TW201245642A - Fiber-based transmission system for solar energy system and method of providing and using the same - Google Patents

Fiber-based transmission system for solar energy system and method of providing and using the same Download PDF

Info

Publication number
TW201245642A
TW201245642A TW101101325A TW101101325A TW201245642A TW 201245642 A TW201245642 A TW 201245642A TW 101101325 A TW101101325 A TW 101101325A TW 101101325 A TW101101325 A TW 101101325A TW 201245642 A TW201245642 A TW 201245642A
Authority
TW
Taiwan
Prior art keywords
solar
receiver
fiber optic
concentrated
reflector
Prior art date
Application number
TW101101325A
Other languages
Chinese (zh)
Other versions
TWI595198B (en
Inventor
John S Fangman
Original Assignee
Cewa Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cewa Technologies Inc filed Critical Cewa Technologies Inc
Publication of TW201245642A publication Critical patent/TW201245642A/en
Application granted granted Critical
Publication of TWI595198B publication Critical patent/TWI595198B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4298Coupling light guides with opto-electronic elements coupling with non-coherent light sources and/or radiation detectors, e.g. lamps, incandescent bulbs, scintillation chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/12Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/71Arrangements for concentrating solar-rays for solar heat collectors with reflectors with parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/80Arrangements for concentrating solar-rays for solar heat collectors with reflectors having discontinuous faces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Photovoltaic Devices (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

In some embodiments, a solar energy system can include: (a) at least one solar collector, the at least one solar collector having: (1) one or more fiber optic cables; (2) a receiver with focusing optics configured to focus solar radiation into the one or more fiber optic cables; and (3) at least one concentrating reflector configured to re-direct the solar radiation to the receiver; and (b) one or more converting elements coupled to the one or more fiber optic cables, the one or more converting elements configured to convert the solar radiation into one or more other forms of energy. Other embodiments are disclosed.

Description

201245642 六、發明說明: 【發明所屬之技術領域】 本發明總體上涉及一太%能系统,並且 太陽能收集器與遠端定位的轉換元件之間二广在 應用,以及提供並使用該光纖束的方法。、光纖束的 相關申請的交又引用 日提交的美國臨時申 本申請要求對2011年1月14 請號61/432,955的利益。 【先前技術】 太陽能_技術主要有四個類別。稱為被 能裝置的第-類技術採用具有簡單地由人射太陽= 加熱的、在下面延伸的多條管道的太陽能加熱器和^頂 太陽能板的形式;熱傳遞刻經過被動式太陽能裝置的流 體或空氣。但是,被動的太陽輻射強度通常太低,不能 直接用於在尚溫和壓力下需要熱的大多數應用(如運 行HVAC、工業過程熱、滿輪機等)。另一類太陽能技 術採用包含半導體裝置的平板太陽能光伏(PV )電池 的形式。該等裝置將入射太陽輻射直接轉換成電,·電能 輸出係PV電池陣列的面積的直接函數。 太陽能“聚光器,,被視為另一類並且被設計為將入 射太陽輻射從大的區域反射到更小的聚焦區域上,以便 集中(收集)太陽輻射以產生可以傳遞給在聚焦區域處 擔ί哀的流體的大量熱(從而達到更南的溫度和壓力)’ 適合用於需要所希望的品質的熱的不同應用,如工業過 201245642 程熱、HVAC加熱和冷卻、脫鹽、脫水等,或用於生產 蒸汽以驅動渦輪機從而產生電。 最近,已經探索了一混合動力技術,其中將太陽能 收集器與一特殊類型的PV電池結合使用;太陽能集中 技術將高強度太陽輻射光束引導到在收集器的聚焦區 域處的、專用的、小數目的光伏電池(稱為聚光器PV 電池)上。因此,與PV電池結合的集中式太陽能收集 器具有超過平板收集器的優勢,即它們利用實際上更小 量的半導體材料,同時還在產生電能方面更有效率。 在任何情況下,太陽能聚光器技術無論是在需要熱 或電還是這兩者的應用中都是最廣泛地有用的。與被動 式太陽能技術或PV電池技術相比,太陽能聚光器以低 成本和高效率提供了熱。 無論採用什麼類型的太陽能聚光器或收集器,大多 數常規系統都用接收性光學器件來定位實際的“接收結 構”(PV電池、熱/流體元件)。其結果係,該接收結構 必要地暴露在外界中,並且遭受損壞、環境老化問題等 等。 相應地,對於允許保護接收結構免受環境影響並且 允許更有效的以及較低成本的太陽能利用技術的一裝 置或系統存在需要或人們有可能從中收益。 【發明内容】 為了說明的簡明性及明晰性,附圖僅展示了 一般的 5 201245642 構造方式,並且可能省略了公知的特徵與工藝的描述和 細節以避免不必要地混淆本發明。另外地’在附圖中的 元件沒有必要按比例繪製。例如,在附圖中某些元件的 尺寸相對於其他元件可以是過大的,以說明增強對本發 明實施方式的理解。在不同附圖中的相同參考標號指代 相同的元件。 如果在說明書與申請專利範圍中有“第一,,、‘‘第 二第三”和“第四”及類似術語,其僅用於在類似元 件之間進行區分但並非必然地用於描述特定的序列或 時間順序。應當理解地是,在適當的情況下所使用的術 語係可以互換的,這樣使得在此描述的實施方式例如能 夠以除那些在此說明的或以其他方式描述的以外的順 序工作。此外’術語“包括”、‘‘具有”以及其任何變體都 旨在涵蓋非排他性的包括,這樣使得包括一系列元件的 一過程、方法、系統、物品、設備、或裝置並非必然地 局限於那些元件,而可以包括未明確列舉或對這樣的過 程、方法、系統、物品、設備、或裝置而言固有的其他 元件。 如果在說明書與申請專利範圍中有“左”、‘‘右’’、 “前”、“後”、“頂”、“底”、“上”和“下”及類似術語,其 僅出於描述性的目的而並不是必然地用於描述固定性 的相對位置。應當理解地是,在適當的情況下所使用的 術語係可以互換的,這樣使得在此描述的發明的實施方 式例如能夠以除那些在此說明或以其他方式描述以外 6 201245642201245642 VI. Description of the Invention: [Technical Field] The present invention generally relates to a solar energy system, and a wide range of applications between a solar collector and a remotely located conversion element, and the provision and use of the fiber bundle method. The relevant application for fiber bundles is also quoted. The US temporary application file submitted on the date requires the benefit of January 14, 2011, number 61/432,955. [Prior Art] There are four main categories of solar energy technology. The first type of technology, called the energized device, takes the form of a solar heater and a top solar panel with a plurality of ducts that are simply heated by the sun = heated; heat transfer through the fluid of the passive solar device Or air. However, passive solar radiation is usually too low to be used directly in most applications where heat is required at temperatures and pressures (such as HVAC, industrial process heat, full turbines, etc.). Another type of solar technology is in the form of a flat panel photovoltaic (PV) cell containing a semiconductor device. These devices convert incident solar radiation directly into electricity, and the electrical energy output is a direct function of the area of the PV cell array. Solar "concentrators," are considered another class and are designed to reflect incident solar radiation from large areas to smaller focal areas in order to concentrate (collect) solar radiation to produce that can be passed to the focal area The large amount of heat in the fluid (and thus the more southerly temperature and pressure) is suitable for different applications requiring heat of the desired quality, such as industrial heat, 201245642 heat, HVAC heating and cooling, desalination, dehydration, etc., or Used to produce steam to drive turbines to generate electricity. Recently, a hybrid technology has been explored in which solar collectors are used in conjunction with a special type of PV cell; solar concentration technology directs high-intensity solar radiation beams to the collector a dedicated, small number of photovoltaic cells (called concentrator PV cells) at the focus area. Therefore, centralized solar collectors combined with PV cells have the advantage over plate collectors, that is, they utilize Smaller amounts of semiconductor material, while still producing more efficient energy. In any case, the sun Concentrator technology is most widely used in applications that require heat or electricity, or both. Solar concentrators provide heat at low cost and high efficiency compared to passive solar or PV cell technology. Regardless of the type of solar concentrator or collector used, most conventional systems use receiving optics to locate the actual "receiving structure" (PV cells, thermal/fluid components). As a result, the receiving structure is necessary. The ground is exposed to the outside world and suffers from damage, environmental aging problems, etc. Accordingly, there is a need or a facility for a device or system that allows protection of the receiving structure from the environment and allows for more efficient and lower cost solar energy utilization technologies. It is possible to benefit from the present invention. [0009] For the sake of simplicity and clarity of the description, the drawings only show the general 5 201245642 construction, and the descriptions and details of well-known features and processes may be omitted to avoid unnecessarily obscuring the present invention. In addition, elements in the drawings are not necessarily drawn to scale. For example, The size of some of the elements may be too large in relation to the other elements to illustrate the enhancement of the understanding of the embodiments of the invention. The same reference numerals in the different figures refer to the same elements. First,, ''second third' and 'fourth' and the like terms are used to distinguish between similar elements, but are not necessarily used to describe a particular sequence or chronological order. It should be understood that The terms used, where appropriate, are used interchangeably, such that the embodiments described herein can operate, for example, in a sequence other than those described or otherwise described. ''Having,' and any variants thereof are intended to cover a non-exclusive include such that a process, method, system, article, device, or device comprising a series of elements is not necessarily limited to those elements, but may include Other elements inherent to such processes, methods, systems, articles, devices, or devices are expressly recited. If there are “left”, “right”, “front”, “back”, “top”, “bottom”, “upper” and “lower” and similar terms in the scope of the specification and patent application, they are only Descriptive purposes are not necessarily used to describe the relative position of the fix. It will be understood that the terms used, where appropriate, are interchangeable, such that the embodiments of the invention described herein can be described, for example, in addition to those described or otherwise described herein.

廣義地理解並且指電地、機械地和/或以其他方式連接 兩個或更多個元件或信號。兩個或更多個電元件可進行 電連接但並不機械地或叫他方式連接;兩個或更多個 機械元件可進行誠地連接但並不電地以其他方式 連接;兩個或更多個電元件可進行機械地連接但並不電 地或以其他方式的連接。連接可时任何時間長度,例 如,永久性的或半永久性的或僅用於暫時的。 “電連接,,等可廣義地理解並且包括涉及任何電信 號(無論功率信號、數位信號、和/或其他的類型或^ 合的電信號)的連接。“機械連接,,等可廣義地理解並且 包括所有類型的機械連接。 f詞彙“連接”等附近的“可移除地,,、“可移除的,,等 菜的缺錢不意味著雜及的連料射移除或 不可蒋险的。 【實施方式】 實施方式的實例的詳細描述Broadly understood and meant to connect two or more elements or signals electrically, mechanically and/or otherwise. Two or more electrical components may be electrically connected but not mechanically or otherwise connected; two or more mechanical components may be connected in good faith but not electrically connected in other ways; two or more The plurality of electrical components can be mechanically coupled but not electrically or otherwise connected. The connection can be any length of time, for example, permanent or semi-permanent or only for temporary use. "Electrical connections," and the like are broadly understood and include connections involving any electrical signal (whether power signals, digital signals, and/or other types or electrical signals). "Mechanical connections," etc. can be broadly understood. And includes all types of mechanical connections. f The term "connected" and other nearby "removable,", "removable," and other dishes lacking money does not mean that the miscellaneous material is removed or not. [Embodiment] A detailed description of an example of an embodiment

7 201245642 被配置成將太陽輻射重定向到該接收器上;以及(b) 被連接到這個或該等光纖光纜上的一或多個轉換元 件,這個或該等轉換元件被配置成將太陽輻射轉換為一 或多種其他形式的能量。 在很多實施方式中,一太陽能陣列可包括:(a)兩 個或更多個太陽能收集器,這兩個或更多個太陽能收集 器中的每一個具有:(1) 一接收器;(2) 一或多個集中 反射器被配置成將光重定向到該接收器上;以及(3 ) 一第一光纖束,該接收器被配置成將該光集中到該第一 光纖束中;(b) —結合裝置,該結合裝置被連接到該兩 個或更多個太陽能收集器各自的第一光纖束中並且被 配置成將該兩個或更多個太陽能收集器各自的第一光 纖束中的光集中為聚光;以及(c)被連接到該結合裝 置上的至少一個轉換裝置,該至少一個轉換裝置被配置 成將該聚光變換為一或多種其他形式的能量。 不同的貫施方式涉及一種將來自太陽的光轉換為 一或多種其他形式能量的方法。該方法可包括:使用至 ;一個第一集中反射器將來自太陽的光重定向到一第 一接收器上;將該光聚焦到該第一接收器處的一第一光 纖束中;使用該第一光纖束將該光從該第一接收器傳送 到至;一個轉換裝置上;並且使用該至少一個轉換裴置 將該光轉換為一或多種其他形式的能量。 一些實施方式涉及提供太陽能系統以收集太陽輕 射的一方法。該方法可包括:提供至少一個太陽能收集 201245642 益,提供該至少一個太陽能收集器可包括:提供一帶有 多個聚焦光學器件的接收器;提供至少—個集中反射 ’該集+反射ϋ被配置成將太陽輻射重定向到該接收 器上;提供一或多個光纖光纜;並且將該等聚焦光學器 件,接到這個或料光纖域上,,以便使得該等聚焦光 予益件將太陽II射集巾到這個或該等光纖光财;提供 一或多個轉換元件’這個或該轉換元件被配置成將太 陽輪射轉換為-或多種其他形式的能量;並且將這個或 s亥等光纖光纜連接到這個或該等轉換元件上。 ^轉到附圖,圖1根據第一實施方式示出了一太陽能 ^刚的等距視圖。圖2根據第-實施方式示出了太 陽能系統100的一太陽能收集器12〇的側視圖。圖3根 據第一實施方式示出了太陽能收集i 120 #-接收器 1一1〇沿線I-I (圖1)的切開視圖。太陽能系統1〇〇僅為 不例性的並且不局限於在此所提出的實施方式。太陽能 系統100可用於未在此具體描繪或說明的許多不同的 實施方式或實例中。 轉到圖1_3,在-些實施方式中,太陽能系統1〇〇 可包括:(a)至少一個太陽能收集器12〇 (即,一太陽 月色聚光β );以及(b) —或多個轉換裝置或元件13〇將 太陽輻射(即,光)轉換為一或多種其他形式的能量(例 如,熱能、機械能、和/或電能)。 在一些實例中’太陽能收集器12〇可包括:(a)連 接到轉換元件130上的一或多個光纖光纟覽丨丨丨(即,一 9 201245642 光纖束);(b) —接收器110; (c)至少一個集中反射器 U1,該至少一個集中反射器被配置成將太陽輻射重定 向到接收器110上;(d) —支撐結構122 ;以及(e)— 安裝結構123。太陽能系統1〇〇可針對一太陽能系統進 行不同的改進,該太陽能系統可藉由將一光纖束用作所 收集的太陽輻射的管道以便將所收集的太陽輻射傳送 到遠端定位的轉換元件來實現。 在如圖1-2所示的實例中’接收器110定位于集中 反射器121的聚焦區域處^在其他的實施方式中,一或 多個次級反射器被定位于集中反射器121 (即,初級反 射器)的聚焦區域處,並且接收器110被定位於太陽能 收集器120的底部(例如’在區域129處)。在一此實 例中,該等次級反射器可包括一卡塞葛籣反射器。 如圖3所示’接收器110可包括:(a)多個聚焦光 子器件312,該等聚焦光學器件被配置成將該太陽輕射 聚焦到光纖光纜ill中;(b)一箍套(ferrule)結構313, 該箱套結構被配置成保持住光纖光纜U1的至少一部分 (例如,光纖光纜111的一端部);以及(c) 一殼體314, 該殼體被配置成保持住聚焦光學器件312、箍套結構 313、以及部分的光纖光纜ηι。 在一些實例中,太陽輻射R被集中反射器121 (圖 1-2)重定向到聚焦光學器件312中。聚焦光學器件μ: 可與光纖光纜> 111光學地對齊,以便將太陽輕射r集中 或聚焦到光纖光纜111中。也就是說,在一些實例中,7 201245642 configured to redirect solar radiation to the receiver; and (b) one or more conversion elements coupled to the or the fiber optic cable, the or the conversion element configured to emit solar radiation Convert to one or more other forms of energy. In many embodiments, a solar array can include: (a) two or more solar collectors, each of the two or more solar collectors having: (1) a receiver; (2 One or more concentrating reflectors configured to redirect light onto the receiver; and (3) a first fiber bundle, the receiver configured to concentrate the light into the first fiber bundle; b) a bonding device connected to the respective first bundle of the two or more solar collectors and configured to respectively be the first bundle of the two or more solar collectors The light in the focus is concentrated; and (c) at least one switching device coupled to the bonding device, the at least one converting device being configured to convert the concentrated light into one or more other forms of energy. Different modes of implementation involve a method of converting light from the sun into one or more other forms of energy. The method can include: using to; a first concentrated reflector redirecting light from the sun to a first receiver; focusing the light to a first bundle of fibers at the first receiver; A first fiber bundle transfers the light from the first receiver to; a conversion device; and converts the light into one or more other forms of energy using the at least one conversion device. Some embodiments relate to a method of providing a solar energy system to collect solar light. The method can include providing at least one solar energy collection 201245642. Providing the at least one solar energy collector can include: providing a receiver with a plurality of focusing optics; providing at least one concentrated reflection 'the set + reflection ϋ is configured to Redirecting solar radiation to the receiver; providing one or more fiber optic cables; and connecting the focusing optics to the fiber optic field such that the focused light is incident on the solar beam To collect the towel to the fiber or the optical fiber; to provide one or more conversion elements 'this or the conversion element is configured to convert the solar radiation into - or a variety of other forms of energy; and to use this or other fiber optic cable Connect to this or the conversion elements. Turning to the drawings, Figure 1 shows an isometric view of a solar power according to a first embodiment. Figure 2 shows a side view of a solar collector 12A of the solar energy system 100, in accordance with a first embodiment. Figure 3 shows a cutaway view of solar collection i 120 #-receiver 1 -1 along line I-I (Figure 1) in accordance with a first embodiment. The solar energy system is merely exemplary and is not limited to the embodiments presented herein. Solar energy system 100 can be used in many different embodiments or examples not specifically depicted or described herein. Turning to Figures 1-3, in some embodiments, the solar energy system 1 can include: (a) at least one solar collector 12 (i.e., a solar lunar condensing beta); and (b) - or more The conversion device or element 13 converts solar radiation (ie, light) into one or more other forms of energy (eg, thermal, mechanical, and/or electrical energy). In some examples, the 'solar collector 12' may include: (a) one or more fiber optic beams connected to the conversion element 130 (ie, a 9 201245642 fiber bundle); (b) - a receiver 110 (c) at least one concentrating reflector U1 configured to redirect solar radiation onto the receiver 110; (d) a support structure 122; and (e) a mounting structure 123. The solar system can be modified differently for a solar system that can transmit the collected solar radiation to the remotely located conversion element by using a bundle of fibers as the conduit for the collected solar radiation. achieve. In the example shown in FIGS. 1-2, 'the receiver 110 is positioned at the focus area of the concentrated reflector 121. In other embodiments, one or more secondary reflectors are positioned at the concentrated reflector 121 (ie, At the focus area of the primary reflector, and the receiver 110 is positioned at the bottom of the solar collector 120 (eg, 'at region 129'). In one such embodiment, the secondary reflectors can include a Cassia reflector. As shown in Figure 3, the 'receiver 110 can include: (a) a plurality of focused photonic devices 312 configured to focus the solar light into the fiber optic cable ill; (b) a ferrule a structure 313 configured to hold at least a portion of the fiber optic cable U1 (eg, one end of the fiber optic cable 111); and (c) a housing 314 configured to hold the focusing optics 312, the cuff structure 313, and a portion of the fiber optic cable ηι. In some examples, solar radiation R is redirected into focusing optics 312 by concentrated reflector 121 (Figs. 1-2). The focusing optics μ: can be optically aligned with the fiber optic cable > 111 to concentrate or focus the solar light r into the fiber optic cable 111. That is, in some instances,

201245642 入射的太陽輻射R穿過定位在接收器π 〇内的聚焦光學 态件312。光纖光纜lu被定位於安置在接收器= 的箍套結構313内並且被定位為接收來自聚焦光學器 件312的聚焦後的輸出。 在一些實例中,在聚焦光學器件312與光 111之間的區域315由空氣來填充。在一些實例:,區 域315可用—惰性氣體來填充。在相同的或不同的實例 中,可對區域315中的空氣或惰性氣體進行加壓。 f一些實例中,如果一次級反射器(例如卡塞葛籣 反射器)被定位于集中反射器121 (圖1和圖2)的聚 焦區域處並且如果接收器削被定位於太陽能收集器 120的底部,那麼接收器11〇並不包括接收器ιι〇中'的 聚焦光學器件3丨2。在該等實例中,該次級反射器可用 作聚焦光學器件。在其他的實射,太陽能收集器12〇 可包括一次級反射器以及聚焦光學器件312。 聚焦光學器件312可包括至少一個透鏡。該透鏡可 被配置成將太陽輻射R聚焦到光纖光纜lu中。在相同 的或不同的實例中,該透鏡以及該光纖束可具有一寬頻 P方反射塗層與多個光學校正塗層。該透鏡祕還可包含 有多個元件’該等元件包括但不局限於與聚光透鏡相連 接的一準直透鏡。 在許多實例中,光纖光纜111可以是兩條或更多條 光纖的一個束。光纖光繞111的一端部可被連接到接收 器110上以便接收太陽輻射R。光纖光纜U1的另一端 201245642 部可被連接到轉換元件130上。鑪械-μ 1ΛΛ 陽幸畐射轉換為其他形式的能ί。轉換轉l3G可將該太 光纖光纟fm的使用允許域輻較被傳 太 請相隔很遠的一位置,用於轉換為另1 傳統的太陽能系統在該接收器處將太陽輻射 轉換為其他形式的能量。太陽能系統丨 丨:,供/幾個優勢。首先,該等轉換= 光二二集:=共同定位。這樣,例如就可用光纖 先窥111將夕個轉換元件置於離開太 光繞將太陽轄射從接收器no運送 ::換:件。將轉換元件置於建築物的内部可增加 轉換=13㈣使料命並且減少維軸絲的成本。 另外,如將在下文中關於圖4所示的第 二;Γ光纖錢111的使用允許將來自兩 集器的太陽輜射結合為單-的聚 ▲集的太%光束。因此,不必具有多個轉換元件,一太陽 能系統可具有在兩個或更多個太陽能收集哭之門共用 -轉換元件。轉換元件數量的減少;提“統 的效率並顯著降低成本。 _ 光纖光€ 111可以是多模光纖或單模光 、義。構成光纖束的單獨光纖的尺寸可以改變。該等光纖 由-内芯與-外護套構造成。在一些實例中;内芯可 用-折射率來製造而該外護套由不同折射率的材 201245642 如 總击材料)所構造。在不同的實施方式中,該光 ^ 仏可以疋在保持最大傳輸效率與適當的使用 哥命的同時該太陽能聚光器的尺寸以及—條給定光纖 可耐受的最大強度的一函數。 在一實施方式中,光纖光纜m可具有大約3毫米 或大約1到5毫米的—總合(⑶1Ieetive)直徑。在一實 例中,光纖域ni中的每根光纖可具有大約9微米或 ^ 5到15微米的直徑。光纖光變ui可具有高的能 量密度’這允許大量的太陽輕射集中到具有較小能量損 失的光纖域ill中。例如,光纖錢ηι可具有每平 方米9兆瓦的能量密度,損耗為每平方公里1/1〇分貝。 在一些實例中,每個光纖光繞lu可具有玻璃的、塑膠 的、或空氣的内芯’内芯周圍帶有玻璃或塑膠的護套。 在不同的實施方式中,每個光纖光纜ln可以是一 晶體光纖。 一集中反射器121可被配置成將入射的太陽輕射從 一大面積反射到一較小的聚焦區域上,以便集中(即, 收,)該太陽輻射。在一些實例中,集中反射器121可 以是-拋物點聚光ϋ。該拋物點聚光器可包括多個曲面 鏡:該等曲面鏡被安排為形成—將人賴太陽輻射聚焦 到單一的聚焦區域中的拋物線型盤。 在其他的實施方式中,集中反射器121可具有一軸 環狀的幾何形狀(例如,參看圖4的太陽能收集器42〇、 440、442、與444)。也就是說,在一’些實例中,集中 201245642 反射器121可包括兩個或更多個同心反射器(如圖4所 示),每個反射器具有一軸環狀的幾何形狀。在不同的 實例中,每個同心反射器可包括兩個或更多個分離的反 射翼瓣,該夢反射翼瓣以拱頂石形(keystone)安排被 保持在位。每個反射翼瓣可具有一硬殼式(monocoque) 構型,其中該等反射翼瓣的一反射表面支承了大部分的 扭轉與彎曲應力。在仍其他的實施方式中’可將其他的 幾何形狀與設計用於集中反射器121 (例如’太陽能槽、 菲涅爾反射器等)。 在不同的實施方式中,集中反射器121可用玻璃反 射面來構建(例如,一反射表面塗覆有諸如确酸銀和玻 璃罩以保護該反射表面)。在其他的實例中,集中反.射 器121可具有純化的紹(或放置在另一材料的表面上的 —層鈍化的鋁)、高反射性介電材料、聚合物、超薄玻 填(例如,50微米或更小)或類似物。不同的合金和/ 或表面最終處理可以用來在本發明太陽能聚光器的外 皮上提供所希望的反射度。 在一些實例中’支撐結構122可包括一混凝土台座 (pad)或被配置成將太陽能收集器120牢固地安裝在 地面上的其他類似結構。可使用安裝結構123將集中反 射器121附裝在支撐結構122上。雖然未示出,但在一 些實例中,支撐結構122和/或安裝結構12;3可包括多 個伺服機構和/或其他的機械裝置,該等裝置用於手動 和/或自動地移動集中反射器121,以便在一天或一年的 14 201245642 過程中追蹤太陽的運動。 ,轉換I3G可被配置成將太陽輻射(即,光)轉 、為或夕種其他形式的能量(例如,熱能、機械能, ^或電a)、。轉換凡件13〇光學地並機械地連接到光纖 的並且被配置成接收來自光娜11的聚集 r如f㉟實例中’轉換元件130可包括—熱接收器 斯特林發動機)。在—些實施方式中,來自 到^^11的聚集的太陽輻射可被導向到(即,聚焦 所t導介質中(例如,各種流體、氣體、或鹽)。 於:=陽輕射可對熱傳導介質進行加熱並且可用 與;^、、,’該等用途包括工業處理熱、HVAC加熱 電脫鹽、脫水等,或用於生產驅動渦輪機的蒸汽 陽和ί其他的實例中,轉換元件13G可被配置成將該太 或:f直接轉換為電能。例如,轉換元件130可包二 中^來固自U池(例如,聚光器光伏電池)。在此實例 能光伏材^域U1的聚㈣太陽輻射被集中到太陽 換為電在的區域上,此太陽能光伏材料將光轉 在—實例中’可使用多結光伏電池。 如4ί;=?10。可藉由將一光調製装置@ 進行整爾㈤化她糾干涉儀)與轉換元件no 别出^虎。藉由將一常規的電功率信號作為數據」 爾干涉儀,所聚集的太陽輕射可 AL電輸出信號。 轉換==實施方式中,轉換元件130可包括不同 陽輕射的第;八纖光镜111的聚集的太 陽輻射的第等熱接收器中並且太 弟一刀可被引導到一或多個光伏電池中。 筚物^方式中,轉換元件i3g可^位於第一建 物戈至二太陽能收集器120則定位為離開該第-建筚 ==部。在相同的或不同的實例中,轉= 能收集器m的物二 換元件130可遠離太陽 適當的結_ 放在賴物内或任何 到,:?接收結 12°和轉換元件130提供超過傳統:二==: 降低的初始成本和維護成本。效= ===,成本可減少大約: 的每瓦電力美it成本為大m料、統在無補助情況下 系統可以僅有大㈣/w的成本^在此所述的太陽能 另外,能夠將光纖束路徑延伸到住 宇,使得光伏電池/熱電池 h業)樓 太陽能㈣為^形式的^^物额^在用於將 式的建桌物令。採用當前的方法來 16 201245642 集中光伏電’也的一主要問題係發熱,這減少了光伏電池 的效率並降低了電池的壽命。在許多減少發熱影響的實 =中,使用了濾波器來去除不產生電能的那些波長。不 耑要的波長可被丟棄到大氣中。在一些實例中,接收器 13〇可分裂出用於集中的光伏電池的光波長並且用於這 一目的,同時將剩餘的波長發送到一熱轉換器用於產生 熱。 轉到另一實施方式,圖4根據第二實施方式示出了 一太陽能系統400的等距視圖❶太陽能系統4〇〇僅為示 例性的並且不局限於在此所提出的實施方式。太陽能 ^統400可用於未在此具體描繪或說明的許多不同的 貫施方式或實例中。 在一些實施方式中,太陽能系統400可以是一太陽 能收集器陣列並且可包括:(a)兩個或更多個太陽能收 集器420、440、442和444 ; (b)至少一個轉換裝置或 元件430,被配置成將太陽輻射(即,光)轉換為一或 多種其他形式的能量(例如,熱能、機械能、和/或電 月t* ) ’( c)多個光纖光繞 411、441、443、445 和 451 ; ( d) 一結合裝置450’被配置成接收來自光纖光纜41卜44卜 443和445的太陽輻射並且被配置成將光從光纖光纜 411、44卜443和445集中到光纖光纜451中。 在一些實例中,太陽能收集器420可包括:(a) — 接收器410; (b)兩個或更多個集中反射器424和425 ; (c)至少一個次級反射器412 ; (d) —支撐結構422 ; 201245642 以及(e) —安裝結構423。在不同的實施方式中,光纖 光纜411、441、443和445可被認為分別是太陽能收集 器420、440、442和444的一部分,並且可類似於或與 光纖光纜111 (圖1)相同。太陽能系統400可針對一 太陽能系統中進行不同的改進,該太陽能系統可藉由將 一光纖束用作所收集的太陽輻射的管道以便將所收集 的太陽輻射傳送到遠端定位的轉換元件來實現。 次級反射器412可被定位于集中反射器424和425 (即,初級反射器)的聚焦區域處,並且接收器410可 被定位於太陽能收集器420的底部。在一些實例中,集 中反射器424和425將太陽輻射重定向到次級反射器 412上,該次級反射器將該輻射反射到接收器410上。 在一些實例中,太陽能收集器420可被認為是一卡塞葛 籣系統。 在一些實例中’接收器410可類似於或與圖3的接 收器110相同。類似地,轉換元件430可類似於或與轉 換元件130相同。太陽能收集器440、442和444可類 似於或與太陽能收集器420相同。在許多實施方式中, 光纖光瘦411、441、443和445可將太陽能收集器420、 440、442和444的接收器分別連接到結合裝置45〇上。 結合裝置450可被配置成將來自光纖光繞411、 44卜443和445的太陽輻射集中到光纖光纜451中。 光纖光親451可將所聚集的太陽轄射從結合裴置450傳 送到轉換元件430上。在一些實例中,結合裝置45〇可 201245642 包括一積分球體(例如,一烏布利希球)。一積分球體 不必一定是一球體,而在一些實例中,它具有另一形狀。 結合裝置450可被連接到光纖光繞411、441、443 和445上以產生集中的太陽能,該集中的太陽能顯著地 大於用常規系統有可能產生的太陽能(例如,在數千曰 光單位(suns)量級上的能量)。 在不同的實例中’太陽能收集器420、440、442和 444從結合裝置450和轉換元件430分隔開。在許多實 施方式中,結合裝置450和轉換元件430被定位於一第 一結構460中,而太陽能收集器420、440、442和444 不是被定位在該第一結構中也不與其相連接。離第一結 構460 —預定的非零距離(例如,5米、50米、500米 或更遠的距離)對太陽能收集器420、440、442和444 進行定位。 轉到仍另一實施方式,圖5根據第三實施方式示出 了 一太陽能系統500的等距視圖。太陽能系統500僅為 示例性的並且不局限於在此所提出的實施方式。太陽能 系統5〇〇可用於未在此具體描繪或說明的許多不同的 實施方式或實例中。 在一些實施方式中,一太陽能系統500可以是一太 陽能收集器陣列並且可包括:(a)兩個或更多個太陽能 收集器520、540、542、544和546 ;( b )至少一個轉 換裝置或元件530,被配置成將太陽輻射(即,光)轉 換為一或多種其他形式的能量(例如,熱能、機械能、 201245642 和/或電能);(c)多個光纖光纜511、541、543、545 和547 ;以及(d)被連接到光纖光纜511、541、543、 545和547的一結合裝置550。在一些實例中,光纖光 纜511、541、543、545和547可被認為分別是太陽能 收集器520、540、542、544和546的一部分。 太陽能收集器520、540、542、544和546可分別 類似於或與圖1和圖4的太陽能收集器120或420相 同。光纖光纜511、541、543、545和547分別將太陽 能收集器520、540、542、544和546連接到結合裝置 550上,並且它們可類似於或與光纖光纜m (圖1)、 411、441、443和/或445 (圖4 )相同。在一些實例中, 結合裝置550可以是一積分球體。 在一些實例中,轉換元件530可包括:(a)兩個或 更多個熱轉換元件531、533、534、535和536 ;以及 (b) —熱交換器537。熱轉換元件531、533、534、535 和536可定位於結合裝置550内。每個熱轉換元件531、 533、534、535和536被安置成接收分別沿光纖光纜 51卜54卜543、545和547傳播的信號。來自所有光纖 光纜511、541、543、545和547的熱能然後穿過熱交 換器5 3 7 ’如圖5所示’該熱交換器包括一熱流體輸入 /輸出路徑。 在圖5所示的實施方式中,光纖光纜511、541、 543、545和547被聚集在一起來形成一光學煮器 (boiler),該光學煮器被配置成產生熱能,這種熱能有 20 201245642 超過基於太陽輻射的傳統熱系統的在數量級上的改進。 另外,使用太陽能系統500’有可能進一步藉將 光調製裝置(諸如馬赫曾德爾干涉儀)與轉換半 530進行整合來從沿光纖光纜511、541、543、545 547傳播的入射輻射中產生一 AC電輸出信號。藉心 一常規的電功率信號作為數據登錄胳馬赫f ^爾干 涉儀’所聚集的太陽輻射可被轉換為一八〇電輸出〜信號。 結合裝置550和轉換元件530可在一遠離太陽°能’收 集器520、540、542、544和546的距離上被定位。在 些實例中,結合裝置550和轉換元件530被儲放在一 保護性的結構中,而太陽能收集器520、54〇、542、544 和546被定位於該保護性結構的外部。結合裝置不 僅可以是一積分球體,還可以使用任何允許將兩個或更 多個光纖結合為單一光纖的光學技術。在一些實施方式 中,兩個或更多個太陽能聚光器的輸出可被結合到一; 單一的光纖束中,以便減少到遠端位置的能量傳輸的成 本。兩個或更多個太陽能收集器的輸出的結合對總的集 中率具有一累加效應(增加能量密度)。總集中率中的 這種增加尤其能夠對生成用於蒸汽渦輪機的、超級加熱 的蒸汽有益。 轉到仍還一實施方式,圖6根據第四實施方式示出 了 一太陽能系統600的等距視圖。太陽能系統6〇〇僅為 示例性的並且不局限於在此所提出的實施方式。太陽 能系統600可用於未在此具體描繪或說明的許多不同 21 201245642 的實施方式或實例中。 在一些貫施方式中,一太陽能系統600可以是一太 陽能收集器陣列並且可包括:(a)兩個或更多個太陽能 收集器620、640和642; (b)至少一個轉換裝置或元 件430,被配置成將太陽輻射(即,光)轉換為一或多 種其他形式的能量(例如,熱能、機械能、和/或電能); (c) 一或多個光纖光纜611 ;以及(d)被連接到光纖 光纜611上的一接收器610。在一些實例中,接收器61〇 和多個光纖光纜可被認為分別是太陽能收集器62〇、64〇 和642的一部分。 在一些實例中’太陽能收集器620可包括:(〇至 少一個集中反射器621;(1〇—支撐結構622;以及(〇 一安裝結構623。太陽能系統600可針對一太陽能系統 進行不同的改進,該太陽能系統可藉由將一光纖束用作 所收集的太陽輪射的官道以便將所收集的太陽輻射傳 送到遠端定位的轉換元件430來實現。太陽能收集器 640和642可類似於或與太陽能收集器62〇相同。 在此實例中’太%能系統600具有一太陽能發電拔 式的配置。也就是說,不必每個太陽能收集器62〇、64°〇 和642都具有其自身的接收器,一接收器61〇被定位於 發電塔615處。 太陽能收集器020、040和642將太陽輻射重定向 到接收器610上。接收器610將該重定向的太陽輻射聚 焦到光纖光纜611上。在一些實例中,接收器61〇可被 22 201245642 認為是一或多個太陽能收集器620、64〇和642的一部 分。光纖光纜611可將集中的輻射從接收器61〇傳送到 遠端定位的轉換元件430上。光纖光纜611可分別類似 於或與光纖光,纜 111 (圖 1)、411、441、443、445、447 (圖 4)、5U、54卜 543、545 和/或 547 (圖 5)相同。 同樣,在一些實例中,光纖光纜611可被認為是一或多 個太陽能收集器620、640和642的一部分。 仍轉到還一實施方式,圖7根據第五實施方式示出 了 一太陽能系統700的等距視圖。太陽能系統7〇〇僅為 示例性的並且不局限於在此所提出的實施方式。太陽 能系統700可用於未在此具體描繪或描述的許多不同 的實施方式或實例中。 在一些實施方式中,太陽能系統700可包括:(a) 至少一個太陽能收集器72〇 ;以及(b) 一或多個轉換 裝置或元件130,被配置成將太陽輻射(即,光)轉換 為一或多種其他形式的能量(例如,熱能、機械能、和 /或電能)。 在一些實例中’太陽能收集器720可包括:(a)連 接到轉換元件130上的一或多個光纖光纜711 ; (b) 一 接收器710 ; (c)至少一個集中反射器721,該至少一 個集中反射器被配置成將太陽輻射重定向到接收器7 i 〇 上;U) —支撐結構722;以及(e) —安裝結構723。 太1%此系統700可針對一太陽能系統進行不同的改 進,该太1¼能系統可通過將一光纖束用作所收集的太陽 23 201245642 輻射的管道以便將所收集的太陽輻射傳送到遠端定位 的轉換元件130來實現。 在此實例中,集中反射器721可以是一拋物槽形收 集器。一拋物槽形收集器使用一狹長的反射槽,該狹長 的反射槽具有一拋物線截面,以沿通過形成該槽的抛物 線元件的該等焦點而延伸的一條聚焦線來集中太陽的 輻射。在此實施方式中,接收器710沿該拋物槽的焦線 被定位。接收器710包括多個聚焦光學器件,該等聚焦 光學器件被配置成將通過集中反射器721被重定向的 太陽輻射聚焦到光纖光纜711中。光纖光纜711可將集 中的太陽輻射從接收器710傳送到遠端定位的轉換元 件130上。 圖8示出了將來自太陽的光轉換為一或多種其他 形式能量的方法800的一實施方式的流程圖。方法800 僅為示例性的並且不局限於在此所提出的實施方式。方 法800可用於未在此具體描繪或描述的許多不同的實 施方式或實例中。在一些實施方式中,方法800的行 為、進程和/或步驟可用所提出的順序來執行。在其他 的實施方式中,方法800的行為、進程和/或步驟可用 任何其他適當的順序來執行。在仍其他的實施方式中, 方法800中的一或多個行為、進程和/或步驟可進行組 合或被略過。 參見圖8,方法800包括使用至少一個第一集中反 射器將來自太陽的光重定向到一第一接收器的一行為 24 201245642 87〇。作為一實例,集中反射器可分別類似於或與圖1、 4、4、6和7的集中反射器121、424、425、621或721 相同。第一接收器可分別類似於或與圖1、4、5、6和 7的接收器110、410、510、610或710相同。 其後,圖8的方法800包括將光聚焦到該第一接收 f處的第一光纖束中的一行為87卜作為一實例,該第 、,光纖束可^別類似於或與圖1、4、5、6和7的光纖 ,繞111、411、511、611或711相同。在一些實例中,201245642 The incident solar radiation R passes through a focusing optics 312 positioned within the receiver π 。. The fiber optic cable lu is positioned within the cuff structure 313 of the receiver = and is positioned to receive the focused output from the focusing optics 312. In some examples, region 315 between focusing optics 312 and light 111 is filled with air. In some instances: region 315 can be filled with an inert gas. In the same or different examples, the air or inert gas in zone 315 can be pressurized. f In some instances, if a primary reflector (eg, a Cassia reflector) is positioned at the focal region of the concentrated reflector 121 (FIGS. 1 and 2) and if the receiver is positioned at the solar collector 120 At the bottom, then the receiver 11〇 does not include the focusing optics 3丨2 in the receiver ιι〇. In these examples, the secondary reflector can be used as a focusing optic. In other real shots, the solar collector 12A can include a primary reflector and focusing optics 312. Focusing optics 312 can include at least one lens. The lens can be configured to focus solar radiation R into the fiber optic cable lu. In the same or different examples, the lens and the bundle of fibers may have a broadband P-square reflective coating and a plurality of optically corrective coatings. The lens may also include a plurality of components, including but not limited to a collimating lens coupled to the collecting lens. In many instances, fiber optic cable 111 can be a bundle of two or more fibers. One end of the fiber optic wrap 111 can be coupled to the receiver 110 to receive solar radiation R. The other end of the fiber optic cable U1, 201245642, can be connected to the conversion element 130. Furnace-μ 1ΛΛ Yang Xingyi is converted to other forms of energy. The conversion to l3G allows the use of the fiber optic 纟fm to allow the domain to be transmitted farther away than the one that is transmitted too far, for conversion to another conventional solar system at which the solar radiation is converted to other forms. energy of. Solar system 丨 ,:, for / several advantages. First, the conversion = light two sets: = co-location. In this way, for example, it is possible to use the optical fiber to first glimpse 111 to place the evening conversion element away from the solar light and to transmit the solar radiation from the receiver no. Placing the conversion element inside the building increases the conversion = 13 (four) to make the life and reduce the cost of the wire. In addition, the use of the second; Γ fiber money 111, as will be shown below with respect to Figure 4, allows for the combination of solar radiation from the two collectors into a single-to-poly y-set. Therefore, it is not necessary to have a plurality of conversion elements, and a solar energy system can have a common-conversion element in two or more solar collection crying gates. The reduction in the number of conversion components; the efficiency of the system and the significant cost reduction. _ Fiber optics € 111 can be multimode fiber or single mode light, the size of the individual fibers constituting the fiber bundle can be changed. The core and the outer sheath are constructed. In some examples; the inner core may be fabricated with a refractive index and the outer sheath constructed of a different refractive index material 201245642 such as a total impact material. In various embodiments, the inner core The light 仏 can be used to maintain the maximum transmission efficiency and proper use of the life of the solar concentrator as well as a function of the maximum strength that a given fiber can withstand. In one embodiment, the fiber optic cable m There may be a total (3) 1 Ieetive diameter of about 3 mm or about 1 to 5 mm. In one example, each of the fibers in the fiber domain ni may have a diameter of about 9 microns or 5 to 15 microns. Ui can have a high energy density' which allows a large amount of solar light to be concentrated into the fiber domain ill with less energy loss. For example, fiber optic money can have an energy density of 9 megawatts per square meter, with a loss of 1/1 〇 decibel per square kilometer. In some instances, each fiber optic light-wound may have a glass, plastic, or air core with a glass or plastic sheath around the inner core. In one mode, each fiber optic cable ln can be a crystal fiber. A concentrated reflector 121 can be configured to reflect incident solar light from a large area onto a smaller focal area for concentration (ie, receiving, The solar radiation. In some examples, the concentrated reflector 121 can be a parabolic spot concentrator. The parabolic concentrator can include a plurality of curved mirrors: the curved mirrors are arranged to form - the solar radiation Focusing on a parabolic disk in a single focus area. In other embodiments, the concentrated reflector 121 can have a ring-shaped geometry (eg, see solar collectors 42A, 440, 442, and 444 of FIG. 4) That is, in one example, the concentrated 201245642 reflector 121 may include two or more concentric reflectors (as shown in Figure 4), each having an axis-ring geometry. different In an example, each concentric reflector can include two or more separate reflective lobes that are held in place in a keystone arrangement. Each reflective lobes can have a hard A monocoque configuration in which a reflective surface of the reflective lobes supports most of the torsional and bending stresses. In still other embodiments, other geometries and designs can be used for the concentrating reflector 121. (eg 'solar trough, Fresnel reflector, etc.). In various embodiments, the concentrated reflector 121 can be constructed with a glass reflective surface (eg, a reflective surface is coated with, for example, silver silicate and a glass cover to protect the Reflective surface). In other examples, the concentrated reflector 121 may have a purified (or layer of passivated aluminum placed on the surface of another material), a highly reflective dielectric material, a polymer, a super Thin glass filled (for example, 50 microns or less) or the like. Different alloys and/or surface finishes can be used to provide the desired reflectance on the skin of the solar concentrator of the present invention. In some examples, the support structure 122 can include a concrete pedestal or other similar structure configured to securely mount the solar collector 120 on the ground. The concentrated reflector 121 can be attached to the support structure 122 using the mounting structure 123. Although not shown, in some examples, support structure 122 and/or mounting structure 12; 3 may include multiple servos and/or other mechanical devices for manually and/or automatically moving concentrated reflections 121 to track the movement of the sun during a day or year of 14 201245642. The conversion I3G can be configured to convert solar radiation (i.e., light) to other forms of energy (e.g., thermal energy, mechanical energy, ^ or electricity a). The conversion member 13 is optically and mechanically coupled to the optical fiber and is configured to receive an accumulation from the Genna 11 as in the example of f35, the 'conversion element 130 may include a heat receiver Stirling engine. In some embodiments, the concentrated solar radiation from the ^11 can be directed (ie, focused in the t-guide medium (eg, various fluids, gases, or salts). The heat transfer medium can be heated and used in such an application, including industrial heat treatment, HVAC heating, electric desalination, dehydration, etc., or in the production of steam yang and others for driving the turbine, the conversion element 13G can be The conversion element 130 can be configured to convert directly into electric energy. For example, the conversion element 130 can be packaged from the U pool (for example, a concentrator photovoltaic cell). In this example, the photovoltaic material U1 can be assembled. Solar radiation is concentrated on the area where the sun is converted to electricity. This solar photovoltaic material converts light into an example - a multi-junction photovoltaic cell can be used. For example, 4 ί;=?10 can be performed by a light modulating device @ The whole (five) her interfering interferometer) and the conversion component no do not come out ^ tiger. By using a conventional electric power signal as a data interferometer, the concentrated solar light can output an AL electric signal. In the embodiment of the conversion == embodiment, the conversion element 130 may comprise a different radiant light; the eighth thermal lens 111 is in the first heat receiver of the concentrated solar radiation and the prince may be directed to one or more photovoltaic cells in. In the stolen material mode, the conversion element i3g can be located in the first building Ge to the solar collector 120 and then positioned to leave the first-instance == section. In the same or different examples, the object 2 of the transfer collector m can be placed away from the appropriate junction of the sun _ placed in the ram or any arrival, the receiving junction 12° and the conversion element 130 provide more than conventional : Two ==: Reduced initial cost and maintenance cost. Efficiency = ===, the cost can be reduced by about: the cost per watt of electricity is high, the system can only have a large (four) / w cost without subsidies ^ solar energy described here, in addition, can The fiber bundle path extends to Suyu, so that the photovoltaic cell/heat battery h) solar energy (four) is ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A major problem with the current approach to 16 201245642 concentrated photovoltaics is heating, which reduces the efficiency of photovoltaic cells and reduces battery life. In many of the realities that reduce the effects of heat, filters are used to remove those wavelengths that do not produce electrical energy. Unwanted wavelengths can be discarded into the atmosphere. In some examples, the receiver 13 can split the wavelength of light for the concentrated photovoltaic cells and use for this purpose while transmitting the remaining wavelengths to a thermal converter for generating heat. Turning to another embodiment, FIG. 4 shows an isometric view of a solar energy system 400 in accordance with a second embodiment. The solar energy system 4 is merely exemplary and is not limited to the embodiments presented herein. The solar system 400 can be used in many different modes or examples not specifically depicted or described herein. In some embodiments, solar energy system 400 can be a solar collector array and can include: (a) two or more solar collectors 420, 440, 442, and 444; (b) at least one conversion device or component 430 Configuring to convert solar radiation (ie, light) into one or more other forms of energy (eg, thermal energy, mechanical energy, and/or electricity month t*) '(c) multiple fiber optic light windings 411, 441, 443, 445, and 451; (d) A bonding device 450' is configured to receive solar radiation from fiber optic cables 41 and 443 and 445 and is configured to concentrate light from fiber optic cables 411, 44, 443, and 445 to the fiber. In the optical cable 451. In some examples, solar collector 420 can include: (a) - receiver 410; (b) two or more concentrated reflectors 424 and 425; (c) at least one secondary reflector 412; (d) - support structure 422; 201245642 and (e) - mounting structure 423. In various embodiments, fiber optic cables 411, 441, 443, and 445 can be considered to be part of solar collectors 420, 440, 442, and 444, respectively, and can be similar or identical to fiber optic cable 111 (Fig. 1). The solar energy system 400 can be modified differently for a solar energy system by using a fiber bundle as a conduit for collected solar radiation to deliver the collected solar radiation to a remotely located conversion element. . The secondary reflector 412 can be positioned at a focus area of the concentrated reflectors 424 and 425 (i.e., the primary reflector), and the receiver 410 can be positioned at the bottom of the solar collector 420. In some examples, concentrated reflectors 424 and 425 redirect solar radiation onto secondary reflector 412, which reflects the radiation onto receiver 410. In some examples, solar collector 420 can be considered a Casinger system. Receiver 410 may be similar or identical to receiver 110 of Figure 3 in some examples. Similarly, conversion element 430 can be similar or identical to conversion element 130. Solar collectors 440, 442, and 444 can be similar to or identical to solar collector 420. In many embodiments, fiber optic strips 411, 441, 443, and 445 can connect the receivers of solar collectors 420, 440, 442, and 444 to bonding device 45, respectively. Bonding device 450 can be configured to concentrate solar radiation from fiber optic windings 411, 44, 443, and 445 into fiber optic cable 451. The fiber optic light 451 can transmit the concentrated solar radiation from the bonding device 450 to the conversion element 430. In some examples, the bonding device 45〇 201245642 includes an integrating sphere (eg, a Ublich ball). An integrating sphere does not have to be a sphere, but in some instances it has another shape. Bonding device 450 can be coupled to fiber optic windings 411, 441, 443, and 445 to produce concentrated solar energy that is significantly greater than solar energy that can be produced with conventional systems (eg, in thousands of light units (suns) ) energy on the order of magnitude). In various examples, solar collectors 420, 440, 442, and 444 are separated from bonding device 450 and conversion element 430. In many embodiments, bonding device 450 and conversion element 430 are positioned in a first structure 460, while solar collectors 420, 440, 442, and 444 are not positioned in or coupled to the first structure. The solar collectors 420, 440, 442, and 444 are positioned away from the first structure 460 - a predetermined non-zero distance (e.g., 5 meters, 50 meters, 500 meters or more). Turning to still another embodiment, Figure 5 shows an isometric view of a solar energy system 500 in accordance with a third embodiment. Solar system 500 is merely exemplary and is not limited to the embodiments presented herein. The solar energy system 5 can be used in many different embodiments or examples not specifically depicted or described herein. In some embodiments, a solar energy system 500 can be a solar collector array and can include: (a) two or more solar collectors 520, 540, 542, 544, and 546; (b) at least one conversion device Or element 530, configured to convert solar radiation (ie, light) into one or more other forms of energy (eg, thermal energy, mechanical energy, 201245642, and/or electrical energy); (c) a plurality of fiber optic cables 511, 541, 543, 545, and 547; and (d) a bonding device 550 that is coupled to fiber optic cables 511, 541, 543, 545, and 547. In some examples, fiber optic cables 511, 541, 543, 545, and 547 can be considered to be part of solar collectors 520, 540, 542, 544, and 546, respectively. Solar collectors 520, 540, 542, 544, and 546 can be similar or identical to solar collectors 120 or 420 of Figures 1 and 4, respectively. Fiber optic cables 511, 541, 543, 545, and 547 connect solar collectors 520, 540, 542, 544, and 546 to bonding device 550, respectively, and they can be similar to or with fiber optic cable m (FIG. 1), 411, 441 , 443 and / or 445 (Figure 4) are the same. In some examples, bonding device 550 can be an integrating sphere. In some examples, conversion element 530 can include: (a) two or more thermal conversion elements 531, 533, 534, 535, and 536; and (b) - heat exchanger 537. Thermal conversion elements 531, 533, 534, 535, and 536 can be positioned within bonding device 550. Each of the thermal conversion elements 531, 533, 534, 535 and 536 is arranged to receive signals propagating along the fiber optic cables 51, 543, 545 and 547, respectively. The thermal energy from all of the fiber optic cables 511, 541, 543, 545, and 547 then passes through the heat exchanger 5 3 7 ' as shown in Figure 5' which includes a hot fluid input/output path. In the embodiment illustrated in Figure 5, fiber optic cables 511, 541, 543, 545, and 547 are brought together to form an optical boiler that is configured to generate thermal energy having a thermal energy of 20 201245642 An order of magnitude improvement over conventional solar systems based on solar radiation. Additionally, it is possible to use solar system 500' to further integrate an optical modulation device, such as a Mach-Zehnder interferometer, with conversion half 530 to generate an AC from incident radiation propagating along fiber optic cables 511, 541, 543, 545 547. Electrical output signal. By means of a conventional electric power signal as data, the solar radiation collected by the singularity can be converted into an eight-turn electrical output ~ signal. Bonding device 550 and conversion element 530 can be positioned at a distance from the solar energy collectors 520, 540, 542, 544, and 546. In some examples, bonding device 550 and conversion element 530 are stored in a protective structure, and solar collectors 520, 54A, 542, 544, and 546 are positioned external to the protective structure. The bonding device can be not only an integrating sphere, but any optical technique that allows combining two or more fibers into a single fiber. In some embodiments, the output of two or more solar concentrators can be combined into a single fiber bundle to reduce the cost of energy transfer to the remote location. The combination of the outputs of two or more solar collectors has an additive effect (increased energy density) on the overall concentration rate. This increase in the total concentration rate is particularly beneficial for generating super heated steam for steam turbines. Turning still to an embodiment, Figure 6 shows an isometric view of a solar energy system 600 in accordance with a fourth embodiment. The solar system 6 is merely exemplary and is not limited to the embodiments presented herein. Solar energy system 600 can be used in embodiments or examples of many different 21 201245642 not specifically depicted or described herein. In some embodiments, a solar energy system 600 can be a solar collector array and can include: (a) two or more solar collectors 620, 640, and 642; (b) at least one conversion device or component 430 Configuring to convert solar radiation (ie, light) into one or more other forms of energy (eg, thermal, mechanical, and/or electrical energy); (c) one or more fiber optic cables 611; and (d) It is connected to a receiver 610 on the fiber optic cable 611. In some examples, receiver 61A and a plurality of fiber optic cables can be considered to be part of solar collectors 62A, 64A, and 642, respectively. In some examples, the solar collector 620 can include: (〇 at least one concentrated reflector 621; (1〇-support structure 622; and (a mounting structure 623. The solar system 600 can be modified differently for a solar system, The solar energy system can be implemented by using a fiber bundle as the official track of the collected sunrays to transmit the collected solar radiation to the remotely located conversion element 430. The solar collectors 640 and 642 can be similar or The same as the solar collector 62. In this example, the 'too energy system 600 has a solar power generation configuration. That is, it is not necessary for each solar collector 62, 64°, and 642 to have their own Receiver, a receiver 61A is positioned at power generation tower 615. Solar collectors 020, 040, and 642 redirect solar radiation onto receiver 610. Receiver 610 focuses the redirected solar radiation onto fiber optic cable 611 In some examples, the receiver 61 can be considered by 22 201245642 to be part of one or more solar collectors 620, 64A and 642. The fiber optic cable 611 can be concentrated The radiation is transmitted from the receiver 61〇 to the remotely located conversion element 430. The fiber optic cable 611 can be similar to or with fiber optic cable, cable 111 (Fig. 1), 411, 441, 443, 445, 447 (Fig. 4). 5U, 54 543, 545, and/or 547 (Fig. 5) are identical. Also, in some examples, fiber optic cable 611 can be considered part of one or more solar collectors 620, 640, and 642. In still another embodiment, Figure 7 shows an isometric view of a solar energy system 700 in accordance with a fifth embodiment. The solar energy system 7 is merely exemplary and is not limited to the embodiments presented herein. Solar energy system 700 is available In many different embodiments or examples not specifically depicted or described herein. In some embodiments, solar energy system 700 can include: (a) at least one solar collector 72A; and (b) one or more conversions The device or component 130 is configured to convert solar radiation (ie, light) into one or more other forms of energy (eg, thermal, mechanical, and/or electrical energy). In some examples, the solar collector 720 can include (a) one or more fiber optic cables 711 connected to the conversion element 130; (b) a receiver 710; (c) at least one concentrated reflector 721 configured to redirect solar radiation Up to the receiver 7 i ;; U) - the support structure 722; and (e) - the mounting structure 723. Too 1% of the system 700 can be modified differently for a solar system by passing an optical fiber The beam is used as a conduit for the collected solar 23 201245642 radiation to deliver the collected solar radiation to the remotely located conversion element 130. In this example, the concentrated reflector 721 can be a parabolic trough collector. A parabolic trough collector uses an elongated reflective trough having a parabolic cross section to concentrate the radiation of the sun along a line of focus extending through the focal points of the parabolic elements forming the trough. In this embodiment, the receiver 710 is positioned along the focal line of the parabolic trough. Receiver 710 includes a plurality of focusing optics configured to focus solar radiation redirected by concentrated reflector 721 into fiber optic cable 711. Fiber optic cable 711 can transfer concentrated solar radiation from receiver 710 to remotely located conversion element 130. FIG. 8 illustrates a flow diagram of an embodiment of a method 800 of converting light from the sun into one or more other forms of energy. Method 800 is merely exemplary and is not limited to the embodiments presented herein. Method 800 can be used in many different embodiments or examples not specifically depicted or described herein. In some embodiments, the acts, processes, and/or steps of method 800 can be performed in the order presented. In other embodiments, the acts, processes, and/or steps of method 800 may be performed in any other suitable order. In still other embodiments, one or more of the acts, processes, and/or steps in method 800 can be combined or skipped. Referring to Figure 8, method 800 includes the act of redirecting light from the sun to a first receiver using at least one first concentrated reflector 24 201245642 87〇. As an example, the concentrated reflectors may be similar or identical to the concentrated reflectors 121, 424, 425, 621 or 721 of Figures 1, 4, 4, 6, and 7, respectively. The first receivers may be similar or identical to the receivers 110, 410, 510, 610 or 710 of Figures 1, 4, 5, 6 and 7, respectively. Thereafter, the method 800 of FIG. 8 includes an act 87 of focusing the light into the first bundle of fibers at the first receive f as an example, the fiber bundle may be similar to or with FIG. The fibers of 4, 5, 6 and 7 are the same around 111, 411, 511, 611 or 711. In some instances,

Iff 一接收器可包括多個聚焦光學器件,該ί聚焦光學 盗件可用於將光聚焦到該第—光纖束中。 =來’圖8的方法_包括使用該第—光纖束來 得运光的一行為872。 是使方法_用一行為873繼續進行,該行為 向到-第^太陽的光重定 于或與行:㈣二在一些實例中’行為8一 集中3=方法_包括將來自該至少-個第二 :的=4 ?到該第二接W 叮苟874。在一此實例中 與行為871相同。^ 订為874可類似于或 二集中反射器的光被变隹到二^自5亥至少一個第 纖束中。 破I焦到该第一接收器處的第一光 接下來,圖8的方法8 傳送光的-行為87s —匕枯使用5亥名二光纖束來 為875。在一些實例中,行為奶可類似 25 201245642 于或與行為872相同。在其他的實例中,使用該第一光 纖束傳送來自該第二集中反射器的光。在進一步的實例 中,方法800可包括與行為873-875類似的額外行為, 用於額外的集中反射器和接收器。 其後,圖8的方法800包括將來自該第一接收器的 光與來自該第二接收器的光進行結合的一行為876。在 一些實例中,可使用結合裝置將來自該第一接收器的光 與來自該第二接收器的光進行結合(分別例如,圖4和 圖5的結合裝置450或550)。 圖8中的方法800用一行為877來繼續進行,該行 為是使用該至少一個轉換元件將光轉換為一或多種其 他形式的能量。在一些實例中,該光可被轉換為熱能、 機械能和/或電能。作為一實例,該轉換元件可分別類 似於或與圖1、4和5的轉換元件130、430或530相同。 圖9示出了提供太陽能系統以收集太陽輻射的方 法900的一實施方式的流程圖。方法900僅為示例性的 並且不局限於在此所提出的實施方式。方法900可用於 未在此具體描繪或描述的許多不同的實施方式或實例 中。在一些實施方式中,方法900的行為、進程和/或 步驟可用所提出的順序來執行。在其他的實施方式中, 方法900的行為、進程和/或步驟可用任何其他適當的 順序來執行。在仍其他的實施方式中,方法900中的一 或多個行為、進程和/或步驟可進行組合或被略過。 參見圖9,方法900包括提供至少一個太陽能收集 26 201245642 ,的4亍為970。作為一實例,該太陽能 類似於或與圖1、4、s n u ”裔Ί刀別 49nr . / . ΛΛ(Λ 、6和7的太陽能收集器ΐ2〇、 ㈣和/或 44〇、術、4⑹、520(和/或540、542、544、 546 )、620 (和/或 64〇 方式中,圖!。根據二在一些實施 個太陽能收集器的行A Q7〇 &amp; 奴供至少 ^仃為970的不例性實施方式的流程 園。 與j = 行為970包括提供-具有多個聚焦光 器可分別類似於或與圖卜^^為^貫^列’雜收 .1Λ ,1Λ , 、間1 4 5、6和7的接收器11〇、 W或710相同。該等聚焦光 於或與圖3的聚焦光學器件312相同。 驟為^的/了為97G用—步驟U)83來繼續進行,該步 :=至&gt;、一個集中反射器,該集中反射器被配置成 將太㈣射重定向到該接收器上。作為―實例,华中反 射器可分賴似於或與圖卜4、4、6和 中' 器121、424、425、621或72〗相同。 果〒反射 其後’圖1G的行為97G包括提供—❹個光纖光 纜的一步驟1084。作A —眘也丨 , 類似於或與圖1、4 5為6 = :^ 、口 ) 6和7的光纖光纜111、411、 511、611 或 711 相同。 接下來’圖1G的行為97〇包括將該等聚焦光學器 件連接到這個或該等光纖域上的—步驟嶋,這樣 使得該等聚焦光學器件將太陽轄射集中到這個或該等 27 201245642 光纖光纜中。可以用類似於或與將光纖光纜111連接到 聚焦光學器件312上相同的方式(如圖3所示)將該等 聚焦光學器件連接到這個或該等光纖光纜上。在步驟 1085之後,行為970完成。 回來參見圖9,圖9中的方法900用一行為971來 繼續進行,這個行為是提供一或多個轉換元件,這個或 該等轉換元件被配置成將該太陽輻射轉換為一或多種 其他形式的能量。作為一實例,該轉換元件可分別類似 於或與圖1、4和5的轉換元件130、430或530相同。 在一些實例中,圖9的方法900包括一可選行為 972,該可選行為是提供一結合裝置,該結合裝置被配 置成將來自兩個或更多個太陽能收集器的太陽輻射進 行結合。作為一實例,結合裝置可分別類似於或與圖4 和5的結合舉置45〇或55〇相同。 其後,圖9的方法900包括將這個或該等光纖光纜 連接到這個或該等轉換元件上的一行為973。在一些實 例中,圖11示出了行為973的一示例性實施方式的流 程圖。 參見圖11,行為973包括將這個或該等光纖光纜連 接到該結合裝置上的一步驟1182。 圖11的行為973用一步驟1183來繼續進行,該步 驟為將該結合裝置連接到這個或該等轉換元件上。在步 驟1183之後,行為973以及方法900完成。 雖然已參考具體的實施方式描述了本發明,但熟悉 28 201245642 該項技術者將理解的是,在不偏離本發明的精神或範圍 的If況下’可對其做出各種變化。因此’本發明的實施 方式的揭露内容旨在說明本發明的範圍而並不旨在進 行限制。這旨在說明’本發明的範圍將僅由所附申請專 利範圍所要求的程度來限定。例如,對於-本領域的普 通技術人員來說顯而易見的是,圖8的行為87〇·877 : 圖9的行為970-973、圖1〇的步驟1〇82_1〇85、以及圖 U的步驟1182-1183可包括許多不同的行為、步驟並且 可用許多不同的模組、以許多不同的次序來執行,即可 改變圖Ml的任何元件並且前面對某些實施方式的討 論並不必然代表所有可能的實施方式的—完整描述。 在任何具體申請專利範圍中所要求的所有元素對 於在那個具體申請專利範财所要求 來 是必要的。因此,替換一或多個所要求的元素 構而非修補。另外,⑽於具體的實施方式描述了多種 益處、其他優勢以及對於問題的解決方案L該等 益處、優勢、_題的解決方案、以及可產生任何益處、 優勢、或解決方案的或使其變得更加明顯的任何一個元 素或夕個元素並不被視為任何或所有中 ,需要的、或必要的特徵或元素,除非在= =請專利範圍中陳述了這樣的益處、優勢、解決方案、 或元素。 而且,如果實施方式和/或限制:⑴並未在申請 專利範圍中财地要求;以及⑺在等同原則下,它 29 201245642 們是申請專職财所表述的元姊/或_的等效物 或潛在等效物’職在輯揭露的實施料與限制並非 在貢獻原則(doctrine of dedication )下用於向大眾公開。 【圖式簡單說明】 為了有助於進-步描述實施方式,提供了下 圖,其中: 圖1根據第-實施方式示出了一太陽 距視圖; 刃寻 圖2根據第-實施方式示出了圖〗的太陽能系 一太陽能收集器的側視圖; 圖3根據第-實施方式示出了圖μ太陽能收集器 、接收器沿線Ι-Ι (圖1 )的切開視圖; 距視=4根據第二實施方式示出了—太陽能系統的等 、圖5根據第三實施方式示出了—太陽能系統的等 距視圖; 距視g .6根據第四實施方式示出了一太陽能系統的等 拓、目Ξ 7根據第五實施方式示出了—太陽能系統的等 此視圖; 圖8不出了用於—實施方式的、將來自太陽的光轉 、”’、或多種其他形式能量的方法的流程圖; 圖9不出了用於-實施方式的、提供用以收集太陽 201245642 幸虽射的太1%能糸統的方法的流程圖, 圖ίο根據一實施方式示出了用於提供至少一個太 陽能收集器的行為的示例性實施方式的流程圖;並且 圖11根據一實施方式示出了用於將一或多個光纖 光纜連接到一或多個轉換元件上的行為的示例性實施 方式的流程圖。 【主要元件符號說明】 100太陽能系統 412次級反射器 110接收器 420太陽能收集器 111光纖光纜 422支撐結構 120太陽能收集器 423安裝結構 121集中反射器 424集中反射器 122支撐結構 425集中反射器 123安裝結構 430轉換元件 129區域 440太陽能收集器 130轉換元件 441光纖光纜 312聚焦光學器件 442太陽能收集器 313箍套結構 44:3光纖光纜 314殼體 444太陽能收集器 315區域 445光纖光纜 400太陽能系統 450結合裝置 410接收器 460第一結構 411光纖光纜 500太陽能系統 201245642 510 511光纖光纜 520太陽能收集器 530轉換裝置 531熱轉換元件 533熱轉換元件 534熱轉換元件 535熱轉換元件 536熱轉換元件 537熱交換器 540太陽能收集器 541光纖光纜 542太陽能收集器 543光纖光纜 544太陽能收集器 545光纖光纜 546太陽能收集器 547光纖光纜 550結合裝置 600太陽能系統 610接收器 611光纖光纜 620太陽能收集器 621集中反射器 622支撐結構 623安裝結構 640太陽能收集器 642太陽能收集器 700太陽能系統 710接收器 711光纖光纜 720太陽能收集器 721集中反射器 722支撐結構 723安裝結構 32The Iff-receiver can include a plurality of focusing optics that can be used to focus light into the first fiber bundle. The method of Fig. 8 includes a behavior 872 of using the first fiber bundle to obtain light. Is to make the method _ continue with a behavior 873, the behavior is to - the light of the sun is reset or with the line: (four) two in some instances 'behavior 8 a set 3 = method _ including from the at least one Two: = 4 ? to the second connection W 叮苟 874. In the same example, it is the same as behavior 871. ^ The light of 874 can be similar to or the two concentrated reflectors is changed to at least one of the first fiber bundles. Breaking the I-coke to the first light at the first receiver Next, the method 8 of Figure 8 transmits the light-behavior of 87s - using 5% of the two fiber bundles to 875. In some instances, the behavioral milk may be similar to or the same as behavior 872. In other examples, the first fiber optic beam is used to transmit light from the second concentrated reflector. In a further example, method 800 can include additional behavior similar to acts 873-875 for additional concentrated reflectors and receivers. Thereafter, method 800 of FIG. 8 includes an act 876 of combining light from the first receiver with light from the second receiver. In some examples, a bonding device can be used to combine light from the first receiver with light from the second receiver (e.g., the combining device 450 or 550 of Figures 4 and 5, respectively). The method 800 of Figure 8 continues with a behavior 877 that uses the at least one conversion element to convert light into one or more other forms of energy. In some examples, the light can be converted to thermal, mechanical, and/or electrical energy. As an example, the conversion elements can be similar or identical to the conversion elements 130, 430 or 530 of Figures 1, 4 and 5, respectively. FIG. 9 illustrates a flow diagram of an embodiment of a method 900 of providing a solar energy system to collect solar radiation. Method 900 is merely exemplary and is not limited to the embodiments presented herein. Method 900 can be used in many different embodiments or examples not specifically depicted or described herein. In some embodiments, the behavior, processes, and/or steps of method 900 can be performed in the order presented. In other embodiments, the acts, processes, and/or steps of method 900 may be performed in any other suitable order. In still other embodiments, one or more of the acts, processes, and/or steps in method 900 can be combined or skipped. Referring to Figure 9, method 900 includes providing at least one solar energy collection 26 201245642, which is 970. As an example, the solar energy is similar to or similar to Figure 1, 4, snu Ί 别 49 49nr. / ΛΛ (Λ, 6 and 7 solar collector 〇 2 〇, (four) and / or 44 〇, surgery, 4 (6), 520 (and / or 540, 542, 544, 546), 620 (and / or 64 〇 way, figure!. According to the second in some implementation of the solar collector row A Q7 〇 & 奴 奴 至少 at least ^ 仃 970 The flow of the exemplary embodiment of the process. With j = behavior 970 includes providing - with multiple focusing optics can be similar to or with the drawing ^ ^ ^ ^ ^ ^ column ' miscellaneous. 1 Λ , 1 Λ , , 1 The receivers 11〇, W or 710 of 4, 6 and 7 are identical. The focuss are either the same as or different from the focusing optics 312 of Fig. 3. The step is for 97G and the step U) 83 is continued. , the step: = to >, a concentrated reflector, the concentrated reflector is configured to redirect the (four) shot to the receiver. As an example, the Central China reflector can be divided into or with the Figure 4 4, 6 and the same as the '121, 424, 425, 621 or 72. 〒 〒 其 </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; - cautious, similar or identical to the fiber optic cable 111, 411, 511, 611 or 711 of Figures 1 and 4, 6 = :^, 6) and 6. Next, the behavior of Figure 1G includes The focusing optics are connected to the fiber optic domain, such that the focusing optics concentrate the solar radiation into the or the 27 201245642 fiber optic cable. The optical fiber cable 111 is connected to the focusing optics 312 in the same manner (as shown in Figure 3) to connect the focusing optics to the fiber optic cable. After step 1085, the behavior 970 is completed. Referring back to Figure 9, Figure The method 900 of 9 continues with a behavior 971 that provides one or more conversion elements that are configured to convert the solar radiation into one or more other forms of energy. As an example The conversion elements may be similar or identical to the conversion elements 130, 430 or 530 of Figures 1, 4 and 5, respectively. In some examples, the method 900 of Figure 9 includes an optional behavior 972 that provides a Knot A coupling device configured to combine solar radiation from two or more solar collectors. As an example, the bonding device can be similar to or in combination with the combination of Figures 4 and 5, 45 or 55 Thereafter, the method 900 of Figure 9 includes an act 973 of connecting the fiber optic cable to the or the conversion element. In some examples, Figure 11 illustrates an exemplary implementation of the act 973. The flow chart of the way. Referring to Figure 11, act 973 includes a step 1182 of connecting the fiber optic cable to the bonding device. The act 973 of Figure 11 continues with a step 1183 for connecting the bonding device to the or the conversion elements. After step 1183, act 973 and method 900 are completed. Although the present invention has been described with reference to the specific embodiments thereof, it will be understood by those skilled in the art that various modifications may be made thereto without departing from the spirit and scope of the invention. Therefore, the disclosure of the embodiments of the present invention is intended to be illustrative of the scope of the invention and is not intended to be limiting. It is intended that the scope of the invention be limited only by the scope of the appended claims. For example, it will be apparent to one of ordinary skill in the art that the behavior of FIG. 8 is 87〇877: behaviors 970-973 of FIG. 9, steps 1〇82_1〇85 of FIG. 1A, and step 1182 of FIG. -1183 can include many different acts, steps, and can be performed in many different orders, in many different orders, that is, any of the elements of Figure M1 can be changed and the discussion of certain embodiments does not necessarily represent all possibilities. A complete description of the implementation. All elements required in the scope of any specific patent application are necessary for that particular patent application. Therefore, one or more of the required elements are replaced instead of patched. In addition, (10) various benefits, other advantages, and solutions to problems are described in the specific embodiments. These benefits, advantages, solutions to problems, and any benefits, advantages, or solutions that may result in or change Any element or element that is more obvious is not considered to be any or all of the required or necessary features or elements unless such benefits, advantages, solutions, etc. are stated in the scope of == Or element. Moreover, if the implementation and / or restrictions: (1) is not required in the scope of the patent application; and (7) under the principle of equivalence, it is the equivalent or potential of the Yuan 姊 / or _ expressed in the application for full-time financial Equivalents' implementations and limitations are not disclosed to the public under the doctrine of dedication. BRIEF DESCRIPTION OF THE DRAWINGS In order to facilitate further description of the embodiments, the following figures are provided, in which: Figure 1 shows a sun-distance view according to a first embodiment; the blade-finding diagram 2 is shown according to a first embodiment Figure 3 is a side view of the solar system-solar collector of Figure 1-3; Figure 3 shows a cutaway view of the solar collector and receiver along the line Ι-Ι (Figure 1) according to the first embodiment; The second embodiment shows a solar system, etc., FIG. 5 shows an isometric view of the solar energy system according to the third embodiment, and the distance g 6 shows an equal extension of the solar energy system according to the fourth embodiment. 7 shows a view of the solar system according to a fifth embodiment; FIG. 8 shows a flow of a method for transferring light from the sun, "', or various other forms of energy for an embodiment. Figure 9 is a flow chart showing a method for collecting the solar energy of the future of the solar system 201245642, which is shown to be used for providing at least one method according to an embodiment. Row of solar collectors A flowchart of an exemplary embodiment; and FIG. 11 illustrates a flow diagram of an exemplary embodiment of an act of connecting one or more fiber optic cables to one or more conversion elements, according to an embodiment. Main component symbol description 100 solar system 412 secondary reflector 110 receiver 420 solar collector 111 fiber optic cable 422 support structure 120 solar collector 423 mounting structure 121 concentrated reflector 424 concentrated reflector 122 support structure 425 concentrated reflector 123 installation Structure 430 Conversion Element 129 Region 440 Solar Collector 130 Conversion Element 441 Fiber Optic Cable 312 Focusing Optics 442 Solar Collector 313 Cuff Structure 44: 3 Fiber Optic Cable 314 Housing 444 Solar Collector 315 Region 445 Fiber Optic Cable 400 Solar System 450 Combination Device 410 Receiver 460 First Structure 411 Fiber Optic Cable 500 Solar System 201245642 510 511 Fiber Optic Cable 520 Solar Collector 530 Conversion Device 531 Thermal Conversion Element 533 Thermal Conversion Element 534 Thermal Conversion Element 535 Thermal Conversion Element 536 Thermal Conversion Element 537 Heat Exchanger 540 solar collector 541 Fiber optic cable 542 solar collector 543 fiber optic cable 544 solar collector 545 fiber optic cable 546 solar collector 547 fiber optic cable 550 combined device 600 solar system 610 receiver 611 fiber optic cable 620 solar collector 621 concentrated reflector 622 support structure 623 mounting structure 640 Solar collector 642 solar collector 700 solar system 710 receiver 711 fiber optic cable 720 solar collector 721 concentrated reflector 722 support structure 723 mounting structure 32

Claims (1)

201245642 七、申請專利範圍: 1. 一種太陽能系統,包括: 至少一個太陽能收集器,該至少一個太陽能收 集器包括: 一或多個光纖光纜; 一接收器,該接收器包括: 多個聚焦光學器件其被配置成將太陽輻射聚 焦到該一或多個光纖光纜中;以及 至少一個集中反射器其被配置成將該太陽輻 射重定向到該接收器上;以及 被連接到該一或多個光纖光纜上的一或多個 轉換元件,該一或多個轉換元件被配置成將該太陽 輻射轉換為一或多種其他形式的能量。 2. 如申請專利範圍第1項所述之太陽能系統,其中: 這些聚焦光學器件包括一個透鏡,該透鏡被配 置成將該太陽輻射聚焦到該一或多個光纖光纜中。 3. 如申請專利範圍第1或2項所述之太陽能系統,其 中: 該接收器被連接到該至少一個集中反射器上 並且被定位於該至少一個集中反射器的一聚焦區 域處。 33 201245642 4·如申請專利範圍第1、2或3項所述之太陽能系統 其中: 該至少一集中反射器包括: 一次級反射器其被配置成將該太陽輻射重定 向到該接收器上;以及 一初級反射器其被配置成將該太陽輻射重定 向到該次級反射器上。 5. 如申請專利範圍第卜2、3或4項所述之太陽能系 統,其中: 該至少一個集中反射器包括: 一第一集中反射器其被配置成將該太陽輻射 重定向到該接收器上;以及 一第二集中反射器其被定位為鄰近該第一集 中反射器並且被配置成將該太陽輻射重定向到該 接收器上。 6. 如申請專利範圍第卜2'3、4或5項所述之太陽 能系統,其中: 該一或多個轉換元件被定位於一第一建築物 内;並且 s玄至少一個太陽能收集器,除該一或多個光纖 光續1的至少一部分以外,被定位於該第一建築物的 外部。 34 201245642 7. 如申請專利範圍第1、2、3、4、5、或6項所述之 太陽能系統,其中: ' 該一或多個轉換元件除與該一或多個光纖光 纜連接之外並不與太陽能電池陣列機械地連接。 8. 如中凊專利範圍第1、2、3、4、5、6、或7項所 述之太陽能系統,其中·· 該一或多個轉換元件包括一熱接收器。 9. 如中請專利範圍第1、2、3、4、5、6、7、或8項 所述之太陽能系統,其中: 該一或多個轉換元件包括一聚光器光伏電池。 1〇.如中請專利範圍第卜2、3、4、5.、6、7、8、或9 項所述之太陽能系統,其中: 該一或多個轉換元件被配置成至少部分地將 5亥太陽輕射轉換為電能。 u.如中請專利範圍第1、2、3、4、5、6、7、8、9、 或10項所述之太陽能系統,進一步包括: 一整合球體;以及 至少一個第二太陽能收集器,該至少一個第二 太陽能收集器包括: 35 201245642 一或多個第二光纖光纜; 一第二接收器,該第二接收器包括: 多個第二聚焦光學器件其被配置成將第二太 陽輻射聚焦到該一或多個第二光纖光纜中;以及 至少一個第二集中反射器其被配置成將該第 二太陽輻射重定向到該第二接收器上, 其中: 該整合球體被連接到該一或多個光纖光纜以 及該一或多個第二光纖光纜上並且被配置成將在 該一或多個光纖光纜中的太陽輻射以及在該一或 多個第二光纖光纜中的第二太陽輻射結合為聚集 的太陽輕射,並且 該一或多個轉換元件被配置成將該聚集的太 陽輻射轉換為一或多種其他形式的能量。 12. —種太陽能陣列,包括: 兩個或更多個太陽能收集器,這兩個或更多個 太陽能收集器中的每一個包括: 一接收器; 一或多個集中反射器其被配置成將光重定向 到該接收器上;以及 一第一光纖束,該接收器被配置成將該光集中 到該第一光纖束中; 一結合裝置其被連接到該兩個或更多個太陽 36 201245642 能收集器各自的第一光纖束中並且被配置成將該 兩個或更多個太陽能收集器各自的第一光纖束中 的光集中為聚光;以及 被連接到該結合裝置上的至少一個轉換裝 置,該至少一個轉換裝置被配置成將該聚光變換為 —或多種其他形式的能量。 13. 如申請專利範圍第12項所述之太陽能陣列,其中: 該結合裝置包括一整合球體。 14. 如申請專利範圍第12或13項所述之太陽能陣列, 其中: 該兩個或更多個太陽能收集器,除第一光纖束 的σ卩分外,與該結合裝置以及該至少一個接收裝 置間隔開。 ^ 15. 如申請專利範圍第12、13或14項所述之太陽 列,其中: 該結合裝置以及該至少一個轉換裝置被定位 於一第一結構中; 该接收器以及該兩個或更多個太陽能收集器 =自的該-或多個集中反射器不是定位於該第二 、、'吉構中;並且 該接收器以及該兩個或更多個太陽能收集器 37 201245642 各自的該一或多個集中反射器被定位於與該第一 結構相距一預定的非零距離。 16. —種將來自太陽的光轉換為一或多種其他形式能 量之方法,該方法包括: 將太陽光從至少一個第一集中反射器重定向 到一第一接收器上; 將該太陽光聚焦到該第一接收器處的一第一 光纖束中; 使用該第一光纖束將該太陽光從該第一接收 器傳送到至少一個轉換裝置上;並且 使用該至少一個轉換裝置將該太陽光轉換為 一或多種其他形式的能量。 17. 如申請專利範圍第16項所述之方法,進一步包括: 在轉換該太陽光之前,將來自該接收器的太陽 光與來自一個或多個第二接收器的其他太陽光進 行結合。 18. 如申請專利範圍第16項所述之方法,進一步包括: 使用至少一個第二集中反射器將其他的太陽 光重定向到一第二接收器上; 將該其他的太陽光聚焦到該第二接收器處的 一第二光纖束中; 38 201245642 使用該第二光纖束將該其他的太陽光從該第 二接收器傳送到該至少一個轉換裝置上;並且 使用該至少一個轉換裝置將該其他的太陽光 轉換為一或多種其他形式的能量。 19. 一種提供太陽能系統以收集太陽輻射之方法,該方 法包括: 提供至少一個太陽能收集器,包括: 提供帶有多個聚焦光學器件的一接收器; 提供至少一個集中反射器被配置成將該太陽 輻射重定向到該接收器上; 提供一或多個光纖光繞;並且 將這些聚焦光學器件連接到該一或多個光纖 光纜上,以便使得這些聚焦光學器件將該太陽輻射 集中到該一或多個光纖光纜中; 提供一或多個轉換元件,該一或多個轉換元件 被配置成將該太陽輻射轉換為一或多種其他形式 的能量;並且 將該一或多個光纖光纜連接到該一或多個轉 換元件上。 20. 如申請專利範圍第19項所述之方法,進一步包括: 提供一結合裝置,該結合裝置被連接到該一或 多個光纖光纜上並且被配置成將來自該至少一個 39 201245642 太陽能收集器的兩個或更多個太陽能收集器的太 陽輻射結合為聚集的太陽輻射, 其中: 將該一或多個光纖光纜連接到該一或多個轉 換元件上包括: 將該一或多個光纖光纜連接到該結合裝置 上;並且 將該結合裝置連接到該一或多個轉換元件上。201245642 VII. Patent Application Range: 1. A solar energy system comprising: at least one solar energy collector, the at least one solar energy collector comprising: one or more fiber optic cables; a receiver, the receiver comprising: a plurality of focusing optics Equipped to focus solar radiation into the one or more fiber optic cables; and at least one concentrating reflector configured to redirect the solar radiation to the receiver; and to be coupled to the one or more optical fibers One or more conversion elements on the cable, the one or more conversion elements being configured to convert the solar radiation into one or more other forms of energy. 2. The solar energy system of claim 1, wherein: the focusing optics comprises a lens configured to focus the solar radiation into the one or more fiber optic cables. 3. The solar energy system of claim 1 or 2, wherein: the receiver is coupled to the at least one concentrating reflector and positioned at a focal region of the at least one concentrating reflector. A solar energy system as described in claim 1, 2 or 3 wherein: the at least one concentrated reflector comprises: a secondary reflector configured to redirect the solar radiation to the receiver; And a primary reflector configured to redirect the solar radiation onto the secondary reflector. 5. The solar energy system of claim 2, 3 or 4, wherein: the at least one concentrated reflector comprises: a first concentrated reflector configured to redirect the solar radiation to the receiver And a second concentrating reflector positioned adjacent to the first concentrating reflector and configured to redirect the solar radiation to the receiver. 6. The solar energy system of claim 2, wherein the one or more conversion elements are positioned within a first building; and the at least one solar collector is In addition to at least a portion of the one or more optical fibers, the outer portion of the first building is positioned. 34 201245642 7. The solar energy system of claim 1, 2, 3, 4, 5, or 6, wherein: the one or more conversion elements are connected to the one or more fiber optic cables It is not mechanically connected to the solar array. 8. The solar energy system of claim 1, 2, 3, 4, 5, 6, or 7, wherein the one or more conversion elements comprise a heat receiver. 9. The solar energy system of claim 1, 2, 3, 4, 5, 6, 7, or 8 wherein: the one or more conversion elements comprise a concentrator photovoltaic cell. The solar energy system of claim 2, 3, 4, 5., 6, 7, 8, or 9 wherein: the one or more conversion elements are configured to at least partially 5 Hai Sun light conversion into electrical energy. U. The solar energy system of claim 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10, further comprising: an integrated sphere; and at least one second solar collector The at least one second solar collector comprises: 35 201245642 one or more second fiber optic cables; a second receiver, the second receiver comprising: a plurality of second focusing optics configured to place the second sun Radiation is focused into the one or more second fiber optic cables; and at least one second concentrated reflector is configured to redirect the second solar radiation to the second receiver, wherein: the integrated sphere is coupled to The one or more fiber optic cables and the one or more second fiber optic cables are configured to transmit solar radiation in the one or more fiber optic cables and a second one of the one or more second fiber optic cables The solar radiation is combined into a concentrated solar light, and the one or more conversion elements are configured to convert the concentrated solar radiation into one or more other forms of energy. 12. A solar array comprising: two or more solar collectors, each of the two or more solar collectors comprising: a receiver; one or more concentrated reflectors configured to Redirecting light to the receiver; and a first bundle of fibers configured to concentrate the light into the first bundle; a bonding device coupled to the two or more suns 36 201245642 each of the first bundles of energy collectors and configured to concentrate light in the respective first bundles of the two or more solar collectors into a concentrating light; and being coupled to the bonding device At least one conversion device configured to convert the concentrated light into - or a plurality of other forms of energy. 13. The solar array of claim 12, wherein: the bonding device comprises an integrated sphere. 14. The solar array of claim 12, wherein: the two or more solar collectors, in addition to the σ卩 of the first bundle, the combined device and the at least one receiving The devices are spaced apart. The solar column of claim 12, 13 or 14, wherein: the combining device and the at least one converting device are positioned in a first structure; the receiver and the two or more Solar collectors = the one or more concentrated reflectors are not located in the second, 'giga structure; and the receiver and the two or more solar collectors 37 201245642 each of the one or A plurality of concentrated reflectors are positioned at a predetermined non-zero distance from the first structure. 16. A method of converting light from the sun into one or more other forms of energy, the method comprising: redirecting sunlight from at least one first concentrated reflector to a first receiver; focusing the sunlight to a first fiber bundle at the first receiver; transmitting the sunlight from the first receiver to the at least one conversion device using the first fiber bundle; and converting the sunlight using the at least one conversion device For one or more other forms of energy. 17. The method of claim 16, further comprising: combining sunlight from the receiver with other sunlight from the one or more second receivers prior to converting the sunlight. 18. The method of claim 16, further comprising: redirecting other sunlight to a second receiver using at least one second concentrated reflector; focusing the other sunlight to the first a second fiber bundle at the second receiver; 38 201245642 using the second fiber bundle to transfer the other sunlight from the second receiver to the at least one conversion device; and using the at least one conversion device Other sunlight is converted into one or more other forms of energy. 19. A method of providing a solar energy system for collecting solar radiation, the method comprising: providing at least one solar collector, comprising: providing a receiver with a plurality of focusing optics; providing at least one concentrated reflector configured to Redirecting solar radiation to the receiver; providing one or more optical fiber windings; and connecting the focusing optics to the one or more fiber optic cables to cause the focusing optics to concentrate the solar radiation to the one Or a plurality of fiber optic cables; providing one or more conversion elements configured to convert the solar radiation into one or more other forms of energy; and connecting the one or more fiber optic cables to The one or more conversion elements. 20. The method of claim 19, further comprising: providing a bonding device coupled to the one or more fiber optic cables and configured to receive the solar collector from the at least one of the 201245642 The solar radiation of the two or more solar collectors is combined into concentrated solar radiation, wherein: connecting the one or more fiber optic cables to the one or more conversion elements comprises: the one or more fiber optic cables Connected to the bonding device; and the bonding device is coupled to the one or more conversion elements.
TW101101325A 2011-01-14 2012-01-13 Fiber-based transmission system for solar energy system and method of providing and using the same TWI595198B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201161432955P 2011-01-14 2011-01-14

Publications (2)

Publication Number Publication Date
TW201245642A true TW201245642A (en) 2012-11-16
TWI595198B TWI595198B (en) 2017-08-11

Family

ID=46507688

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101101325A TWI595198B (en) 2011-01-14 2012-01-13 Fiber-based transmission system for solar energy system and method of providing and using the same

Country Status (6)

Country Link
EP (1) EP2663812A4 (en)
CN (1) CN103429967B (en)
BR (1) BR112013017949A2 (en)
MX (1) MX2013008081A (en)
TW (1) TWI595198B (en)
WO (1) WO2012097260A2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012212837B4 (en) * 2012-07-23 2016-12-29 BankWare Ltd. Device for the use of radiant energy
FR2995409B1 (en) * 2012-09-07 2017-06-30 Nicolas Gilbert Ugolin OPTICAL SOLAR CELL
WO2014085436A1 (en) 2012-11-30 2014-06-05 Arizona Board Of Regents On Behalf Of University Of Arizona Solar generator with large reflector dishes and concentrator photovoltaic cells in flat arrays
WO2015061323A1 (en) 2013-10-22 2015-04-30 The Arizona Board Of Regents On Behalf Of The University Of Arizona Octohedral frame and tripod for rotating equipment
WO2015116935A1 (en) * 2014-01-31 2015-08-06 Stc. Unm Fiber coupled solar cell modules for concentrated operation in consumer electronics applications
WO2016005964A1 (en) * 2014-07-09 2016-01-14 Solight Ltd. System for collecting electromagnetic radiation from a moving source
CN104501423A (en) * 2014-12-19 2015-04-08 胡明建 Direct sunbath design method for people on indoor beds
WO2016115502A1 (en) 2015-01-16 2016-07-21 The Arizona Board Of Regents On Behalf Of The University Of Arizona Micro-scale concentrated photovoltaic module
WO2016141041A1 (en) 2015-03-02 2016-09-09 The Arizona Board Of Regents On Behalf Of The University Of Arizona Glass forming mold of adjustable shape
WO2016200988A1 (en) 2015-06-12 2016-12-15 The Arizona Board Of Regents On Behalf Of The University Of Arizona Tandem photovoltaic module with diffractive spectral separation
WO2017024038A1 (en) * 2015-08-03 2017-02-09 The Arizona Board Of Regents On Behalf Of The University Of Arizona Solar concentrator for a tower-mounted central receiver
CN107093982A (en) * 2017-03-31 2017-08-25 中国科学院广州能源研究所 A kind of method for electric generation using solar energy and device of the dual generating of secondary condensation
US20200127601A1 (en) * 2018-10-17 2020-04-23 Orenko Limited Sunlight collection and transportation system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813961A (en) * 1981-07-18 1983-01-26 Takashi Mori Solar beam collector
JPS60202411A (en) * 1984-03-27 1985-10-12 Seiko Epson Corp Light source optical system for light guide
US4958263A (en) * 1988-11-02 1990-09-18 General Electric Company Centralized lighting system employing a high brightness light source
CN2699191Y (en) * 2004-03-01 2005-05-11 谭显教 Solar energy collecting, transmitting and storage device
US8006689B2 (en) * 2004-12-03 2011-08-30 Edo Dol Reflector assembly for energy concentrators
WO2007099564A1 (en) * 2006-03-01 2007-09-07 Garbagnati, Francesco Fiber-optic light collector with vacuum chamber
US8001960B2 (en) * 2007-11-12 2011-08-23 Brightsource Industries (Israel) Ltd. Method and control system for operating a solar power tower system
CN101271177A (en) * 2008-05-07 2008-09-24 彭海明 Optical energy conversion device
CN101290392A (en) * 2008-06-03 2008-10-22 马轶 Solar energy collecting structure
EP2136409A1 (en) * 2008-06-18 2009-12-23 Arima EcoEnergy Technologies Corporation Concentration photovoltaic cell system with light guide
KR100935921B1 (en) * 2008-07-28 2010-01-07 홍원배 Sunlight collection solar concentrator
CN102216612B (en) * 2008-09-17 2014-01-29 帕尔萨能源有限公司 Systems and methods for collecting solar energy for conversion to electrical energy

Also Published As

Publication number Publication date
WO2012097260A2 (en) 2012-07-19
EP2663812A4 (en) 2017-12-27
WO2012097260A3 (en) 2012-11-01
BR112013017949A2 (en) 2016-11-01
TWI595198B (en) 2017-08-11
CN103429967A (en) 2013-12-04
MX2013008081A (en) 2013-12-16
EP2663812A2 (en) 2013-11-20
CN103429967B (en) 2017-03-22

Similar Documents

Publication Publication Date Title
TW201245642A (en) Fiber-based transmission system for solar energy system and method of providing and using the same
US8680391B2 (en) Solar concentrator configuration with improved manufacturability and efficiency
Vu et al. Cost-effective optical fiber daylighting system using modified compound parabolic concentrators
US8695341B2 (en) Systems and methods for collecting solar energy for conversion to electrical energy
US20090314333A1 (en) Solar Energy Converter with Improved Photovoltaic Efficiency, Frequency Conversion and Thermal Management Permitting Super Highly Concentrated Collection
Kribus et al. Optical fibers and solar power generation
US7876028B2 (en) Systems and methods for collecting solar energy for conversion to electrical energy with piezoelectric generators
US20200127601A1 (en) Sunlight collection and transportation system
Aslian et al. Design and analysis of an optical coupler for concentrated solar light using optical fibers in residential buildings
CN105403986A (en) Multi-focus large-aperture solar condenser
Amara et al. Concentration heating system with optical fiber supply
US20100116266A1 (en) Solar Energy Collecting Apparatus
CN101162879A (en) High power light concentrating photovoltaic system
KR20140073494A (en) Solar radiation receiver
CN103138631A (en) Solar focusing light and heat separation element
CN202581855U (en) Full-circumference radiation-acceptance condenser utilizing nest conical annular surface
WO2012107104A1 (en) Solar collection system
CN101619897B (en) Collimating solar energy collector
TWI578024B (en) Light collecting module
KR102505408B1 (en) Condensing Solar Power System Using Optical Fiber
CN103808030A (en) Solar linear concentrating heat-collecting device
Goldstein et al. Nested aplanatic optics
KR20230079646A (en) Condensing Solar Power System Using Optical Fiber and Graded-Index Optical Fiber
Aslian et al. Research Article Design and Analysis of an Optical Coupler for Concentrated Solar Light Using Optical Fibers in Residential Buildings
EP2757331A1 (en) Heat receiver tube with internal sunlight reflector unit, solar collector with the heat receiver tube and use of the solar collector

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees