TW201244127A - Fabricating method of photoelectric conversion layer - Google Patents

Fabricating method of photoelectric conversion layer Download PDF

Info

Publication number
TW201244127A
TW201244127A TW100114920A TW100114920A TW201244127A TW 201244127 A TW201244127 A TW 201244127A TW 100114920 A TW100114920 A TW 100114920A TW 100114920 A TW100114920 A TW 100114920A TW 201244127 A TW201244127 A TW 201244127A
Authority
TW
Taiwan
Prior art keywords
metal layer
layer
photoelectric conversion
substrate
metal
Prior art date
Application number
TW100114920A
Other languages
Chinese (zh)
Other versions
TWI441344B (en
Inventor
Yi-Jiunn Chien
Ming-Yi Huang
Chieh-Yu Hsiao
Yi-Fan Wu
Han-Tu Lin
Original Assignee
Au Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Au Optronics Corp filed Critical Au Optronics Corp
Priority to TW100114920A priority Critical patent/TWI441344B/en
Priority to CN2011103546038A priority patent/CN102354718A/en
Publication of TW201244127A publication Critical patent/TW201244127A/en
Application granted granted Critical
Publication of TWI441344B publication Critical patent/TWI441344B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A fabricating method of photoelectric conversion layer is provided. A first metal layer is formed on a substrate and includes at least two III-group elements. A first non-metal layer is formed on a first subsidiary substrate and includes at least one VI-group element. After the first metal layer and the first non-metal layer contact, a first thermal process is performed to form a first material mixing layer between the substrate and the first subsidiary substrate. The first material mixing layer and the first subsidiary substrate are separated. A second metal layer and a second non-metal layer are sequentially formed on a second subsidiary substrate, the former includes at least two III-group elements, and the later includes at least one VI-group element. After the first material mixing layer and the second non-metal layer contact, a second thermal process is performed to form a second material mixing layer between the substrate and the second subsidiary substrate. The second material mixing layer and the second subsidiary substrate are separated.

Description

201244127 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種膜層的製造方法,且特別是有關 於一種光電轉換層的製造方法。 【先前技術】 由於石化能源短缺,人們對環保重要性的認知提高, 因此人們近年來不斷地積極研發替代能源與再生能源的相 關技術’希望可以減少目前人賴於聽能源的依賴程度 以及使用石化能源時對環境帶來的影響。在眾多的替代= 源與再生能源的技術中,以太陽能電池(s〇lar cell)最^ 嘱目。主要原因是太陽能電池可直接冑太陽能轉換成^ 能,且發電過程中不會產生二氧化碳或氮化物等有害物 質,不會對環境造成污染。 ° 矽基太陽能電池為業界常見的一種太陽能電池。矽基 太陽能電池的原理是將高純度的半導體材料(矽)加入摻質 物使其呈現不同的性質,以形成P型半導體及η型半導體, 並將ρ-η兩塑半導體相接合,如此即可形成ρ_η接面。當 太陽光照射到一個ρ-η結構的半導體時,光子所提供的能 量可能會把半導體中的電子激發出來產生電子-電洞對。藉 由電極的設置,使電洞往電場的方向移動並使電子往相反 的方向移動,如此即可構成太陽能電池。 相較於矽半導體太陽能電池,以高吸光係數與直接能 隙的化合物半導體材料作為光電轉換層(或稱光吸收層)的 201244127 電池除了有重4輕與可制優點外,其所需的 =而陽能電,,因此富有低成本的; 因於兩要遵雜曰主w技術難以貫現經濟的量產要求,肇 體光二Γ機台設備來達成高品質的化合物半導 所需要解^重要g出成本效益高的光電轉換層是業界 【發明内容】 *本發明提供一種光電轉換層的製造方法,可製造具有 阿光電轉換效率的光電轉換層。 本發明提出一種光電轉換層的製造方法。於一基板上 形成一第—金屬層,第-金屬層之材質包括至少兩種第三 族7L素。於一第一輔助基板上形成一第一非金屬層,第一 非金屬層之材質包括至少一種第六族元素。將第一金屬層 之表面與第一非金屬層的表面接觸後,對第一金屬層與第 一非金屬層進行一第一熱製程,以於基板與第一輔助基板 之間形成一第一材料混合層,第一材料混合層包括至少兩 ,第三族元素與至少一種第六族元素。將第一辅助基板與 第—材料混合層分離。於一第二輔助基板上依序形成一第 一金屬層與一第二非金屬層,第二金屬層之材質包括至少 一種第一族元素,第二非金屬層之材質包括至少一種第六 族元素。將第一材料混合層之表面與第二非金屬層的表面 接觸後,對第一材料混合層與第二金屬層及第二非金屬層 進行一第二熱製程,以於基板與第二輔助基板之間形成一 第二材料混合層’第二材料混合層包括第一材料混合層、 5 201244127 。將第二輔助基 第一金屬層及第二非金屬層所含有的元素 板與第一材料混合層分離。 、 基於上述,在本發明之光電轉換層的製造方法中,3 分別製備金屬層與非金屬層後’才使兩者接觸以形成材= 混合層。如此-來’能精確地控制金屬層被非金屬化 度’以及避免非金屬材料源污染製備金制時所使用 材原料與真空系統的腔室,進而降低製作成本。 為讓本發明之上述特徵和優點能更明顯易懂,下 舉實施例,並配合所附圖式作詳細說明如下。 、 【實施方式】 【第一實施例】 ,1A至圖1J為本發明之第一實施例的一種光電轉換 層的製造方法的剖面流程示意圖。請參照圖丨A,首先,於 基板11G上形成第-金屬層12Qa,第—金屬们施之材 至少兩種第三族元素。在本實施例中,基板(或稱為 土板、原始基板、承載基板、被保留的基板)11〇例如 玻璃基板(諸如鈉璃⑽a_lime細,SLG)基板)或是其 他材質之硬質基板(例如:無驗玻璃、石英、絲板、藍^ 石基板、或是其它合適的材質),然本發明不限於此。在^ 他實施例+,基板U0亦可為具有可撓性之軟性基板,諸 如塑膠基板或金屬絲(不_基板、峨板、齡金基 等。在本實施例中,基板110的表面上,即内表面上,例 如是已形成有電極層112,也就是基板則與第—金屬居 120a之間形成有電極層112。本實施例之電極層ιΐ2例: 201244127 為-錮(Mo)金屬層’可與其上之最後形成的光電轉換層 150c(請參照® U)形成良好的歐姆接觸(〇hmicc〇ntact),、提 供光電轉換層必要_著性,並可做為—背電極使用。盆 中’背電極的材料除了錮之外,尚可使用其它單層或多層 結構的材料,例如:金、銀、銅、鋁、錫、鈦、鈕、鉬、 鋅、鍺、其它合適的材料、上述之合金、上述之氮化物、 上述之氧化物、上述的氮氧化物、上述之碳化物' 或上述 之組合。在其它實施例中,亦可不先形成電極層112,即 光電轉換層150c直接接觸基板110的内表面,然後,再透 過其它製程將光電轉換層l50c電性連接於其它背電極上。 在本實施例中,第一金屬層120a之材質包括至少兩 種第三族元素,例如是包括選自於銦、鎵'鋁、鉈中至少 兩者,諸如銦鎵(In^Gax)、鋁鎵(Αΐ^%)或其他任意組 合。第一金屬層120a例如是由共蒸鍍或或共濺鍍所形成的 一合金層、或由濺鍍所形成的多個金屬層構成的堆疊層或 上述之組合。以第一金屬層12〇a包括銦鎵(inixGax)為例, 第一金屬層120a可以是銦鎵合金層’或者是銦金屬層與鎵 金屬層的堆疊層,其中又以將第一金屬元素層(諸如銦金屬 層)與第二金属元素層(諸如鎵金屬層)交替堆疊至少兩次 較佳。第一金屬層12〇a的形成方法例如是濺鍍法或蒸鍍 法。 於第一輔助基板(或稱為第一暫時基板、第一待移除基 板、第一被移除的基板)130a上形成第一非金屬層140a, 第一非金屬層140a之材質包括至少一種第六族元素。第一 輔助基板130a例如是玻璃基板(諸如鈉躬玻璃(soda-lime 201244127 glass,SLG)基板)或前文中戶斤述基板no的其他材料。第 一非金屬層140a之材質例如是包括硫、硒、碲中至少一者。 請參照圖1B,接著,將第一金屬層12〇a之表面與第 一非金屬層140a的表面接觸後,對第一金屬層12〇a與第 一非金屬層140a進行一第一熱製程T1,以於基板u〇與 第一輔助基板130a之間形成如圖1C所示的一第一材料混 合層(或稱為第一混合物層、第一材料層)15〇a,第一材料 混合層150a包括至少兩種第三族元素與至少一種第六族 元素。在本實施例中,第一熱製程T1例如是包括一快速 回火製程或一熱爐管製程❶其中,第一熱製程T1的製程 溫度小於基板110與第一辅助基板13〇a之軟化溫度。以第 一金屬層120a包括第三族元素(諸如銦鎵)為例,第一熱製 程T1的製程温度約大於或等於4〇〇。〇。在本實施例中,第 一金屬層120a例如是包括銦鎵(InixGax)、第一非金屬層 140a例如是包括砸(Se),因此第一材料混合層15加例如是 包括銦鎵石西[(InbxGaj^Se〗]。 請參照圖ic,然後,將第一辅助基板13〇a與第一材 料混合層150a分離。在本實施例中’在形成第一材料混合 層150a之後,第一輔助基板13〇a在冷卻後例如是自動與 第一材料混合層l5〇a分離或者是利用分離工具將第一輔 助基板130a與第一材料混合層i5〇a分離。 請參照圖1D,之後,於第二辅助基板(或稱為第二暫 時基板、第二待移除基板、第二被移除的基板)13〇b上依 序形成第二金屬層120b與第二非金屬層Mob,第二金屬 層120b之材質包括至少一種第一族元素,第二非金屬層 201244127 140b之材質包括至少一種第六族元素。在本實施例中,第 二輔助基板13〇b例如是玻璃基板(諸如鈉鈣玻璃(SLG)基 板)或前文中所述基板110的其他材料。第二金屬層120b 之材質例如是包括銅、銀、金中至少一者,在本實施例中 第二金屬層120b例如是包括銅(Cu)。第二非金屬層14〇b 之材質例如是包括硫、硒、碲中至少一者。在本實施例中, 弟一非金屬層140b所包括的第六族元素例如是與第一非 金屬層140a所包括的弟六族元素相同,也就是第二非金屬 層140b例如是包括砸(Se)為範例,但不限於此。 請參照圖1E,接著,將第一材料混合層15〇a之表面 與第二非金屬層140b的表面接觸後,對第一材料混合層 150a與第一金屬層120b及第二非金屬層i4〇b進行一第二 熱製程T2,以於基板110與第二輔助基板13〇b之間形成 如圖1F所示之一第二材料混合層(或稱為第二混合物層、 第二材料層)150b,第二材料混合層i50b包括第一材料混 合層150a、第一金屬層120b及第二非金屬層]_4〇b所含有 的元素。其中,第二熱製程T2的製程溫度小於基板11〇 與第二辅助基板130b之軟化溫度。由於進行熱製程的材料 層包括第一族元素及/或第六族元素,第二熱製程T2的製 程溫度例如是高於第一熱製程T1的製程溫度,第二熱製 程T2的製程溫度約大於或等於5〇〇。(:。在本實施例中,第 一材料混合層150a例如是包括銦鎵硒[(inixGax)2Se3]、第 二金屬層120b例如是包括銅(Cu)以及第二非金屬層14〇b 例如是包括硒(Se),因此第二材料混合層150b例如是富含 鋼的錮鎵硒(Cu-richCIGS)。 9 201244127 請參照圖IF,然後,將第二辅助基板130b與第二材 料混合層150b分離。在本實施例中,在形成第二材料混合 層150b之後,第二輔助基板130b在冷卻後例如是自動與 第二材料混合層150b分離或者是利用分離工具將第二辅 助基板130b與第二材料混合層i5〇b分離。 請參照圖1G,之後,在本實施例中,更包括於第三 輔助基板(或稱為第二暫時基板、第三待移除基板、第三被 移除的基板)130c上依序形成第三金屬層12〇c與第三非金 屬層140c,第三金屬層i2〇c之材質包括至少兩種第三族 兀素,第三非金屬層14〇c之材質包括至少一種第六族元 素。在本實施例中,第三辅助基板13〇()例如是玻璃基板(諸 如鈉鈣玻璃(soda-lime glass,SLG)基板)或前文中所述基板 11〇的其他材料。在本實施例中,第三金屬層12〇c的至少 兩種第三族元素例如是與第一金屬層12〇a的至少兩種第 二族元素相同,第三非金屬層14〇c所包括的第六族元素例 ^是與第一非金屬層14〇a所包括的第六族元素相同。在本 實施例中,第三金屬層120〇例如是包括銦鎵(InixGax),第 二非金屬層140c例如是包括硒(se)為範例。 。月參照圖1H,將第二材料混合層15〇b之表面與第三 非金屬層140c的表面接觸後,對第二材料混合層15%與 第三金屬層120c及第三非金屬層14〇(:進行一第三熱製^呈 T3,以於基板11〇與第三辅助基板13〇c之間形成如圖u 所示之一第三材料混合層(或稱為第三混合物層、第三材料 層)150c,第三材料混合層15〇c包括第二材料混合層 150b、第二金屬層i2〇c及第三非金屬層14加所含有的元 201244127 f /、第—熱製裎T3的製程溫度小於基板110與第 —mfe 130e之軟化溫度。在本實施例中,第二材料混 合層15Gb例如是富含鋼的銦鎵砸(Cu rieh CIGS)、第三金 屬層12〇Ca例如是包括銦鎵dGaJ以及第三非金屬層 140c例如是包括碼(Se),因此第三材料混合層 150c例如是 銅銦鎵硒薄膜(CIGS)。 5月參妝圖11,將第三輔助基板130c與第三材料混合 1 i5〇c刀離以幵)成圖1J所示的光電轉換層1〇〇。在本 實施例中’在形成第三材料混合層150c之後,第三輔助基 板1’在冷卻後例如是自動與第三材料混合層 150c分離 或者是_錄工具將第三_絲13Qe與第三材料混 合層15,分離。特別注意的是’為了方便說明,在本實施 例中’是以製作材料為銅銦鎵砸的光電轉換層剛為例, 但本發明不以此為限’在其他實施例中,光電轉換層1〇〇 的材料了以疋在化學元素週期表中的第一族、第三族及第 六族(不選用氣態的氧)做選擇,例如:包含一銅銦鎵硒(較 佳,吸收波長為太陽光波段)、銅銦硒、銅鎵硒、銀銦鎵硒、 銀銦硒、銀鎵硒、銀銅銦鎵硒、銀銅銦硒、銀銅鎵硒、金 銦鎵硒、金銦硒、金鎵硒、金銀銦鎵硒、金銀銦硒、金銀 鎵硒、金銅銦鎵硒、金銅銦硒、金銅鎵硒、金銀銅銦鎵硒、 金銀銅銦硒、金銀銅鎵硒、銅鋁鎵硒、銅鋁硒、銅鋁銦硒、 銅銦鉈硒、銅鉈硒、銀鋁鎵硒、銀鋁硒、銀銅鋁鎵硒、銀 銅鋁硒、金鋁鎵硒、金鋁硒、金銀鋁鎵硒、金銀鋁硒、金 鋼鋁鎵硒、金銅鋁硒、金銀銅鋁鎵硒、金銀銅鋁硒、銅鉈 鎵硒、銅鉈銦硒、銅鉈硒、銀鉈鎵硒、銀鉈銦硒、銀鉈硒、 201244127 銀銅射㈣、_谢_、銀錄⑽、纽獅、金蛇鋼 砸、金銘石西、金銀銘鎵砸、金銀銘銦石西、金銀銘石西、 銘鎵砸、金銅姐_、金銅伽、纽敏鎵硒、金銀銅 ,姻砸、金銀銅如、或者是上述成份·鈉將金銀銅其 中之一取代、或者是上述成份利用硫將硒取代、或是上述 成份利用碲將帅代。由於這些光電轉換層⑽的製造方 法與本實施例所述的銅銦鎵硒的光電轉換層1〇〇的製造方 ^相似’僅是替換製程中的第—族元素、第三就素及第 族元素,因此於此不贅述。再者,根據所欲形成之光電 轉換層100所包括的元素,可以任意變更這些元素組人 順序,本發明未加以限制。此外,在—實施财:、金二 的材質可以更包括鋅、錯、錫、汞、編等元素。特別一提 的是,光電轉換層100可用於太陽能電池及光感測器等領 ,中,且光電轉換層100的製造方法與現有的製程設備相 容,因此不會大幅增加該些元件的製作成本。 在本實施例中’是以多階段(諸如三階段)方式使包含 第六族元素的非金屬層與包含第三族元素或第一族元素的 金屬層或材料混合層進行熱製程,以形成光電轉換層,如 此一來,可精確地控制第六族元素與金屬層的反應程度, 避免不必要的中間反應產物,且能使第三族元素或第一族 元素均質地分佈於混合層中。因此,本實施例之光電轉換 層的製造方法適於製作大面積的光電轉換層。如此一來, 所形成的光電轉換層具有較佳的帶隙輪廓(band-gap Profile) ’因而具有咼光電轉換效率。再者,由於第六族元 素通常具有低融點、高蒸氣壓以及高污染性,但在本實施 201244127 例中是分別在不同的腔室中製 另-腔室使金屬層與非金心=屬層與非金屬層’再於 免於濺锻設備中使㈣六‘ .11此’本實施例能避 有高安全性與避免污驗室體I純材,因而具 地維護製程設備,以避免製的優點’故可簡易 雖然在第-實施例中是:,加。 轉換層為例,但在其他實施二„熱製程來形成光電 其他數目的歸程來進行光 可以依照需求,使用 實施中’為了清楚表在接τ來的 的製造方法的差異,皆以妒^目熱製程的光電轉換層 但恤崎,本㈣不以此為限。 声的製造方US 2 ί發明之第二實施儀—種光電轉換 層的Ik方法的剖面流程示意圖, 、材料混合層的別光電;奐層 貫施例中所述相同,請參閱第-實施例 中所述。本實&_下針對與第—實施例不同處,例如: ί構=成方法與金屬層以及非金屬層的材料加以說明。 2Α ’首先,於基板llG上形成第—金屬層論, 第一金屬層ma之材質包括至少兩種第三族元素與至少 種第知元素。在本貫施例中,第—金屬層^施甲的一 種第三族元素的含量較佳是A於其他種第三族元素的含 量。舉例來說’第-金屬層丨施之材㈣如是包括銅銦 鎵,且以富含銦的鋼銦鎵(In_rich CuInGa)為較佳,其中 [Ga]/{[In]+[Ga]}的原子百分率例如是約介於2〇%至。 13 201244127 第一金屬層120a例如是一合金層、由多個金屬層構成的堆 疊層或上述之組合。舉例來說,第一金屬層120a可以是第 一金屬元素層(諸如銦金屬層)、第二金屬元素層(诸如叙金 屬層)以及第三金屬元素層(諸如銅金屬層)交替堆疊至少 兩次所形成的堆疊層,其中各金屬元素層的形成方法例如 是濺鍍法或蒸鍍法。 於第一輔助基板13〇a上形成第/补金屬層140a,第 一非金屬層140a之材質包括至少一種第六族元素。第一輔 助基板130a例如是玻璃基板(諸如鈉鈣玻璃(s〇da-lime glass,SLG)基板)或第一實施例中所述的其他基板材料。 第一非金屬層140a之材質例如是包栝石西。 請參照圖2B,接著,將第一金屬層120a之表面與第 一非金屬層140a的表面接觸後,對第一金屬層120a與第 一非金屬層140a進行一第一熱製程T1,以於基板110與 第一輔助基板130a之間形成如圖2C所示的一第一材料混 合層150a,第一材料混合層i5〇a包括至少兩種第三族元 素、至少一種第一族元素以及至少一種第六族元素。在本 實施例中,第一熱製程T1例如是包括一快速回火製程或 一熱爐管製程。其中,第一熱製程T1的製程溫度小於基 板110與第一輔助基板130a之軟化溫度。由於進行熱製程 的材料層包括第一族元素及/或第六族元素。在本實施例 中,第一熱製程τι的製程溫度約大於或等於50(rc。在本 實施例中’第一金屬層120a例如是包括銅銦鎵(CuInGa)、 第一非金屬層140a例如是包括硒(Se),因此第一材料混合 層150a例如是包括銅銦鎵硒(CIGS)。 201244127 請參照圖2C,然後’將第一輔助基板13〇&與第—材 料混合層150a分離。在本實施例中,在形成第一材料混合 層150a之後’第一辅助基板130a在冷卻後例如是自動與 第一材料混合層150a分離或者是利用分離工具將第—辅 助基板130a與第一材料混合層150a分離。 請參照圖2D,之後,於第二辅助基板uob上依序形 成第二金屬層120b與第二非金屬層i40b,第二金屬層i2〇b 之材質包括至少一種第一族元素與至少兩種第三族元素, 第二非金屬層14〇b之材質包括至少一種第六族元素。在本 貫施例中’第一金屬層120b的至少兩種第三族元素例如是 與第一金屬層12〇a的至少兩種第三族元素相同,其中—種 第三族元素的含量較佳是大於其他種第三族元素的含量。 舉例來說,第二金屬層120b之材質例如是包括銅銦鎵,且 以富含鎵的銅銦鎵(Ga-rich CuInGa)為較佳,其中 [In]/{[In]+[Ga]}的原子百分率例如是約介於30%至4〇〇/q。 在本實施例中’第二非金屬層140b所包括的第六族元素例 如是與第一非金屬層140a所包括的第六族元素相同。第二 非金屬層140b例如是包括砸(Se)。 請參照圖2E ’接著’將第一材料混合層i5〇a之表面 與第二非金屬層140b的表面接觸後’對第一材料混合層 150a與第二金屬層120b及第二非金屬層i4〇b進行一第二 熱製程T2,以於基板110與第二辅助基板130b之間形成 如圖2F所示之一第二材料混合層150b,第二材料混合層 150b包括第一材料混合層150a、第二金屬層12〇b及第二 非金屬層140b所含有的元素。其中,第二熱製程τ2的製 15 201244127 程溫度小於基板110與第二辅助基板130b之軟化溫度。第 二熱製程T2的製程溫度約大於或等於500°C。在本實施例 中,第二材料混合層150b例如是包括銅銦鎵硒(CIGS)。 請參照圖2F,然後,將第二輔助基板130b與第二材 料混合層150b分離,以形成圖2G所示的光電轉換層1〇〇。 在本實施例中,在形成第二材料混合層150b之後,第二輔 助基板130b在冷卻後例如是自動與第二材料混合層150b 分離或者是利用分離工具將第二辅助基板130b與第二材 料混合層150b分離。 在本實施例中,金屬層120a、120b皆包含第三族元 素與第一族元素,且其中金屬層120a中的一種第三族元素 的含量較高’以及金屬層120b中的另一種第三族元素的含 量較高。然後’以兩階段使包含第六族元素的非金屬層與 包含第三族元素或第一族元素的金屬層或材料混合層進行 熱製程’以形成光電轉換層,如此一來,可精確地控制第 六族元素與金屬層的反應程度,避免不必要的中間反應產 物,且能使第三族元素或第一族元素均質地分佈於混合層 中。因此,本實施例之光電轉換層的製造方法適於製作大 面積的光電轉換層。如此一來,所形成的光電轉換層具有 較佳的帶隙輪廓,因而具有高光電轉換效率。再者,由於 第六族元素通常具有低融點、高蒸氣壓以及高污染性,但 在本貫施例中疋分別在不同的腔室中製備金屬層與非金屬 層,再於另一腔室使金屬層與非金屬層接觸,因此,本實 施例能避免於濺鍍設備中使用第六族元素的氣體源或靶 材,因而具有高安全性與避免污染腔室的優點,故可簡易 201244127 地維護製程設備,以避免製作成本的增加。 【第三實施例】 圖3A至圖3G為本發明之第三實施例的一種光電轉 換層的製造方法的剖面流程示意圖,第三實施例中的基 板基板與輔助基板的別名、材料混合層的別名、光電轉 換層的種類大致與第一實施例中所述相同,而金屬層以及 非金屬^的材料大致與第二實施例中所述相同,以下針對 與第二實施例不同處,例如光電轉換層的形成步驟進行說 明。請★參照圖3A,首先,於基板11〇上形成第一金屬層 120a’第一金屬層i2〇a之材質包括至少兩種第三族元素與 至少一種第一族元素。在本實施例中,第一金屬層12〇a 中的第一族兀素的含量較佳是指第一族元素的含量大於其 他種第二族元素的含量的加總。舉例來說,第一金屬層 120a之材質例如是包括銅銦鎵,且以富含銅的銅銦鎵 (Cu-nchCuInGa)為較佳’其中[cu]/{[in]+[Ga]}的原子百分 率例如是約介於95%至105%。第一金屬層12加例如是一 合金層、由多個金屬層構成的堆疊層或上述之組合。舉例 來說,第一金屬層120a可以是第一金屬元素層(諸如銦金 屬層)、第一金屬元素層(諸如鎵金屬層)以及第三金屬元素 層(諸如銅金屬層)交替堆疊至少兩次所形成的堆疊層,其 中各金屬元素層的形成方法例如是濺鑛法或蒸鍍法。 於第一輔助基板130a上形成第一非金屬層14〇a,第 一非金屬層140a之材質包括至少一種第六族元素。第一輔 助基板130a例如是玻璃基板(諸如鈉約玻璃(s〇da_lime glass ’ SLG)基板)或前文所述的其他基板。第一非金屬層 17 201244127 140a之材質例如是包括石西。 ,參照圖3B ’接著’將第一金屬層12〇a之表面 一非金屬層140a的表面接觸後,對第一金屬層i2〇a^第 -非金屬層140a進行一第一熱製程T1,以於基板ιι〇、與 第一輔助基板130a之間形成如圖3C所示的一第一材料^ 合層150a,第一材料混合層15〇a包括至少兩種第三族= 素、至少一種第一族元素以及至少一種第六族元素。在本 實施例中,第一熱製程T1例如是包括一快速回火製程咬 一熱爐管製程。其中,第一熱製程T1的製程溫度小於基 板110與第一輔助基板130a之軟化溫度。由於進行熱製程 的材料層包括第一族元素及/或第六族元素。在本實施例 中,第一熱製程T1的製程溫度約大於或等於5〇〇°c。在本 實施例中,第一金屬層12〇a例如是包括銅銦鎵(CuInGa)、 第一非金屬層140a例如是包括硒(Se),因此第一材料混合 層150a例如是包括銅銦鎵硒(ciGS)。 請參照圖3C ’然後,將第一輔助基板i3〇a與第一材 料混合層150a分離。在本實施例中,在形成第一材料混合 層150a之後,第一辅助基板130a在冷卻後例如是自動與 第一材料混合層150a分離。 請參照圖3D,之後,於第二輔助基板130b上依序形 成第二金屬層120b與第二非金屬層140b,第二金屬層i2〇b 之材質包括至少一種第一族元素與至少兩種第三族元素, 第二非金屬層140b之材質包括至少一種第六族元素。在本 實施例中,第二金屬層120b的至少兩種第三族元素例如是 與第一金屬層120a的至少兩種第三族元素相同,其中一種 201244127 第三族元素的含量較佳是大於其他種第三族元素的含量。 舉例來說’第二金屬層120b之材質例如是包括銅銦鎵,且 以負銅含量的銅銦鎵(Cu_p00r CuInGa)為較佳,其中 [CU]/{[In]+[Ga]}的原子百分率例如是約介於7〇%至85%。 在本實施例中,第二非金屬層140b所包括的第六族元素例 如是與第一非金屬層140a所包括的第六族元素相同。第二 非金屬層140b例如是包括硒(ge)。 清參照圖3E ’接著’將第一材料混合層i5〇a之表面 與第二非金屬層140b的表面接觸後,對第一材料混合層 150a與第二金屬層12〇b及第二非金屬層140b進行一第二 熱製程T2,以於基板11〇與第二輔助基板i3〇b之間形成 如圖3F所示之一第二材料混合層15〇b,第二材料混合層 150b包括第一材料混合層i5〇a、第二金屬層i2〇b及第二 非金屬層140b所含有的元素。其中,第二熱製程T2的製 程溫度小於主基板110與第二辅助基板13〇b之軟化溫度。 第二熱製程T2的製程溫度約大於或等於5〇〇。(:。在本實施 例中,第二材料混合層150b例如是包括銅銦鎵硒(CIGS)。 請參照圖3F ’然後,將第二輔助基板n〇b與第二材 料混合層150b分離’以形成圖3G所示的光電轉換層1〇〇。 在本實施例中,在形成第二材料混合層150b之後,第二輔 助基板130b在冷卻後例如是自動與第二材料混合層150b 分離。 在本實施例中,金屬層120a、120b皆包含第三族元 素與第一族元素,且其中金屬層120a中的第一族元素與第 三族元素單位體積原子數比值較高,以及金屬層120b中的 19 201244127 第一族元素與第三族元素單位 後,以兩階段使包含第六族 μ、原子數比值較低。然 元素或第-族元素的金屬層或材層與包含第三族 形成光電轉換層;如此—二層進行熱製程,以 第-族元素的金屬合金層或金屬階,熱處理時,富含 反應成晶粒較大且均質性較好的夕介二隹f可與第六族元素 行第二階段熱處理’此步驟在;層堆疊進 良好的p型半導體特性。因太^、光電轉換層具備 =適於製作大面積的光電 換層能有較大的晶粒、較佳的 先電轉 同時具有良好的P型半導體特性,如此一來、、,:電轅:且 中的缺陷與雜質密度能有效降低 :於”族元素通常具有低融點、高高再;: 非^層,再於另-駭使金制與非金屬m層與 本貫施例能避免於雜設備中使用第六族元素的氣’ 輕材’因而具有高安全性與避免污染腔室的優點,故^ 易地維護製程設備,以避免製作成本的增加。間 【第四實施例】 圖4A至圖4G為本發明之第四貫施例的一種光電轉 換層的製造方法的剖面流程示意圖,第四實施例中的臭 板、基板與輔助基板的別名、材料混合層的別名、光電^201244127 VI. Description of the Invention: [Technical Field] The present invention relates to a method for producing a film layer, and more particularly to a method for producing a photoelectric conversion layer. [Prior Art] Due to the shortage of petrochemical energy, people's awareness of the importance of environmental protection has increased. Therefore, in recent years, people have been actively researching and developing technologies related to alternative energy and renewable energy. 'I hope to reduce the dependence on people who rely on energy and use petrochemicals. The impact of energy on the environment. Among the many alternatives = source and renewable energy technologies, solar cells (s〇lar cell) are the most eye-catching. The main reason is that solar cells can be directly converted into solar energy by solar energy, and no harmful substances such as carbon dioxide or nitride are generated during power generation, and the environment is not polluted. ° Silicon-based solar cells are a common type of solar cell in the industry. The principle of the bismuth-based solar cell is to add a high-purity semiconductor material (矽) to the dopant to exhibit different properties to form a P-type semiconductor and an η-type semiconductor, and to bond the ρ-η two plastic semiconductors. A p_η junction is formed. When sunlight strikes a semiconductor of ρ-η structure, the energy provided by the photons may excite electrons in the semiconductor to produce electron-hole pairs. By the arrangement of the electrodes, the holes are moved in the direction of the electric field and the electrons are moved in the opposite direction, so that the solar cells can be constructed. Compared with germanium semiconductor solar cells, the 201244127 battery with a high absorption coefficient and a direct energy gap compound semiconductor material as a photoelectric conversion layer (or light absorbing layer) has the advantages of being light and light, and the required = And Yangneng Power, therefore, is rich in low-cost; because of the need to comply with the economical mass production requirements of the main w technology, the body of the light equipment to achieve high-quality compound semiconductors need to solve ^ Importantly, a cost-effective photoelectric conversion layer is an industry. [Invention] The present invention provides a method for producing a photoelectric conversion layer, which is capable of producing a photoelectric conversion layer having a photoelectric conversion efficiency. The present invention proposes a method of manufacturing a photoelectric conversion layer. A first metal layer is formed on a substrate, and the material of the first metal layer includes at least two third group 7L. A first non-metal layer is formed on a first auxiliary substrate, and the material of the first non-metal layer includes at least one sixth group element. After contacting the surface of the first metal layer with the surface of the first non-metal layer, performing a first thermal process on the first metal layer and the first non-metal layer to form a first between the substrate and the first auxiliary substrate The material mixing layer, the first material mixing layer includes at least two, a third group element and at least one sixth group element. The first auxiliary substrate is separated from the first-material mixed layer. Forming a first metal layer and a second non-metal layer on the second auxiliary substrate, the material of the second metal layer includes at least one first group element, and the material of the second non-metal layer includes at least one sixth group element. After contacting the surface of the first material mixing layer with the surface of the second non-metal layer, performing a second thermal process on the first material mixing layer and the second metal layer and the second non-metal layer to form the substrate and the second auxiliary A second material mixing layer is formed between the substrates. The second material mixing layer comprises a first material mixing layer, 5 201244127. The element plates contained in the second auxiliary layer first metal layer and the second non-metal layer are separated from the first material mixed layer. Based on the above, in the method for fabricating the photoelectric conversion layer of the present invention, 3, after separately preparing the metal layer and the non-metal layer, the two are brought into contact to form a material = mixed layer. In this way, the degree of non-metallization of the metal layer can be precisely controlled, and the source of the material used in the gold system and the vacuum system can be prevented from being contaminated by the source of the non-metallic material, thereby reducing the manufacturing cost. The above described features and advantages of the present invention will be more apparent from the following description. [Embodiment] [First Embodiment] FIG. 1A to FIG. 1J are schematic cross-sectional views showing a method of manufacturing a photoelectric conversion layer according to a first embodiment of the present invention. Referring to Figure A, first, a first metal layer 12Qa is formed on the substrate 11G, and the first metal is applied to at least two elements of the third group. In this embodiment, the substrate (or the earth plate, the original substrate, the carrier substrate, the substrate to be retained) 11 such as a glass substrate (such as a sodium (10) a_lime, SLG) substrate or a hard substrate of other materials (for example) : no glass, quartz, silk plate, blue stone substrate, or other suitable material), but the invention is not limited thereto. In the embodiment +, the substrate U0 may also be a flexible flexible substrate such as a plastic substrate or a metal wire (not a substrate, a ruthenium plate, an ageing base, etc. In the present embodiment, on the surface of the substrate 110) That is, on the inner surface, for example, the electrode layer 112 has been formed, that is, the electrode layer 112 is formed between the substrate and the first metal base 120a. The electrode layer ιΐ2 of the embodiment is: 201244127 is -锢 (Mo) metal The layer ' can form a good ohmic contact (〇hmicc〇ntact) with the last formed photoelectric conversion layer 150c (refer to ® U), provide the photoelectric conversion layer necessary, and can be used as a back electrode. The material of the 'back electrode' in the basin can be used in addition to germanium, other materials of single or multi-layer structure, such as: gold, silver, copper, aluminum, tin, titanium, button, molybdenum, zinc, antimony, other suitable materials. The alloy, the nitride, the oxide, the oxynitride, the carbide described above, or a combination thereof. In other embodiments, the electrode layer 112 may not be formed first, that is, the photoelectric conversion layer 150c Directly contacting the inner surface of the substrate 110 Then, the photoelectric conversion layer 150c is electrically connected to the other back electrodes through other processes. In this embodiment, the material of the first metal layer 120a includes at least two kinds of third-group elements, for example, including the selected from the indium. At least two of gallium 'aluminum, tantalum, such as indium gallium (In^Gax), aluminum gallium (Αΐ^%) or any other combination. The first metal layer 120a is formed, for example, by co-evaporation or co-sputtering. An alloy layer, or a stacked layer of a plurality of metal layers formed by sputtering or a combination thereof. The first metal layer 12a includes indium gallium (inixGax), and the first metal layer 120a may be indium. The gallium alloy layer 'is a stacked layer of an indium metal layer and a gallium metal layer, wherein the first metal element layer (such as an indium metal layer) and the second metal element layer (such as a gallium metal layer) are alternately stacked at least twice. Preferably, the method of forming the first metal layer 12A is, for example, a sputtering method or an evaporation method. The first auxiliary substrate (also referred to as a first temporary substrate, a first substrate to be removed, and a first removed substrate). a first non-metal layer 140a is formed on the 130a, and the first non-metal layer 140a is formed The material includes at least one element of the sixth group. The first auxiliary substrate 130a is, for example, a glass substrate (such as a soda-lime 201244127 glass (SLG) substrate) or other materials of the above-mentioned substrate no. The first non-metal The material of the layer 140a is, for example, at least one of sulfur, selenium, and antimony. Referring to FIG. 1B, after the surface of the first metal layer 12A is brought into contact with the surface of the first non-metal layer 140a, the first metal is The layer 12A and the first non-metal layer 140a are subjected to a first thermal process T1 to form a first material mixed layer (also referred to as a first layer) as shown in FIG. 1C between the substrate u and the first auxiliary substrate 130a. A mixture layer, a first material layer) 15a, the first material mixing layer 150a comprises at least two third group elements and at least one sixth group element. In this embodiment, the first thermal process T1 includes, for example, a rapid tempering process or a furnace control process, wherein the process temperature of the first thermal process T1 is less than the softening temperature of the substrate 110 and the first auxiliary substrate 13〇a. . Taking the first metal layer 120a including a group III element such as indium gallium as an example, the process temperature of the first thermal process T1 is about 4 大于 or more. Hey. In the present embodiment, the first metal layer 120a includes, for example, indium gallium (InixGax), and the first non-metal layer 140a includes, for example, bismuth (Se), and thus the first material mixed layer 15 is added, for example, including indium gallium. (InbxGaj^Se]] Referring to FIG. 1c, the first auxiliary substrate 13A is separated from the first material mixed layer 150a. In the present embodiment, 'after the first material mixed layer 150a is formed, the first auxiliary After cooling, the substrate 13A is automatically separated from the first material mixing layer 105a or the first auxiliary substrate 130a is separated from the first material mixing layer i5〇a by a separating tool. Referring to FIG. 1D, Forming a second metal layer 120b and a second non-metal layer Mob on the second auxiliary substrate (or the second temporary substrate, the second substrate to be removed, and the second removed substrate) 13〇b, second The material of the metal layer 120b includes at least one first group element, and the material of the second non-metal layer 201244127 140b includes at least one sixth group element. In the embodiment, the second auxiliary substrate 13〇b is, for example, a glass substrate (such as sodium). Calcium glass (SLG) substrate) or the base described above The second metal layer 120b is made of, for example, at least one of copper, silver, and gold. In the embodiment, the second metal layer 120b includes, for example, copper (Cu). The second non-metal layer 14〇 The material of b is, for example, at least one of sulfur, selenium, and antimony. In the present embodiment, the sixth group element included in the non-metal layer 140b is, for example, the sixth group included in the first non-metal layer 140a. The elements are the same, that is, the second non-metal layer 140b is exemplified by, for example, bismuth (Se), but is not limited thereto. Referring to FIG. 1E, the surface of the first material mixed layer 15A and the second non-metal layer are next. After the surface contact of 140b, the first material mixing layer 150a and the first metal layer 120b and the second non-metal layer i4〇b are subjected to a second thermal process T2 between the substrate 110 and the second auxiliary substrate 13B. Forming a second material mixing layer (or referred to as a second mixture layer, a second material layer) 150b as shown in FIG. 1F, the second material mixing layer i50b including the first material mixing layer 150a, the first metal layer 120b, and the first The element contained in the second non-metal layer]_4〇b, wherein the second thermal process T The process temperature of 2 is less than the softening temperature of the substrate 11A and the second auxiliary substrate 130b. Since the material layer for performing the thermal process includes the first group element and/or the sixth group element, the process temperature of the second thermal process T2 is, for example, higher. The process temperature of the first thermal process T1 and the process temperature of the second thermal process T2 are greater than or equal to 5 〇〇. (: In the present embodiment, the first material mixture layer 150a includes, for example, indium gallium selenide [(inixGax)] 2Se3], the second metal layer 120b includes, for example, copper (Cu) and the second non-metal layer 14〇b includes, for example, selenium (Se), and thus the second material mixed layer 150b is, for example, a steel-rich gallium-selenium selenide (Cu) -richCIGS). 9 201244127 Referring to FIG. IF, the second auxiliary substrate 130b is then separated from the second material mixed layer 150b. In the present embodiment, after forming the second material mixing layer 150b, the second auxiliary substrate 130b is automatically separated from the second material mixing layer 150b after cooling, or the second auxiliary substrate 130b and the second material are separated by a separating tool. The mixed layer i5〇b is separated. Referring to FIG. 1G, in the embodiment, the third auxiliary substrate (or the second temporary substrate, the third substrate to be removed, and the third removed substrate) 130c are sequentially formed. The material of the third metal layer 12〇c and the third non-metal layer 140c, the third metal layer i2〇c includes at least two kinds of third-order halogen, and the material of the third non-metal layer 14〇c includes at least one sixth-group element. . In the present embodiment, the third auxiliary substrate 13 is, for example, a glass substrate (such as a soda-lime glass (SLG) substrate) or other material of the substrate 11 前 described above. In this embodiment, the at least two third group elements of the third metal layer 12 〇 c are, for example, the same as the at least two second group elements of the first metal layer 12 〇 a, and the third non-metal layer 14 〇 c The sixth group element example included is the same as the sixth group element included in the first non-metal layer 14A. In the present embodiment, the third metal layer 120 is, for example, made of indium gallium (InixGax), and the second non-metal layer 140c is exemplified by, for example, selenium (se). . Referring to FIG. 1H, after the surface of the second material mixed layer 15〇b is brought into contact with the surface of the third non-metal layer 140c, the second material mixed layer 15% and the third metal layer 120c and the third non-metal layer 14〇 (: performing a third thermal process to form T3, so as to form a third material mixed layer (or referred to as a third mixture layer, the first mixture layer) as shown in FIG. The third material layer 150c, the third material mixed layer 15〇c includes the second material mixed layer 150b, the second metal layer i2〇c, and the third non-metal layer 14 plus the element 201244127 f /, the first heat 裎The process temperature of T3 is smaller than the softening temperature of the substrate 110 and the first mfe 130e. In the present embodiment, the second material mixed layer 15Gb is, for example, steel-rich indium gallium germanium (Cu rieh CIGS) and third metal layer 12 〇 Ca. For example, the indium gallium dGaJ and the third non-metal layer 140c include, for example, a code (Se), and thus the third material mixed layer 150c is, for example, a copper indium gallium selenide film (CIGS). The substrate 130c is mixed with the third material to form a photoelectric conversion layer 1A as shown in FIG. 1J. In the present embodiment, after the third material mixed layer 150c is formed, the third auxiliary substrate 1' is automatically separated from the third material mixed layer 150c after cooling, for example, or the third_strip 13Qe and the third The material is mixed layer 15, separated. It is to be noted that, in order to facilitate the description, in the present embodiment, the photoelectric conversion layer in which the material is made of copper indium gallium germanium is taken as an example, but the invention is not limited thereto. In other embodiments, the photoelectric conversion layer The material of 1〇〇 is selected by the first, third and sixth groups of the periodic table of the chemical element (not using gaseous oxygen), for example: containing a copper indium gallium selenide (preferably, absorption wavelength) For solar band), copper indium selenide, copper gallium selenide, silver indium gallium selenide, silver indium selenide, silver gallium selenide, silver copper indium gallium selenide, silver copper indium selenide, silver copper gallium selenide, gold indium gallium selenide, gold indium Selenium, gold gallium selenium, gold, silver, indium gallium selenide, gold and silver indium selenium, gold and silver gallium selenium, gold, copper, indium gallium selenide, gold, copper, indium and selenium, gold, copper, gallium selenide, gold, silver, copper, indium gallium selenide, gold, silver, copper, indium, selenium, gold, silver, copper, gallium, selenium, copper and aluminum Gallium selenium, copper aluminum selenium, copper aluminum indium selenium, copper indium germanium selenium, copper germanium selenium, silver aluminum gallium selenide, silver aluminum selenium, silver copper aluminum gallium selenide, silver copper aluminum selenium, gold aluminum gallium selenium, gold aluminum selenium, Gold, silver, aluminum gallium selenide, gold, silver, aluminum, selenium, gold, steel, aluminum gallium selenide, gold, copper, aluminum, selenium, gold, silver, copper, aluminum, gallium, selenium, gold, silver, copper, aluminum, selenium, copper, gallium, selenium, copper, indium, selenium Copper bismuth selenium, silver bismuth gallium selenide, silver bismuth indium selenium, silver bismuth selenium, 201244127 silver copper shot (four), _ Xie _, Yin Lu (10), New Lion, Golden Snake Steel, Jin Ming Shixi, Jin Yinming gallium, Jin Yinming Indium Shixi, Jinyin Mingshixi, Mingjiao, Jintongjie_, Jintongjia, Newminium gallium selenium, gold, silver and copper, inscriptions, gold, silver and copper, or the above-mentioned ingredients, sodium, one of gold, silver and copper, or It is the above ingredients that use sulfur to replace selenium, or the use of the above ingredients will be handsome. Since the manufacturing method of these photoelectric conversion layers (10) is similar to the manufacturing method of the photoelectric conversion layer 1 of copper indium gallium selenide described in the present embodiment, it is only the first group element, the third element and the first part in the replacement process. Family elements, so I won't go into details here. Further, the order of the elements may be arbitrarily changed depending on the elements included in the photoelectric conversion layer 100 to be formed, and the present invention is not limited. In addition, in the implementation of the financial:, gold two materials can include zinc, wrong, tin, mercury, knitting and other elements. In particular, the photoelectric conversion layer 100 can be used in solar cells, photosensors, etc., and the manufacturing method of the photoelectric conversion layer 100 is compatible with existing process equipment, so that the fabrication of the components is not greatly increased. cost. In the present embodiment, the non-metal layer containing the sixth group element and the metal layer or material mixed layer containing the third group element or the first group element are thermally processed in a multi-stage (such as three-stage) manner to form The photoelectric conversion layer can accurately control the degree of reaction between the sixth group element and the metal layer, avoid unnecessary intermediate reaction products, and can uniformly distribute the third group element or the first group element in the mixed layer. . Therefore, the method of manufacturing the photoelectric conversion layer of the present embodiment is suitable for fabricating a large-area photoelectric conversion layer. As a result, the formed photoelectric conversion layer has a better band-gap profile and thus has a photoelectric conversion efficiency. Furthermore, since the sixth group element usually has a low melting point, a high vapor pressure, and a high degree of contamination, in the example of the 201244127 embodiment, a separate chamber is formed in a different chamber to make the metal layer and the non-gold core = The genus layer and the non-metal layer are further protected from the splashing and forging equipment. (4) Six '11 This embodiment can avoid high safety and avoid the contamination of the chamber body I, thus maintaining the process equipment, It is easy to avoid the advantages of the system, although in the first embodiment, it is: plus. The conversion layer is taken as an example, but in other implementations of the two "hot process to form a photoelectric other number of return trips to carry out the light can be used according to the requirements, in order to use the difference in the manufacturing method for the clear table, The photoelectric conversion layer of the thermal process is not limited to this. The manufacturer of the sound is US 2 ί, the second embodiment of the invention, the cross-sectional flow diagram of the Ik method of the photoelectric conversion layer, and the mixed layer of materials. Photoelectric; the same as described in the embodiment, please refer to the description in the first embodiment. The present embodiment is different from the first embodiment, for example: = = method and metal layer and non-metal The material of the layer is described. 2Α 'First, a first metal layer is formed on the substrate 11G, and the material of the first metal layer ma includes at least two kinds of third group elements and at least one type of known elements. In the present embodiment, The content of a third group element of the first metal layer is preferably the content of A in the other group of the third group element. For example, the material of the first metal layer (4) includes copper indium gallium and is rich in Indium steel indium gallium (In_rich CuInGa) Preferably, the atomic percentage of [Ga] / {[In] + [Ga]} is, for example, about 2% to about 13. 13 201244127 The first metal layer 120a is, for example, an alloy layer composed of a plurality of metal layers. a stacked layer or a combination thereof. For example, the first metal layer 120a may be a first metal element layer (such as an indium metal layer), a second metal element layer (such as a metal layer), and a third metal element layer (such as copper). The metal layer) is alternately stacked at least twice to form a stacked layer, wherein each metal element layer is formed by, for example, a sputtering method or an evaporation method. The first/substrate layer 140a is formed on the first auxiliary substrate 13A, The material of a non-metal layer 140a includes at least one group 6. The first auxiliary substrate 130a is, for example, a glass substrate (such as a soda-lime glass (SLG) substrate) or the first embodiment. The material of the first non-metal layer 140a is, for example, a stone. Referring to FIG. 2B, next, after the surface of the first metal layer 120a is in contact with the surface of the first non-metal layer 140a, the first metal is The layer 120a and the first non-metal layer 140a enter a first thermal process T1 for forming a first material mixing layer 150a as shown in FIG. 2C between the substrate 110 and the first auxiliary substrate 130a, the first material mixing layer i5〇a including at least two third-group elements In the present embodiment, the first thermal process T1 includes, for example, a rapid tempering process or a furnace control process, wherein the process of the first thermal process T1 is performed. The temperature is lower than the softening temperature of the substrate 110 and the first auxiliary substrate 130a. Since the material layer for performing the thermal process includes the first group element and/or the sixth group element, in the embodiment, the process temperature of the first thermal process τι is greater than Or equal to 50 (rc. In the present embodiment, the first metal layer 120a includes, for example, copper indium gallium (CuInGa), and the first non-metal layer 140a includes, for example, selenium (Se), and thus the first material mixed layer 150a includes, for example, copper indium gallium selenide ( CIGS). 201244127 Referring to Fig. 2C, the first auxiliary substrate 13A & is separated from the first material mixed layer 150a. In the present embodiment, after the first material mixed layer 150a is formed, the first auxiliary substrate 130a is automatically separated from the first material mixed layer 150a after cooling, or the first auxiliary substrate 130a and the first material are separated by a separating tool. The mixed layer 150a is separated. Referring to FIG. 2D, the second metal layer 120b and the second non-metal layer i40b are sequentially formed on the second auxiliary substrate uob. The material of the second metal layer i2〇b includes at least one first group element and at least two types. The material of the third group element, the second non-metal layer 14〇b includes at least one sixth group element. In the present embodiment, the at least two Group III elements of the first metal layer 120b are, for example, the same as the at least two Group III elements of the first metal layer 12A, wherein the content of the Group III elements is higher. It is better than the content of other species of the third group. For example, the material of the second metal layer 120b is, for example, including copper indium gallium, and is preferably gallium-enriched copper indium gallium (Ga-rich CuInGa), wherein [In]/{[In]+[Ga] The atomic percentage of } is, for example, about 30% to 4 Å/q. The sixth group element included in the second non-metal layer 140b in the present embodiment is, for example, the same as the sixth group element included in the first non-metal layer 140a. The second non-metal layer 140b includes, for example, bismuth (Se). Referring to FIG. 2E 'following', the surface of the first material mixed layer i5〇a is brought into contact with the surface of the second non-metal layer 140b, and then the first material mixed layer 150a and the second metal layer 120b and the second non-metal layer i4 are contacted. 〇b performs a second thermal process T2 to form a second material mixing layer 150b as shown in FIG. 2F between the substrate 110 and the second auxiliary substrate 130b, and the second material mixing layer 150b includes the first material mixing layer 150a. The elements contained in the second metal layer 12〇b and the second non-metal layer 140b. The temperature of the second thermal process τ2 is less than the softening temperature of the substrate 110 and the second auxiliary substrate 130b. The process temperature of the second thermal process T2 is greater than or equal to 500 °C. In the present embodiment, the second material mixed layer 150b includes, for example, copper indium gallium selenide (CIGS). Referring to Fig. 2F, the second auxiliary substrate 130b is then separated from the second material mixed layer 150b to form the photoelectric conversion layer 1A shown in Fig. 2G. In the present embodiment, after forming the second material mixing layer 150b, the second auxiliary substrate 130b is automatically separated from the second material mixing layer 150b after cooling, for example, or the second auxiliary substrate 130b and the second material are separated by a separating tool. The mixed layer 150b is separated. In this embodiment, the metal layers 120a, 120b each comprise a third group element and a first group element, and wherein the content of one of the third layer elements in the metal layer 120a is higher 'and the other third in the metal layer 120b The content of the family element is higher. Then 'heat-processing the non-metal layer containing the sixth-group element and the metal layer or material mixed layer containing the third-group element or the first-group element in two stages to form a photoelectric conversion layer, so that it can be accurately The degree of reaction of the sixth group element with the metal layer is controlled, unnecessary intermediate reaction products are avoided, and the third group element or the first group element can be homogeneously distributed in the mixed layer. Therefore, the method of manufacturing the photoelectric conversion layer of the present embodiment is suitable for producing a large-area photoelectric conversion layer. As a result, the formed photoelectric conversion layer has a better band gap profile and thus has high photoelectric conversion efficiency. Furthermore, since the sixth group element usually has a low melting point, a high vapor pressure, and a high degree of contamination, in the present embodiment, the ruthenium is separately prepared in different chambers to form a metal layer and a non-metal layer, and then in another chamber. The chamber brings the metal layer into contact with the non-metal layer. Therefore, the present embodiment can avoid the use of the gas source or the target of the sixth group element in the sputtering apparatus, thereby having the advantages of high safety and avoiding contamination of the chamber, so that it can be easily 201244127 Maintain process equipment to avoid the increase in production costs. [Third Embodiment] Figs. 3A to 3G are schematic cross-sectional views showing a method of manufacturing a photoelectric conversion layer according to a third embodiment of the present invention, and an alias of the substrate substrate and the auxiliary substrate in the third embodiment, and a material mixed layer The type of the alias and the photoelectric conversion layer is substantially the same as that described in the first embodiment, and the metal layer and the non-metal material are substantially the same as those described in the second embodiment, and the following is different from the second embodiment, for example, photoelectric The step of forming the conversion layer will be described. Please refer to FIG. 3A. First, the first metal layer 120a' is formed on the substrate 11A. The material of the first metal layer i2〇a includes at least two third group elements and at least one first group element. In the present embodiment, the content of the first group of halogens in the first metal layer 12a preferably means that the content of the first group element is greater than the content of the other group of elements of the second group. For example, the material of the first metal layer 120a includes, for example, copper indium gallium, and copper-rich copper indium gallium (Cu-nchCuInGa) is preferred 'where [cu]/{[in]+[Ga]} The atomic percentage is, for example, about 95% to 105%. The first metal layer 12 is, for example, an alloy layer, a stacked layer composed of a plurality of metal layers, or a combination thereof. For example, the first metal layer 120a may be a first metal element layer (such as an indium metal layer), a first metal element layer (such as a gallium metal layer), and a third metal element layer (such as a copper metal layer) alternately stacked at least two The stacked layers formed in the next step, wherein the metal element layer is formed by, for example, a sputtering method or an evaporation method. A first non-metal layer 14A is formed on the first auxiliary substrate 130a, and the material of the first non-metal layer 140a includes at least one sixth group element. The first auxiliary substrate 130a is, for example, a glass substrate (such as a sodium sapphire glass (SLG) substrate) or other substrate as described above. The material of the first non-metal layer 17 201244127 140a is, for example, including Shixi. Referring to FIG. 3B 'following', after the surface of the first metal layer 12A is contacted with the surface of the non-metal layer 140a, a first thermal process T1 is performed on the first metal layer i2〇a^ the non-metal layer 140a. A first material bonding layer 150a as shown in FIG. 3C is formed between the substrate and the first auxiliary substrate 130a, and the first material mixing layer 15A includes at least two third families, at least one The first group element and the at least one sixth group element. In the present embodiment, the first thermal process T1 includes, for example, a rapid tempering process biting a furnace control process. The process temperature of the first thermal process T1 is smaller than the softening temperature of the substrate 110 and the first auxiliary substrate 130a. The material layer that performs the thermal process includes the first group element and/or the sixth group element. In the present embodiment, the process temperature of the first thermal process T1 is greater than or equal to 5 〇〇 ° C. In the present embodiment, the first metal layer 12A includes, for example, copper indium gallium (CuInGa), and the first non-metal layer 140a includes, for example, selenium (Se), and thus the first material mixed layer 150a includes, for example, copper indium gallium. Selenium (ciGS). Referring to Fig. 3C', then, the first auxiliary substrate i3〇a is separated from the first material mixed layer 150a. In the present embodiment, after the first material mixed layer 150a is formed, the first auxiliary substrate 130a is automatically separated from the first material mixed layer 150a, for example, after cooling. Referring to FIG. 3D, a second metal layer 120b and a second non-metal layer 140b are sequentially formed on the second auxiliary substrate 130b. The material of the second metal layer i2〇b includes at least one first group element and at least two types. The material of the third group element, the second non-metal layer 140b includes at least one sixth group element. In this embodiment, the at least two third group elements of the second metal layer 120b are, for example, the same as the at least two third group elements of the first metal layer 120a, and the content of one of the 201244127 third group elements is preferably greater than The content of other species of the third group. For example, the material of the second metal layer 120b is, for example, copper indium gallium, and copper indium gallium (Cu_p00r CuInGa) having a negative copper content, wherein [CU]/{[In]+[Ga]} The atomic percentage is, for example, about 7 to 85%. In the present embodiment, the sixth group element included in the second non-metal layer 140b is, for example, the same as the sixth group element included in the first non-metal layer 140a. The second non-metal layer 140b includes, for example, selenium (ge). Referring to FIG. 3E 'following', after the surface of the first material mixed layer i5〇a is brought into contact with the surface of the second non-metal layer 140b, the first material mixed layer 150a and the second metal layer 12b and the second non-metal are attached. The layer 140b performs a second thermal process T2 to form a second material mixing layer 15〇b as shown in FIG. 3F between the substrate 11〇 and the second auxiliary substrate i3〇b, and the second material mixing layer 150b includes An element contained in the material mixed layer i5〇a, the second metal layer i2〇b, and the second non-metal layer 140b. The process temperature of the second thermal process T2 is smaller than the softening temperature of the main substrate 110 and the second auxiliary substrate 13b. The process temperature of the second thermal process T2 is greater than or equal to 5 〇〇. (In the present embodiment, the second material mixed layer 150b includes, for example, copper indium gallium selenide (CIGS). Referring to FIG. 3F 'then, the second auxiliary substrate n〇b is separated from the second material mixed layer 150b' To form the photoelectric conversion layer 1A shown in Fig. 3G. In the present embodiment, after the second material mixed layer 150b is formed, the second auxiliary substrate 130b is automatically separated from the second material mixed layer 150b, for example, after cooling. In this embodiment, the metal layers 120a, 120b each comprise a third group element and a first group element, and wherein the ratio of the atomic ratio of the first group element to the third group element in the metal layer 120a is higher, and the metal layer 19 201244127 in the first group of elements and the third group of element units, in two stages to include the sixth group of μ, the atomic ratio is lower. The element or the group of elements of the metal layer or layer and the third The family forms a photoelectric conversion layer; thus, the second layer is subjected to a thermal process, and the metal alloy layer or the metal step of the first-group element is rich in reaction and is rich in crystal grains and has good homogeneity. Second order with the sixth family element The heat treatment 'this step is; the layer is stacked with good p-type semiconductor characteristics. Because of the ^, the photoelectric conversion layer has = suitable for making a large area of the photoelectric conversion layer can have larger grains, better first electric rotation and good The characteristics of the P-type semiconductor, such as:,:: 缺陷: and the defect and impurity density can be effectively reduced: "the family element usually has a low melting point, high and high again;: non-layer, and then -骇The gold and non-metal m layer and the local application can avoid the use of the gas of the sixth group element in the miscellaneous equipment, thus having the advantages of high safety and avoiding contamination of the chamber, so the maintenance process is easy. [Fourth Embodiment] FIG. 4A to FIG. 4G are schematic cross-sectional flowcharts showing a method of manufacturing a photoelectric conversion layer according to a fourth embodiment of the present invention, and the odor in the fourth embodiment The alias of the board, the substrate and the auxiliary substrate, the alias of the material mixed layer, and the photoelectric ^

S 20 201244127 換層的種類大致與第-實施财所述相同,請參 施例中所述。而金屬層以及非金屬層的材料大致^ 施例中所述相同,以下針對與第二實施例不同處,' = 電轉換層的形成步驟進行說明。 請參H4A ’錢,於基板UG上形成第—金屬層 120a,第-金屬層12Ga之材f包括至少兩種第三族元素^ 至少-種第-族元素。在本實施例中,第—金屬層12& 之材質例如是包括銅銦鎵。第一金屬層12〇a的形成方 如是減:锻法或蒸锻法。 於第一辅助基板130a上形成第一非金屬層14〇a, 一非金屬層140a之材質包括至少一種第六族元素。第—非 金屬層140a之材質例如是包括硒。 請參照圖4B,接著,將第一金屬層12〇a之表面與第 一非金屬層140a的表面接觸後,對第一金屬層12〇&與第 一非金屬層140a進行一第一熱製程T1,以於基板11〇與 第一輔助基板130a之間形成如圖4c所示的一第—材料& 合層150a,第一材料混合層150a包括至少兩種第三族元 素、至少一種第一族元素以及至少一種第六族元素。在本 實施例中,第一熱製程T1的製程溫度約大於或等於5〇〇 C ,較佳為520C至560°C。第一材料混合層ISOa例如是 包括銅銦鎵硒(CIGS)。 請參照圖4C,然後,將第一輔助基板i3〇a與第—材 料混合層150a分離。在本實施例中’在形成第一材料混合 層150a之後’第一辅助基板i3〇a在冷卻後例如是自動與 第一材料混合層150a分離或者是利用分離工具將第—輔 21 201244127 助基板130a與第一材料混合層15如分離。 請參關4D’之後,於第二辅助基板腿上 成第二金屬層12Gb與第二非金屬層 二 之材質包括至少—料素與至少兩種第三 第-非金屬層14Gb之材質包括至少—種第六族元素。在 實施例中,第二金屬層隱的材料例如技第—金屬芦 120a相同,第-金屬層伽之材質例如是包括銅鋼蘇: 第二非金屬層140b之材質例如是硒。 請參照圖4E,接著,將第一材料混合層15〇a之表面 與第二非金屬層140b的表面接觸後,對第一材料混合層 150a與第二金屬層120b及第二非金屬層i40b進行一第二 熱製程T2 ’以於基板11〇與第二輔助基板13〇b之間形成 如圖4F所示之一第二材料混合層15〇b,第二材料混合層 150b包括第一材料混合層i5〇a、第二金屬層120b及第二 非金屬層140b所含有的元素。在本實施例中,第二熱製程 T2的製程溫度約大於或等於500°C,較佳為520°C至560 °C。第一材料混合層150a例如是包括銅銦鎵硒(CIGS)。 請參照圖4F ’然後,將第二輔助基板130b與第二材 料混合層150b分離。在本實施例中,在形成第二材料混合 層150b之後,第二輔助基板130b在冷卻後例如是自動與 第二材料混合層150b分離或者是利用分離工具將第二辅 助基板130b與第二材料混合層150b分離。 之後,重複進行圖4D至圖4F的步驟數次,以形成如 圖4G所示的光電轉換層100。在本實施例中,例如是重複 進行圖4D至圖4F的步驟三次,也就是共進行五次熱製 s 22 201244127 程。其中,由於每一次熱製程中的金屬層皆具 ^此了使每-:欠的金屬相厚度具有㈣厚度,舉二來 次所形,金屬層的厚度可為光電轉換層的預定 ί二:門1/5特:付較易混合均勻,且能縮短各熱 特卜k的疋’#金屬層與非金屬層形成均 :化&物,對於金屬兀素具有固定作用,因此能進一步改 iifi素分佈不均的現象。再者,由於會重覆於辅助基 板上依序軸金屬層與非金屬層时驟,因此可以批次的 方式形成其上已形縣金屬層與非金屬層的乡個辅助基 板,以節省製㈣間。特觀意的是,軸在上述的實施 例中是以光電轉換層包括第_族元素、第三族元素及第六 族元素為例,諸如包括Cu(lnl XGax)(sel Α)2、S 20 201244127 The type of layer change is roughly the same as that described in the first implementation, please refer to the description. The materials of the metal layer and the non-metal layer are substantially the same as described in the embodiment, and the steps of forming the '= electric conversion layer will be described below for the difference from the second embodiment. Referring to H4A' money, a first metal layer 120a is formed on the substrate UG, and the material f of the first metal layer 12Ga includes at least two third group elements ^ at least one type of group element. In the present embodiment, the material of the first metal layer 12 & for example, includes copper indium gallium. The formation of the first metal layer 12〇a is as follows: forging or steaming. A first non-metal layer 14A is formed on the first auxiliary substrate 130a, and a material of the non-metal layer 140a includes at least one sixth group element. The material of the first-non-metal layer 140a is, for example, selenium. Referring to FIG. 4B, after the surface of the first metal layer 12A is brought into contact with the surface of the first non-metal layer 140a, a first heat is applied to the first metal layer 12 and the first non-metal layer 140a. The process T1 is such that a first material & layer 150a as shown in FIG. 4c is formed between the substrate 11A and the first auxiliary substrate 130a, and the first material mixed layer 150a includes at least two kinds of third group elements, at least one The first group element and the at least one sixth group element. In the present embodiment, the process temperature of the first thermal process T1 is about 5 〇〇 C or more, preferably 520 C to 560 ° C. The first material mixed layer ISOa includes, for example, copper indium gallium selenide (CIGS). Referring to Fig. 4C, the first auxiliary substrate i3〇a is then separated from the first material mixed layer 150a. In the present embodiment, 'after forming the first material mixed layer 150a', the first auxiliary substrate i3〇a is automatically separated from the first material mixed layer 150a after cooling, for example, or the first auxiliary 21 201244127 assisting substrate is formed by using a separating tool. 130a is separated from the first material mixed layer 15 as. After the 4D′ is entered, the materials of the second metal layer 12Gb and the second non-metal layer 2 on the second auxiliary substrate leg include at least—the material of the material and the at least two third non-metal layers 14Gb include at least - a sixth family element. In the embodiment, the material of the second metal layer is the same as that of the metal-like metal 120a, and the material of the first metal layer is, for example, a copper-steel: the material of the second non-metal layer 140b is, for example, selenium. Referring to FIG. 4E, after the surface of the first material mixed layer 15A is brought into contact with the surface of the second non-metal layer 140b, the first material mixed layer 150a and the second metal layer 120b and the second non-metal layer i40b are applied. A second thermal process T2 ′ is performed to form a second material mixing layer 15〇b as shown in FIG. 4F between the substrate 11〇 and the second auxiliary substrate 13〇b, and the second material mixing layer 150b includes the first material. The elements contained in the mixed layer i5〇a, the second metal layer 120b, and the second non-metal layer 140b. In the present embodiment, the process temperature of the second thermal process T2 is about 500 ° C or more, preferably 520 ° C to 560 ° C. The first material mixed layer 150a includes, for example, copper indium gallium selenide (CIGS). Referring to Figure 4F', the second auxiliary substrate 130b is then separated from the second material mixed layer 150b. In the present embodiment, after forming the second material mixing layer 150b, the second auxiliary substrate 130b is automatically separated from the second material mixing layer 150b after cooling, or the second auxiliary substrate 130b and the second material are separated by a separating tool. The mixed layer 150b is separated. Thereafter, the steps of Figs. 4D to 4F are repeated several times to form the photoelectric conversion layer 100 as shown in Fig. 4G. In the present embodiment, for example, the steps of Figs. 4D to 4F are repeated three times, that is, a total of five times of heat generation s 22 201244127. Wherein, since the metal layer in each thermal process has such a thickness that the thickness of each of the metal phases is (4), and the thickness of the metal layer is determined by the second time, the thickness of the metal layer can be predetermined by the photoelectric conversion layer: Door 1/5 special: It is easy to mix evenly, and can shorten the formation of each of the hot and cold metal 与'# metal layer and non-metal layer: chemical & material, has a fixed effect on metal strontium, so it can be further modified The phenomenon of uneven distribution of iifi. Furthermore, since the metal layer and the non-metal layer are sequentially repeated on the auxiliary substrate, the auxiliary substrate of the metal layer and the non-metal layer of the formed county can be formed in a batch manner to save the system. (4) Room. In particular, the axis in the above embodiment is exemplified by the photoelectric conversion layer including the group_element element, the group III element, and the sixth group element, such as including Cu(lnl XGax)(sel Α)2.

AgiAlkGaxXSeHTey)2 ’但在另一實施例中,上述的製作 方法亦可應用於製作包括(Cdl_xHgx)(TeiySy)2、Zn(SeiySy) 與CuZnSnS(CZTS)等材料的系統中或其它成份的光電轉 換層。 綜上所述,在本發明之光電轉換層的製造方法中,是 分別製備金屬層與非金屬層後’才使兩者接觸以形成材料 混合層。如此一來,能精確地控制金屬層被非金屬化的程 度,避免不必要的中間反應產物,且能使第三族元素或第 一方矢元素均質地分佈於混合層中。因此,所形成的光電轉 換層具有較佳的帶隙輪廓與較高的光電轉換效率。再者, 由於第六族元素通常具有低融點、高蒸氣壓以及高污染 性,但本發明是分別在不同的腔室中製備金屬層與非金屬 23 201244127 層,再於另一腔室使金屬層與非金屬層接觸,因此,能避 濺鍍3又備巾使用第六族元素的氣體源絲材,具有高 安全性與避免污染腔室的優點。換言之,本發明之光電轉 換層的製u方法有助於維護製程設備,進而避免製作成本 的增加。 雖h本發明已以實施例揭露如上,然其並非用以限定 月4壬何所屬技術領域中具有通常知識者,在不脫離 之,神和範圍内’ #可作些許之更 發明之保護範圍當視後㈣請專利範圍所界定者為準本 【圖式簡單說明】 圖1A至圖1J為本發明之第一實施例的一 層的製造方法的邮絲示意圖。 種光電轉換 圖2A至圖2G為本發明之第二實施例的 換層的製造方法的剖面流程示意圖。 一種光電轉 圖3A至圖3G為本發明之第三實施例的 換層的製造方法的剖面流程示意圖。 圖4A至圖4G為本發明之第四實施例的 換層的製造方法的剖面流程示意圖。 —種光電轉 一種光電轉 【主要元件符號說明】 100 :光電轉換層 201244127 110 :基板 112 :電極層 120a〜120c :金屬層 130a〜130c :輔助基板 140a〜140c :非金屬層 150a〜150c :材料混合層 T1〜T3 :熱製程 25AgiAlkGaxXSeHTey) 2 'But in another embodiment, the above fabrication method can also be applied to the photoelectric conversion of a system or other components including materials such as (Cdl_xHgx) (TeiySy) 2, Zn (SeiySy) and CuZnSnS (CZTS). Floor. As described above, in the method of fabricating the photoelectric conversion layer of the present invention, the metal layer and the non-metal layer are separately prepared, respectively, so that the two are brought into contact to form a material mixed layer. As a result, the degree of nonmetallization of the metal layer can be precisely controlled, unnecessary intermediate reaction products can be avoided, and the third group element or the first group element can be homogeneously distributed in the mixed layer. Therefore, the formed photoelectric conversion layer has a better band gap profile and higher photoelectric conversion efficiency. Furthermore, since the sixth group element generally has a low melting point, a high vapor pressure, and a high degree of contamination, the present invention separately prepares a metal layer and a non-metal 23 201244127 layer in different chambers, and then makes another chamber The metal layer is in contact with the non-metal layer, and therefore, the gas source wire of the sixth group element can be avoided from the sputtering and the towel, which has the advantages of high safety and avoiding contamination of the chamber. In other words, the method for fabricating the photoelectric conversion layer of the present invention contributes to maintenance of the process equipment, thereby avoiding an increase in manufacturing cost. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the general knowledge of the technical field of the month, and it is possible to make some more inventions within the scope of God. The following is a brief description of the manufacturing method of the first embodiment of the present invention. FIG. 1A to FIG. 1J are schematic diagrams showing the manufacturing method of the layer of the first embodiment of the present invention. Fig. 2A to Fig. 2G are schematic cross-sectional views showing a method of manufacturing a layer change according to a second embodiment of the present invention. Fig. 3A to Fig. 3G are schematic cross-sectional views showing a method of manufacturing a layer change according to a third embodiment of the present invention. 4A to 4G are schematic cross-sectional views showing a method of manufacturing a layer change according to a fourth embodiment of the present invention. - Photoelectric conversion to a photoelectric conversion [Main component symbol description] 100: photoelectric conversion layer 201244127 110: substrate 112: electrode layers 120a to 120c: metal layers 130a to 130c: auxiliary substrates 140a to 140c: non-metal layers 150a to 150c: material Mixed layer T1~T3: hot process 25

Claims (1)

201244127 七、申請專利範圍: 1. 一種光電轉換層的製造方法,包括: 於一基板上形成一第一金屬層,該第一金屬層之材質 包括至少兩種第三族元素; 於一第一輔助基板上形成一第一非金屬層,該第一非 金屬層之材質包括至少一種第六族元素; 將該第一金屬層之表面與該第一非金屬層的表面接 觸後,對該第一金屬層與該第一非金屬層進行一第一熱製 程,以於該基板與該第一輔助基板之間形成一第一材料混 合層,該第一材料混合層包括該至少兩種第三族元素與該 至少一種第六族元素; 將該第一輔助基板與該第一材料混合層分離; 於一第二輔助基板上依序形成一第二金屬層與一第 二非金屬層,該第二金屬層之材質包括至少一種第一族元 素,該第二非金屬層之材質包括至少一種第六族元素; 將該第一材料混合層之表面與該第二非金屬層的表 面接觸後,對該第一材料混合層與該第二金屬層及該第二 非金屬層進行一第二熱製程,以於該基板與該第二輔助基 板之間形成一第二材料混合層,該第二材料混合層包括該 第一材料混合層、該第二金屬層及該第二非金屬層所含有 的元素;以及 將該第二輔助基板與該第二材料混合層分離。 2. 如申請專利範圍第1項所述之光電轉換層的製造方 法,其中該第一金屬層之材質更包括至少一種第一族元素。 3. 如申請專利範圍第2項所述之光電轉換層的製造方 26 201244127 法,其中該第一金屬層之材質包括銦、鎵及銅。 4. 如申請專利範圍第1項所述之光電轉換層的製造方 法,其中該第一非金屬層之材質包括硒。 5. 如申請專利範圍第1項所述之光電轉換層的製造方 法,其中第二金屬層之材質更包括至少兩種第三族元素。 6. 如申請專利範圍第5項所述之光電轉換層的製造方 法,其中該第二金屬層的該至少兩種第三族元素與該第一 金屬層的該至少兩種第三族元素相同。 7. 如申請專利範圍第6項所述之光電轉換層的製造方 法,其中該第一金屬層中的一種第三族元素的含量大於其 他種第三族元素的含量,以及該第二金屬層中的另一種第 三族元素的含量大於其他種第三族元素的含量。 8. 如申請專利範圍第5項所述之光電轉換層的製造方 法,其中該第二金屬層之材質包括銦、鎵及銅。 9. 如申請專利範圍第1項所述之光電轉換層的製造方 法,其中該第二非金屬層之材質包括硒。 10. 如申請專利範圍第1項所述之光電轉換層的製造 方法,更包括: 於一第三輔助基板上依序形成一第三金屬層與一第 三非金屬層,該第三金屬層之材質包括至少兩種第三族元 素,該第三非金屬層之材質包括至少一種第六族元素; 將該第二材料混合層之表面與該第三非金屬層的表 面接觸後,對該第二材料混合層與該第三金屬層及該第三 非金屬層進行一第三熱製程,以於該基板與該第三輔助基 板之間形成一第三材料混合層,該第三材料混合層包括該 27 201244127 第二材料混合層、該第三金屬層及該第三非金屬層所含有 的元素;以及 將該第三辅助基板與該第三材料混合層分離。 11. 如申請專利範圍第10項所述之光電轉換層的製 造方法,其中該第一金屬層之材質包括銦鎵。 12. 如申請專利範圍第10項所述之光電轉換層的製 造方法,其中第二金屬層之材質包括銅。 13. 如申請專利範圍第10項所述之光電轉換層的製 造方法,其中該第三金屬層的該至少兩種第三族元素與該 第一金屬層的該至少兩種第三族元素相同。 14. 如申請專利範圍第10項所述之光電轉換層的製 造方法,其中該第三非金屬層之材質包括硒。 15. 如申請專利範圍第1項所述之光電轉換層的製造 方法,其中該第一金屬層與該基板之間先形成一電極層。 16. 如申請專利範圍第1項所述之光電轉換層的製造 方法,其中該第一金屬層與該第二金屬層中任一者包括一 合金層、多個金屬層或上述之組合。 17. 如申請專利範圍第1項所述之光電轉換層的製造 方法,其中該第一金屬層與該第二金屬層中任一者的形成 方法包括減:鍵法或蒸鍵法。 18. 如申請專利範圍第1項所述之光電轉換層的製造 方法,其中各該熱製程包括一快速回火製程或一熱爐管製 程。 19. 如申請專利範圍第1項所述之光電轉換層的製造 28 201244127 方法,其中該第二熱製程的溫度與該第一熱製程的溫度皆 小於該基板、該第一輔助基板與該第二輔助基板之軟化溫 度。 20.如申請專利範圍第10項所述之光電轉換層的製 造方法,其中該第三熱製程的溫度小於該第三輔助基板之 軟化溫度。 29201244127 VII. Patent application scope: 1. A method for manufacturing a photoelectric conversion layer, comprising: forming a first metal layer on a substrate, the material of the first metal layer comprising at least two elements of a third group; Forming a first non-metal layer on the auxiliary substrate, the material of the first non-metal layer comprising at least one sixth group element; after contacting the surface of the first metal layer with the surface of the first non-metal layer, a first thermal processing is performed between the metal layer and the first non-metal layer to form a first material mixing layer between the substrate and the first auxiliary substrate, the first material mixing layer including the at least two types a family element and the at least one sixth group element; separating the first auxiliary substrate from the first material mixed layer; sequentially forming a second metal layer and a second non-metal layer on a second auxiliary substrate, The material of the second metal layer includes at least one first group element, and the material of the second non-metal layer includes at least one sixth group element; a surface of the first material mixed layer and the second non-metal layer After the surface contact, the first material mixing layer and the second metal layer and the second non-metal layer are subjected to a second thermal process to form a second material mixed layer between the substrate and the second auxiliary substrate. The second material mixing layer includes the first material mixing layer, the second metal layer, and the element contained in the second non-metal layer; and separating the second auxiliary substrate from the second material mixed layer. 2. The method of fabricating a photoelectric conversion layer according to claim 1, wherein the material of the first metal layer further comprises at least one first group element. 3. The method of manufacturing a photoelectric conversion layer according to claim 2, wherein the material of the first metal layer comprises indium, gallium and copper. 4. The method of manufacturing a photoelectric conversion layer according to claim 1, wherein the material of the first non-metal layer comprises selenium. 5. The method of fabricating a photoelectric conversion layer according to claim 1, wherein the material of the second metal layer further comprises at least two elements of the third group. 6. The method of fabricating a photoelectric conversion layer according to claim 5, wherein the at least two third group elements of the second metal layer are the same as the at least two third group elements of the first metal layer . 7. The method of manufacturing a photoelectric conversion layer according to claim 6, wherein a content of a third group element in the first metal layer is greater than a content of another species of a third group element, and the second metal layer The content of another Group III element in the middle is greater than the content of the other Group III element. 8. The method of fabricating a photoelectric conversion layer according to claim 5, wherein the material of the second metal layer comprises indium, gallium, and copper. 9. The method of fabricating a photoelectric conversion layer according to claim 1, wherein the material of the second non-metal layer comprises selenium. 10. The method for manufacturing a photoelectric conversion layer according to claim 1, further comprising: sequentially forming a third metal layer and a third non-metal layer on a third auxiliary substrate, the third metal layer The material includes at least two elements of the third group, and the material of the third non-metal layer includes at least one group 6 element; after contacting the surface of the second material mixed layer with the surface of the third non-metal layer, The second material mixing layer and the third metal layer and the third non-metal layer are subjected to a third thermal process to form a third material mixing layer between the substrate and the third auxiliary substrate, the third material mixing The layer includes the element of the 27 201244127 second material mixed layer, the third metal layer and the third non-metal layer; and the third auxiliary substrate and the third material mixed layer are separated. 11. The method of fabricating a photoelectric conversion layer according to claim 10, wherein the material of the first metal layer comprises indium gallium. 12. The method of producing a photoelectric conversion layer according to claim 10, wherein the material of the second metal layer comprises copper. 13. The method of fabricating a photoelectric conversion layer according to claim 10, wherein the at least two third group elements of the third metal layer are the same as the at least two third group elements of the first metal layer . 14. The method of producing a photoelectric conversion layer according to claim 10, wherein the material of the third non-metal layer comprises selenium. 15. The method of fabricating a photoelectric conversion layer according to claim 1, wherein an electrode layer is formed between the first metal layer and the substrate. 16. The method of fabricating a photoelectric conversion layer according to claim 1, wherein the first metal layer and the second metal layer comprise an alloy layer, a plurality of metal layers or a combination thereof. 17. The method of producing a photoelectric conversion layer according to Item 1, wherein the method of forming the first metal layer and the second metal layer comprises a subtractive bond method or a steam bonding method. 18. The method of fabricating a photoelectric conversion layer according to claim 1, wherein each of the thermal processes comprises a rapid tempering process or a furnace control process. 19. The method of manufacturing a photoelectric conversion layer according to claim 1, wherein the temperature of the second thermal process and the temperature of the first thermal process are both smaller than the substrate, the first auxiliary substrate, and the first The softening temperature of the second auxiliary substrate. 20. The method of fabricating a photoelectric conversion layer according to claim 10, wherein a temperature of the third thermal process is less than a softening temperature of the third auxiliary substrate. 29
TW100114920A 2011-04-28 2011-04-28 Fabricating method of photoelectric conversion layer TWI441344B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW100114920A TWI441344B (en) 2011-04-28 2011-04-28 Fabricating method of photoelectric conversion layer
CN2011103546038A CN102354718A (en) 2011-04-28 2011-10-26 Method for manufacturing photoelectric conversion layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100114920A TWI441344B (en) 2011-04-28 2011-04-28 Fabricating method of photoelectric conversion layer

Publications (2)

Publication Number Publication Date
TW201244127A true TW201244127A (en) 2012-11-01
TWI441344B TWI441344B (en) 2014-06-11

Family

ID=45578247

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100114920A TWI441344B (en) 2011-04-28 2011-04-28 Fabricating method of photoelectric conversion layer

Country Status (2)

Country Link
CN (1) CN102354718A (en)
TW (1) TWI441344B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2800144A1 (en) * 2013-05-03 2014-11-05 Saint-Gobain Glass France Back contact substrate for a photovoltaic cell or module

Also Published As

Publication number Publication date
TWI441344B (en) 2014-06-11
CN102354718A (en) 2012-02-15

Similar Documents

Publication Publication Date Title
TWI485864B (en) Photovoltaic device and method for manufacturing the same
US8916412B2 (en) High efficiency cadmium telluride solar cell and method of fabrication
JP5603490B2 (en) High concentration P doped quantum dot solar cell by forced doping of INP and manufacturing method
TW201029056A (en) Method for producing a dopant profile
JP2008112848A (en) Process for manufacturing single crystal silicon solar cell and single crystal silicon solar cell
JP2007281156A (en) Rear-surface-electrode type semiconductor heterojunction solar battery, and manufacturing method and apparatus thereof
TWI654773B (en) Solar cell manufacturing method and solar cell
JP2006196771A (en) Chalcopyrite thin film solar cell and manufacturing method thereof
JP2006147759A (en) Method for manufacturing chalcopyrite thin-film solar cell
KR100992483B1 (en) Solar cell and fabrication method thereof
TW201244127A (en) Fabricating method of photoelectric conversion layer
TWI629804B (en) Manufacturing method of solar cell
WO2014064823A1 (en) Method for producing semiconductor film, solar cell, and chalcopyrite compound
TWI469377B (en) Solar cell and fabricating method thereof
TWI457287B (en) New compound semiconductors and their application
TW201507181A (en) Mrthod of forming chalcopyrite thin film
TWI443840B (en) Quaternary compound thin-film and method for preparing the same
JP2019131860A (en) Multijunction light-energy conversion element and device equipped therewith
TW201248898A (en) Preparation method of thin-film solar cell having high conversion efficiency and its products
JPH11204813A (en) Manufacture of photoelectric converter
TW201106497A (en) Method for manufacturing solar cell component
JP2005159168A (en) Photoelectric converter and its manufacturing method
WO2011102352A1 (en) Solar cell, and process for production of solar cell
KR101252472B1 (en) Method for manufacturing of solar cell
JP3347747B2 (en) Method for manufacturing photoelectric conversion device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees