TW201244141A - Thin film solar cell and fabricating method thereof - Google Patents

Thin film solar cell and fabricating method thereof Download PDF

Info

Publication number
TW201244141A
TW201244141A TW100115254A TW100115254A TW201244141A TW 201244141 A TW201244141 A TW 201244141A TW 100115254 A TW100115254 A TW 100115254A TW 100115254 A TW100115254 A TW 100115254A TW 201244141 A TW201244141 A TW 201244141A
Authority
TW
Taiwan
Prior art keywords
photoelectric conversion
electrode layer
cutting
layer
block
Prior art date
Application number
TW100115254A
Other languages
Chinese (zh)
Inventor
Yu-Chun Peng
Yi-Kai Lin
Chen-Liang Liao
Chih-Hsiung Chang
Original Assignee
Auria Solar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Auria Solar Co Ltd filed Critical Auria Solar Co Ltd
Priority to TW100115254A priority Critical patent/TW201244141A/en
Priority to CN2011101536173A priority patent/CN102760790A/en
Publication of TW201244141A publication Critical patent/TW201244141A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A thin film solar cell and fabricating method thereof are applicable to a solar cell including a plurality of parallelly-connected photovoltaic transduction blocks, each having its open-circuit voltage mating with one another. The fabricating method includes steps of forming a first photovoltaic transduction block composed of n first photovoltaic cells in series on a first substrate, forming a second photovoltaic transduction block composed of m second photovoltaic cells in series on a second substrate, adhering the first photovoltaic transduction block and the second photovoltaic transduction block, and electrically connecting the first photovoltaic transduction block and the second photovoltaic transduction block such that the serially connected first photovoltaic cells are in parallel connection with the serially connected second photovoltaic cells. The open circuit voltage of the first photovoltaic cell and the second photovoltaic cell is Vn and Vm, respectively. A ratio of m*Vn to n*Vm is between 0.9 to 1.1.

Description

201244141 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種薄膜太陽能電池及其製造方法,尤其是 一種適於匹配多個並聯之光電轉換區塊之開路電壓的薄膜太陽能 電池及其製造方法。 【先前技術】 由於工業的快速發展’石化燃料逐漸耗竭與溫室效應氣體排 放的問題日益受到全球關切,能源的穩定供應儼然成為全球性的 重大課題。相較於傳統燃煤、燃氣式或核能發電,太陽能電池(solar cell)係利用光電或熱電轉換效應,直接將太陽能轉換為電能,因而 不會伴隨產生二氧化碳、氮氧化物以及硫氧化物等溫室效應氣體 及污染性氣體,並可用以降低對石化燃料的依賴,而提供安全自 主的電力來源。 現今已知有許多太陽能電池的技術,係利用太陽輻射光透過 太陽此電池材料的轉換後’成為可湘之電力來源。德太陽能 電池係為業界常見的_種太陽能電池,其主要是將高純度的半導 體材料(例如:矽)加入摻雜物(d〇pants)而呈現不同的性質,例如摻 雜一知元素1 场成p型半導體’或摻雜五族元素以形成η型半導 體’並將ρ-η兩型半導體相接合,如此即可形成一 ρ_η接面 ()曰unction)。因此’當太陽光照射到具有”接面的半導體時,光子 提供的能量可將料體中的電子激發出來,而產生電子電洞對。 電子與電、;_受_建電位的影響,而各自往電場的兩相對方向 201244141 移動’若以導線將此太陽能電池與負载(1〇3(1)連接起來,則會形成 一電流迴路’藉此’太陽能電池即可用以發電並供給負載電力來 . 源。 、 為了增加光電轉換效率,習知遂有並聯兩個以上之光電轉換 層之太陽能電池,藉由不同材質的光電轉換層各自輸出不同之光 電轉換電流,以在加總所有光電轉換電流之後,形成太陽能電池 最終之輸出電流。然而,值得注意的是,此種方法雖可有效增加 太陽能電池之光電轉換效率,不過,此種具有並聯結構的太陽能 電池在相同照度下’不同材質的光電轉換層會具有不同之開路 電壓,因此,在並聯不同.材質的光電轉換層時,會遭遇到並聯後 之電壓無法匹配的問題,而無法實施於實際應用層面。 【發明内容】 馨於以上’本發明在於提供—種薄膜太陽能電池及其製造方 法,適於匹配多個並聯之光電轉舰塊的開路電壓,藉以解決習 知技術存在的問題。 本發鴨有㈣膜太陽能電池的製造方法,包括以下 步驟:在第-基板上形成-第—光電轉換區塊,第―光電轉換區 塊包括η辨聯之第-找麵單元;在第二基板上形成一第二 ^電轉換區塊,第二光電轉換區塊包括瓜個串聯之第二光電轉換 早元;膠合第-光電轉龍塊與第二光電轉換區塊;以及電性連 、,第光電轉換區塊與第二光電轉換區塊,使得該些串聯之第一 光電轉換單it並聯該些串聯之第二光電轉換料;其中,每一第 5 201244141 -光電轉換單元之開路電壓為Vn ’每—第二光電轉換單元之開路 電壓為Vm,mWi^Vm的比值介於0.9〜1 1之間。 根據本發明之—實施例,其中形成第—光電轉換區塊的步驟 包括:於第-基板上形成-苐-電極詹;根據—第—切割線雷射 切割(1纖scribe)第-電極層;於切割後之第—電極層上形成一第 一光電轉換層;根據-第二切割線雷射切割第—光電轉換層;於 切割後之第-光電轉換層上形成—第二電極層;以及根據二第三 切割線雷射切割第二電極層與第—光電轉換層。其中,第一切割 線分隔第-電極層,第二切割線分隔該些第一光電轉換單元,第 =麟分隔第-光電轉換區塊,以形成n個第一切割區塊,每 第-切割區塊包括—第—光電轉換單元。 根據本發明之一實施例,1 包括 ”中^成第二光電轉換區塊的步驟 ^括·於第一基板上形成一第三 切宝. 电和曰,根據一第四切割線雷射 . 、。』後之第二電極層上形成一第 -光電轉換層;根據—第五切割 切宏,丨祛夕笙一&恭 > 刀』第一光電轉換層;於 。走之第一光電轉換層上形— 士 77室丨姑取弟四電極層;以及根據一第六 。懷雷射切割第四電極層與第二光電轉 、 線分隔第三電極層,第五 、。八中’第四切割 六切割線賴帛㈣二^賴單元,第 -第二切割區塊包ΓΓ!成_第二切割區塊,每 尾包括一第二光電轉換單元。 本發明另有關於一種薄膜太陽能電池 -第-光電轉換區塊、—聚人 .-第-基板、 5 、一第一光電轉換區塊與一第二 201244141 基板。第一光電轉換區塊配置於第一基板上,且第一光電轉換區 塊包括η個串聯之第一光電轉換單元。聚合物配置於第一光電轉 ‘ 換區塊上,第二光電轉換區塊配置於聚合物上,且第二光電轉換 ' 區塊包括111個串聯之第二光電轉換單元。第二基板配置於第二光 電轉麵塊上。其巾’鮮_敎帛—光電轉鮮祕並聯於該 些串聯之第二光電轉換單元。每_第_光電轉換單元之開路電壓 為Vn ’每—第二光電轉換單元之開路電壓為Vm,m*Vn/n*Vm的 比值介於0.9〜1.1之間。 是以’本發騎提出的_太陽能電池及其製造方法係利用 膠合第-光電雜區塊與第二光電轉祕塊,使得第—光電轉換 區塊電II並聯於第—光電轉換區塊。並且,本發明所提出的薄膜 太陽能電池及其製造方法’係藉由適當切鄕—光電轉換區塊與 第二光電轉換區塊陳目,使得第—光電轉魅塊與第二光電轉 換區塊並聯後之電壓相互匹配。 以上有關於本發明的内容朗,與以下的實施方式係用以示 範與解釋本發精神絲理,並且提縣發_專射請範圍 更進一步的解釋。有關本發明的特徵、實作與魏,航合圖式 作較佳實施例詳細說明如下。 【實施方式】 乂下在實施方式中詳細敘述本發明之詳細特徵以及優點,其 内容足以使任何熟習細技藝者了解本發明之技_容並據以實 施,且根據本說明書所揭露之内容、中請專利範圍及圖式,任何 201244141 相關技藝者可輕易地理解本發_關之目的及優點。 「第1A圖」係為根據本發明實施例之薄膜太陽能電池的製造 方法之步驟流關,此種製造方法適於具有多健聯之光電轉換 區鬼的太陽⑧H並可用以匹配該些並聯之光電轉換區塊的開 路電壓。本實施例中的開路電壓指的是太陽能電池在-特定溫度 及照射光下無負载時的輸出電壓。 根據本發明提出之薄膜太陽能電池的製造方法,包括以下步 驟: 步驟S102 .在-第一基板上形成一第一光電轉換區塊,第一 光電轉換區塊包括n個串聯之第一光電轉換單元; 々驟S104 .在-第二基板上形成一第二光電轉換區塊,第二 光電轉換區塊包括__聯之第二光電轉換單元; 步驟讓:膠合第—光電轉換區塊與第:姆換區塊;以 步,S1G8. 連接第—光轉換區塊與第二光電轉換區 —糊峨峨綱之第二光電 轉換早元; 其中,母-第一光電轉換單元之開路電壓為%,每二光 電轉換單元之開路電壓為% 之間。 _ Vm的比值介於0.9〜1.1 本發明提出之馳錢能電_妓 轉換區塊電性並聯於第二光電轉換區塊,增加太=: 201244141 出電机、並且藉由決定不同光電轉換區塊中包括的找轉換單元 健、,達到匹配_太陽能電池之開路電壓的目的。有關此一製 &方法之技雜徵’請配合參閱後續,餅細說明如下。 請參考「當1TV / 圖」所示,係為根據本發明實施例之薄膜太陽 此電池之第-光電轉換結構之剖面結構圖。從「第m圖」可以看 出’第-光電轉換結構包括第—基板1G以及配置於第—基板10 上之第一光電轉換區塊20。 第一光電轉換區塊20自第-基板1G以上,依序包括第一電 極層202、第-光電轉換層綱與第二電極層高。根據本發明之 實施例,第-光電轉換區塊2G可藉由例如f射切割的方法形成 個=-切割區塊Α1,Α2··.Αη,為便於說明,以下兹針對其中之二 個第-切割區塊Α1,Α2進行說明,但本發明並不以此為限,第一 光電轉換區塊20令所有的第一切割區_,Α2...Αη,皆具有相同 之特徵’唯本發明係以第—切籠塊Α1,Α2作為—實施例之說明 而已,並非用以限定本發明之發明範圍。 第-基板Κ)可以是透縣板,其材質可以是但不限定為玻璃 或透明樹脂。第-光電轉換區塊2G在經由切細彡成第—切割區塊 Ai,A2後,其第-電極層2〇2係被分離為第一電極單元 202a,202b’第-光電轉換層204係被分離為第一光電轉換單元 20扯獅,第二電極層2〇6係被分離為第二電極單㈣如纖。 其+,第-切割區塊A1包含第-電極單元卿、第一光電轉換 單元204a與第二電極單元施。第—切#lj^A2包含第__· 201244141 單元202b、第一光電轉換單元204b與第二電極單元206b。 由於第一切割區塊A1,A2各自包含第一光電轉換單元 204a,204b。以此實施例為例,第一光電轉換單元204a,204b的材 質可以是但不限於非晶石夕(Amorphus Silicon,a-Si),並包含P型半 導體層與N型半導體層。因此,當太陽光從圖式的下方入射後, 第一光電轉換單元204a,204b在吸收特定波長之光線後,即會產生 光電轉換而產生電流。^於第一光電轉換單元204a,204b的材質相 同,經光電轉換後的輸出電流相近,因此第一光電轉換單元 204a,204b可以相互串聯,而無電流侷限的問題(容後詳述)。 基於上述光電轉換之用途,第一基板1〇所稱之透明係指可供 第一光電轉換單元204a,204b轉換之光線通過,而非僅供可見光通 過方屬透明。同時,此處之透明並非1〇〇%供該光線穿透,而是能 使大部分之光線穿透,即應屬本發明之範圍。 為清楚說明本發明的薄膜太陽能電池的製作過程,還請同時 配合「第2A圖」至「第2F圖」,係分別為根據「第1B圖」之第 -光電結構的各層;^積與切割示意圖。首先,形成第一電極層2〇2 於第-基板20的表面(如「第2A圖」所示)。此第一電極層2〇2 的材料可以是透明導電氧化_T_p_t〇_, TCO)、金屬或是其組合。 接著’在第-電極層202上根據一第一切割線L11進行雷射 切割s1(LaserScribe),使得第一電極層202被劃分為如「第2B圖」 所示的兩個獨立區塊’並將其定義為第—區域與第二區域(在此係 201244141 為舉例說明,並非僅限定於兩個獨立區域而已),若將「第2B圖 與「第1B圖」相對應’第一、第二區域之第一電極層202分別對 應前述第一電極單元202a,202b。 如「第2C圖」所示’接著在切割後之第一電極層2〇2上形成 第一光電轉換層204,第一光電轉換層204的形成方式可以透過射 頻電漿辅助化學氣相沉積法(Radio Frequency Plasma Enhaneed Chemical Vapor Deposition ’ Rp PECVD)、超高頻電聚輔助化學氣 相沉積法(Very High Frequency Plasma Enhanced Chemical Vapor201244141 VI. Description of the Invention: [Technical Field] The present invention relates to a thin film solar cell and a method of fabricating the same, and more particularly to a thin film solar cell suitable for matching open circuit voltages of a plurality of parallel photoelectric conversion blocks and Production method. [Prior Art] Due to the rapid development of industry, the gradual depletion of fossil fuels and the issue of greenhouse gas emissions are increasingly receiving global concerns, and the stable supply of energy has become a major global issue. Compared with traditional coal-fired, gas-fired or nuclear power generation, solar cells use photoelectric or thermoelectric conversion effects to directly convert solar energy into electrical energy, so that carbon dioxide, nitrogen oxides, sulfur oxides, etc. are not accompanied. Greenhouse gases and polluting gases can be used to reduce dependence on fossil fuels while providing a safe and autonomous source of electricity. Many solar cell technologies are known today, which use solar radiation to transmit sunlight through the solar cell. German solar cell is a common type of solar cell in the industry, which mainly introduces high-purity semiconductor materials (such as germanium) into dopants to exhibit different properties, such as doping a known element. Forming a p-type semiconductor 'or doping a group of five elements to form an n-type semiconductor' and bonding the two-type semiconductors of the p-n, thus forming a ρ_η junction () 曰unction). Therefore, when the sunlight hits the semiconductor with the junction, the energy provided by the photon can excite the electrons in the material to generate electron hole pairs. The electrons and electricity are affected by the potential. Each of them moves toward the opposite direction of the electric field 201244141. If the solar cell is connected to the load (1〇3(1) by a wire, a current loop is formed.] The solar cell can be used to generate electricity and supply load power. In order to increase the photoelectric conversion efficiency, it is known that there are solar cells in which two or more photoelectric conversion layers are connected in parallel, and photoelectric conversion layers of different materials respectively output different photoelectric conversion currents to add up all photoelectric conversion currents. After that, the final output current of the solar cell is formed. However, it is worth noting that although this method can effectively increase the photoelectric conversion efficiency of the solar cell, the solar cell with the parallel structure has different photoelectricity under the same illumination. The conversion layer will have different open circuit voltages. Therefore, when the photoelectric conversion layers of different materials are connected in parallel, they will be The problem that the voltage after the parallel connection cannot be matched cannot be implemented in the practical application level. [Invention] The present invention provides a thin film solar cell and a manufacturing method thereof, which are suitable for matching a plurality of parallel photoelectric transshipments. The open circuit voltage of the block is used to solve the problems existing in the prior art. The present invention has a method for manufacturing a (four) film solar cell, comprising the steps of: forming a -photo-electrical conversion block on the first substrate, the first photoelectric conversion block a second-to-surface conversion unit is formed on the second substrate, and the second photoelectric conversion block includes a second photoelectric conversion early element in series; the glue-phototransfer a block and a second photoelectric conversion block; and an electrical connection, the first photoelectric conversion block and the second photoelectric conversion block, such that the first photoelectric conversion singles in series are connected in parallel with the second photoelectric conversion materials in series; Wherein, the opening voltage of each 5th 201244141 - photoelectric conversion unit is Vn 'the opening voltage of each - the second photoelectric conversion unit is Vm, and the ratio of mWi^Vm is between 0.9 and 1 1 . In an embodiment, the step of forming the first photoelectric conversion block comprises: forming a --electrode on the first substrate; and laser-cutting (1) the first electrode layer according to the first-cut line; Forming a first photoelectric conversion layer on the first electrode layer after cutting; laser cutting the first photoelectric conversion layer according to the second cutting line; forming a second electrode layer on the first photoelectric conversion layer after cutting; The second cutting line laser cuts the second electrode layer and the first photoelectric conversion layer, wherein the first cutting line separates the first electrode layer, and the second cutting line separates the first photoelectric conversion units, and the second dividing line is separated by - And photoelectrically converting the blocks to form n first dicing blocks, each of the dicing blocks comprising a -to-photoelectric conversion unit. According to an embodiment of the invention, 1 comprises "into the second photoelectric conversion block" Steps include: forming a third cut treasure on the first substrate. Electric and 曰, according to a fourth cutting line laser. Forming a first-to-photoelectric conversion layer on the second electrode layer; according to the fifth cutting macro, the first photoelectric conversion layer, and the first photoelectric conversion layer; Take the first photoelectric conversion layer on the shape - the 77th room, the aunt, the fourth electrode layer; and according to a sixth. The laser beam cuts the fourth electrode layer and the second photoelectric conversion, and the line separates the third electrode layer, the fifth. Eighth 'fourth cut six cut line Lai (4) two ^ unit, the first - second cutting block package! into the second cutting block, each tail includes a second photoelectric conversion unit. The invention further relates to a thin film solar cell - a first photoelectric conversion block, a poly----substrate, a fifth photoelectric conversion block and a second 201244141 substrate. The first photoelectric conversion block is disposed on the first substrate, and the first photoelectric conversion block includes n first photoelectric conversion units connected in series. The polymer is disposed on the first photoelectric conversion block, the second photoelectric conversion block is disposed on the polymer, and the second photoelectric conversion 'block includes 111 second photoelectric conversion units connected in series. The second substrate is disposed on the second optoelectronic turning block. The towel is freshly connected to the second photoelectric conversion unit in series. The open circuit voltage of each _th photoelectric conversion unit is Vn'. The open circuit voltage of each second photoelectric conversion unit is Vm, and the ratio of m*Vn/n*Vm is between 0.9 and 1.1. The solar cell and the manufacturing method thereof are based on the use of the glued-photo-electric hybrid block and the second photoelectric transfer block, so that the first-photoelectric conversion block is electrically connected in parallel to the first-photoelectric conversion block. Moreover, the thin film solar cell and the method of manufacturing the same according to the present invention enable the first photoelectric conversion block and the second photoelectric conversion block by appropriately cutting the photoelectric conversion block and the second photoelectric conversion block. The voltages after paralleling match each other. The above is a description of the present invention, and the following embodiments are used to illustrate and explain the spirit of the present invention, and further explain the scope of the _ _ _ _ _ _ _ _ _ _ _ _ The features, implementations, and advantages of the present invention are described in detail below with reference to preferred embodiments. [Embodiment] The detailed features and advantages of the present invention are described in detail in the embodiments of the present invention. In the scope of the patent and the drawings, any 201244141 related art can easily understand the purpose and advantages of this issue. "FIG. 1A" is a step of the method for manufacturing a thin film solar cell according to an embodiment of the present invention, and the manufacturing method is suitable for a solar 8H having a plurality of photoelectric conversion zones and can be used to match the parallels. The open circuit voltage of the photoelectric conversion block. The open circuit voltage in this embodiment refers to the output voltage of the solar cell when there is no load at a specific temperature and illumination light. The method for manufacturing a thin film solar cell according to the present invention comprises the following steps: Step S102. Forming a first photoelectric conversion block on the first substrate, the first photoelectric conversion block comprising n first photoelectric conversion units connected in series Step S104. Forming a second photoelectric conversion block on the second substrate, the second photoelectric conversion block includes a second photoelectric conversion unit coupled with the __; step: bonding the first-photoelectric conversion block and the first: The block is replaced by a step S1G8. The first photoelectric conversion zone and the second photoelectric conversion zone are connected to the second photoelectric conversion early element; wherein the open circuit voltage of the mother-first photoelectric conversion unit is % The open circuit voltage of each of the two photoelectric conversion units is between %. The ratio of _Vm is between 0.9 and 1.1. The 驰 妓 妓 conversion block of the present invention is electrically connected in parallel to the second photoelectric conversion block, increasing too =: 201244141 to output the motor, and by determining different photoelectric conversion zones The search for the conversion unit included in the block achieves the purpose of matching the open circuit voltage of the solar cell. Please refer to the following for the technical miscellaneous levy of this system & method, as described below. Referring to "When 1TV / Figure", it is a cross-sectional structural view of a first photoelectric conversion structure of a thin film solar cell according to an embodiment of the present invention. It can be seen from the "mth diagram" that the first-photoelectric conversion structure includes the first substrate 1G and the first photoelectric conversion block 20 disposed on the first substrate 10. The first photoelectric conversion block 20 is higher than the first substrate 1G, and sequentially includes the first electrode layer 202, the first photoelectric conversion layer, and the second electrode layer. According to an embodiment of the present invention, the first-photoelectric conversion block 2G can form a =-cut block Α1, Α2··.Αη by a method such as f-cutting, for convenience of explanation, the following two - The cutting blocks Α1, Α2 are described, but the invention is not limited thereto, and the first photoelectric conversion block 20 has all the first cutting areas _, Α2... Αη, all having the same characteristics. The invention is based on the description of the first embodiment of the present invention, and is not intended to limit the scope of the invention. The first substrate 可以 may be a permeable plate, and the material thereof may be, but not limited to, glass or a transparent resin. After the first-photoelectric conversion block 2G is shredded into the first-cut block Ai, A2, the first electrode layer 2〇2 is separated into the first electrode unit 202a, 202b' the first-photoelectric conversion layer 204 The first photoelectric conversion unit 20 is separated into a lion, and the second electrode layer 2〇6 is separated into a second electrode unit (four) such as a fiber. The +-cutting block A1 includes a first electrode unit, a first photoelectric conversion unit 204a, and a second electrode unit. The first-cut #lj^A2 includes the __· 201244141 unit 202b, the first photoelectric conversion unit 204b, and the second electrode unit 206b. Since the first cutting blocks A1, A2 each contain the first photoelectric conversion units 204a, 204b. Taking this embodiment as an example, the material of the first photoelectric conversion units 204a, 204b may be, but not limited to, Amorphus Silicon (a-Si), and includes a P-type semiconductor layer and an N-type semiconductor layer. Therefore, when sunlight is incident from the lower side of the drawing, the first photoelectric conversion units 204a, 204b generate photoelectric conversion to generate a current after absorbing light of a specific wavelength. The materials of the first photoelectric conversion units 204a, 204b are the same, and the output current after photoelectric conversion is similar, so that the first photoelectric conversion units 204a, 204b can be connected in series with each other without current limitation (details will be described later). Based on the above-described photoelectric conversion application, the first substrate 1 透明 is referred to as a transparent means that the light converted by the first photoelectric conversion units 204a, 204b passes, and is not transparent only to visible light. At the same time, the transparency here is not 1% for the light to penetrate, but to allow most of the light to penetrate, which is within the scope of the present invention. In order to clearly explain the manufacturing process of the thin film solar cell of the present invention, please also cooperate with "2A" to "2F", which are respectively the layers of the first-photoelectric structure according to "1B"; schematic diagram. First, the first electrode layer 2〇2 is formed on the surface of the first substrate 20 (as shown in FIG. 2A). The material of the first electrode layer 2〇2 may be transparent conductive oxide _T_p_t〇_, TCO), metal or a combination thereof. Then, laser etching s1 (Laser Scribe) is performed on the first electrode line 202 according to a first cutting line L11, so that the first electrode layer 202 is divided into two independent blocks as shown in "B2B". It is defined as the first area and the second area (in this case, 201244141 is an example, not limited to two independent areas), and if "2B" corresponds to "1B", the first and the The first electrode layers 202 of the two regions respectively correspond to the first electrode units 202a, 202b. As shown in FIG. 2C, the first photoelectric conversion layer 204 is formed on the first electrode layer 2〇2 after the dicing, and the first photoelectric conversion layer 204 can be formed by radio frequency plasma-assisted chemical vapor deposition. (Radio Frequency Plasma Enhaneed Chemical Vapor Deposition ' Rp PECVD), Ultra High Frequency Plasma Enhanced Chemical Vapor

Deposition ’ VHP PEeVDM者是微波電_助化學氣相沉積法 (Microwave Plasma Enhanced Chemical Vapor Deposition ^ MW PECVD)所實現。在形成第—光電轉換層綱的過程中,由於第一 電極層202上的第-切割線Ln為下凹,故第一切割線⑶上的 第-光電轉換層2〇4會形成略微凹陷的狀態(請參考「第况圖 所示其中第-光電轉換層剔的材質可以是但不限於非砂 (Amorphus Silicon,a-Si)。 接著,以雷射切割S2再進行第二切割線U2的處理(如「第 则」所示)。其中,第二切割線Ll2係相鄰於第—切割線ui, =以:第一光電轉換層2。4。第二切割線U2係使在其兩侧 ^二光電轉換層綱相互分離為兩_立區塊,並將其定義為 區域叫絲「第定於兩個獨立 二區域之第-應’則第-、第 冽對應則述第一光電轉換單元 201244141 204a,204b。 接下來,在切割後之第一光電轉換層2〇4的表面形成第二電 極層206,第二電極層亦同時會駿於第二蝴線⑴ 成的區域(如「第2E圖」所示)。之後,再以雷射切割S3進行第^ 切割線L13的處理’其中第三切割線U3係用以切割第一光電: 換層204與第二電極層2G6’並且將第二電極層裏相互分離為兩 個獨立區塊’並將其定義為第—區域鮮二區域(在此係為舉例說 明’並非僅限疋於兩侧立區域而已),若將「第π圖」與「第 1B圖」相對應,則第一、第二區域之第二電極層206分別對庫前 述第二電極單元206a ’ 206b。同時,第三切割線u3的兩側亦各 別形成前述的第-切割區塊A1,A2(如「第2F圖」所示)。 »月搭配S1B圖」與「第3圖」閱讀,其係為根據本發明實 施例之各第-切割區塊的串接與電性連接示意圖。第一切割線⑶ 係分隔第-電極層202 ;而第二切割線U2係分隔第一切割區塊 ,中的第I電轉換層204以形成第一光電轉換單元 204a,204b,第三切割線L13係分隔第一光電轉換區塊如以形成各 個第刀。區塊Al,A2,...An,使得每一第一切割區塊A1,A2,…如 皆包括一第—光電轉換單元(例如:第-切割區塊A!包括第-光 電轉換單元204a,第-切割區塊八2包括第一光電轉換單元 2〇4b)。因此,當11個第一切割區塊从从…如受光時,其包括 的η個第域轉換單χ係㈣應的波長的规轉換成電流。而 生成的電w的傳導順序可以為财箭頭所示的流動方向⑶,如 12 201244141 此一來,即可將n個第-光電轉換單元電性串聯。 能電」所示’係為根據本發明實施例之薄膜太陽 出,第二光電轉換結構包括筮, 閏」J以看 上之第二光電轉換區塊^括第—基板%以及配置於第二基板3〇 靜ΙΓΓΓ塊4G自第:基板3G以上,依序包括第三電 ^ 404406° ==:=^_祕_蝴財法形紅 個第二切割區塊心..::更’以下兹針對其中之二 之特徵,唯本發明=*塊筆.義,皆具有相同 、細第—切割區塊B1,说作為-實施例之說明 ,並非用以限定本發明之發明範圍。 第一基板30可以是透日絲板,其材質可以是但不限定為玻璃 二透明樹脂。第二光電轉換區塊4G在經由切割形成第二切割區塊 j,B2後’其第三電極層4〇2係被分離為第三電極單元她,獅, 第-光電轉換層4G4係被分離為第二光電轉換單^他a,·,第 四電極層406係被分離為第四電極單元4〇6a,4〇6b。其中,第二切 割區塊B1包含第三電極單元搬a、第二光電轉解元她與第 四電極單元406a。第二切割區塊B2包含第三電極u4〇2b、第 一光電轉換單元404b與第四電極單元4〇6b。 由於第二切割區塊Β1,Β2各自包含第二光電轉換單元 201244141 404a,404b。以此實施例為例,第二光電轉換單元404a,404b的材 質可以是但不限微晶石夕(Microcrystalline Silicon,pc-Si),並包含N 型半導體層與P型半導體層。因此,當第二光電轉換單元4〇4a,4〇4b 在吸收特定波長之光線後,即會產生光電轉換而產生電流。由於 第二光電轉換單元404a,404b的材質相同,經光電轉換後的輸出電 流相近’因此第二光電轉換單元404a,404b可以相互串聯,而無電 流揭限的問題(容後詳述)。 基於上述光電轉換之用途,第二基板30所稱之透明係指可供 第二光電轉換單元404a,404b轉換之光線通過’而非僅供可見光通 過方屬透明。同時’此處之透明並非1〇0%供該光線穿透,而是能 使大部分之光線穿透,即應屬本發明之範圍。 為清楚說明本發明的薄膜太陽能電池的製作過程,還請同時 配合「第4A圖」至「第4F圖」’係分別為根據「第lc圖」之第 二光電結構的各層沈積與切割示意圖。首先,形成第三電極層4〇2 於第二基板30的表面(如「第4A圖」所示)。此第三電極層4〇2 的材料可以是透明導電氧化物(Transparent cQnduetive Qxide, Tc〇)、金屬或是其組合。 接著’在第二電極層402 _L根據一第四切割線L41進行雷射 切割SVLaserScribe)’使得第三電極層4〇2被劃分為如「第4B圖」 所示的兩侧域塊,並將其絲為第—區域與第二區域(在此係 為舉例說明’並非僅限定於兩個獨立區域而已),若將「第4B圖」 與「第1C圖」相對應’第-、第二區域之第三電極層·分別對 201244141 應前述第三電極單元402a,402b。 如「第4C圖」所示,接著在切割後之第三電極層402上形成 第二光電轉換層404’第二光電轉換層404的形成方式可以透過射 頻電衆辅助化學氣相沉積法(Radio Frequency Plasma Enhanced Chemical Vapor Deposition,RP PECVD)、超高頻電漿輔助化學氣 相沉積法(Very High Frequency Plasma Enhanced Chemical VaporDeposition ’ VHP PEeVDM is realized by Microwave Plasma Enhanced Chemical Vapor Deposition ^ MW PECVD. In the process of forming the first photoelectric conversion layer, since the first-cut line Ln on the first electrode layer 202 is concave, the first-to-photoelectric conversion layer 2〇4 on the first cutting line (3) is slightly recessed. State (Please refer to "The picture in the first picture shows that the material of the photoelectric conversion layer can be, but is not limited to, Amorphus Silicon (a-Si). Next, the second cutting line U2 is cut by laser cutting S2. Processing (as shown in "the"), wherein the second cutting line L12 is adjacent to the first cutting line ui, = to: the first photoelectric conversion layer 2. 4. The second cutting line U2 is made in the two The side-to-two photoelectric conversion layer is separated into two _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Conversion unit 201244141 204a, 204b. Next, a second electrode layer 206 is formed on the surface of the first photoelectric conversion layer 2〇4 after the dicing, and the second electrode layer also faces the region formed by the second butterfly line (1) (eg "Fig. 2E"). After that, the laser cutting S3 is performed to perform the processing of the second cutting line L13. The cutting line U3 is used to cut the first photoelectric: the layer 204 and the second electrode layer 2G6' are separated and the second electrode layer is separated into two separate blocks' and defined as the first-region fresh region (in This is an example for the description of 'not limited to the two sides of the vertical area." If the "pth π map" corresponds to the "1B map", the second electrode layer 206 of the first and second regions respectively The second electrode unit 206a' 206b. At the same time, the first cutting block A1, A2 is formed on both sides of the third cutting line u3 (as shown in "2F"). And FIG. 3 is a schematic diagram showing the series connection and electrical connection of each of the first-cut blocks according to the embodiment of the present invention. The first cutting line (3) separates the first electrode layer 202; and the second cutting line U2 separates the first electrical conversion layer 204 of the first dicing block to form first photoelectric conversion units 204a, 204b, and the third dicing line L13 separates the first photoelectric conversion blocks to form respective first knives. Al, A2, ... An, such that each of the first cutting blocks A1, A2, ... includes a first photoelectric conversion The unit (for example: the first-cut block A! includes the first-photoelectric conversion unit 204a, and the first-cut block VIII includes the first photoelectric conversion unit 2〇4b). Therefore, when the 11 first cutting blocks are from... For example, when receiving light, the wavelengths of the n-th domain conversion unit (4) included are converted into current, and the generated electric w can be transmitted in the order of flow direction (3), such as 12 201244141. The n-th photoelectric conversion units can be electrically connected in series. The electric energy "shows" the film solar out according to the embodiment of the present invention, and the second photoelectric conversion structure includes 筮, 闰"J to see the second The photoelectric conversion block includes the first substrate % and is disposed on the second substrate 3 and the static block 4G is from the substrate: 3G or more, and sequentially includes the third electric 404406° ==:=^_秘_ Red second cutting block heart..::more 'The following is for the characteristics of two of them, only the invention = * block pen meaning, all have the same, fine - cutting block B1, said as - embodiment The description is not intended to limit the scope of the invention. The first substrate 30 may be a through-filament plate, and the material thereof may be, but not limited to, a glass transparent resin. After the second photoelectric conversion block 4G forms the second cutting block j, B2 via the cutting, the third electrode layer 4〇2 is separated into the third electrode unit, and the lion, the first-photoelectric conversion layer 4G4 is separated. For the second photoelectric conversion unit, the fourth electrode layer 406 is separated into fourth electrode units 4〇6a, 4〇6b. The second cutting block B1 includes a third electrode unit moving a, a second photoelectric converting unit, and a fourth electrode unit 406a. The second dicing block B2 includes a third electrode u4 〇 2b, a first photoelectric conversion unit 404b, and a fourth electrode unit 4 〇 6b. Due to the second cutting block Β1, Β2 each includes a second photoelectric conversion unit 201244141 404a, 404b. Taking this embodiment as an example, the material of the second photoelectric conversion unit 404a, 404b may be, but not limited to, a microcrystalline silicon (pc-Si), and includes an N-type semiconductor layer and a P-type semiconductor layer. Therefore, when the second photoelectric conversion unit 4〇4a, 4〇4b absorbs light of a specific wavelength, photoelectric conversion is generated to generate a current. Since the materials of the second photoelectric conversion units 404a, 404b are the same, the photoelectrically converted output currents are close together, so that the second photoelectric conversion units 404a, 404b can be connected in series with each other without the problem of current leakage (details will be described later). Based on the above-described use of photoelectric conversion, the term "transparent" as used in the second substrate 30 means that the light that can be converted by the second photoelectric conversion units 404a, 404b passes through rather than being transparent only to visible light. At the same time, the transparency here is not 1% 0% for the light to penetrate, but can penetrate most of the light, which is within the scope of the present invention. In order to clearly explain the fabrication process of the thin film solar cell of the present invention, please also cooperate with "Fig. 4A" to "Fourth Fth" as the schematic diagrams of deposition and cutting of the respective layers of the second photovoltaic structure according to "the lc". First, the third electrode layer 4〇2 is formed on the surface of the second substrate 30 (as shown in FIG. 4A). The material of the third electrode layer 4〇2 may be a transparent conductive oxide (Transparent cQnduetive Qxide, Tc〇), a metal or a combination thereof. Then 'the laser cutting SVLaserScribe is performed on the second electrode layer 402_L according to a fourth cutting line L41'' so that the third electrode layer 4〇2 is divided into two side domain blocks as shown in “Fig. 4B”, and The silk is the first region and the second region (herein, the description is not limited to only two independent regions), and if the "4B map" corresponds to the "1C map", the first and second The third electrode layer of the region is respectively applied to the third electrode unit 402a, 402b of 201244141. As shown in FIG. 4C, the second photoelectric conversion layer 404 is formed on the third electrode layer 402 after the dicing. The second photoelectric conversion layer 404 can be formed by radio frequency power assisted chemical vapor deposition (Radio). Frequency Plasma Enhanced Chemical Vapor Deposition, RP PECVD), Ultra High Frequency Plasma Enhanced Chemical Vapor

Deposition ’ VHF PECVD)或者是微波電漿輔助化學氣相沉積法 (Microwave Plasma Enhanced Chemical Vapor Deposition > MW PECVD)所實現。在形成第二光電轉換層4〇4的過程中,由於第三 電極層402上的第四切割線L41為下凹,故第四切割線L4i上的 第二光電轉換層404會形成略微凹陷的狀態(請參考「第4c圖」 所示)。其中第二光電轉換層姻的材質可以是但不限於微^夕 (Microcrystalline Silicon,pc-Si)。 接考,以雷射切割S5再進行第五切割線U2的處理(如「 仍圖」所示)。其中,第五切割線W係相鄰於第四切割線L4] 並用以切割第二光電轉換層撕。第五切割線W係使在其兩 的第二光電轉換層彻相互分離為兩個獨立區塊,並將其;; 第-區域與第二區域(在此係為舉例說明,並非僅岭於兩:獨 區域而已)’若將「第4D圖」與「第1C圖」相對應,列第一 t 編換層4Q4靖應㈣,轉邮 的表面形成第四電 接下來在切割後之第二光電轉換層姻 201244141 極層406,第四電極層406亦同時會覆蓋於第五切割線乙犯所形 成的區域(如「第4E圖」所示)。之後,再以雷射切割%進行第= 切割線L43的處理’其中第六切割線L43係用以切割第二光電轉 換層404與第四電極層406,並且將第四電極層4〇6相互分離為兩 侧蜀立區塊,並將其定義為第—_與第二_(在此係為舉例說 明,並非僅限定於兩個獨立區域而已),若將「第仲圖」與「第 ic圖」相對應,則第一、第二區域之第四電極層條相對應前 述第四電極單元406a,406b。同時,第六切割線L43的兩側亦各別 形成前述的第二切割區塊B1,B2(如「第4F圖」所示)。 請搭配「第1C圖」與「第5圖」閱讀,其係為根據本發明實 施例之各第二蝴區塊的串接與電性連接示意,第四切割線Μ上 係分隔第三電極層402 ;而第五切割線U2係分隔第二切割區塊 B1,B2巾的第二光電轉換層4〇4以形成第二光電轉換單元 4〇4a,4〇4b;帛六切觀L43齡_二光賴舰塊4q以形成各 個第一切割區塊B1,B2, .Bm,使得每_第二切割區塊M,B2,.·細 皆包括一第二光電轉換單元(例如:第二切割區塊B1包括第二光 電轉換單元4G4a,第二切割區塊包括第二光電轉換單元 )因此田m個第二切割區塊受光時,其包括 的m個第—光電轉換單元係將對應的波長的光線轉換成電流。而 生成的電"1(_的料順序可以為圖巾箭騎示的流動方向㈤,如 此一來,即可將_第二光電轉換單元電性串聯。 之後根據本發明之實施例,在各自形成「第汨圖」與「第 201244141 •」第 第—光電轉換結構後,本發明提出之製造方法接 著膠合第—光電轉換區塊與第二光電轉換區塊4G(例如:黏合 一聚合物5〇於第—光電轉換區塊20與第二光電轉換區塊40之 間)’並且電性連接第一光電轉換區塊2〇與第二光電轉換區塊 40(例如:提供一導線連接),以形成「第6A圖」所示之薄膜太陽 犯電池1GG。值得1意的是,根據本發明提出之触太陽能電池的 製造方法,其中形成「第1B圖」與「第1C圖」之第一、第二光 電轉換結構(對應本發明之步驟S102與步驟幻〇4)並無形成順序之 別。 因此,如「第6A圖」.所示,當光線由第一基板1〇之下方射 入時’光線係依序經由第一光電轉換層2〇4與第二光電轉換層4〇4 進行光電轉換。由於聚合物50係膠合於第一光電轉換區塊2〇與 第二光電轉換區塊40之間,並且隔絕第一光電轉換區塊2〇與第 二光電轉換區塊40 ’因此’入射光線中具有較短波長的光線係先 被第一光電轉換層204所吸收,而其餘具有較長波長的光線則被 第二光電轉換層404所吸收’如此一來,藉由配置具有不同能隙 之第一光電轉換層204與第二光電轉換層404,薄膜太陽能電池 100可以吸收更為寬廣的光線頻譜。並且’藉由電性連接第一光電 轉換區塊20於第二光電轉換區塊40,本實施例之第一光電轉換區 塊20進行光電轉換(Photovoltaic Transduction)後之電壓係電性並 聯於第二光電轉換區塊40進行光電轉換後之電壓(如「第6B圖」 所示)。 17 201244141 由於第一光電轉換區塊20包括n個串聯之第一光電轉換單 元,第二光電轉換區塊40包括m個串聯之第二光電轉換單元,考 慮第一光電轉換區塊20並聯第二光電轉換區塊4〇時,其各別進 行光電轉換後之電壓應相互匹配。假設每—第—光電轉換單元之 開路電壓為Vn,每一第二光電轉換單元之開路電壓為vm,則 n^Vn/r^Vm的比值可介於0.9〜1.1之間。 • , · 舉例而言,當第一光電轉換單元的材質為非晶矽,在 議〇Wm2照度下之開路電壓Vn約為0.8V,第二光電轉換單元的 材質為微晶石夕,在1000W/m2照度下之開路電壓Vm約為〇 , 則根據本發明之實施例,第一光電轉換區塊2〇可切割為五個第一 切割區塊Al,A2...A5(n=5),第二光電轉換區塊4〇可切·割為八個 第二切割區塊B132."B8(m=8)’以使得薄膜太陽能電池得到 匹配的並聯電壓。以上關於第一切割區塊與第二切龜塊之數目 係為舉例之用’凡使的比值可介於〇·9〜11之間者, 皆屬於本發明之發明範圍。 其次,根據本發明之實施例,考慮一天中太陽光入射薄膜太 陽能電池❹度會械變遷,並且當在地球上經、緯度不同 的區域進行光電轉換時,光線入射薄膜太陽能電池刚時的單位 照度與開路電壓皆會有所不同,因此,於實際實施時,第一切割 區塊與第二切難塊之數目應根據料第-光電轉鮮元與第二 光電轉換單元實際可娜得的開路,壓而歧。 ’、 疋以’本發明提出之薄膜太陽能電池不僅可藉由並聯一個以 18 201244141 上之光電轉塊(包括第1電轉換區塊與第二光電轉換區 =)’增加太陽能電池的光電轉換效率,更可透過蚊不同光電轉 換區塊的切割數目,達到薄 、太陽此電池中不同光電轉換區塊並 聯後之電壓匹配的目的。 —雖然本發明以前述輸佳實施例揭露如上,然其並非用以限 疋本杂明,任何純相像技藝者,在不本發明之精神與範圍 :,f可作些許更動與潤飾,因此本發明之專利保護範圍須視本 說明書所社”翻解定者鱗。 【圖式簡單說明】 、第1A圖係細康本發明實施例之薄膜太陽能電池的製造方 法之步驟流程圖。 第1B圖係為根據本發财關之薄膜 電轉換結構之剖面結構圖。 弟光 第1C _為根縣發明實關之_太陽能電池之第二来 電轉換結構之剖面結構圖。 第2A圖係為根據本發明實施例之薄膜太陽能電池的 板與第-電極層之剖面示意圖。 圖。第2B ®係為根據本發明實施例切割第一電極層之剖面示意 第2C圖係為根據本發明實施例之薄膜太陽能電池 割線之剖面示意圖。 第奶圖係為根據本發明實施例之薄膜太陽能電池的第二切 19 201244141 割線之剖面示意圖。 第2E圖係為根據 層之剖面示意圖。 本發明實施例之_太陽能電池的第二電極 第2F圖係為根據本發明實施例之薄膜太陽能電池的第三切 割線之剖面示意圖。 一 第3圖係為根據本發明實施例之薄膜太陽能電池 割區域料接触財接綠 第4A圖係為根據本發明實施例之薄膜太陽能電池的第二美 板與第三電極層之剖面示意圖。 一土 第圖係為根據本發明實施例切割第三電極層之剖面示意 圖。 、 第4C圖係為根據本發明實施例之薄膜太陽能電池的第四切 割線之剖面示意圖。 第4D圖係為根據本發明實施例之薄膜太陽能電池的第五切 割線之剖面示意圖。 第4E圖係為根據本發明實施例之薄膜太陽能電池的第四電極 層之剖面示意圖。 第4F圖係為根據本發明實施例之薄膜太陽能電池的第六切 割線之剖面示意圖。 第5圖係為根據本發明實施例之薄膜太陽能電池之各第二切 割區域的串接與電性連接示意圖。 第6A圖係為根據本發明實施例之薄膜太陽能電池之結構示 201244141 意圖。 第6B圖係為根據「第6A圖」之薄膜太陽能電池之等效電路 示意圖。 【主要元件符號說明】 10 第一基板 20 第一光電轉換區塊 30 第二基板 40 第二光電轉換區塊 50 聚合物 .100 薄膜太陽能電池 202 第一電極層 202a,202b 第一電極單元 204 第一光電轉換層 204a,204b 第一光電轉換單元 206 第二電極層 206a,206b 第二電極單元 402 第三電極層 402a,402b 第三電極單元 404 第二光電轉換層 404a,404b 第二光電轉換單元 406 第四電極層 406a,406b 第四電極單元 21Deposition 'VHF PECVD) or Microwave Plasma Enhanced Chemical Vapor Deposition (MW PECVD). In the process of forming the second photoelectric conversion layer 4〇4, since the fourth cutting line L41 on the third electrode layer 402 is concave, the second photoelectric conversion layer 404 on the fourth cutting line L4i is slightly recessed. Status (please refer to "Figure 4c"). The material of the second photoelectric conversion layer may be, but not limited to, Microcrystalline Silicon (pc-Si). After taking the test, the fifth cutting line U2 is processed by laser cutting S5 (as shown in "still figure"). The fifth cutting line W is adjacent to the fourth cutting line L4] and is used for cutting the second photoelectric conversion layer. The fifth cutting line W is such that the second photoelectric conversion layers in the two are separated from each other into two independent blocks, and the first region and the second region (in this case, for example, not only Two: the only region only) 'If the "4D map" corresponds to the "1C map", the first t-editing layer 4Q4 Jing Ying (four), the surface of the postal mail forms the fourth electric power, and then after the cutting The second photoelectric conversion layer 201244141 pole layer 406, the fourth electrode layer 406 also covers the area formed by the fifth cutting line B (as shown in "Fig. 4E"). Thereafter, the processing of the first cutting line L43 is performed with the laser cutting %, wherein the sixth cutting line L43 is used to cut the second photoelectric conversion layer 404 and the fourth electrode layer 406, and the fourth electrode layer 4〇6 is mutually Separated into two sides, and defined as -_ and second_ (in this case, for example, not only limited to two separate areas), if "the second picture" and "the first Corresponding to the ic diagram, the fourth electrode layer strips of the first and second regions correspond to the fourth electrode unit 406a, 406b. At the same time, the second cutting blocks B1, B2 (shown in Fig. 4F) are formed on both sides of the sixth cutting line L43. Please refer to "1C" and "5th" for reading the series and electrical connection of each of the second blocks according to the embodiment of the present invention. The fourth cutting line is separated by the third electrode. a layer 402; and a fifth cutting line U2 separating the second photoelectric conversion layer 4〇4 of the second cutting block B1, B2 to form a second photoelectric conversion unit 4〇4a, 4〇4b; _ 二光赖船块4q to form each of the first cutting blocks B1, B2, .Bm such that each of the second cutting blocks M, B2, . . . includes a second photoelectric conversion unit (eg: second The cutting block B1 includes a second photoelectric conversion unit 4G4a, and the second cutting block includes a second photoelectric conversion unit. Therefore, when m second cutting blocks are received by light, the m first photoelectric conversion units included therein will correspond The wavelength of light is converted into a current. The generated electric quantity "1 (the order of the material may be the flow direction of the towel arrow ride (5), so that the second photoelectric conversion unit can be electrically connected in series. Then according to an embodiment of the present invention, After forming the "division map" and the "201244141 •" first-photoelectric conversion structure, the manufacturing method proposed by the present invention then glues the first photoelectric conversion block and the second photoelectric conversion block 4G (for example, bonding a polymer) 5〇 between the first-to-photoelectric conversion block 20 and the second photoelectric conversion block 40) and electrically connecting the first photoelectric conversion block 2〇 with the second photoelectric conversion block 40 (for example, providing a wire connection) The film solar cell 1GG shown in "Fig. 6A" is formed. It is worth noting that the method for manufacturing a touch solar cell according to the present invention forms the "1B" and "1C" 1. The second photoelectric conversion structure (corresponding to step S102 of the present invention and step magic 4) has no order of formation. Therefore, as shown in "Fig. 6A", when light is emitted from the first substrate 1 When entering, the light is sequentially passed through the first light. The conversion layer 2〇4 is photoelectrically converted with the second photoelectric conversion layer 4〇4. Since the polymer 50 is glued between the first photoelectric conversion block 2〇 and the second photoelectric conversion block 40, and the first photoelectric conversion is isolated The block 2〇 and the second photoelectric conversion block 40′′ thus the light having a shorter wavelength in the incident light is first absorbed by the first photoelectric conversion layer 204, and the remaining light having a longer wavelength is converted by the second photoelectric conversion. The layer 404 is absorbed. Thus, by arranging the first photoelectric conversion layer 204 and the second photoelectric conversion layer 404 having different energy gaps, the thin film solar cell 100 can absorb a wider spectrum of light rays and 'by electrical properties. The first photoelectric conversion block 20 is connected to the second photoelectric conversion block 40. The voltage of the first photoelectric conversion block 20 of the embodiment is electrically connected in parallel to the second photoelectric conversion block 40. The voltage after photoelectric conversion (as shown in Fig. 6B). 17 201244141 Since the first photoelectric conversion block 20 includes n first photoelectric conversion units connected in series, the second photoelectric conversion block 40 includes m In the second photoelectric conversion unit connected in series, when the first photoelectric conversion block 20 is connected in parallel with the second photoelectric conversion block 4, the voltages after photoelectric conversion are matched with each other. It is assumed that each of the -to-photoelectric conversion units is open The voltage is Vn, and the open circuit voltage of each second photoelectric conversion unit is vm, and the ratio of n^Vn/r^Vm may be between 0.9 and 1.1. • , · For example, when the first photoelectric conversion unit The material is amorphous, and the open circuit voltage Vn is about 0.8V under the illumination of the Wm2, the material of the second photoelectric conversion unit is microcrystalline stone, and the open circuit voltage Vm at 1000W/m2 illumination is about 〇, according to In an embodiment of the invention, the first photoelectric conversion block 2〇 can be cut into five first cutting blocks A1, A2...A5 (n=5), and the second photoelectric conversion block 4〇 can be cut and cut into Eight second cutting blocks B132. "B8(m=8)' are used to cause the thin film solar cells to achieve a matched parallel voltage. The above description of the number of the first cutting block and the second cutting block is exemplified by the fact that the ratio may be between 〇·9 and 11 and is within the scope of the invention. Secondly, according to an embodiment of the present invention, the solar illuminance of the thin film solar cell incident in the day is considered to be mechanically changed, and when the photoelectric conversion is performed on a region where the latitude and longitude are different on the earth, the unit illuminance of the light incident on the thin film solar cell is just It is different from the open circuit voltage. Therefore, in actual implementation, the number of the first cutting block and the second cutting difficult block should be based on the actual opening of the material photoelectric conversion element and the second photoelectric conversion unit. , and the pressure is different. The thin film solar cell proposed by the present invention can not only increase the photoelectric conversion efficiency of the solar cell by paralleling a photoelectric conversion block (including the first electrical conversion block and the second photoelectric conversion region =) on 18 201244141. The number of cuts in different photoelectric conversion blocks of mosquitoes can be used to achieve the purpose of matching the voltages of different photoelectric conversion blocks in the thin and solar cells. The present invention has been disclosed above in the foregoing preferred embodiments, and is not intended to limit the scope of the present invention. The scope of patent protection of the invention is subject to the description of the scales of the invention. [Brief Description] FIG. 1A is a flow chart of the steps of the method for manufacturing the thin film solar cell of the embodiment of the invention. The cross-sectional structure of the thin film electrical conversion structure according to the present invention. Diguang 1C _ is the invention of the roots of the invention - the second caller conversion structure of the solar cell. A schematic cross-sectional view of a plate and a first electrode layer of a thin film solar cell according to an embodiment of the present invention. Fig. 2B is a cross-sectional view showing a first electrode layer according to an embodiment of the present invention. FIG. 2C is a diagram according to an embodiment of the present invention. A schematic cross-sectional view of a secant line of a thin film solar cell. The milk map is a cross-sectional view of a second cut 19 201244141 secant of a thin film solar cell according to an embodiment of the present invention. FIG. 3 is a cross-sectional view showing a third cutting line of a thin film solar cell according to an embodiment of the present invention. FIG. 3 is a schematic view of a third cutting line according to an embodiment of the present invention. FIG. 4A is a schematic cross-sectional view showing a second US plate and a third electrode layer of a thin film solar cell according to an embodiment of the present invention. A soil map is an embodiment according to the present invention. FIG. 4C is a cross-sectional view showing a fourth cutting line of a thin film solar cell according to an embodiment of the present invention. FIG. 4D is a fifth embodiment of a thin film solar cell according to an embodiment of the present invention. Fig. 4E is a schematic cross-sectional view showing a fourth electrode layer of a thin film solar cell according to an embodiment of the present invention. Fig. 4F is a cross section of a sixth cutting line of a thin film solar cell according to an embodiment of the present invention. Figure 5 is a series connection and electrical properties of each of the second cutting regions of the thin film solar cell according to an embodiment of the present invention. Then a schematic view. Figure 6A is a structure-based thin film solar cell of the embodiment according to the present embodiment of the invention shown 201,244,141 intended. FIG. 6B based on an equivalent circuit of the thin film is a "Figure 6A" of the solar cell of FIG. [Main component symbol description] 10 First substrate 20 First photoelectric conversion block 30 Second substrate 40 Second photoelectric conversion block 50 Polymer. 100 Thin film solar cell 202 First electrode layer 202a, 202b First electrode unit 204 a photoelectric conversion layer 204a, 204b a first photoelectric conversion unit 206 a second electrode layer 206a, 206b a second electrode unit 402 a third electrode layer 402a, 402b a third electrode unit 404 a second photoelectric conversion layer 404a, 404b a second photoelectric conversion unit 406 fourth electrode layer 406a, 406b fourth electrode unit 21

Claims (1)

201244141 七、申請專利範圍: 1. 一種薄膜太陽能電池的製造方法,適於匹配多個並聯之光電轉 換區塊的電壓,該製造方法包括: 在一第一基板上形成一第一光電轉換區塊,該第一光電轉 換區塊包括η個串聯之第一光電轉換單元; 在一第二基板上形成一第二光電轉換區塊,該第二光電轉 換區塊包括m個串聯之第二光電轉換單元; 膠合該第-光電轉換區塊與該第二光電轉換區塊;以及 電性連接該第-光電轉換區塊與該第二光電轉換區塊,使 得該些串聯之第-光電轉換單元並聯該些串聯之第二光電轉 換單元; 其中,每-該第-光電轉換單元之開路電壓為Vn,每一該 第-光電轉換單元之開路電壓為Vm,m*Vn/n*Vm的比值介於 0.9〜1.1之間。 2. 如β求項1所述之馳太陽能電池的製造方法,其巾形成該第 一光電轉換區塊的步驟包括: 於該第-基板上形成一第一電極層; 根據一第—切觀__(las⑽ribe)該第-電極層; 於切割後之該第1極層上形成—第―找轉換層; 根據帛一切割線雷射切割該第一光電轉換層; 於切割後之該第—光電轉換層上形成-第二電極層;以及 根據-第三切割線雷射切割該第二電極層與該第一光電轉 22 201244141 換層; 其中,該第一切割線分隔該第一電極層,該第二切割線分 隔該些第-光電轉換單元,該第三切割線分隔該第一光電轉換 品免冰成η個第—切割區塊,每—該第—切割區塊包括該 第一光電轉換單;^。 3.如請求項2所述之_太電池的製造方法,其巾形成該第 一光電轉換區塊的步驟包括: 於該第二基板上形成一第三電極層; 根據第四切割線雷射切割啦财似㈣該第三電極層; 於切割後之δ亥第二電極層上形成一第二光電轉換層; 根據一第五_線雷射切_第二光電轉換層; 於切割後之該第二光電轉換層上形成一第四電極層;以及 根據第,、切割線雷射切割該第四電極層與該第二光電轉 s /、中Λ第四切崎分隔該第三電極層,該第五切割線 隔該些第二规轉解元’該第六_線分隔該第二光電轉 區塊’以形成m個第二切割區塊,每—該第二切割區塊包括 第二光電轉換單元。 如請求項3所述之_姆能魏㈣造綠,其中該第一 電轉換層與該第二光電轉換層的材料,其中之-為非心 (Amorphous Silicon),其中之 s ―為微晶石夕(Microcrystallii Silicon)。 23 4. 201244141 5. 如凊求項3所述之薄膜太陽能電池的製造方法,其中該第一電 極層、该第二電極層、該第三電極層肖該第四電極層的材料係 選自透明導電氧化物(Transparent Conductive Oxide,TCO)或金 屬所組成的群組。 6. —種薄膜太陽能電池,包括: 一第一基板; 一第一光電轉換區塊,配置於該第一基板上,且該第一光 電轉換區塊包括n個串聯之第一光電轉換單元; 一聚合物,配置於該第一光電轉換區塊上; 一第一光電轉換區塊,配置於該聚合物上,且該第二光電 轉換區塊包括m個串聯之第二光電轉換單元;以及 一第二基板,配置於該第二光電轉換區塊上; 其中’該些串聯之第一光電轉換單元係並聯於該些串聯之 第二光電轉換單元’每—該第―光電轉換單元之開路電壓為 Vn ’每一該第二光電轉換單元之開路電壓為Vm,m*Vn/n*Vm 的比值介於0.9〜1.1之間。 7. 如請求項6所述之薄膜太陽能電池,其巾該第—光電讎區塊 包括: -第-電極層’係鄰近於該第一基板; -第二電極層,係鄰近於該聚合物;以及 一第一光電轉_,係夾置於該第-電極層與該第二電極 層之間。 24 201244141 8. 如請求項7所述之薄膜太陽能電池,其中該第一光電轉換區塊 包括η個第一切割區塊,每一該第一切割區塊包括該第一光電 轉換單元、部分之該第一電極層與該第二電極層。 9. 如請求項6所述之薄膜太陽能電池,其中該第二光電轉換區塊 包括: 一第三電極層,係鄰近於該第二基板; 一第四電極層,係鄰近於該聚合物;以及 一第二光電轉換層,係夾置於該第三電極層與該第四電極 層之間。 10. 如請求項9所述之薄膜太陽能電池,其中該第二光電轉換區塊 包括m個第二切割區塊,每一該第二切割區塊包括該第二光電 轉換單元、部分之該第三電極層與該第四電極層。 25201244141 VII. Patent application scope: 1. A method for manufacturing a thin film solar cell, which is suitable for matching voltages of a plurality of parallel photoelectric conversion blocks, the manufacturing method comprising: forming a first photoelectric conversion block on a first substrate The first photoelectric conversion block includes n first photoelectric conversion units connected in series; a second photoelectric conversion block is formed on a second substrate, and the second photoelectric conversion block includes m second photoelectric conversions in series a unit that glues the first photoelectric conversion block and the second photoelectric conversion block; and electrically connects the first photoelectric conversion block and the second photoelectric conversion block, so that the series-connected photoelectric conversion units are connected in parallel The second photoelectric conversion unit connected in series; wherein, the open circuit voltage of each of the first photoelectric conversion units is Vn, and the open circuit voltage of each of the first photoelectric conversion units is Vm, and the ratio of m*Vn/n*Vm is Between 0.9 and 1.1. 2. The method for manufacturing a solar cell according to claim 1, wherein the step of forming the first photoelectric conversion block comprises: forming a first electrode layer on the first substrate; __(las(10)ribe) the first electrode layer; forming a first-to-conversion layer on the first pole layer after cutting; laser cutting the first photoelectric conversion layer according to a first cutting line; Forming a second electrode layer on the photoelectric conversion layer; and laser cutting the second electrode layer according to the third cutting line and the first photoelectric conversion 22 201244141; wherein the first cutting line separates the first electrode a layer, the second cutting line separating the first photoelectric conversion units, the third cutting line separating the first photoelectric conversion products from ice into n first cutting blocks, each of the first cutting blocks including the first A photoelectric conversion single; ^. 3. The method of manufacturing a battery according to claim 2, wherein the step of forming the first photoelectric conversion block comprises: forming a third electrode layer on the second substrate; and performing laser irradiation according to the fourth cutting line Cutting the wealth like (4) the third electrode layer; forming a second photoelectric conversion layer on the second electrode layer after the cutting; according to a fifth_line laser cutting_second photoelectric conversion layer; Forming a fourth electrode layer on the second photoelectric conversion layer; and, according to the first, the cutting line laser cutting the fourth electrode layer and the second photoelectric conversion s /, the middle Λ fourth cutting the third electrode layer The second cutting line is separated from the second photoelectrically-displaced blocks by the second regulating circuit to form m second cutting blocks, each of the second cutting blocks including the first cutting block Two photoelectric conversion unit. The material of the first electrical conversion layer and the second photoelectric conversion layer, wherein - is - Amorphous Silicon, wherein s - is a microcrystal, as described in claim 3 Microcrystallii Silicon. The method for manufacturing a thin film solar cell according to claim 3, wherein the material of the first electrode layer, the second electrode layer, and the third electrode layer is selected from the fourth electrode layer A group consisting of Transparent Conductive Oxide (TCO) or metal. 6. A thin film solar cell, comprising: a first substrate; a first photoelectric conversion block disposed on the first substrate, and the first photoelectric conversion block includes n first photoelectric conversion units connected in series; a polymer disposed on the first photoelectric conversion block; a first photoelectric conversion block disposed on the polymer, and the second photoelectric conversion block includes m second photoelectric conversion units connected in series; a second substrate disposed on the second photoelectric conversion block; wherein the first photoelectric conversion units connected in series are connected in parallel to the second photoelectric conversion unit of the series The voltage is Vn 'the open circuit voltage of each of the second photoelectric conversion units is Vm, and the ratio of m*Vn/n*Vm is between 0.9 and 1.1. 7. The thin film solar cell of claim 6, wherein the first photo-electric germanium block comprises: - a first electrode layer is adjacent to the first substrate; - a second electrode layer adjacent to the polymer And a first phototransistor, the clip is interposed between the first electrode layer and the second electrode layer. The thin film solar cell of claim 7, wherein the first photoelectric conversion block comprises n first cutting blocks, each of the first cutting blocks comprising the first photoelectric conversion unit, and a portion thereof The first electrode layer and the second electrode layer. 9. The thin film solar cell of claim 6, wherein the second photoelectric conversion block comprises: a third electrode layer adjacent to the second substrate; a fourth electrode layer adjacent to the polymer; And a second photoelectric conversion layer sandwiched between the third electrode layer and the fourth electrode layer. 10. The thin film solar cell of claim 9, wherein the second photoelectric conversion block comprises m second cutting blocks, each of the second cutting blocks comprising the second photoelectric conversion unit, the portion of the second a three electrode layer and the fourth electrode layer. 25
TW100115254A 2011-04-29 2011-04-29 Thin film solar cell and fabricating method thereof TW201244141A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW100115254A TW201244141A (en) 2011-04-29 2011-04-29 Thin film solar cell and fabricating method thereof
CN2011101536173A CN102760790A (en) 2011-04-29 2011-06-03 Thin film solar cell and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100115254A TW201244141A (en) 2011-04-29 2011-04-29 Thin film solar cell and fabricating method thereof

Publications (1)

Publication Number Publication Date
TW201244141A true TW201244141A (en) 2012-11-01

Family

ID=47055176

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100115254A TW201244141A (en) 2011-04-29 2011-04-29 Thin film solar cell and fabricating method thereof

Country Status (2)

Country Link
CN (1) CN102760790A (en)
TW (1) TW201244141A (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4003655B2 (en) * 2003-02-12 2007-11-07 三菱電機株式会社 Solar panel
CN101312220B (en) * 2007-05-25 2010-06-09 财团法人工业技术研究院 Two-sided light-absorbing and electricity-generating thin film solar battery
CN201213141Y (en) * 2007-12-25 2009-03-25 西安海晶光电科技有限公司 Double surface organic thin-film solar cell

Also Published As

Publication number Publication date
CN102760790A (en) 2012-10-31

Similar Documents

Publication Publication Date Title
US9287431B2 (en) Superstrate sub-cell voltage-matched multijunction solar cells
JP5345396B2 (en) Photovoltaic system and method for generating electricity by photovoltaic effect
KR100900443B1 (en) Solar cell and method of manufacturing the same
RU2010125569A (en) MULTI-TRANSITION PHOTOGALLANIC ELEMENTS
US8080856B2 (en) Photoelectric structure and method of manufacturing thereof
KR20100028729A (en) Solar cell having multi layers and manufacturing method thereof
JP6222667B2 (en) Storage type solar power generation device and storage type solar power generation system
JP2017005254A (en) Photocoupler
Allwood et al. Power over fibre: Material properties of homojunction photovoltaic micro-cells
Bouzid et al. Analytical modeling of dual-junction tandem solar cells based on an InGaP/GaAs heterojunction stacked on a Ge substrate
Oyedele et al. Numerical simulation of varied buffer layer of solar cells based on cigs
JP5626796B2 (en) Series connection type solar cell and solar cell system
KR20100021845A (en) Stacked type solar cell
JP2014220351A (en) Multi-junction solar cell
KR20180076433A (en) Bifacial tandem solar cell and method of manufacturing the same
US9048376B2 (en) Solar cell devices and apparatus comprising the same
TW201244141A (en) Thin film solar cell and fabricating method thereof
KR20100066525A (en) High efficiency hybrid solar cell
US20120180855A1 (en) Photovoltaic devices and methods of forming the same
Mousa et al. Simulation of high-efficiency perovskite-based tandem solar cells
CN102117849B (en) Solar cell device and device thereof
KR101437070B1 (en) Photovoltaic Device
Konagai et al. Bifacial amorphous Si quintuple‐junction solar cells for IoT devices with high open‐circuit voltage of 3.5 V under low illuminance
RU2569164C2 (en) Thin-film solar cell
KR20130104347A (en) Solar cell and manufacturing method thereof