明本發明導航裝置之第一較 佳實施例的系統架構; 圖2疋一流程圖,說明本實施例執行之互動式模擬導 航方法; 201245667 圖3是一示意圖,說明導航裝置繞一第一軸線旋轉及 繞一第二軸線旋轉的運動狀態; 圖4是一示意圖,說明本實施例中陀螺儀感測的角速 度值及處理單元積分後的速度值; 圖5是一系統方塊圖,說明本發明導航裝置之第二較 佳實施例的系統架構; 圖6是一流程圖,說明本實施例執行之互動式模擬導 航方法;及 圖7是一示意圖,說明導航裝置繞一第一軸線旋轉時 ,重力感測器所感測的重力加速度值的變化。S 10 201245667 One axis A1 is rotated by 90° and the signal output by the upright 'gravity sensor 42 represents a gravitational acceleration value of lg. Using the two-angle function, the following relationship can be known, sin(0°)=0; sin(30°)=0.5; sin(90°)=i. Therefore, when the navigation device 100 is rotated +30° about the first axis A1, it represents a right tilt of 3 〇. Conversely, rotating -30° around the first axis means 30° left. It is worth mentioning that 'the invention is implemented, and the motion information output by the gyroscope 41 and the gravity sensor 42 can be simultaneously used, and the conversion is performed. After the rotation value is output, the two are mutually corrected or calculated as an average value, and the subsequent steps are performed, thereby improving the stability. In summary, the navigation device 100 and the interactive analog navigation method of the present invention utilize the gyroscope 41 or the gravity sensor 42 to sense the user's operation behavior, and the user can thereby control the navigation device to lean forward and backward, The leftward or rightward tilt controls the motion state of the icon 52 representing the vehicle in the simulated navigation screen 1 to achieve an interactive effect, thereby allowing the user to simulate the driving navigation path to ensure driving safety, and thus the object of the present invention can be achieved. However, the above is only a preferred embodiment of the present invention, and Sb is not intended to limit the scope of the present invention, that is, simple equivalent changes and modifications made in accordance with the scope of the present invention and the description of the invention. All remain within the scope of the invention patent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a system block diagram illustrating a system architecture of a first preferred embodiment of a navigation device of the present invention; FIG. 2 is a flow chart illustrating an interactive analog navigation method performed by the present embodiment; 201245667 3 is a schematic view showing a state in which the navigation device rotates about a first axis and rotates around a second axis; FIG. 4 is a schematic view showing the angular velocity value sensed by the gyroscope and the integral of the processing unit in the embodiment. Figure 5 is a system block diagram illustrating the system architecture of the second preferred embodiment of the navigation device of the present invention; Figure 6 is a flow chart illustrating the interactive analog navigation method performed by the present embodiment; and Figure 7 is A schematic diagram illustrating changes in the gravitational acceleration value sensed by the gravity sensor as the navigation device rotates about a first axis.
S 12 201245667 【主要元件符號說明】 100… •…導航裝置 52.........圖標 10·.··· •…模擬導航晝面 61、6 2 · ·折線. 1…… •…模擬導航單元 A1 ........第 轴線 2…… •…顯示幕 A2........第二軸線 3…… •…處理單元 S11〜S13步驟 31…·· •…計時器 S21〜S26步驟 4…… •…感測單元 S21’〜S22’步驟 41··..· •…陀螺儀 S31〜S32步驟 42···.. —重力感測器 S 41.......步驟 51 ·..·· •…導航路徑 13S 12 201245667 [Explanation of main component symbols] 100... •...Navigation device 52.........Icon 10·.··· • Simulated navigation surface 61, 6 2 · · Polyline. 1... • ...simulating navigation unit A1 ........the axis 2...•...display screen A2........second axis 3...•...processing unit S11~S13 step 31...·· •...Timer S21~S26 Step 4... •...Sensor unit S21'~S22'Step 41·····...Gyro S31~S32 Step 42···..——Gravity Sensor S 41. ...Step 51 ·..·· •...Navigation path 13